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The aim of the thesis was to explore and develop an insight on various security 
aspects and practices that need to be considered while designing embedded 
products. The thesis was commissioned by Bittium Oy.  
 
Design requirements were gathered from the customer of the project and they 
were further consolidated based on industry practices and standards. Solutions 
were developed in C language over Linux operating system using tools; Eclipse 
IDE,  Hardware Debuggers, version control tools GIT and Gerrit for continuous 
integration methodology. The project was executed in the Iterative software de-
velopment lifecycle model. 
 
The project was completed successfully and delivered to the client by 2016. 
This thesis also extends the core topic a bit further by discussing some of the 
best practices for designing secure products and some of the future roadmaps 
and technologies in the area as part of conclusion. 
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1 INTRODUCTION 

Security in embedded systems has been gaining attention every passing day. 

With the advent of IoT and cloud technologies, security is ubiquitous and has 

found its way in most of the fields like telecom, aerospace, healthcare, smart, 

wearable devices and defence. Its presence is set to increase with the upcom-

ing technologies, such as like Cloud, robotics, machine learning and AI, and it 

has not hit the peak. 

Given its importance, security should be treated as an integral part of design 

which should be considered right from the product conception stage. Security 

should be built into the system across multiple levels, often referred as a lay-

ered approach. It is not feasible or often viable to design a totally fool-proof sys-

tem. Thus, designers should rather focus on systems that can be difficult to 

compromise and can reduce the risk to an acceptable level. Amit and Barnum 

state (1.) that it is much easier to find vulnerabilities in soft-ware than it is to 

make software secure. This can be applied when designing the product end to 

end and it is not limited to just software. 
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2 DRIVERS FOR DEVICE SECURITY 

In the current IoT (Internet of Things) age, it is possible to we pretty much can 

assume that almost every entity acts as a connected node in the network. The 

list includes but is not limited to, mobile phones, surveillance IP cameras, con-

sumer appliances, parking spaces, power plants, cars and mass transportation 

vehicles. (2.) By the year 2020, analysts estimate that there could be 50 billion 

Internet connected devices which is only bound to grow. (2.) 

This also means that this increasing number of nodes needs to be protected in 

the network: not only to establish a secure, reliable communication but also run 

a device without compromising the device’s integrity and authenticity. These are 

the primary non-functional requirements that are targeted to be achieved by the 

security solutions. 

Devices can be compromised either by running unauthorized software or by 

software being subject to hacking. Compromised devices can result in exposing 

users or organization secrets, such as cryptographic keys, information stealing 

and assets loss. This can have wider financial implications. It comprises user 

privacy and creates a blow to confidentiality. Thus, it is extremely important to 

have appropriate security solutions that can detect and repel any such attacks, 

and perform a damage control and an incident response mechanism in the 

event of any such attacks.  
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3 SECURITY ATTACKS 

The formal attack terminology widely used by industry consists of attack trees, 

attack windows and patterns that are used to describe any attacks. 

Attacks can be classified based on certain parameters, such as attacker’s ob-

jectives, impacts, Origin, phase of introduction, technology employed and ex-

ploitability. The purpose of any attacks is to achieve a desired goal that can 

range from data stealing, inflicting serious damage and crippling the system, 

hobby attacks and academic or institutional attacks as part of research to ex-

pose vulnerabilities. In the attack terminology, the purpose of an attack is 

viewed as a root. And by initiating an attack, attacker’s target is to reach the 

root of the attack tree.  

Attack trees also provide a formal and methodical way of describing the security 

of systems based on varying attacks. (3.) In an attack tree with only "or" 

branches, this consists of all paths from a leaf node to the root node. Such 

paths are also known as "attack paths." In a tree with some "and" branches, an 

attack pattern may be a sub-tree of the attack tree that includes the root node 

and at least one leaf node. (1.) Attack patterns provide a coherent way of teach-

ing designers how their systems may be attacked and how they can effectively 

defend them. (3.) Different attack types are described below in detail 

3.1 Attack types 

3.1.1 Focused attack 

Focused attacks are highly focused on particular or specific kinds of systems or 

environments or ecosystems. This kind of attack has no limitation on time, 

money and resources. The most practical examples of these kinds of attacks 

are to targeting to defence installations and penetrating enemy communication 

lines. The most recent example of this kind of attack is building of “stuxnet” 

which is targeted to attack at only Siemens systems in Iran. 
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3.1.2 Cryptanalytic attacks 

Cryptanalytic is a study of techniques to unravel the meaning of an encrypted 

text without access to secret keys. Cryptanalysis techniques are used to decrypt 

the ciphered text without really accessing the encryption keys. Doing a crypta-

nalysis requires working knowledge of the system and knowing the internals of 

cryptography which in practice means uncovering the secret key. These attacks 

are briefly classified as plain and cipher text attacks and are explained below. 

Known plain text attack 

In this kind of attack, the attacker will have access to at least one pair of a plain 

text and corresponding cipher text which are not explicitly chosen and act as in-

puts for further analysis. (43.) These plain texts are usually obtained via eaves-

dropping or from parities who already possess the encryption key. The results 

are used to break the rest of the encryption in the system by tracing out the se-

cret key. 

Chosen plain text attack 

A chosen-plaintext attack (CPA) is an attack model for a cryptanalysis which 

presumes that the attacker can obtain the cipher texts for arbitrary plaintexts. 

(4.) In this kind of attack, the attacker feeds a pre-chosen text into the cipher or-

acle after which they analyse the result and in the worst case they can find the 

secret key.  

Two forms of chosen plain text attacks are a batch chosen plain text attack and 

an adaptive plain text attack. The batch chosen plain text chooses all the plain 

texts before it analyses the ciphered text where as in the adaptive chosen text 

attack, a cryptanalyst requests for additional cipher texts after analysing the re-

sults of previous cipher operations.  

Known cipher text attacks 

Under known cipher text attacks also referred as Ciphertext only attack (COA), 

the attacker has access to bunch of cipher texts mostly obtained either by 

eavesdropping or stealing. Also here the attacker will not have access to more 
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cipher texts or will not have the luxury of choosing a cipher text or producing 

more. In this attack, attacker has access only to the encrypted message, as the 

language is known a frequency analysis could be attempted. In this situation the 

attacker does not know anything about the contents of the message, and must 

work from ciphertext only. (44.) This is certainly one of the weakest attacks as 

the attacker will have nothing to work against other than a few cipher texts in 

hand. 

Chosen cipher text attacks (CCA) 

A chosen cipher text attack is a scenario in which the attacker has the ability to 

choose cipher texts and to view their corresponding decryption’s plaintext. (5.) 

In this kind of attack, the attacker selects the cipher text, sends it to the victim, 

and is given in return the corresponding plaintext or some part thereof. (6.) 

It is essentially the same scenario as a chosen plaintext attack but it is applied 

to a decryption function instead of the encryption function, which means that the 

attacker will be able to produce a clear text from a set of pre-selected ciphered 

text messages from the decryption oracle. 

Chosen cipher text attacks can be adaptive or non-adaptive. Under non adap-

tive cipher text attacks, the attacker chooses certain cipher texts in advance for 

decrypting them. The clear texts obtained are not used for the next cipher oper-

ations. A chosen-plaintext attack is called adaptive if the attacker can choose 

the cipher texts depending on the previous outcomes of the attack. (6.) Servers 

using the Cipher Block Chaining (CBC) mode of operation and RSA PKCS1 are 

under certain circumstances vulnerable to adaptive chosen-cipher text attacks 

and such attacks allow an attacker to recover the encrypted data. (7.) This 

means that adaptive cipher text attacks are more context based and a result of 

outcome of previous operations. These attacks may be quite practical in the 

public-key setting. Bleichenbacher (8.) demonstrated that a plain RSA is vulner-

able to a chosen cipher text attack and some implementations of RSA may also 

be vulnerable to an adaptive chosen cipher text attack. 
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The chances of finding the secret key with chosen cipher-text attacks is more 

than simple plain text attack.  

Lunchtime Attack 

Lunchtime attacks are also referred to as a midnight attack or a CCA1 attack. 

This kind of attack is targeted by attackers when the owner or user of the sys-

tem is away or often when the system is not logged in. The idea is that the sys-

tem is vulnerable and there is often less or no resistance when there is no ac-

tive user who otherwise would be more challenging to penetrate. During this 

time, the attacker will generate pre-chosen cipher text quarries which are valid 

until the period of time after which penetrating will be difficult. 

Adaptive cipher text attack 

An adaptive cipher text attack is also referred as a CCA2 attack and it is 

stronger in nature compared to CCA1. This attack relies on selecting a cipher 

dynamically at runtime whenever the attacker is posed of challenge. 

This is an interactive based attack where the attacker sends a stream of ci-

phered texts to be decrypted and subsequent ciphered texts are chosen  de-

pending on the responses from the system (7.). 

In an increasing order from weakness to strength, the above attacks can be 

sorted as a known cipher text attack, a known plain text attack, a chosen plain 

text attack and a chosen cipher text attack. 

3.1.3 Network attacks 

In this world of ever increasing networking, systems have become very attrac-

tive targets for external attacks through the network. Networking attacks mostly 

rely on monitoring, spoofing or masquerading of network traffic. 

Passive attacks 

A passive attack monitors the unprotected or weekly encrypted communication 

between two nodes for capturing authentication information or passwords which 
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can be passed to parties who would or have the ability to compromise the sys-

tem. 

Active attacks 

Active attackers penetrate the system by circumventing the security and break-

ing the protection of existing systems. They can cause undesired effects by ex-

ecuting their malicious code and injecting viruses or Trojan horses. Active at-

tacks can have varied effects right from minor ones to bringing down the whole 

system or network especially if the attack is on servers.  

 

 

 FIGURE 1. Example of attacks on embedded systems (11.) 

Insider attack 

These are the attacks that are perpetrated from inside the organization or per-

sons who have genuine access to the system. Insider attacks come from dis-

loyal persons, persons with malicious intent or dissatisfied employees inside 

from an organization. 

Phishing attack 

Phishing attacks are attacks where the attacker will design fake almost identical 

web sites through which they direct users to login with credentials. These cre-

dentials will be recorded and used by attackers to log into proper websites 
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which can result in stealing of vital information or can even result in financial 

frauds if the target is banking sites. 

Hijack and spoof attacks 

An IP spoofing attack is one in which the source IP address of a packet is 

forged. There are generally two types of spoofing attacks: IP spoofing used in 

DoS attacks and man in the middle attacks (9.). 

The attacker can hijack the communication sessions and disconnect the one of 

the node. Under a hijacked session, other connected party is still under the im-

pression that they are communicating with the original party and can still pass 

some vital private or secret information. 

3.2 Classification of attackers 

Class1: Clever Outsiders 

Outsiders are external attackers exploiting a certain weakness in the system, 

they have certain knowledge of the system. 

Class2: Knowledgeable insiders 

Insider attackers are the ones who have the needed technical expertise as well 

as access to specialized tools to break into the system. 

Class3: Funded Organizations 

Organizations fund attacks with focused objectives. Here, attackers have in-

depth knowledge and no restriction on funding. They are also equipped with 

highly specialized tools to break open the systems. 

TABLE 1: Classification of attacks calibrated against different parameters, 

demonstrated in black hat conference by Joe Grand (10.). 

 

Resource Hacker class 

(Class1) 

Academic 

(Class 2) 

Organized 

(Class 3) 

Government 

(Class 4) 

Time Limited Moderate Large Large 
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Budget < $1000 $10K – $100k >$100k Unknown 

Creativity Varies High Varies Varies 

Detectability High High Low Low 

Target Challenge Publicity Money Varies 

Number Many  Moderate Few Unknown 

Organized No No Yes Yes 

Release Info Yes Yes Varies No 

 

3.3 Levels of difficult 

TABLE 2. Attack difficulty (10.) 

 

Level Name Description 

1 None Primitive ,No special tools or 
skills needed 

2 Intent Minimal skills needed to 
compromise the system 

3 Common tools Technically competent, Can 
be dealt with tools available 

in the market 

4 Unusual tools Can be compromised with 
tools, is  available to most 

people 

5 Special tools With specialized tools and 
with expertize only available 
in universities or government 

6 In Laboratory Major effort needed, Only 
available to few facilities in 

the world. 

 

3.4 Attack vectors 

Attack vectors are typical routes via which an attacker can gain access and af-

ter that exploit the vulnerabilities in the system in order to achieve their objec-

tive. Typical attack vectors are eves dropping, brute force attacks, injecting 

crafted packets, reverse engineering and fabrication by counterfeit assets of a 

product.  
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4 CLASSIFIYING VULNERABILITIES 

According to the CVE website, a vulnerability is a mistake in software code that 

provides an attacker with direct access to a system or network. For example, 

the vulnerability may allow an attacker to pose as a super user or system ad-

ministrator to gain full access privileges. (12.) 

An exposure, on the other hand, is defined as a mistake in software code or 

configuration that provides an attacker with indirect access to a system or net-

work. (12.) Classification of attacks and vulnerabilities can help to understand 

the tools, remedies and approaches that can help us to contain, trace and over-

come these vulnerabilities. 

4.1 Classification by SDLC (Software Development Lifecycle) 

Vulnerabilities can be classified based on the phase of the software develop-

ment life-cycle they usually appear. Some of the popular lifecycle phases that a 

have higher chance to see system vulnerabilities are design, testing, deploy-

ment and maintenance phases. (45.) 

Typical examples of vulnerabilities in a design phase can include a wrong 

choice of OSS components, protocol and algorithms, using of untested reusable 

libraries or code that may not be really a fool proof. Often vulnerabilities in de-

sign phases are easy to exploit and difficult to plug. 

During a maintenance phase, systems can be prone to vulnerabilities that come 

along with improper bug fixes and components that are not updated on timely 

and priority basis. In case the system is using OSS or reusable closed sources, 

system integrators need to update the system with the latest fixes from up-

stream.  Leaving them unmaintained can expose holes in the system makes the 

system an attractive target for exploit. Vulnerabilities that appear due to coding 

errors, relaxed compiler settings and bad design of APIs are few that evolve 
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during the implementation phase. Some of these can be addressed by employ-

ing a stricter process approach towards using code analysis tools and fine tun-

ing the compiler optimization options. 

In a typical software development life-cycle, system shall be configured to relax 

certain hard rules to accommodate testing and debugging. Eventually, If these 

are not closed can act as potential attack points. E.g. opening debug ports, 

opening access points in hardware. 

4.2 Classification by attackers objective 

One of the most prominent approaches is to enumerate the attacks by attackers 

objectives, such as gaining root access and higher privileges, creating a denial 

of service, stealing confidential and sensitive data, executing malicious code 

and Integrity and security policy violation. 

4.3 Classification by attacks by their location in OSI model and their origin  

One approach of classifying the vulnerabilities is by deciding where exactly they 

appear in the 7 layered OSI reference model. In practice this means segregat-

ing the vulnerability into one of the seven baskets (application, presentation, 

session, network, link and physical layer). Attacks can also be enumerated de-

pending on their original location in the network, such as a local system, intranet 

(Ethernet network), an internet, particular protocol (e.g. TCP/IP) and a wireless 

network. ( 46.) 

Mitigations for addressing these exploits can be implemented on different ob-

jects at different layers in OSI model. A mitigation may be applied at the source 

code level that eliminates a security flaw and the associated vulnerability, or a 

work-around can be applied at a system or network level to prevent the security 

flaw from being exploited. (47.)  But this kind of classification may not be appro-

priate at all times as many of the times vulnerabilities can fall between layers 

and hence, it is difficult to segregate on this layered approach. For example, it is 
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not often easy to decide on whether the vulnerability is exactly in the OS  in the 

application layer or both as contention results which is right and wrong. 

4.4 Classification by effected technology 

Systems get vulnerable though holes created by string exploits and buffer over-

flows which are not unusual in the C language. (47.) Likewise, systems can be 

prone to attacks that exploit meta characters vulnerabilities in the LDAP and 

SQL Injection with database languages. 

Systems that run code with memory leaks and malicious code are vulnerable to 

a resource exhaustion and thus can block the system resources resulting in 

DoS attacks. This kind of technology classification may not suit for vulnerabili-

ties that spawn across technologies, not just limited to one. 

4.5 Classification by errors 

System can be made vulnerable as a result of improper code design and pro-

grammatic errors that appear and during the implementation phase. A few of 

them are freeing the memory more than once and executing code  from mali-

cious memory locations or locations program either did not allocate or have any 

control on.  

At times, unclosed holes that are left in production code to accommodate de-

bugging for diagnostic purposes can spell trouble and can be exploited by at-

tackers. (47.) 

4.6 Classification by enabled attack scenario 

Vulnerabilities can also be classified based on precise type of attack scenarios. 

As seen above, Denial of Service is an effect that can happen due to multiple 

reasons, such as memory leaks or buffer overflows.  Thus, it is sensible to clas-

sify the vulnerabilities on the nature of an attack scenario rather than based on 

effects. 
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Examples of attack scenarios are cryptographic attacks, network attacks, se-

cure storage attacks, Software attacks, entropy attacks and malicious code exe-

cution. Techniques employed to execute these attacks can be chosen-known/ci-

pher text attacks, compromised boot sequence and string exploits.  

4.7 CLASP Classification 

CLASP (Comprehensive light weight application security process) enumerates 

vulnerabilities based on software events and conditions that are responsible for 

the vulnerability. (13.) 

4.8 Range and type errors 

Generic range type errors are errors due to buffer overflow , stack and heap 

overflow , integer overflow , truncation errors, signed and unsigned errors, inte-

ger coercion errors, unchecked indexing of arrays, NULL character misplacing 

for string buffers , NULL pointer dereferencing , usage of freed memory, format 

string and code injection into data areas of memory. (47.) 

4.9 Environmental errors 

The vulnerabilities can be classified based on environment condition in which 

the application is deployed. The same program image can have different prop-

erties when installed in different environments (for e.g. as a result of dynamic 

runtime linkage). (47.) Environmental errors could also occur due to resources 

exhaustion (e.g. sockets, kernel objects, file descriptors, memory), execution of 

untrusted code and data, system variable manipulations (e.g. system paths, li-

brary paths), spoofing of system events, a failure to protect secure data and 

keys, a TRNG generation failure and insufficient entropy for PRNG. 

4.10 Synchronization and timing errors 

Situations leading to synchronization and timing errors are race conditions in 

code (unlocking code via kernel objects) , race condition in signal handlers, im-

proper references for symbolic names which change at runtime , failure to drop 
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user privileges at right times soon after task is accomplished, leaking sensitive 

information through error messages , time to check and time to use errors (for 

example , resources can change their state between a window of  time lag be-

tween their validation and actual usage). Potential race conditions in the design 

could also bring up new vulnerabilities that attackers tend to exploit. At an even 

higher level of abstraction, these vulnerabilities could be classified as a logic or 

design error, since a resource (in this case, the file or socket) can be deleted 

while in use. (47.) Seacord & Householder in his work (47.) stated that, the low-

est level of abstraction this vulnerability could be classified as an input valida-

tion problem, since the programmer fails to ensure that the object being vali-

dated is the same object the (potentially) insecure operation is performed on. 

4.11 Protocol Errors ( 46.) 

Protocols errors are the ones that usually arise out of protocol, algorithm errors 

that are as a result of improper use or wrong choices. ( 46.) Such vulnerabilities 

are from failure to check for certification expiration and revocation, key ex-

change without proper authentication, failure to encrypt communication, failure 

to do integrity check where ever needed, usage of hardcoded and stored pass-

words or keys, trusting certain IP address or range of IPs that can be spoofed 

easily, using of broken, week or risker cryptographic algorithms, improper usage 

of OSS components and failure to protect confidential and sensitive data. 

4.12 Generic Errors 

Errors that are enumerated based on their generic nature are improper error 

and exception handling, improper break and jump instructions in code, ignoring 

return values from functions ,uninitialized variables, failure to free unused re-

sources and memory and unintentional assignment when comparison two val-

ues etc. (.47) 
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4.13 Popular Dictionaries for Attack Taxonomy 

MITRE is a government funded non-profit organization which publishes and 

controls standards to be used by community. Below are the popular dictionaries 

of publicly known information security vulnerabilities and exposures maintained 

by MITRE. (14.) 

4.13.1 PLOVER 

PLOVER is a primary list of working examples intended for researchers. It lists 

over 1,400 real world vulnerabilities by their CVE IDs organised as a conceptual 

framework. This framework offers a platform for discussion for a further analysis 

and describing them in a further detailed manner. PLOVER is targeted at those 

who are engaged in analysing vulnerabilities to understand and communicate 

them in a more abstract level. (14.) 

CVE 

CVE stands for Common Venerability Enumeration, which precisely describes a 

certain pin-pointed instance in a system or a vendor through which exploits can 

happen. For example, CVE-2015-7547, points to a specific venerable instance 

in eglibc for an attack. 

4.13.2 CWE 

CWE stands for Common Weakness Enumeration, which essentially deals with 

underlying software weakness in general but not specific to a particular instance 

in a system. Vulnerabilities can emerge from weakness and they may have po-

tential for getting targeted. The goal of CWE is to educate the programmers or 

system designers to For example, CWE-367 is time to check and time to use 

weakness spotted in software but it is not limited to any specific component or 

instance in any system. 
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4.13.3 CAPEC 

To respond to attacks effectively, the community needs to think outside of the 

box and have a firm grasp of the attacker’s perspective and the approaches 

used to exploit software systems. (15.) CAPEC provides this information to the 

community in order to help to enhance security throughout the software devel-

opment lifecycle and to support the needs of developers, testers, and educa-

tors. (15.) Therefore, CAPEC is a publicly available catalogue of attack patterns 

along with a comprehensive schema and classification taxonomy created to as-

sist in the building of secure software. (15.) While CWE is a list of software 

weakness types, Common Attack Pattern Enumeration and Classification 

(CAPEC™) is a list of the most common methods attackers use to exploit vul-

nerabilities resulting from CWEs. Used together, CWE and CAPEC provide un-

derstanding and guidance to software development personnel of all levels as to 

where and how their software is likely to be attacked, thereby equipping them 

with the information they need to help them build more secure software.  

Below is the pyramid described by Knowledge Consulting group (16.) on how 

CWE- CVE- CAPEC stack each other. 
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FIGURE 2. Relationship between CWE, CVE, CAPEC (16)  
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5 PRINCIPLES OF SECURITY  

Primary principles of security is to preserve the confidentiality, integrity and 

availability of the consumers, stakeholders and devices in the operating ecosys-

tem.  

“The principle of information security protection of confidentiality, integrity, and 

availability cannot be overemphasized: This is central to all studies and prac-

tices in IS. You’ll often see the term CIA triad to illustrate the overall goals for IS 

throughout the research, guidance, and practices you encounter.”—Three goals 

of security by Jim Breithaupt & Mark S. Merkow are shown in figure 3. 

 

 

FIGURE 3. CIA Triad (17.)  

5.1 Confidentiality 

Confidentially refers to a restriction of access to sensitive data from unauthor-

ized people. Loss of sensitive information, such as device or user passwords, 

credit card and banking credentials could result in identity theft, financial impli-

cations and compromised privacy.  

According to Mathew and Stan (18.), designers should strongly consider 

measures to ensure confidentiality and prevent sensitive information from 
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reaching unauthorized people, while simultaneously making sure that the right 

people can in fact get it: Access must be restricted only to those authorized to 

use the data in question. It is common, as well, for data to be categorized ac-

cording to the amount and type of damage that could be done should it fall into 

unintended hands. (18.) 

5.2 Integrity 

According to study published in a security blog by Mathew and Stan (18.), integ-

rity involves maintaining the consistency, accuracy, and trustworthiness of data 

over its entire life cycle. Data generated at a source must not be changed in 

transit, and steps must be taken to ensure that data cannot be altered by unau-

thorized people (for example, in a breach of confidentiality). For ensuring data 

integrity designers can employ the measures like, consider file permissions, 

user access controls, employing cryptographic checksums for verification. Also, 

designers need to plan for backups in the event of any damage to data to re-

store it to its correct state. (18.) 

5.3 Availability 

Terry refers to availability as one of the pillars in the CIA traid (19.), According 

to a report published by her, availability of information refers to ensuring that au-

thorized parties are able to access the information when needed. This can also 

be applied just not only to information, but also to systems that cater services. 

DoS attacks on such systems will deprive and deny users to access systems, 

thus hurting the systems availability. If critical services (systems) are attacked 

and brought down, it could cripple services and caste impact on economy and 

people’s lives. DoS attacks on mission critical systems such as aircraft and 

space ships can hurt the availability and can bring down the whole system 

threating the lives. 

Terry (19) advocates the importance of taking regular backups to ensure the 

data availability in the event of any natural disasters. Redundancy might be a 

solution for information services that are highly critical. These redundant copies 
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can be stored in different geographical areas to mitigate against natural disas-

ters and intentional attacks by mala fide people. Designers, while designing em-

bedded products should ensure that the systems can repel or filter such Dos at-

tacks, have proper intrusion detections mechanisms, can raise an alarm, have 

damage control mechanisms in place in the event of any such attacks. 

Extra security equipment or software such as firewalls and proxy servers, can 

guard against downtime and unreachable data due to malicious actions, such 

as denial-of-service (DoS) attacks and network intrusions. (19.) 

 

 

FIGURE 4. Potential Impacts for CIA (20.) 
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6 DESIGN CHALLENGES  

6.1 Resource limitations 

Embedded software has traditionally evolved as "software on devices with lim-

ited resources". In this traditional view, the principal problem is resource limita-

tions (small memory, small data word sizes, and relatively slow clocks). (21.) 

Given their size, portability and cost sensitiveness, they also often come with 

other resource limitations, such as computational power, absence of protective 

theft and shielding technologies when compared with a larger system. Among 

the examples, the Mission Critical system has much more stringent size and 

weight requirements than the others because of its use in a flight vehicle. (22.) 

For consumer devices, such as mobile phones and IoT devices, apart from size 

and computational power limitations, it is extremely important for these kinds of 

devices to be designed keeping the security of the user data and software at-

tacks in mind. 

While designing embedded systems, designers have to work with those above 

mentioned design challenges and at the same time they have to ensure users’ 

integrity of data and secrets, and damage limitation in case a system or a de-

vice is compromised due to a multitude of reasons.  

6.2 Reliability 

Embedded software systems are generally held to a much higher reliability 

standard than any general purpose software. (21.) They are also known to work 

in extreme and tough conditions, therefore they are prone to more failures. 

Sometimes these the failures associated with embedded systems can be quite 

risky and threating. They can cause substantial damage in terms of monitory or 

personal loss. In mission-critical applications, such as an aircraft flight control, a 

severe personal injury or an equipment damage could result from a failure of 

the embedded computer. (22.) A failure to safeguard the user data in a mobile 
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phone can have financial implications. Traditionally, such systems have em-

ployed multiply-redundant computers or distributed consensus protocols in or-

der to ensure a continued operation after an equipment failure. (22.) Thus, it is 

important that, designers create alternate solutions for mission critical systems. 

But IoT devices designers should consider damage limiting functionalities for 

consumers in case of any software attack or physical tampering. 

6.3 Cost constraints 

Most consumer segment devices are designed keeping the cost factor in mind. 

Achieving a reliable system under controlled costs can be challenging for sys-

tem designers. While designing cost consensus devices, designers keep the 

overall system costs controlled by keeping system complexity down, which 

should not affect the integrity or reliability of the overall system.  

6.4 Functionality creep 

Designers tend to improve the functionality of the products to compete in the 

market with their competitors. This is partly because consumers prefer to 

choose products offering the better functionality against the ones that offer more 

secure solutions. Therfore, in this ball game, it is often challenging for designers 

to balance the security features with the functionalities. 

6.5 Knowledge Gap 

A challenge in the area of designing secure solutions arises from the fact that 

attackers have been learning how to exploit the products for several decades, 

but the general solution designers have not kept up with the knowledge that at-

tackers have gained. (3.) Therefore, it will be challenging for designers to get 

ahead of the attackers to come up with good solution. 
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7 MECHANICAL DESIGN ASPECTS 

This chapter introduces mechanical design approaches that should be consid-

ered to bring out a secure product. 

7.1 Product housing 

A typical attack hard point in this case would be a product enclosure and an at-

tack vector where attackers will make an effort to open the casings and access 

to internal circuitry and components. Product designers need to prevent an easy 

access to the product internals by concealing the access points through which 

the device can be opened.  

Some of the safe enclosure techniques currently in use are  

 designing a product with a single piece outer shell. 

 using high melting point glues wherever needed. 

 designing in such a way that the opening of a device needs a complete 

destruction. 

 in addition to the above mentioned, leaving the surface points of device 

accessibility for service personnel who can open the device with special-

ized tools. 

7.1.1 External Interfaces 

External interfaces, such as proprietary connectors, Ethernet, RS232, USB, 

Firewall, JTAG, Wireless (802.11) and Bluetooth are a vital lifeline for the prod-

uct to the outside world so that the device functions properly. In addition to car-

rying the usual device operations, these interfaces also aid in regular mainte-

nance tasks, on-field diagnostic procedures and field programming.  

External interfaces are always attractive targets for hackers as the root of the 

attack tree can originate from here. Attackers indulge in probing, sniffing, flood-

ing and pushing malformed packets through these interfaces. Product designers 
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should be able to defeat all possible attacks that originate from these external 

interfaces. Designers should remember the below mentioned issues while they 

are designing interfaces. 

 A device must transmit only non-sensitive and public information in clear text 

format. 

 All sensitive and confidential information that has to be exchanged over in-

terfaces, must be encrypted. 

 Adequate protection must be added inside the device to defeat spoofing, 

malformed packets. e.g, hardening of OS, strong firewall. 

 Strict no obfuscation policy. Attackers are always ahead of designers and 

can uncover them easily. 

 All the diagnostic ports, backdoor interfaces and JTAG connectors must be 

removed from production software images. Closing them by employing tech-

niques, such as blowing resisters and fuses, is not the best approach as 

they can be reopened by attackers. 

7.1.2 Anti-tamper mechanisms 

Attackers try to gain physical access to a device by tampering to know confiden-

tial information and working internals device. Some of the tamper mechanisms 

worth considering by product designers are described below: 

Tamper resistance 

Tamper resistance relies on restricting physical access to devices. Devices 

must shall be housed and constructed with specialized tamper resistance mate-

rials and mechanisms, such as hardened steel enclosures, a usage of one way 

screws and epoxy coating materials, tight airflow channels, a usage of security 

bits, encapsulating the circuit and critical components to prevent intentional 

probing and tampering due to environment hazards. 
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Products with a well-protected housing would require a partial if not a complete 

destruction of device to open up. It is also essential for designers to lay empha-

sis on such a design that will leave a visible and clear evidence if a tamper at-

tempt is made. 

Tamper evidence 

Tamper evidence mechanisms are designed to ensure that a visible evidence or 

trails are left of an attempted break in. These mechanisms do not protect the 

device or the confidential data in it but they raise awareness that there has been 

an attack on the system. Some of the widely used mechanisms are brittle pack-

ages, crazed aluminum and polished packages, bleeding paints and holo-

graphic tapes. All the above mentioned mechanisms will leave damages on the 

surface which would be hard to be unnoticed. 

Tamper detection 

Tamper detection can be done by installing relevant sensors which detect the 

tamper and trigger the relevant response mechanisms. Some of the widely used 

tamper detection mechanisms that are built into devices are quoted below (23.) 

 Switches that detect a mechanical movement. 

 Sensors that can detect and inform external environmental changes. 

 Closed circuits and cables that are wrapped in and around the device 

for detecting an attempted break, tamper or modification. 

  Monitoring of for the changes in voltages and clock frequencies from 

and to the chips. 

Tamper response 

Systems should trigger shutdown and disable themselves in response to tamper 

detection. They should be designed with a capability to log and generate foren-

sic data for a further analysis of post tamper detection that can be accessed by 

service personnel.  Designers should also consider techniques, such as erasing 

the sensitive data, in response to tamper detection. In products, which houses 

confidential data, keys should protect the data by resorting to erasing methods. 
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Confidential data is either stored in RAM or ROM. Erasing the random access 

memory is relatively easier and it is accomplished by dropping the voltage lev-

els which will effectively clear the memory contents. In case of ROM, a ROM 

overwrite may be needed. There are even cases where a system employs an 

ultimate mechanism of physical destruction by shorting the circuits and render-

ing the device inoperable.  

Further, it should be noted that these tamper response mechanisms do not trig-

ger in case of unintentional actions, accidentally or by environmental factors. 

7.2 PCB design and routing 

Enough precautions should be taken while designing circuitry boards for not let-

ting an easy access to components, such as FPGA, processors and memories. 

An easy access to these components and circuitry can help attackers in reverse 

engineering the product. Designers should look into advanced chip packaging 

technologies while they design PCBs, e.g.  COB (Chip on Board) packaging, 

CIB (Chip In Board) packaging and Ball Grid Array packaging. The product 

should demark or erase all the chip markings either by black topping or using 

other methods, such as small sandering or etching. A failure to remove the chip 

markings will leave potential hints to attackers to learn about the chips behavior 

and their usage by referring their datasheets.   

Sensitive components and circuitry lines should be concealed by using Epoxy 

material around them. Care should be taken during the PCB production not to 

leave test points visibly open and every attempt should be made to obfuscate 

the trace paths and critical lines into inner layers of PCB. Even electromagnetic 

emissions from the product can act as potential attack points which attackers 

can monitor to determine secret information. Thus, every step needs to be 

taken to minimize the emissions by installing an appropriate shielding and tak-

ing care of unprotected I/O busses from ESDs. Well-designed power lines and 

grounding can reduce noise levels and emissions. All unused GPIOs should be 

either disabled or fixed to a predetermined state. 
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7.3 Memory and bus protection 

Designers should be aware that address and control bus lines are prone to 

probing and traffic is not secure. Designers need to design their systems to per-

form secure operations either inside SoC or components that will not use the 

unsecure bus in the system. Memory devices, such as RAM and ROM, are 

known to be unsecure. Even though systems are designed with a proper tamper 

detection and response mechanisms, such as a complete wiping out or erasing 

of data, there is a high chance that traces of data can still be left out. Although 

the product supports security fuses, boot-block protection mechanisms, these 

can be bypassed by die-attacks and chip decapping as attackers can reproduce 

and recreate cryptographic keys or remove security bits. Designers should also 

take steps to limit the time secure data can be stored in memory. The secure 

data should be erased if it is no longer needed. 
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8 HARDWARE ASSISTED SECURITY 

Devices can be made more secure if security use cases utilize hardware solu-

tions or extensions in conjunction with software rather than just as a software 

only solution. In the below sections the focus is on the role of hardware based 

solutions touching associated software functionalities that exploit these special-

ized hardware wherever needed. Security solutions that utilize an underlying 

platform and hardware assistance are more effective than purely software 

based ones.  

8.1 Smart Card 

A smart card is an embedded integrated circuit card with a CPU, memory, and 

at least one peripheral interface to communicate with a host device. (24.)  

Every component in the smart card is deemed secure, basic in execution with 

very less computational power. Smart cards also have a higher level of temper 

resistance because of their size, a complete physical isolation of the trusted 

area and narrow interfaces .The isolated trusted area plus a higher level of tem-

per resistance enables that the trusted services leveraged by a smart card are 

very secure, but very limited in scope due to lower computational capabilities. 

(24.) 

8.2 TPM   

Trusted platform modules (TPM) are dedicated secure crypto-processors which 

are designed to secure hardware or software by integrating cryptographic keys 

into a device. TPM chips are passive and execute commands from the CPU. 

They by no means will decide or control the execution flow. Generally, there are 

additional software components operating from the CPU. They that will interact 

with TPM chips, which would take action upon validating the content from the 

TPM. 
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Global standards of specification for the TPM are controlled by a Trusted com-

puting group (TCG) alliance formed by HP, Intel, AMD and Microsoft. The ob-

jective of the TCG is to develop, define and promote open standards for hard-

ware enabled trust computing and standardize software interfaces across plat-

forms. These specifications aim to provide a platform independent functionality 

that must be provided by any trusted platform by facilitating a common interface 

for a secure computing environment. Thus, protecting and securing the platform 

against hardware and software attacks. There are also criticisms against TPM 

specifications. They are said to cripple the user rights by moving rights manage-

ment from software to computing platform hardware.  

TPM chips come with an internal hardware logic for RSA encryption and de-

cryption, a random number key generator, a tamper proof non-volatile secure 

storage and a hash functionality. Although TCG specifications do not mandate 

the above to be hard wired, chip vendors prefer them as it can be difficult to fulfil 

the TCG specifications by just implementing these via software. 

   Simplified Architecture of the TPM  

 

FIGURE 5. High-level TPM Architecture (25.) 

The first generation chips were physically separate which made the platform 

less secure. Later on they were either mounted in the mother board or embed-

ded into the SoC. Mounting the TPM chips in the motherboard is prone to physi-

cal attacks and it is less secure, too. 
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Mandatory objectives of TPM chips are 

 protecting the encryption and public keys from external stealing or getting 

misused by untrusted components in the system. 

 preventing malicious code access to secret keys inside the TPM. 

TPM chips achieve the above goals by implementing the functionality listed be-

low 

 Authorization: Public key authentication functions that provide on-chip 

key generation using random number generation hardware, verification, 

encryption and decryption functionality. Keys inside the TPM can be 

made to never leave or be visible outside the chip to avoid any kinds of 

phishing attacks and to prevent the key from being copied and used with-

out the TPM. They can also be configured to be used by providing right 

authorization values when only they are unsealed. This in practice 

means that the keys are accessed only when the platform is in a known 

state. 

 Integrity measurement functionality provides the capability to protect the 

private keys to untrusted code. In a trusted boot scenario, the platform 

state (hash of configuration) is stored in PCM registers. The private keys 

are sealed under the specific PCM registers and they get unsealed only if 

the TPM is provided with the same values by which the integrity of the 

system is verified. When an attempt is made to boot the system with an 

unauthenticated image or with a image that has malware or suspicious 

code built in will result in different PCM values. This kind of boot will fail 

the integrity check and will render the keys inaccessible. 

 Attestation functionality: A mechanism where the TPM can certify the 

platform as trustworthy and not breached. By using the attestation, 

trusted clients can prove to the third party that their software is guanine 
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and not compromised. Attestation functions keep a list of software meas-

urements committed to PCRs and can then carry out a signature using 

private keys known only by the TPM. During the attestation operation, 

the evaluating entity will request a TPM quote, which is essentially a 

signed composite hash of selected PCM data and its signature. The gen-

erated TPM quote is compared with the values that are generated during 

provisioning. 

8.2.1 Root of trust for storage management 

The root of trust for storage is a trusted component that lies inside the TPM that 

provides integrity and confidentiality checking for secure storage information in 

the chip. This is achieved using the RSA encryption and integrity checking by 

validating the platform state to a known value. 

8.2.2 Root of trust for reporting  

The root of trust for reporting is a trusted component that resides inside the 

TPM and responsible for reporting the platform state and RSA signed data to 

external parties who ever requests them. 

8.2.3 Root of trust for measurement 

The RTM (root of trust for measurement) is a piece of code external to the TPM 

which is responsible for triggering the measurement of platform state. RTM sits 

inside the core root of trust (CRTM) which is immutable and acts as a root of 

trust for the measuring environment. This is a small bit of immutable an compo-

nent that gets executed upon a device reset and which is never changed in its 

lifetime. 

8.3 Secure Element 

Secure elements are temper-resistant hardware elements which hold device se-

crets and a limited isolated execution environment. They can also be added to any 

device with a micro SD or a Universal Integrated Circuit Card (UICC). (24.) They 
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house cryptographic keys which are not exposed to outside world but would exe-

cute crypto operations inside the isolated environment created inside the chip. 

Evicting the secrets out of the chip for illicit use is either hard or impossible to do. 

The main benefits offered by a secure element are 

 Data Protection: Protection of data from unauthorized access (24.) 

 Hardware assisted cryptographic operations: Dedicated inbuilt hardware 

logic for cryptographic functionalities, such as encryption, decryption, hash-

ing etc. (24.) 

 Isolated execution environment: Small defined tasks (applets) which perform 

cryptographic operations with keys and data stored inside the SE, can be 

run in an isolated execution environment without the data leaving the TEE. 

(24.) 

This technology is widely used in the EMV chip on payment cards. Security offered 

by the SE is considered to be on a greater degree of evaluation level (EVL5) com-

pared to a device that offers solutions over the TEE. 

8.4 Hardware assisted boot process 

As part of a hardware assisted boot process, the boot sofware in the device, 

which is supposed to be executed to bring up the device at each stage, is 

verified by a preceeding stage with the help of a hardware mechanism  either 

the TPM or SE. This happens in two phases.  

Figure 6 below depicts the interaction between hardware and software compo-

nents to achieve the two-phase boot verification. As part of a boot process, im-

age signatures of both the traditional OS and its boot loader which is often re-

ferred as the normal world are verified by the trusted execution environment 

(TEE). The trusted execution environment comprises of its TEE boot loader and 

TEE OS with the SE acting as root of trust.  
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Components that are deemed to be unaltered during the lifecycle and immuta-

ble are considered as a root of trust components. They are usually ROM pro-

gramed in factory and they are bound to never change.  On the contrary to the 

applications running in rich a OS, the secure tasks running in the TEE can be 

trusted. Also in this case, the SE is configured as a trusted peripheral and it is 

only accessible from secure tasks that execute in the TEE. In this way, applica-

tions running in traditional OSs make use of secure tasks to access the SE. As 

a consequence, if the TEE becomes unavailable, rich applications would be un-

able to perform secure use cases, such as device identification, device man-

agement, decryption and encryption.

 

FIGURE 6. Architecture of secure execution environment (26.) 

The above figure show that the root of trust components considered here are 

manufacturer’s boot loaders and hash of a trusted public key (usually OEMs) in 

the Secure Element. If not in secure memory, trusted keys can also be stored in 

hardware one time fuse memory which is only accessible to the secure OS.  

These OEM keys are fused as part of series of steps in the assembly factory 

line when the device is manufactured. Under the “hardware assisted secure 

boot”, images that form a chain of verification are pre-signed by the OEMs pri-

vate key corresponding to the fused public key hash in a secure element or fuse 

memory. During the secure boot process, manufacturer’s bootloder verifies the 

signed images, which are signed with a corresponding private key, whose hash 
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of public key is stored in the Secure element. It is purely prerogative of the OEM 

to consider whether the TEE OS is under the root of trust. In case not, even the 

TEE OS and its bootloader need to be verified. If the verification at any stage 

fails, the device assumes to have been tampered and exits the boot phase.  

Until now have been discussed the role of secure element or the TEE OS in a 

secure boot process have been discussed. Alternate solutions also exist, such 

as using TPMs instead of SEs as shown in figure 7. 

8.5 Hardware assisted isolated/trusted execution environments 

As described in figure 7, there are more than one way to realize isolation execu-

tion environments. Critical applications or part of use cases, which need an iso-

lated execution environment to execute to protect confidentiality and integrity 

can be executed in these environments. 

 External security co-processor can be used for executing sensitive opera-

tions and its results can be consumed by the primary processor.  

 Using Embedded Secure Elements (ESE), which will be embedded inside 

the same System On Chip for secure operations. 

 Advent of bus and memory isolation hardware extension logic blocks made it 

possible for a single processor (SoC) to be split into untrusted and trusted 

execution modes.   

Secure peripherals can be accessed only while device is operating in secure 

mode. Untrusted entities cannot gain access to secure peripherals as they 

would run only on non-secure mode. 



 

43 

 

 

FIGURE 7. TEE Solution Realizations (27.) 

Although a secure element offers a higher degree of security, the TEE is gain-

ing momentum in the Industry as it addresses the most of the industry needs for 

secure applications by offering a higher level of security than any traditional OS, 

without the constraints associated with the secure element. 

Recent trends show that TEE environments are widely used in mobile pay-

ments, enterprise applications, such as BYOD, and in content protection and in 

government electronic ID solutions. 

ARM has come out with a trust zone architecture to facilitate the isolated execu-

tion environment (often referred as secure mode) against the rich operating sys-

tems execution environment (referred as non-secure or normal world mode) by 

maintaining a hardware separation between these two worlds. 



 

44 

 

The trust zone technology (see figure 8) will ensure that data and operations on 

the device remains secure, protecting consumer privacy and enabling a range 

of services, such as mobile banking, payment use-cases and playing multime-

dia entertainment which is meant for consumers and service providers. 

TrustZone is incorporated within the same microprocessor core, enabling the 

protection of on- and off-chip memory. Since the security elements of the sys-

tem are designed into the core hardware, security issues surrounding proprie-

tary, non-portable solutions outside the core, are removed. 

There is a minimal impact on  the core area or performance while trustzone en-

ables developers to build any additional security, for example cryptography, 

onto the secure hardware foundation. 

 

FIGURE 8.ARM Trustzone Architecture (27.) 

Having introduced by ARM 10 years ago, Trustonic and Xilinx were the first 

ones to propose frameworks and solutions utilizing these hardware platforms. 
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This enables the research community (28.) as well as the industry to experiment 

and develop innovative solutions on it. 
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9 SECURITY ARCHITECTURES 

In this chapter it will be discussed the ways software can be designed to exploit 

the specialized hardware modules (discussed in the earlier chapter) that lay 

foundation to secure solutions. This chapter also discusses some profound ar-

chitectures to design software solutions. 

9.1 Static root of trust measurement 

As implied by name, the static root of trust begins with a piece of immutable 

code which has not been changed for the lifetime of platform. This piece of code 

forms the root of trust for the measurement (CRTM). This fundamental entity is 

referred as a trusted building block (TBB) from where the chair of trust origi-

nates. 

In any embedded system the first executable is usually the ROM BIOS code, 

but to enable the static root of trust, there needs to be an additional immutable 

component, which would verify the bios before it starts to execute, and which is 

the Core root of trust for measurement (CRTM). The CRTM is either stored in 

the chip burned in the factory or found in the BIOS as block in the BIOS boot 

block. All that TCG mandates is to have the CRTM to be present in immutable 

and it is a true trusted building block. 
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FIGURE 9.Chain of trust (29.) 

The CRTM entity is responsible for measuring the integrity of the next compo-

nent that follows the boot sequence and for extending the measurement values 

to predefined Platform Configuration Registers (PCRs). Each of the component 

that executes will need to verify the next one in the boot sequence and to ex-

tend the measurement values to PCRs before transferring the control to the 

next component  

Even though there is not any compromised component in the execution chain, it 

cannot bypass the chain of trust verification. Also, the comprised components 

cannot technically extend its measurement values back to PCRs as shown in 

figure 10 below. 
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FIGURE 10.Chain of Trust, Measured boot in use (29.) 

Of course, this static method to verify is good for load time, It also comes with 

few drawbacks, such as scalability and time to check and time to use (TOC-

TOU) issues.  

Scalability is the issue in case that all the executables, libraries and scripts will 

need to be part of a verified chain as there is no clear definition for a TCB in all 

the major operating systems used today. This is partly because all these com-

ponents are subjected to patching, fixes and a varied order of execution, which 

can potentially change the PCR measurement values. 

The time of measurement plays an important role due to the fact that even 

though the system can be booted in a known state, it is not guaranteed to be in 

the same state at the runtime. Potentially, during the execution of code, attack-

ers can look for vulnerabilities and they can put the system to a unsafe state. It 

is essential to be aware that the Static Root of Trust for Measurement only 
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gives a load-time guarantee not a run-time guarantee, i.e that that is it gives as-

surance of what program has been loaded, not necessarily what is running. 

(29.) 

9.2 Dynamic root of trust for measurement 

The above mentioned shortcoming related to the static root of trust has been 

addressed by the TCG group as part of 1.2 specifications .A dynamic root of 

trust measurement (DRTM) essentially deals with measuring the system state 

not just at the boot time but whenever there is a need for verifying the platform 

arises. The DTRM brings a substantial contribution from hardware side as well. 

Most semiconductor vendors have introduced special instructions (SKINIT, 

SENTER for AMD and Intel) which trigger the creation of controlled and attested 

execution environments in runtime. 

The DRTM relies on small trusted piece of code which is loaded from a trusted 

source whose responsibility is to measure and execute a predefined piece of 

software. The DRTM comes with a short chain of trust when compared to the 

static root of trust measurement. This piece of software, which is launched and 

untainted and not modified right from the device boot time, puts the system into 

the secure state directly. This in practice means that the device gets into the se-

cure state without a need to reboot or a further need to the static root of trust 

management. 

9.3 Multiple Independent layered security (MILS) 

Legacy secure systems were designed around a secure kernel and a trusted 

computing base, with the idea that all the security decisions and the security en-

forcement mechanisms are an integral part of the TCB. (30.) This methodology 

can increase the complexity of the TCB as designers tend to add pump in more 

and more logic there thus creating issues for maintainability.  

From the design paradigm, the MILS architecture stands better compared to the 

legacy one as it forces designers to follow a structured and modular approach. 
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The Multiple Independent Levels of Security (MILS) is a security architecture 

based on the concepts of separation and a controlled information flow imple-

mented by the separation mechanisms, which supports both untrusted and 

trusted code where each level is responsible for its own security domain. Limit-

ing the scope and complexity of the security mechanisms provides users with 

manageable and, more importantly, evaluable implementations. (31.) 

This approach provides applications with mechanisms to control, manage and 

force their security policies in a manner that enforcement mechanisms are al-

ways invoked, mechanisms are non-by-passable, evaluable, and tamperproof. 

(30.) Under the MILS architecture, privileged mode processing is isolated from 

under privileged user data or applications. The MILS architecture is targeted at 

mission critical operations where a failure cannot be even thought of. The MILS 

architecture is intended to be used at the highest levels of security. Conse-

quently, an EAL 7 will be targeted. (31.) 

 

FIGURE 11.Assurance certification goals (32.) 

The advantages of the MILS architecture (shown in figure 11 above) are:  

 Reducing the footprint of secure critical code dramatically, the lesser is 

better. 
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 Isolating the critical components and operations in the system. 

 One processor can host multiple applications at different security levels. 

(31.) 

 Certification costs are reduced since individual functions within non-secu-

rity critical layers can be certified separately. Non-critical functions can 

be certified at a lower level. (31.) 

 

FIGURE 12. Conceptual VIEW OF MILS layers (33.) 

9.3.1 Separation kernel (SK) 

Separation kernels are usually small code bases (4k) which execute close to 

hardware with the primary objective to isolate execution environments for all 

partitions. They act as a base layer interacting with hardware, effectively enforc-

ing complete separation for data and controlling the flow control in a SoC by 

providing time and storage partition between secure and unsecure operations.  

The main objectives of the secure kernel are data isolation, highly controlled in-

formation flow, data sanitization, damage limitation. (31.) 
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The kernel conceals and denies access to application data and memory con-

tents between partitions. The state of executions in the current partition will not 

affect state of executions in other partitions and vice versa. In a practical sce-

nario, it might not be desirable to achieve a total isolation between partitions as 

minimal communication across them might be needed. For such situations, the 

secure kernel defines some secure authorized channels for inter-partition com-

munications through which the data sharing can happen. The kernel takes re-

sponsibility for relinquishing shared resources and data clean up (buffers, pro-

cessor register, memory allocations) once they expire on longevity. In the event 

of security breach or an errant behaviour the secure kernel (SK) limits the dam-

age limitation in the event of a security breach or an errant behaviour from any 

application by separating the address spaces between partitions. The secure 

kernel also caters to all partitions by enforcing bounds on shared resources and 

guaranteeing minimum processing times, interrupting servicing times and ac-

cessing to resources.  

9.3.2 MILS Device Drivers 

The MILS architecture requires the kernel to be small, having a minimum 

footprint in order to be fully evaluated. In any typical microkernel architecture, 

other needed OS services are typically included in the operating system running 

either as separate threads or processes but not in the kernel space, such as 

any other monolithic kernel (30.). But in the MILS architecture, these services 

are confined to play in address spaces of individual partitions or relegated to 

separate shared partitions if they service shared resources, such as 

communication across partitions, but are mediated by the separation kernel 

policy. When the device is categorized as private and un-sharable, access to 

the device is restricted to other partitions other than to partition where the 

device is configured to access. Their general access via MMUs needs to be 

curtailed down (memory mapped I/Os to communicate with devices) for private 

configured devices. (See figure 13, p 54) 
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9.3.3 Hardware support 

The Secure kernel needs to support the underlying hardware for effectively 

executing partitioning, controlling information flow and isolating system 

resources. The SKPP (secure kernel protection profile) mandates certain 

functional requirements from hardware in which the secure kernel will operate 

on. 

The support from the hardware MMU (Memory Management Unit) is needed for 

the separation kernel to isolate memory address spaces from various partitions. 

Processors should provide an ability for the separation kernel to grant the 

configuration access for memory layouts partitions in the system. The processor 

SDK needs to provide a privileged instruction set that can only be executed by 

the separation kernel along with the mechanism to transfer the execution 

control to the separation kernel in the event of execution of any high privileged 

operation or invalid instruction from any partitions. The underlying hardware 

needs to provide the atomicity support for critical operations, such as partition 

swapping and memory layout changes made by the separation kernel. The 

processor should also provide the separation kernel with options to restrict or 

configure access of i/o peripherals to specific partitions. 

9.3.4 Middleware services 

Middleware layers sit on top of the separation kernel providing services to 

applications and services in a particular partition. Some of the examples are 

inter-core communications, event and diagnostic logging, resource sharing and 

allocation. In addition to the above mentioned, the middleware layer is also 

responsible for the end to end security and communication policy by labeling, 

filtering and controlling the message/information flow. Middleware services can 

also be designed for authorized communication channels between specific 

partitions dictated by use case requirements. These services should address 

solutions from end to end across multiple partitions and cores rather than 

confine to a single process, partition or core. 
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FIGURE 13. MILS Architecture (33.) 

9.4 Trusted execution environment (TEE) 

The Global Platform defines the TEE as a combination of a hardware platform, 

which provides isolation, and a software and operating system residing within 

the security domain defined by that hardware which is capable of running pro-

grams launched into that environment. This software running in the isolated en-

vironment is responsible for executing critical secure applications which access 

critical resources as part of their use cases. Systems that need to run secure 

use cases can deploy the TEE run in the secure environment to better protect 

their secrets, for example  smart cards and DRM applications.  

TEE supporting hardware platforms will come with a trusted operating system or 

some kind of task scheduler which runs in the hardware isolated environment 

as a software solution. This piece of software has access to the root of trust. It 

supports provisioning and has access to the Cryptographic API for accessing 

device secrets there by forming a core for the TEE.(See figure 14 , page 55.) 
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FIGURE 14. TEE Architecture (34.) 

Secure hardware elements provide a trusted execution environment by creating 

a secure world (isolated environment) in a different core other than the one that 

runs normal world applications for software to operate in. More about the role 

played by hardware is discussed in the later part of the document that deals 

with the device security in general. The core that operates the TEE comes with 

immutable ROM boot code which does not need software checks that are 

needed to put the processor to a secure context. 

9.5 Virtualization 

Through virtualization, a secure isolated environment can be created by host 

operating systems by leveraging on OS concepts, such as isolating the pro-

cessing contexts and memory for all the running environments. Here, the host 

environment is securely booted with a higher security privilege and will have 

enough security mechanisms in place to protect itself from other executing ap-

plications. This host operating system will typically operate smaller microkernels 

or hypervisor, whose trust bases are quite small, can be validated without much 
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complexity. Using this mechanism, smaller virtualized environments are em-

ployed to run secure use cases, post its code base validation by larger parental 

OS environments and under its security kernel.  

Employing virtualization for facilitating the TEE also has some vulnerabilities as 

explained below 

 Virtualization technology for achieving a trusted execution environment 

as a security solution can be a risk as it is vulnerable to hardware at-

tacks.  

 In this approach, a larger conventional operating system or hypervisor 

enjoy higher privilege contexts leaving the virtualized environment OS to 

work under the user level. In this case, the virtualized OS that provides 

the TEE might not have full capabilities to protect its own kernel and ap-

plications running under its hood.  

9.6 Platform security 

Operating systems also play a vital role in ensuring the device security whether 

it can be a traditional rich OS (Android & Linux) or an OS residing in an isolated 

execution environment. Below various security measures, which traditional op-

erating systems provide are discussed in detail.  

9.6.1 Process Isolation 

Process isolation as the term self-explain relates to an isolation of an individual 

process from the address space of other processes made possible by the un-

derlying kernel to prevent one process either accidently or intentionally writing 

into each other’s space. The interaction between processes can still be made 

possible by IPC mechanisms, sockets and shared memory resources with the 

help of kernel. On the other side, most of the operating systems also provide a 

sandboxing mechanism to facilitate a highly controlled environment, which pro-

vides a controlled set of resources accessible for a set of programs. By using 
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this mechanism, processes can be launched in their own private directory, invis-

ible to other processes, and they work seamlessly with the existing application 

code to eliminate an entire class of security threats. Programs, such as access 

to certain IO operations, system inspection, and network access, can be re-

stricted to these sandboxed applications.  Few examples of sandboxing mecha-

nisms are virtual machines, jails and containers in Linux. 

9.6.2 Access Control permissions 

To achieve platform protection, operating systems typically control access to 

system resources (files, directories, sockets, drivers) on who (subjects) should 

be able to access and what permission levels subjects have over the resources. 

Below different mechanisms to achieve this and their levels of protection will be 

discussed.  Access control mechanisms can be broadly split into a discretionary 

access control and a mandatory access control.  

Discretionary Access Control 

The Discretionary access control is the most flexible access control mechanism. 

It allows users to control its own data. Under this Discretionary Access Control 

mechanism, access properties for objects are stored in Access Control Lists 

(ACL) which are associated with the object.  

In the Unix DAC, the ACL lists form the backbone for the OS security model, 

Programs launched by a user run with all of the rights of that user, whether they 

need them or not.  There is also a super user category, which is a more power-

ful entity that bypasses the Unix DAC policy for the purpose of managing the 

system.  When any object is accessed in any form (read, write or execute), the 

operating system checks the rules contained in the ACL list for that object and 

makes a decision accordingly. This policy is implemented as permission bits at-

tached to the file's inode, which may be set by the owner of the file.  Permis-

sions for accessing the file, such as read and write, may be set separately for 

the owner, a specific group, and other (i.e. everyone else) which is a relatively 
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simple form of access control lists (ACLs). (35.) Running a program as the su-

per user provides that program with all rights on the system. (35.) There are 

also other ALC mechanisms that deal with more fine grained schemes allowing 

separate permissions for different users and groups for the same resource. 

Mandatory Access Control (MAC) 

Unlike the DAC, the Security policy in MAC is administered centrally, and users 

cannot fully control the policies for their own resources.  This helps in containing 

attacks which exploit bugs in user space software. The access control in this 

mechanism is wound around roles rather than users, which suits well for organi-

zations where users and their permission to resources can be tagged against 

roles they have in the organization. The MAC brings in an additional layer of 

permissions which is associated with the user identity. Every object inside the 

system has its own label associated with the object. Now, based upon permis-

sions granted to the subject (user) associated with user’s role or group, they 

can only perform actions on tagged objects if there exists an explicit policy 

which grants access to the object. Conversely, a policy can be drafted based 

upon tags/labels to explicitly deny the access to certain users or groups. 

The Role Based Access Control (RBACL) is a widely adopted mandatory ac-

cess control mechanism around for quite some time. The Role based access 

control is more rigid in a way that access to resources cannot be granted above 

the role permits even though the user needs extra explicit permissions for the 

resource. In the Linux world, SELinux, SMACK and AppArmour are widely used 

implementations for the MAC. As part of the Android security model, Android 

uses SELinux to enforce the mandatory access control (MAC) over all pro-

cesses, even processes running with root/superuser privileges (a.k.a. Linux ca-

pabilities). SELinux enhances the Android security by confining privileged pro-

cesses and automating the security policy creation. (36.) (See figure 15 p 59) 
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FIGURE 15.  MAC vs DAV vs RBC (37.) 

 

9.6.3 Operating systems support and extensions 

Address Space Layout Randomization (ASLR) 

Operating system kernels can be configured to use ASLR which enables ran-

domizations of load address in memory areas for key sections of binaries and 

libraries from the user space, e.g base address, mapping of libraries, stack and 

heap addresses. These kinds of randomizations will help preventing a buffer 

overflow, a code injection and a return-to-libc attack which are difficult to exploit 

relying on luck to break into. External PaX projects such as Exec Shield and 

grsecurity projects have long maintained patches to the Linux kernel for these 

software-based hardening features. Android 4.0 has support for the ASLR com-

pletely discarding the support for the non-position independent execution sup-

port from 5.0. 
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The operating systems also supports hardware security features such as NX 

(Non-Execute), VT-d (Virtualization Technology), TPM, TXT (Trusted Execu-

tion), and SMAP (Supervisor Mode Access Prevention), along with the support 

for cryptographic operations. 

Secure Computing Mode 

A Secure computing mode is a mechanism which restricts access to system 

calls by processes.  The idea is to reduce the attack surface of the kernel by 

preventing applications from entering system calls they do not need.  The sys-

tem call API is a wide gateway to the kernel, and as with all code, there have 

been and are likely to be bugs present somewhere.  Given the privileged nature 

of the kernel, bugs in system calls are potential avenues of attack.  If an appli-

cation only needs to use a limited number of system calls, then restricting it to 

only being able to invoke those calls reduces the overall risk of a successful at-

tack. 

Memory protections 

Memory segments which host the kernel are divided into logical areas and are 

marked for protective restrictions on access permissions. Code sections of the 

operating system kernel memory are marked as read only and execute sections 

where as a data section is marked as a non-execute segment. Data sections 

are marked as no-execute and further segmented into read-only data and read-

write data sections. These features are usually enabled with kernel configura-

tion options and specialized flags that control these features. 

The operating system kernel can be further protected by restricting the kernel 

access to the user space memory directly. This can make a number of attacks 

more difficult because attackers have significantly less control over the kernel 

memory that is executable.  

9.6.4 Integrity management 

The operating systems kernel can come with an integrity management subsys-

tem which will calculate the hash of all the non-volatile files and verify them 
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against the cryptographic hashes stored in the TPM. Integrity measurement val-

ues can be verified by an external TEE OS Also tools, such as dm-verity, can 

be used to protect integrity at the block level. This module verifies the integrity 

of files block by block when the read from disk happens. 
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10 DEVICE SECURITY 

This topic discusses the methods and technologies in tandem for enhancing the 

overall security of any embedded device. At places one can notice that the top-

ics discussed earlier could have criss-crossed here, but here the same discus-

sion is more looked from the prism of overall security rather than arbitrarily 

which was the case earlier.  

10.1 Isolated Execution Environment 

The Isolating execution also often referred as a trusted execution environment 

(TEE) gives the device and also the service and providers and OEMs the ability 

to run software modules in complete isolation from untrusted code. Executing 

code and data in complete isolation provides secrecy and integrity of that mod-

ule’s code and data at run-time. Conventional rich mobile systems, such as An-

droid, IOS, Linux provide a process based isolation for protecting application 

address spaces from other applications and kernel resources. This leaves a 

possibility to circumvent the device security when the OS itself is compromised.  

Providing an isolated execution means the security no more relies on the con-

ventional rich execution environments (REE) Oss but on an alternative operat-

ing system that hosts a trusted execution environment (TEE) , made possible 

either by in SoC hardware extensions or special security coprocessors. SoCs 

that support isolated execution environments come with special hardware ex-

tension blocks which provide hardware isolation from the non-secure world. 

OEMs can configure the peripherals by restricting or extending their access ei-

ther to the isolated secure environment or to the untrusted execution environ-

ment or both. The memory isolation is provided by MMU extensions which re-

strict some predefined memory pages accessible to the processor only in a se-

cure context. But these hardware assisted methodologies are not of much help 

in case the software designed to use this is not designed well for secure use 

cases. Figure 16 explains isolated execution environments in general.  
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FIGURE 16.  ARM Trustzone Architecture (27.) 

10.2 Protection of Confidential data  

Devices should be able to protect confidential data (secrets, keys, licences, cer-

tificates) and should not reveal them to untrusted parties. Confidential data can 

be pertaining but not limited to a device (OEM), a user, an operator and a plat-

form providers meta data specific or service providers.  

The protection of confidential data is critical, The data cannot be accessed ei-

ther by network attacks, physical tampering or access by unauthorized software 

entities in the device. Embedded devices can often be reprogrammed remotely 

as a part of fixing bugs and adding new features. In due course, devices should 

ensure that attackers do not attack and insert their own malicious code and hi-

jack confidential data as it flows through the system. 
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10.3 Device Identification (via Remote Attestation) 

Remote attestation allows a remote entity to verify that a particular message 

originated from a particular software entity. (.38) Expressing this in business 

terms, service provides widely use the remote attestation to make sure that the 

device they are communicating with is the real device that they are wishing to 

talk to and not any untrusted or unknown entity.  

Trusting the device would mean attesting a certain chosen software module(s) 

or a complete stack of underlying software running along with it.  This could in 

practice mean whole operating systems. Service providers who offer secure 

services, such as payment services, can know if the communicating device soft-

ware is in rightful and known state or is operating with tampered or rooted soft-

ware. 

The attestation can be meaningful and easier to achieve when a computing 

base is relatively small, which is difficult to achieve with rich execution environ-

ments, such as Android, IOS and Linux. In practice the attestation is achieved 

via apps from service providers hosted in isolated execution environments 

which have attestation capabilities. These mechanisms are typically built using 

a private key which is only accessible by a small computing base and kept in a 

secure storage. (38.) A certificate issued by a trusted party, such as the device 

manufacturer, certifies that the corresponding public key belongs to the device. 

One or more platform configuration registers store the measurements of loaded 

code. The private key of the device can then be used to generate signed attes-

tations about its state or the state of the rest of the system. (38.) (See figure 17 , 

p.65) 
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FIGURE 17.  Top level architecture for dynamic checking in Trusted VM (39.) 

Figure 18 below denotes a health application capable of performing device at-

testation (certifying the device in a rightful state) and thereby communicating 

with the service. 
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FIGURE 18.  Figure showing attestation procedure for a health application (40.) 

10.4  Secure provisioning 

Secure provisioning is a mechanism of sending data to a specific software mod-

ule, running on a specific device, while protecting the secrecy and integrity of 

that data. (38.) Secure provisioning comes in handy for migrating user’s data 

between user’s devices.  

Remote attestation can be used for provisioning data securely by using keys 

belonging to a particular software entity on a specific device. The sender can 

then use that key to protect data to be sent to the target software module on the 

target device. 

Some of today’s mobile and IOT platforms implement mechanisms to authenti-

cate external information from the hardware stakeholders (e.g., software up-

dates), with the hash of the public portion of the signing key stored immutably 

on the device. Regarding current and previous mobile platforms such as 

Meego, the Linux distribution for mobile devices includes provisions for the iso-
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lated execution. Meego’s Mobile Simplified Security Framework (MSSF) imple-

ments a trusted execution environment, which is protected from the OS (41.) 

Other secure provisioning mechanisms are likely implemented and used by de-

vice manufacturers to implement features, such as digital rights management. 

So far, however, secure provisioning mechanisms are not available for direct 

use by arbitrary third-party developers on mobile platforms. (38.) 

10.5 Trusted path 

Devices should be able to setup a trusted path for all related secure use cases 

to ensure the data and content protection. This can be done by enabling a set of 

security features to enable the software to run on top of hardware isolation pro-

vided by SoC. A Trusted path protects authenticity, and optionally secrecy and 

availability, of communication between a software module and a I/O peripheral 

(e.g., a keyboard or a touchscreen). (38.) Classic examples of these require-

ments are playing an DRM protected media content rendering, enabling a fin-

gerprint sensor for device locking and unlocking and providing a trusted path for 

password authentication for payment applications. Establishing a trusted path 

helps devices to protect assets against unauthorized tampering, modification of 

software by unauthorized software. Figure 19 below explains the protection 

mechanisms that are applied when rendering a DRM protected media content. 
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FIGURE 19. TEE Protection principles to media assets (42.) 

Building secure trusted paths is a challenging problem and in principle, many 

mobile platforms support a form of trusted path, but the TCB is relatively large 

and untrustworthy. (38.) This is because the computing bases of rich execution 

environments are large and it is often complex to secure trusted paths. But by 

removing the rich OS from the TCB of such trusted paths by preventing the OS 

from communicating directly with the device and running the device driver in an 

isolated environment, a trusted path can be established. But this requires the 

hardware based support for a low-level access-control policy to access to pe-

ripherals. (38.) 
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Figure 20 below from Jan-Erik and Kari (27.) shows an excellent relation be-

tween the functionalities and level of hardware support to achieve security.

 

FIGURE 20.  Concise picture showing different hardware security mechanisms 

(27.) 
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11 CONCLUSION 

Device security should be treated with paramount importance and should be in-

grained in the product design right from the conceptual phase. It should never 

be treated as “nice to have” only if time, features and functionality permit. Secu-

rity needs to be fortified by building brick by brick, multiple layers of defences 

and protection mechanisms acting in tandem. No one solution could safeguard 

the whole chain (end to end). It is also expensive, tedious and often infeasible 

to inject security in the midway of product design. Therefore, care should be 

taken right from the initial phases of design. Thus, during the conception phase 

of a product/project, security requirements need to be well understood and 

agreed in tandem with functional and non-functional requirements. 

I feel the best way to accomplish this is to base the project execution on a secu-

rity driven development (SDD) where each of the requirements  are tied down 

with a security related measure, binding or precondition.  

As part of pre-design, architects need to do an end to end threat assessment, 

figure out asset classes, come up with attack trees and entry points and attack 

categories (network, physical abuse, software, cryptographic) for the product. 

Each of them should be thoroughly discussed, considering solutions to minimize 

the attack surfaces while designing. 

In future we can expect an increased trend that software solutions will base 

their trust anchor on hardware which even semiconductor vendors/IP Licen-

sees, such as ARM, INTEL, QUALCOMM and TI are going to support with hard-

ware extensions.  

In future, I also see cloud security gaining prominence, in addition to client (de-

vice) security, as cloud offers a bigger security infrastructure in terms of data 

protection and resource availability. In days to come, I can see device security 

more restricted to establish a trust and secure connection to cloud space, where 

all the computational and storage logic is hosted. 
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From software side, I see an increasing trend towards a wider adoption of soft-

ware containers, Virtual environments, especially in cloud spaces, will achieve a 

user environment isolation and provide a better security infrastructure for appli-

cations. With an increased penetration of cloud technology, client devices could 

play an increased role in establishing a secure link, where real computational 

logic and data gets resided, between cloud and the device. 

I always advocate to solution designers to view product security from attacker’s 

point of view rather than from that of designers. Essentially it is all about the 

perception “How things should not work”. Also, it is worth noting that, no tech-

nology or solution is worth its salt if designers do not religiously follow the princi-

ples listed below while designing their product.  

 The weakest links should always be secured. For example, often in cryp-

tographic operations, it is found that the weakest links have been the pro-

cess of storing secret keys or restricting their access permissions rather 

than the cryptographic algorithm itself. It is quite usual to find keys that 

are not securely stored or not cleared from a memory once used. 

 It is not practical to design a total fool proof system. If a failure is immi-

nent and unavoidable, fail securely and limit the damage. 

 Protection and damage control gates should be built in. Always design 

for a layer of protection services to kick, in the event of breach to one of 

your defences. 

 Go by the concept of granting least privileges to resources.(E.g. avoid 

system wide blanket (sudo) permissions for the process) 

 Develop an attitude of “reluctance” to trust information from unknown 

sources/parties. 

 Avoid the security by obscurity, If OpenSource components are being 

used, be prompt to patch for security updates. 

 From coding standards, use secure coding guidelines accompanied by 

reviews, reduce the attack surfaces by reducing code bases.  
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Finally, Security has to be built across all layers of software, phases of develop-

ment (design, development, testing, deployment, maintenance), multiple do-

mains (software, hardware, firmware). It should be every designer’s responsibil-

ity and only confined to few individuals, teams or ranks. 
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