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ABSTRACT 

 

This thesis deals with developing a material identification method for textile 
waste using near infrared (NIR) spectroscopy. The process involved 
collecting and validating reference samples, measuring and pre-treating 
NIR spectra, and setting up parameters for matching spectral patterns. 
The goal is to achieve a robust and reliable method for sorting unblended 
cotton, polyester and wool from a heterogeneous textile waste stream. 

Sorting technology was developed as a part of a multidisciplinary initiative 
Telaketju, which aims to increase recycling rates and resource efficiency in 
the textile industry in Finland. The research was carried out in the Lahti 
University of Applied Sciences with a ProFOSS NIR process analyzer, 
which was equipped with Metrohm Vision™ software for spectral data 
management. 

Based on the study, it can be stated that NIR spectroscopy is capable of 
identifying textile materials quickly and accurately based on their 
characteristic spectra. The identification method requires a standardized 
measurement distance, corrections for varying physical properties among 
the samples and identification tolerances that allow natural spectral 
variation but restrict impurities. 

The research for this thesis advances the recycling possibilities of textile 
waste, but can also be applied to different material segments. This thesis 
offers theoretical background for spectroscopic measurements and 
guidelines for developing the identification method to cover a broad range 
of textile materials. 
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NIR, spectroscopy, textile waste, data pre-treatment, material 
identification, recycling 
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TIIVISTELMÄ 

 

Opinnäytetyön tarkoituksena oli tutkia tekstiilimateriaalien koneellisen 
tunnistuksen mahdollisuuksia ja kehittää lajittelutekniikkaa lähi-
infrapunaspektroskopian (NIR) avulla. Kehitysprosessi koostuu 
referenssinäytteiden valikoimisesta ja validoinnista, näytteiden 
mittauksesta ja spektrinkäsittelystä sekä spektrien muodontunnistuksen 
parametrien määrittämisestä. Tavoitteena oli kehittää kattava ja luotettava 
metodi puuvillan, polyesterin ja villan erottelemiseen heterogeenisesta 
poistotekstiilivirrasta. 

Lajittelutekniikkaa kehitettiin osana monialaista Telaketju-hanketta, joka 
pyrkii edistämään tekstiilien kierrätysastetta ja tekstiiliteollisuuden 
materiaalitehokkuutta Suomessa. Tutkimus suoritettiin Lahden 
ammattikorkeakoulussa ProFOSS NIR-prosessianalysaattorilla sekä 
spektrinkäsittelyyn ja datan hallintaan soveltuvalla Metrohm Vision™-
tietokoneohjelmistolla. 

Työssä todistetaan NIR-spektroskopian soveltuvuus tekstiilimateriaalien 
nopeaan ja luotettavaan tunnistukseen. Tunnistusmetodin kehitys vaatii 
mittausetäisyyden vakioimisen, näytteiden fyysisten ominaisuuksien 
matemaattisen korjauksen sekä tunnistustoleranssin, joka sallii luontaista 
vaihtelua spektriarvoissa mutta hylkää epäpuhtaudet tehokkaasti. 

Tehdyn tutkimuksen avulla voidaan edistää tekstiilien kierrätettävyyttä, 
minkä lisäksi tekniikka on sovellettavissa myös muiden materiaalien 
tunnistukseen. Opinnäytetyö tarjoaa teoreettisen pohjan 
spektroskooppisiin mittauksiin sekä opastuksen automaattisen 
materiaalintunnistuksen kehittämiseen. 

Asiasanat: 

NIR, spektroskopia, tekstiilijäte, spektrinkäsittely, materiaalintunnistus, 
kierrätys 
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1 INTRODUCTION 

As the world’s population growth and global standards of living increase, 

there is a well argumented concern on the sufficiency of the world’s 

material resources. Although there has been significant improvement in 

recycling technologies and resource efficiency, many complex material 

constructions lack the standards and methods for efficient recycling. One 

such material segment is textiles, which exhibit a large variety of chemical 

and physical constructions, and thus present a challenge in recycling. 

While there are already viable recycling methods (mechanical, thermal and 

chemical) for many types of textiles, there is a lack of market demand and 

manufacturers utilizing recycled post-consumer textile fibers. This is partly 

because of deficiency of reliable and cost-efficient practices for collecting 

and sorting a heterogeneous mass of textile waste. (VTT 2017.) 

According to a research by the Finnish Environment Institute (2013-2015), 

71.200 tons of textiles are discarded annually in Finland alone. Only 30% 

of this amount is channelled to re-use and recycling, while 70% is mainly 

incinerated. After a landfill ban in Finland for organic material in 2016, the 

need for alternative solutions for textile recycling has increased 

significantly. (SYKE 2015.) 

TELAKETJU-initiative is a multidisciplinary consortium, which aims to 

develop a nationwide network to support circular economy of textiles in 

Finland. The network should cover all stages of the recycling value chain 

from the collection of textile waste from consumers, to sorting and 

processing, and eventually to the market with new recycled textile 

products. As a part of the initiative, this thesis aims to develop a method 

for sorting textile waste using near infrared (NIR) spectroscopy. 

1.1 Scope 

This thesis demonstrates the process of developing a material 

identification model with NIR spectroscopy. The process involves:  
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1. Selection and evaluation of reference samples 

2. NIR measurements and pre-processing of spectra 

3. Development and testing of the identification model.  

Confirmed sample materials for library construction are evaluated by their 

spectral features and corresponding physical properties. Possible spectral 

outliers are noted and ruled out of the identification method. The 

experimental section of the thesis deals with optimizing spectral pre-

treatment methods and the mathematical pattern recognition features for 

reliable material identification. The focus of the thesis is in qualitative 

analysis of textile materials, but a concise introduction on quantitative 

analysis (determining textile blend percentage) is given for future 

development purposes. 

1.2 Contents 

Theoretical background on the fundamentals of vibrational spectroscopy 

and different measurement technologies is included, as well as a 

description of the NIR analysis instrument and spectral processing 

software used in developing the model. The possibilities and limitations of 

NIR-identification are evaluated in terms of accuracy and efficiency. 

Final results for data pre-processing and identification method parameters 

are excluded from the public version of the thesis. However, all the 

available mathematical tools included in the Vision™ software and their 

effects are presented. 



3 

2 TELAKETJU-INITIATIVE 

The Telaketju-initiative works to improve sustainable practices for 

collection, sorting and utilization of discarded textiles in Finland. Telaketju 

brings together research facilities and industrial companies to share views 

and know-how in the textile recycling industry. The project is co-managed 

by the Finnish national technological research institute VTT and a 

communal waste management company LSJH. Notable collaborative 

partners include waste collection and sorting companies (Fida, Remeo, 

Suez), research partners (Turku UAS, Lahti UAS) and industrial 

companies - ranging from clothing and other fiber products (Pure Waste 

Textiles, Soften, Finlayson) to IT-systems and robotics (MJV-Sähkö Oy, 

ZenRobotics). (VTT 2017.) 

  

FIGURE 1. Collaborative partners of Telaketju-initiative. (VTT Extranet) 

Telaketju aims to build an efficient infrastructure around the whole value-

chain in the textile industry. As seen from Figure 2, the objective includes 

development in collection and logistics, material processing and 

refinement, innovative new practices and new business models involving 

fibrous products. Examples of such (already achieved) development are 
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e.g. chemical recycling of cotton using a carbamate solution (VTT) and 

utilization of denim production scraps as a raw material for t-shirts (Pure 

Waste Textiles). The Telaketju-initiative is set to continue until September 

2018. (VTT 2017.) 

 

FIGURE 2. Functionality model and “building blocks” of Telaketju-initiative 

(VTT extranet) 

2.1 Automated sorting 

Discarded textile waste can be re-used in its original form or converted to 

other products using mechanical or chemical recycling. Both methods 

require accurate knowledge on the chemical and structural composition, to 

ensure efficient recycling processes and desirable properties for the end 

products. Clothing products usually lack adequate or reliable information 

on the material composition, so it is important to develop methods for 

determining constituents in the textile waste stream. Lahti University of 

Applied Sciences, the commissioner of this thesis, is responsible for 

evaluating the feasibility of NIR spectroscopy as a fast and reliable sorting 

method. 
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2.1.1 REISKAtex® sorting unit 

Lahti University of Applied sciences has built a pilot phase sorting unit to 

develop an automated sorting method for discarded textiles. The unit 

(Image 1) includes a conveyor belt line, an NIR process analyzer and 

pressurized air deflectors to sort recognized materials to assigned bins. As 

the articles are fed onto the conveyor belt, the online NIR spectrometer 

acquires a spectrum, which is then evaluated to a reference library to 

determine if it fits the pre-established criteria. Each article is tracked by a 

positioning sensor, which enables deflection to the correct material bin. 

The sorting unit is equipped with three separate bins for different 

materials, while the unrecognized stream goes through the line without 

deflection. 

NIR spectroscopy was chosen as the primary analysis method because of 

its established position in quality control in process industry. NIR 

technology has applications in the textile industry, ranging from fiber 

identification, moisture analysis and quality control. NIRS is utilized by 

manufacturers, retailers, testing facilities and customs officials. (Rodgers & 

Beck 2009.) Details on the advantages and limitations for using NIR are 

given in Chapter 4. Inspiration for the automated sorting unit ReiskaTex 

has come from a Dutch enterprise Valvan Baling System, which uses a 

similar NIR instrument to sort fabrics by fiber type for recycling. The 

Fibersort-unit by Valvan can identify one piece per second (Valvan 2017) 

and REISKAtex® aims for at least the same efficiency. The mechanical 

and electrical design, logical programming, hardware construction and 

analytical features have been included in educational projects within the 

Lahti University of Applied Sciences.  
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IMAGE 1. Textile sorting unit, REISKAtex® (Photo by Jaakko Zitting) 
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3 VIBRATIONAL SPECTROSCOPY 

Spectroscopy uses light, or more specifically electromagnetic radiation, to 

analyze materials based on their interaction and the transfer of energy. EM 

radiation can be depicted as a continuous wave propagation of fluctuating 

electric and magnetic charges, perpendicular to each other. The energy of 

EM radiation correlates with its wavelength and frequency, which are 

inversely proportional. Since the speed of light in vacuum is constant 

(approx. 2,997 ∙ 108 m/s), an increase in wavelength causes a decrease in 

frequency. Light can also be viewed as a stream of energetic particles, 

photons. The energy of a photon is proportional to frequency: 

𝐸 = ℎ𝑣  (1) 

Where E = Energy [J] 

 h = Planck constant, 6.626 ∙ 10-34 J∙s 

 v = Frequency (1/s) 

(Jaarinen & Niiranen 2009, 46-48.) 

At temperatures above 0 K, atomic bonds vibrate with different intensity 

and coordination depending on the difference in mass and 

electronegativity between the atoms, as well as the molecular structure. 

Many organic molecular bonds absorb radiation energy at the same 

frequency as their characteristic vibrational state. This phenomenon can 

be used to identify materials by their characteristic absorption spectrum, 

which is obtained by measuring the absorption of radiation at different 

vibrational levels. As radiation energy in the IR-region is absorbed, the 

changes in molecular vibration and their dipole moment can be observed 

through spectroscopic instruments. Possible molecular vibrations consist 

of stretching and bending (Figure 3), and the number of possible 

vibrational patterns depend on the number and orientation of atoms in a 

molecule. Stretching vibrations cause internuclear distance to alter and 

bending/wagging vibrations cause angular rotation and the atoms to 

deflect from the planar normal state. (Stuart 2004, 2-8.) 
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FIGURE 3. Two main types of molecular vibrations (Stuart 2004) 

3.1 EM spectrum and IR frequencies 

Visible light constitutes only a small fraction of the electromagnetic 

spectrum (Figure 4). Radiation bands with greater frequency, and thus 

higher energy than visible light, are divided into ultraviolet-, x-ray- and 

gamma-radiation. Lower frequencies consist of infrared-, microwave- and 

radio wave -bands. In analytical chemistry, the most valuable 

spectroscopic phenomena are electronic excitation in the UV-region (190-

400 nm), nuclear magnetic resonance in the low-energy radio wave -

region, and vibrational absorptions in the IR-region (800-25000 nm). The 

IR-region is further divided into near-IR (800-2500 nm) and mid-IR (2500-

25000 nm), each with different characteristic features. (Jaarinen & 

Niiranen 2009, 46-49.) 
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FIGURE 4. Regions of EM-spectrum 

(https://www.miniphysics.com/electromagnetic-spectrum_25.html) 

The infrared region of the EM spectrum, and its lower frequency range at 

7000-20000 nm, is sometimes called the “fingerprint”-region, because it 

produces unique spectra from a vast variety of materials in different 

phases. The mid-IR region exhibits strong absorption peaks, which 

correspond to bonds and functional groups usually present in organic 

molecules. According to a selection rule for infrared spectroscopy, a bond 

must show variance in its dipole moment when vibrating between two 

extreme states. Most functional groups in organic molecules are not 

centrosymmetric and can thus produce an absorption spectrum. (Williams 

& Fleming 1989, 29-32.) 

3.1.1 Fundamentals and overtones 

Molecular vibrations interact not only with one specific frequency, but with 

the multiples of that frequency. The strongest absorptions occur at the so 

called fundamental frequencies at longer wavelengths, but bands called 

overtones are also visible at higher frequencies. Due to anharmonic nature 

of molecular vibrations, the exact overtone bands of specific bonds are 

hard to determine, but multiplying frequencies with integers yields a good 

approximation for lower overtones. The intensity of absorptions at 

overtone bands decreases substantially, which makes higher overtones 

difficult to detect. (Nilsson 2017.) An example of absorption bands and 

https://www.miniphysics.com/electromagnetic-spectrum_25.html
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their relative intensities on a simple C-H stretching vibration is given in 

Table 1:  

TABLE 1. Absorption bands of C-H stretch (adapted from: Workman 2014) 

Absorption band  Wavelength region [nm] Relative intensity 

Fundamental (n) 3380-3510 100 

1st overtone (2n) 1690-1755 1 

2nd overtone (3n) 1127-117 0.1 

3rd overtone (4n) 845-848 0.01 

 

Infrared-active, vibrating molecules can be viewed as a spring connecting 

two masses with a dipole moment. The normal state vibrational frequency, 

which corresponds to the bond elasticity and atomic electronegativity, can 

be calculated by applying the Hooke’s law: 

 𝜈 =
1

2𝜋√
𝐾

(
1

𝑚1
+

1

𝑚2
)
   (2) 

Where ν = characteristic vibration frequency of a specific bond 

 K = force constant of a specific bond 

 m1 and m2 = masses of bonded atoms 

(Workman & Weyer 2008, 12-14.) 

Overtones are not exact multiples of fundamental vibration bands because 

the intermolecular forces cause changes in the force constant. As a result 

of intermolecular forces and resonances between adjacent vibration 

bands, overtone bands can overlap and shift in position. (Reich 2005, 2.) 

This phenomenon is strongly present in the NIR region and is further 

described in Chapters 4.1 and 4.2. 
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3.2 Components in the IR spectrum 

An IR-spectrum is commonly visualized as a graph with wavelength [λ, 

nm] on the x-axis, and absorbance on the y-axis. Another popular format 

in spectroscopy is to use wavenumber [�̅�, cm-1] (instead of wavelength in 

nm), which is the reciprocal of a distance unit. It represents the number of 

wavelengths within one centimeter distance. Wavenumbers are linear with 

radiation energy and frequency, and are therefore intuitive units for 

spectroscopy. Mid-infrared spectroscopy uses mainly wavenumbers while 

near-infrared uses commonly wavelength in nanometers. (Workman 2014)  

IR measurements can be made either in reflectance or transmission 

modes. Absorption at each wavelength band is measured by comparing 

the intensity of light reflected from the sample, against the initial intensity 

from the radiation source. The ratio of reflected and initial light intensity is 

then converted to a unitless absorption value (Formula 3), which is then 

plotted in the absorption spectrum. The absorption value in transmission 

measurements can also be calculated if the material-specific absorption 

coefficient and analyte concentration is known, or vice versa. This 

equation (Formula 4) is known as the Beer-Lambert law, and can be used 

in quantitative analysis. (Jaarinen & Niiranen 2009, 50-54.) 

𝐴 = log (
1
𝐼
𝐼0
⁄
)   (3) 

Where A = absorbance [unitless value] 

 I = measured light intensity reflected from the sample 

 I0 = initial intensity of light from the radiation source 

𝐴 = 𝜀 ∙ 𝑐 ∙ 𝑏   (4) 

Where A = absorbance [unitless value] 

 ε = material-specific absorption coefficient [l∙mol-1∙cm-1] 

 c = concentration of analyte [mol/l] 

 b = sample thickness in transmission measurements [cm] 
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3.3 Qualitative analysis 

Qualitative analysis of IR spectra is based on pattern recognition 

techniques. One method is to look for a limited amount a known 

absorption bands corresponding to a material of interest. This method can 

be used in mid-IR spectroscopy, where the absorption bands are strong 

and well resolved. Matching specific absorption peaks and their 

amplitudes can give a close approximate identification on the analyzed 

material but can miss certain characteristics and thus yield a 

misidentification. Pattern recognition of the whole spectral range is done 

by comparing the spectra to known samples in an identification library. 

Chemometric tools for pattern recognition range from simple correlation- 

and distance-based methods to a more complex but statistically robust 

principal component analysis (PCA), linear discriminant analysis and 

factorial discriminant analysis. (Manley et. al. 2008, 77-79.) 

A closer description on the qualitative tools available in Vision™ software 

(PCA, spectral correlation analysis and amplitude distance restrictions) are 

given in Chapter 5.4. Figure 5 illustrates the principle and tolerances set 

for spectral pattern analysis.  

 

FIGURE 5. Visual portrayal of the principle in qualitative analysis 

(Metrohm 2013a) 
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3.4 Quantitative analysis 

The percentages of an analyte (constituent) of interest in a sample can be 

determined by quantitative analysis of IR spectra. Most common methods 

include principal component regression (PCR) and partial least-squares 

(PLS) regression. Quantitative model development requires reference 

samples with a range of known percentages of constituents. Matching 

correlations in spectral patterns with constituent values enables calibration 

for a regression model, which can predict values of unknown samples. 

(Reich 2005, 7.) 

In the case of blended textiles, a study by Rodgers & Beck (2009, 7-11) 

proved a possibility to determine the cotton content in CO/PES-fabrics. 

Finding a correlation in absorbance values to cotton content enabled them 

to build a regression model based on least-squares regression. The 

calibration yields a regression coefficient of 0.977 with standard error of 

prediction at just 2.9%.  

 

FIGURE 6. Correlation between known cotton content and calibrated 

prediction values in qualitative NIR analysis (Rodgers & Beck 2009) 
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4 NEAR-INFRARED SPECTROSCOPY 

For its extensive advantages as a fast and non-destructive analytical 

technique, NIR spectroscopy has been utilized in many industrial 

applications. As there usually is no need for sample preparation, it is 

optimal for continuous quality control. Notable applications for NIR can be 

found within petrochemical and polymer manufacturers, pharmaceutical 

and cosmetics companies, border control and health inspection officials, 

and environmental research facilities. (Pasquini 2003; 2-3, 17.) 

4.1 Fundamentals of NIR spectroscopy 

Despite the significant advantages from being simple, reproducible and 

chemical-free, NIR spectroscopy is considered a secondary method 

compared to traditional analytical techniques, such as gas 

chromatography (GC) or nuclear magnetic resonance (NMR). This means 

that NIRS is dependent on primary reference methods in order to build 

identification models or quantitative calibrations. However, once these 

models and calibrations are done, NIRS can be used as a primary analysis 

method in the intended field of application. (Manley 2014, 2-3.) 

The near-infrared region extends from 800 to 2500 nm (12500-4000cm-1), 

adjacent to the visible light region of the EM spectrum. As seen from the 

Figure 7, the NIR region is sensitive to X-H bonds (e.g. C-H, O-H, N-H), as 

hydrogen produces always a significant dipole moment. NIR spectra 

contain a lot of information because many absorption bands occur up to 

six times within the spectral region. NIR is efficient in analyzing a variety of 

organic materials, such as proteins, carbohydrates and oils. Water is 

strongly absorbing in the NIR region, which sometimes hides other 

spectral features. The effect of strong O-H absorptions can be removed 

from the spectra by mathematical manipulation, or it can be utilized in 

moisture analysis of e.g. agricultural products. (Eremina 2017.) 
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FIGURE 7. Absorption bands in the NIR -region (Metrohm 2013a) 

4.2 Common features of NIR spectra 

While the mid-infrared region contains fundamental bond vibrations in 

most organic substances, the NIR region comprises of overtones and 

combinations of these frequencies. NIR absorption bands are typically 

broad, overlapping and up to 10-100 times weaker than the fundamental 

absorptions in mid-IR. The weaker signals in NIR measurements require 

chemometric data processing to extract information from the spectra. 

However, weaker absorption allows for greater measurement depth and 

distance, as well as analysis of highly absorbing or scattering materials 

without sample preparation. (Reich 2005, 3-4.) 

Differences in typical pure cotton and wool spectra from MIR and NIR 

instruments can be seen in Figures 8 & 9. It is clear that the well-defined 

peaks in MIR enable visual identification of bonds and functional groups, 

while NIR spectra must be analyzed with chemometric tools. NIR is not 

optimal for detecting individual molecular bonds, but has proven efficient in 

qualitative and quantitative analysis based on pattern recognition. 
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FIGURE 8. MIR spectra of 100% cotton (blue) and 100% wool (purple). 

(Capture from Bruker OPUS™) 

 

FIGURE 9. NIR spectra of 100% cotton (blue) and 100% wool (red). 

(Capture from Vision™) 

4.3 Instruments and software 

Research for this thesis was conducted on an NIR process analyzer by 

FOSS Analytics, which was equipped with a spectral manipulation 

software Vision by Metrohm. Danish FOSS analytics specializes in 
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providing advanced analytical tools for the agricultural industry, including a 

wide range of spectroscopic instruments for both laboratory and process 

conditions (FOSS 2017). Swiss manufacturer of analytical tools and 

laboratory systems Metrohm is collaborating with FOSS by offering its 

spectral processing software Vision™ along with an extensive marketing 

network.  

4.3.1 NIRS Analyzer Pro 

The NIR process analyzer (Image 2) used in REISKAtex™ sorting unit is 

equipped with a high-resolution InGaAs diode array and provides non-

destructive spectral analysis of solids, liquids, granules or pastes. The 

model uses a spectral range of 1100-1650 nm, which includes most first 

and second overtones of common organic molecular bonds. The 

measurement time ranges from 5-50 ms depending on the assigned 

accuracy and measurement range. The analyzer can be mounted on a 

production line or fitted into a pipeline. The instrument is designed to 

withstand temperatures up to 150 °C and the sapphire lens endures 

pressures from near vacuum to 200 bar. The process instrument model 

variants include a possibility to take measurements with a hand-held fiber 

optic probe. (Metrohm 2013b.) 

With default settings, the instrument measures the absorbance values at 

0.5 nm wavelength intervals covering the whole measurement range. 

Optionally, the user may limit the measurement range to a specified 

wavelength band of interest. (Metrohm 2015a.) NIR spectra are plotted 

with the absorption values as a function of wavelength in nanometers. The 

resulting absorbance spectrum is displayed and analyzed in the Vision™ 

software. The absorbance spectrum can also be converted into a standard 

format excel-sheet for closer inspection. 
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IMAGE 2. NIRS Analyzer Pro (Photo by Jaakko Zitting) 

4.3.1.1 Calibration 

Before acquiring the data to be used in model development, the 

instrument must be calibrated for internal error corrections. Reference 

standardization creates a virtual correction file to account for variations in 

internal instrument responses. Without standardization, the identification 

method may not be fully transferable to other NIR measurement units. The 

calibration is done by measuring a photometric standard of known 

reflectivity and comparing that to the instruments measurement. Foss 

Analyzer PRO is equipped with a non-absorbing Spectralon® -disk (Image 

3) as a reference standard. The difference in measurement response is 

used to correct all measurements on different NIR instruments. (Metrohm 

2015b, 24.)  

Performance test assures reliable functionality of the instrument. Testing 

includes measurements of max/min background noise, errors of 
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communication (EOC), linear bias of interference peaks and the root-

mean-square (RMS) of peak-to-peak noise (Metrohm 2013a, 53-54). 

Proper instrument response is verified on the performance test report 

(Attachment 1).  

 

IMAGE 3. Spectralon®-disk for reference standardization. (Photo by 

Jaakko Zitting) 

4.3.2 Metrohm Vision™ 

Vision™ by Metrohm is a spectral processing software that offers tools for 

measuring and managing data, as well as qualitative and quantitative 

analysis for spectroscopic instruments. It is built around four fundamental 

modes: 

1. Data acquisition mode: 

Combines all functions related to spectral measurements, data pre-

processing and data management. Spectra can be viewed as a 

graphical XY-plot or converted to an excel-sheet. Instrument 

diagnostics and system settings are also done in data acquisition 

mode. 

2. Qualitative analysis mode 

Includes functions for sample selection, identification method 

development and library validation. Parameters for spectral pattern 

recognition are done in qualitative analysis mode. 
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3. Quantitative analysis mode 

Enables quantitative regression model development for predicting 

constituent values and percentages. 

4. Routine analysis mode 

Identification and quantification of unknown samples are done in 

routine analysis mode. This mode enables analysis of stored data 

or real-time measurements. Analysis reports are created in routine 

analysis, and can be saved to results storage database. 

    (Metrohm 2015a, 11-12.) 

The user can store spectra in separate projects, which act as a 

fundamental storing unit. Identification libraries are built around a specific 

project and changes in other data sets do not alter the models created 

with other projects. Different materials and their spectra are divided into 

products, which determine the final identification result. Calculations for 

average spectrum or standard deviation within a product are possible in 

data acquisition mode.  

Vision™ recognizes different user profiles, which can be given access to 

different functionalities. The system manager –profile has authority to all 

settings and model development tools while the system user –profile can 

be restricted to just routine analysis operations. (Buytaert 2016.) 
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5 SAMPLE LIBRARY CONSTRUCTION 

An automated sorting unit with an NIR analyzer must be equipped with a 

sample library. Once a reliable reference library with desired materials is 

established, the system can identify unknown materials and sort them for 

further recycling processes. Pure cotton (CO) and polyester (PES) were 

chosen for library development because of their large volumes and 

widespread use in textile industry. Wool (WO) was also included because 

of its value and potential in recycling applications. 

5.1 Choosing reference samples 

5.1.1 Initial sample selection 

Textile samples for library development were gathered from the 

inventories of Lahti University of Applied Sciences and sorted garments 

from recycling centers (Patina, Fida, LSJH). Sample sets included both 

commercial samples from textile manufactures as well as post-consumer 

textiles (Image 4). This was to assure sufficient representability, as 

samples only from manufacturers would lack the real-life characteristics of 

textiles with contaminants from e.g. grease, dirt and washing detergents. 

Sample sets should contain natural variations in textile properties, such as 

color, texture and fabric composition. However, selected samples must be 

relatively pure as to not interfere with spectral measurements. 
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IMAGE 4. Pre-consumer and post-consumer samples. From left to right: 

Wool, Cotton, Polyester. (Photo by Jaakko Zitting) 

5.1.2 Verification of sample purity 

All samples were verified with an FT-IR laboratory spectrometer (Bruker 

Alpha [ATR], Image 5) to rule out impure samples and textile blends. 

Commercially available identification libraries can easily compare known 

materials to the measured spectra (EssentialFTIR 2017). Should this 

library search not provide unambiguous results, the spectra were cross-

checked with raw fiber samples or standard fabrics (e.g. James Heal, 

polyester adjacent fabric, as specified in ISO 105-F04). Only verified textile 

samples of known material composition were accepted as reference 

samples for identification model development. 
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IMAGE 5. FT-IR measurements for purity verification. (Photo by Jaakko 

Zitting) 

5.2 Measurements and manual sample selection 

No amount of data pre-treatments or chemometrics can compensate for 

bad data. Therefore, the measurement method and resulting spectra has 

to be carefully analyzed for errors before spectral manipulation. (Nilsson 

2017.)  

All reference samples were measured twice (both sides) to eliminate 

random outliers from measurement conditions. Maximum measuring 

distance was defined by evaluating the increasing spectral noise from a 

single sample, along with increasing distance at approx.10 mm intervals. 

Normalizing spectral baseline shifts with measurements at under 30 mm 

distance resulted in insignificant variations in noise levels. This distance 

can thus be regarded as a maximum measuring distance with the analyzer 

in use. The differences in the noise levels can be seen in Figure 10. 

Samples were also measured flat and wrinkled, with no noticeable 

difference in absorption levels. 
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FIGURE 10. Measuring distance vs. noise. Black spectra measured at 

30mm and in contact, red spectra at 60 mm and 100 mm. Cotton 100%. 

(Capture from Vision™) 

5.2.1 Outliers and accepted variations 

Spectra from sample sets was first evaluated visually to rule out clear 

outliers. All product sets showed three types of spectra within a single 

material. Along with clear material spectra and noticeable outliers, some 

noisy/shifted spectra were visible from the sample sets. Calculations of 

standard deviation, with and without the variate spectra, were compared to 

the peak-to-peak scale of the corresponding sample set. The results 

(Table 2) show 35-71% improvement in the score given to the products. 

Clear spectra were denoted with reference “a” and sets with slight variates 

as “b”. Despite the significant improvements in the sample set score, the 

shifted spectra were not excluded from identifications sets. This was to 

ensure natural spectral variation within the identification library product. 

The spectra denoted with “b”-mark, and the calculated deviation levels, 

were used to define correct tolerances for the identification method. While 

the denoted variate spectra could be excluded from the identification set, it 

is simpler to adjust threshold values later on if needed. 
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TABLE 2. Scores for sets of spectra 

 Material Max deviation P-P Score Difference 

CO100-a 0.059 2.862 0.020 -34.7 % 

CO100-b 0.095 3.038 0.031   

PES100-a 0.247 8.849 0.028 -48.2 % 

PES100-b 0.515 9.554 0.054   

WO100-a 0.107 3.152 0.034 -70.8 % 

WO100-b 0.379 3.266 0.116   

5.3 Pre-treatment of spectra 

The objective of spectral pre-treatments is usually to remove effects of 

physical phenomena from the data set in order to make chemical analysis 

more reliable. The two main types of mathematical pre-treatment are 

scatter correction and spectral derivatives. (Rinnan et al 2009, 1.) 

NIR reflectance measurements exhibit both diffuse and specular 

reflections. Specular reflections do not contain any chemical information, 

but can often be excluded with optimal instrument design and 

measurement conditions. Diffuse reflections carry information on the 

absorbances in the sample, but are also affected by scattering effects 

relative to the particle size and other microstructures. Differences in 

sample thickness and density exhibit variations in baseline level, and thus 

produce shifts in absorbance values. These scattering effects and shifts 

must be corrected for reliable spectral analysis. (Huang et al. 2010.) 

The broad overlapping features in NIR spectrum hamper discrimination of 

adjacent absorbance bands and contain few characteristic features for 

spectral pattern recognition. Derivative functions on finite data sets can 
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help identify underlying responses in absorption levels, as the slopes 

become more resolved. (Owen, 1995.) Figures 11 & 12 illustrate the effect 

of mathematical pre-treatments on the measured spectra (same data set 

on both plots). 

 

FIGURE 11. Raw spectra without mathematical corrections. (Capture from 

Vision™) 

 

FIGURE 12. Normalized derivative spectra. (Capture from Vision™) 

Vision™ offers multiple mathematical tools to extract relevant information 

from the raw IR spectrum. The mathematical basis and effects on NIR 

spectra of these pre-treatment functions are presented through Chapters 

5.3.1 and 5.3.2. 
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5.3.1 Noise reduction and scatter correction 

Internal signal interference, scattering from specular light reflectance, 

varying measurement distance and impurities in the sample material 

contribute to noise (see Figure 10), which occurs in practically all 

spectroscopic measurements. These minor inconsistencies in the IR-

spectrum interfere with pattern recognition functions and may even hide 

valuable information in the absorbance spectrum. Correct measurement 

conditions and corrective instrument calibration improve the signal to noise 

ratio (S/N) but mathematical smoothing of spectra is often required. 

Baseline shifts (due to e.g. density variations) should also be corrected for 

reliable pattern recognition. (Eremina 2017.) 

Vision™ software includes several functions for improving S/N and scatter 

corrections: 

5.3.1.1 NPS – N-Point Smoothing 

An average absorbance value of a predefined wavelength segment, S, is 

calculated and placed in the center point of the segment. Calculations are 

swept through the entire spectrum at half S intervals. This smoothing 

treatment removes noise effectively but may lose relevant absorbance 

data. The main parameter, segment size, must be set experimentally. The 

default value in Vision™ is 10nm. Due to averaging, half the number of 

data points in S is lost by NPS at each end of the data set. (Metrohm 

2015c, 9.) 

5.3.1.2 SNV – Standard Normal Variate 

SNV is used to normalize multiple spectra within a data set when 

differences in e.g. particle size or effective wavelength path cause 

baseline shifts. Scatter correction is always recommended when 

measuring solid, granulate or powder samples. The spectra are 

normalized to a uniform base level by mean centering the spectra and 

dividing with its standard deviation: 
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𝑠𝑖
𝑆𝑁𝑉 =

𝑠𝑖−𝑠̅

√
∑ (𝑠𝑖−𝑠)̅

2𝑛
𝑖−1

𝑛−1

    (5) 

 

Where 𝑠𝑖  = single absorbance value at wavelength point i 

�̅� = average value from each spectrum at i 

n = number of data points in the treated spectrum 

(Metrohm 2015c, 12.) 

SNV converts the y-axis values to arbitrary units of signal intensity. While 

they are not directly comparable to initial absorbance values, they enable 

efficient pattern recognition when applied to all spectra. The effects of SNV 

on the same data set (cotton) are illustrated in Figures 13 & 14. 

 

FIGURE 13. Raw spectra of 100% cotton (Capture from Vision™) 



29 

 

FIGURE 14. SNV treated spectra of 100% cotton (Capture from Vision™) 

5.3.1.3 Detrend 

Detrend is used to eliminate baseline offset, slope and curvature from a 

spectrum. A baseline polynomial function is fitted to the spectra by a least 

squares fit, and then subtracted from the spectrum. The polynomial degree 

determines the correction effect. First order polynomial removes offset and 

slope, while second order polynomial removes also parabolic curvature. 

(Metrohm 2015c, 12-13.)  

According to Eremina (2017), slope and curvature are present when 

measuring spectra at a wide range (Δλ>1500 nm). Therefore, with most 

NIR process analyzers with limited spectral range, there usually is no need 

for slope/curvature correction by Detrend.  

5.3.1.4 Baseline correction 

Manual baseline correction is done by subtracting either a spectral value 

at a specified wavelength point or a fixed value defined by user (Metrohm 

2015c, 12). 
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5.3.2 Feature enhancement 

Derivative functions are especially efficient with NIR spectra with broad 

features, since they can enhance slight changes in curvature. 

Emphasizing slope can separate overlapping peaks and give relevant 

information on different absorption bands. Feature enhancement by 

derivatives can act also as a scatter correction since slight variations in 

baseline level have negligible effect on the resulting derivate spectrum. 

(ASDinc 2017.) 

Derivative functions are efficient in pointing out single characteristic 

absorbance bands as the surrounding background features are 

suppressed. This is due to the fact that the amplitude of a Gaussian band 

in the nth derivative is inversely proportional to the original bandwidth, as 

illustrated in Figure 15. Even if a spectral feature with strong slope has a 

low amplitude in the raw spectrum, it can become dominant in the 

derivative spectrum. (Owen 1995, 5-6.) These sudden peaks in 

absorbance usually carry the most relevant spectroscopic information, and 

should therefore be enhanced. 

 

FIGURE 15. Peaks with narrow initial bandwidth are dominant in the 

derivative spectrum. (Owen 1995) 
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Vision software includes the following options for derivative functions:  

5.3.2.1 Finite-difference derivatives 

First and second order derivatives enhance sudden changes in 

absorbance levels. First order derivative removes baseline offset and 

converts the steepest slopes into distinctive peaks. Second order 

derivative eliminates also possible slope while exhibiting artificial intensity 

peaks derived from the 1st order derivative.  

 

FIGURE 16. Illustration of 1st and 2nd order derivatives on a Gaussian 

band. (Owen 1995) 

The first order derivative is calculated by averaging absorbance values at 

two adjacent segments (A and B). The resulting value of A-B is placed in 

the middle of the gap between the segments. This procedure is repeated 

by shifting the whole sequence one data point at a time and placing 

derivative values between segments. Second order derivative accounts for 

adjacent segments A, B and C, and is calculated as A-2B+C. The resulting 

value is placed in the midpoint of the second segment B, and the 

calculations are repeated through the spectrum, shifting at one data point 

intervals. Both functions require two parameters to be defined: the length 
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of a wavelength segment used for derivation and the gap between those 

segments. (Metrohm 2015c, 9-12.) 

A drawback from the derivation process is the decrease in signal to noise 

ratio. Noise has always the sharpest features in IR measurements and 

exhibit unwanted features in the resulting derivative spectra. Prior to 

derivative pre-treatment, the data must be cleared of excess noise with 

good measurement conditions and, if needed, mathematical smoothing 

operations. Increasing the segment size parameter reduces noise but may 

lose valuable spectral information. (Owen 1995, 8.) 

5.3.2.2 Savitzky-Golay  

The S-G function combines smoothing, detrending and derivative effects 

on raw spectra. Similarly to the detrend function, S-G produces a least 

squares fit of a polynomial curve to a pre-defined segment on the original 

spectrum. Contrary to detrend, S-G fits multiple polynomials on limited 

wavelength bands and replaces the original absorbance values with the 

modeled polynomial. Parameters for S-G operation are the segment size 

and the order of the polynomial fitted to the spectrum. (Metrohm 2015c, 

13.) 

1st and 2nd order polynomials produce similar results as the simple finite-

difference derivatives described previously, but the segment size has a 

stronger effect on the S/R ratio. Setting up parameters for S-G function 

requires insight on the dexterity of the raw spectrum and the overall noise 

level. Small segments with higher order polynomials result in excess 

noise, as the noise in raw data are incorrectly modeled in the correction 

process.  

5.4 Identification method 

Identifying materials based on NIR spectra requires a reference library for 

pattern recognition. The first step in library development in Vision™ 

software is sample selection, which can be done manually or by setting 
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tolerances for excluding outliers in a sample set. Sample selection divides 

spectra within a single product into three classes. Training set should 

contain the main spectral features that can be accepted for material 

identification. Outlier set includes samples that do not present the 

desirable material spectra and should be identified as unknown. Vision 

includes additionally a separate acceptance set that consists of redundant 

samples. While having multiple samples in a reference library product 

makes the identification more reliable and robust, it also increases the 

computational power needed in real-time sorting operations. Therefore, it 

is useful to use these redundant samples when defining correct tolerances 

for pattern recognition, but leaving them out in the operational computation 

process. The acceptance set is to include samples that are closest to the 

mean product spectrum, so the remaining operational training set contains 

the most variation within acceptable limits. (Buytaert 201.6) 

Once the reference library products are chosen, pattern recognition 

parameters are set to differentiate between divergent spectra. This 

procedure is called identification method development, and is set globally 

to all products in a library. Vision supports two-step identification for highly 

similar spectra. In qualification method development it is possible to set 

additional product-specific restrictions to differentiate between otherwise 

conforming spectra. This procedure is optional, and can be omitted from 

library development if the library products exhibit clearly distinctive spectral 

patterns. Similar mathematical features are available for both sample 

selection and identification method development, and are presented in 

Chapters 5.4.1-5.4.3. 

Final step for identification method development is library validation. Each 

sample spectrum is cross-checked internally against the pattern 

recognition functions and tolerances defined in identification method 

development. This procedure is useful when optimizing parameters and 

checking for possible misidentifications.  
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5.4.1 Mahalanobis distance in principal component space 

Principal component analysis is a dimensionality reduction method. It 

enables conversion of multidimensional data to be presented by just a few 

principal components, which carry the most relevant data. For example, a 

multivariate graph with three distinctive peaks can be reduced to a single 

point in 3D-space (Figure 17), when applying the peak amplitudes as the 

primary coordinates for x-, y- and z-axes. When this method is repeated 

on multiple graphs, the resulting cluster in 3D-space (Figure 18) indicates 

whether the data are similar and shows outliers as singular points outside 

the cluster. A spectrum can be broken down to as many principal 

components as necessary to explain and reconstruct it to a predefined 

accuracy. (Bruker 2017.) 

 

FIGURE 17. Simplified visual of dimensionality reduction by principal 

components. (Bruker 2017) 

In Vision software the product set can be presented as a principal 

component cluster. When identifying unknown samples, the measured 

spectra is converted into principal components and placed in a 

multidimensional plot. The spectral similarity is evaluated by a metric 

called mahalanobis distance, which indicates a relative distance to the 

center of distribution in the PC cluster. Parameters for mahalanobis 

distance are unitless and have to be determined experimentally. (Metrohm 

2015c, 25-26.) 
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FIGURE 18. Principal component cluster in sample selection (wool 100%). 

Red score denotes a clear outlier in 3D principal component space. 

(Capture from Vision™)  

5.4.2 Maximum distance in wavelength space 

Identification by maximum distance in wavelength space is done by first 

inflating the mean product spectrum to cover a range of the standard 

deviation in a product set. An unknown spectrum is evaluated whether it 

fits within a predefined tolerance to the mean product spectrum. The 

defined distance tolerance is relative and wavelength-dependent, so 

regions with more variance allow for larger deviation from the mean 

spectrum. (Metrohm 2015c, 23.) This property is useful when spectral 

variations from e.g. moisture are an issue, and can’t be fully eliminated. 

Similarly, it may pass spectra with small but narrow absorption peaks, 

indicating contaminated or otherwise unacceptable identification results. 

5.4.3 Correlation in wavelength space 

Correlation is a measure of spectral similarity. It is calculated by 

comparing absorbance absorbance values of an unknown spectrum to the 

corresponding values in the library product spectra, at each data point 
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(see Formula 6). Geometrically, correlation in wavelength space can be 

regarded as a cosine of an angle between two vectors representing 

spectra. The higher the correlation value, the higher the spectral similarity. 

Since this metric is scale invariant, it can be applied to spectra without 

normalization by standard normal variate.  

 𝐷𝑐 =
∑ 𝑥𝑖𝑦𝑖𝑖

√∑ 𝑥𝑖
2 ∑ 𝑦𝑖

2
𝑖𝑖

   (6) 

Where Dc = correlation coefficient between spectra 

 xi = absorption value of spectrum x at wavelength i 

 yi = absorption value of spectrum y at wavelength i 

(Metrohm 2015c, 21-25.) 
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6 RESULTS 

All mathematical tools for spectral pre-treatment and pattern recognition 

described in Chapter 5 were evaluated according to their performance and 

suitability in textile sorting technology. The best solutions for identification 

method development were determined by first ruling out redundant tools, 

and then running tests on Vision™ software. The resulting method was 

constructed to be universally viable. This means that the same treatments, 

procedures and parameters are expected to work on any kind of spectra 

without further optimization. 

6.1 Optimized data pre-treatment 

Vision™ includes many alternative pre-treatment methods for making 

spectral corrections. Considering the characteristic spectral features 

observed in cotton, polyester and wool samples, and taking into account 

the instrumental attributes (measurement range, internal noise levels, 

wavelength-dependent bias), a number of pre-treatment methods could be 

ruled out as unnecessary. For example, the limited measurement range 

does not generate a need for baseline curvature correction. After 

excluding redundant pre-treatment options, the remaining consideration 

included scatter and noise corrections, and feature enhancement by 

simple derivatives and Savitzky-Golay polynomial smoothing. Different 

parameters and combinations of data pre-treatments were compared in 

terms of smoothing performance, standard deviation of corrected spectra, 

and the ability to enhance identifiable features in the spectra. 

6.1.1 Feature enhancement with derivatives 

Derivative functions and S-G polynomial smoothing provide smoothing and 

scatter correction to some extent, as well as enhancing significant 

absorption bands. Therefore, they were first evaluated individually to see if 

there was need for additional corrections. Derivative functions were set 

with segment sizes of 10 nm (system default), 15 nm, 20 nm and 40 nm to 

evaluate the smoothing effect with different parameters. Gap between 
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segments was set to zero in order to maintain all relevant features in 

derivation. The smallest segment size showed visually significant noise 

levels that would affect correlation analysis later on. Even if the spectra 

from cotton, wool and polyester could be separated with smaller amount of 

detail, it was assumed that further library development with e.g. other 

cellulose-based fabrics (viscose, linen etc.) would require more detailed 

derivative spectra. Also, the size of lost wavelength bands at each end of 

the spectrum increases with larger segments. 

Savitzky-Golay polynomial fitting was examined with different order 

polynomials, first and second order derivation and multiple segment sizes. 

Contrary to simple first order derivative, S-G provided different results 

when applied to different materials. This is presumably because the 

polynomial that is fitted to the spectrum should match the complexity of 

each spectra. The segment size into which the polynomial is fitted may 

also contain broad bands with little to none distinctive features except for a 

single, relatively narrow peak. Therefore, the segment size should be kept 

at a reasonable minimum. 

6.1.2 Smoothing and scatter correction 

Properly adjusted measurement distance and setting the data collection 

method to plot averages of multiple scans eliminated most of the noise in 

sample measurements. The need for smoothing operations depends on 

the resulting noise levels after feature enhancement. NPS alone is suitable 

for visual analysis of measured spectra and rough smoothing for high-

tolerance correlation analysis. After derivation, there usually is still 

significant variation in amplitudes of positive and negative peak extremes 

in derivated spectra. This is common with solid samples and should be 

corrected, because large deviations in amplitude would require broader 

tolerances for identification. 
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6.2 Identification method 

The product sets for cotton, wool and polyester were deliberately equipped 

with at least one clear outlier and a few slightly variate spectra (marked 

with affix “b”) to help determine correct parameters and tolerances for 

identification. Sample selection was conducted so that outliers are marked 

as reject, but the b-noted variate spectra passes identification. This set-up 

enabled adjusting identification parameters right outside the accepted 

variance in spectra. The software’s sample selection phase is not critical to 

the method development as it does not affect the rules of identification. 

Principal component analysis, maximum amplitude restrictions or spectral 

correlation can be used to set guidelines for accepted spectra in the data 

sets, and to verify that outliers are marked correctly. 

Physical properties must be taken into consideration to achieve best 

results in identification method development. Textile samples with 

relatively much spectral variation due to physical properties, such as 

texture and density, can be incorrectly rejected. Especially dark and dense 

wool fabrics exhibited higher absorption values at shorter wavelengths. 

Narrow spectral regions with large variations due to physical phenomena 

can be excluded from the qualitative analysis. If no regions are to be 

excluded, the identification parameters must be set to adjust for variations 

in wavelength-dependent absorbance levels within acceptable samples. 

The chosen pattern recognition function was able to adjust relative 

tolerances based on the uniformity level of certain spectral regions. One 

outlier in a larger data set does not affect the mean absorbance values 

enough to distort the reliability of acceptable spectral patterns. 

6.3 Library validation 

The developed identification library was validated by running internal 

cross-checking with all measured spectra as unknown. The routine 

analysis report (Attachment 2) showed that there was no misidentifications 

and outliers were correctly labeled as “no match”. All the unidentified 
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samples are denoted with an affix “c”, which indicates a spectral outlier. 

The validation was supported by running analysis on new samples from a 

set with fire resistant PES100% and CO100%. The success rate of 83% 

and 85%, for CO and PES respectively, showed that even with the same 

underlying material matrix, the identification method is capable of ruling 

out contaminants and unwanted additives in textile samples. Finally, a set 

of viscose samples was tested to see if a material with similar chemical 

composition (cellulose) as cotton would pass identification. The system 

was able to disqualify viscose from the cotton product set. 
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7 CONCLUSIONS 

This thesis has demonstrated the process of developing an identification 

method for textiles using NIR spectroscopy. The sorting technology has 

been proven to be capable of differentiating between unblended cotton, 

wool and polyester. It was also clear that with correct feature 

enhancement and identification parameters, NIR can separate even 

fabrics with a substantially similar chemical composition. Viscose and 

cotton were identified correctly despite both being purely cellulose-based 

fibers, and unblended cotton and polyester with fire resistant finishes 

(assumed phosphorus/chlorine -based additives) were discarded with a 

good percentage. 

The divergence in NIR spectra between cotton, wool and polyester would 

make it possible to identify these materials with just a simple scatter 

correction, smoothing operation and a broad-tolerance correlation 

analysis. However, for future development of a more complex identification 

library, it is beneficial to have a more meticulous identification method to 

differentiate between pure and blended textiles. The optimization of pre-

treatment parameters and library development were conducted with future 

expansion in mind to ensure high accuracy. 

7.1 Future development 

A full, real-time test run to determine the systems reliability needs further 

development in logical programming for the sorting line, and a motorized 

guide rail to keep measurement distance uniform for every sample. Once 

the measuring distance is standardized and the logical commands from 

the software to the sorting line’s deflectors is timed correctly, the system 

can begin routine identification analysis of waste textiles. 

The system’s performance is not limited by the spectroscopic hardware or 

the software’s calculation processes. When conducting identification tests 

without the sorting line in operation, the result can be obtained in 50 ms. 

The hindering factor for the performance of the system is expected to be 
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the speed of the conveyor belt and the pressure line’s response in 

deflecting samples to correct bins. The sorting line is not yet equipped with 

an automated feeding system, which is also needed for larger scale 

operations. 

7.2 Viability for waste reduction 

With the developed textile sorting technology, it is possible to reduce the 

amount of textile waste going to incineration. This will improve resource 

efficiency, as the valuable materials can be kept in circulation for a longer 

period of time. Having an efficient and reliable sorting method for textile 

waste can generate new possibilities for textile recycling, as it increases 

the availability of pure recycled material. A heterogeneous stream of waste 

textiles have usually been downcycled for insulation, padding and 

industrial wipes. A sorting line for pure unblended textile materials opens 

potential for developing upcycling practices with more added value. 
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Attachment 1: Performance test report – Sample channel 

 

 



 
 

 



 
 

 

  



 
 

Attachment 2. Full library validation report 
 

 Routine Analysis (Analyze Stored Data) 
 

Acquired:     Re-analyzed:   
Date:  04/10/2017   Date:  03/11/2017 

Time:  13:49:58   Time:  16:36:48 

Author/Operator: NIRSystems Default User  Author/Operator:  NIRSystems Default User 

Instrument Model:  NIRSystems NIRS Analyzer Pro     
Serial number:  5939      

        
Library:  telaketju_lib      
Output Project: ident_test      

        
 

Sample ID Selected ID as ID Result P/F 

co001-1 unknown Cotton 100 2.566 Pass 

co001-2 unknown Cotton 100 1.859 Pass 

co002-1 unknown Cotton 100 1.218 Pass 

co002-2 unknown Cotton 100 2.258 Pass 

co003-1b unknown Cotton 100 1.932 Pass 

co003-2b unknown Cotton 100 1.972 Pass 

co004-1c unknown No Match 12.480 Fail 

co004-2cc unknown No Match 21.670 Fail 

co005-1 unknown Cotton 100 1.664 Pass 

co005-2b unknown Cotton 100 2.785 Pass 

co006-1 unknown Cotton 100 1.210 Pass 

co006-2 unknown Cotton 100 1.305 Pass 

co007-1b unknown Cotton 100 2.480 Pass 

co007-2b unknown Cotton 100 2.589 Pass 

co008-1 unknown Cotton 100 1.156 Pass 

co008-2 unknown Cotton 100 1.155 Pass 

co009-1b unknown Cotton 100 3.062 Pass 

co009-2b unknown Cotton 100 3.464 Pass 

co010-1b unknown Cotton 100 1.075 Pass 

co010-2b unknown Cotton 100 1.602 Pass 

co011-1b unknown Cotton 100 2.544 Pass 

co011-2b unknown Cotton 100 2.954 Pass 

co012-1 unknown Cotton 100 2.405 Pass 

co012-2 unknown Cotton 100 1.487 Pass 

co013-1 unknown Cotton 100 1.320 Pass 

co013-2 unknown Cotton 100 1.493 Pass 

co014-1 unknown Cotton 100 2.327 Pass 

co014-2 unknown Cotton 100 2.222 Pass 

co015-1bc unknown No Match 11.836 Fail 

co015-2bc unknown No Match 13.113 Fail 

co016-1 unknown Cotton 100 1.142 Pass 

co016-2 unknown Cotton 100 1.195 Pass 

co017-1 unknown Cotton 100 1.588 Pass 

co017-2 unknown Cotton 100 1.599 Pass 

co018-1 unknown Cotton 100 1.177 Pass 

co018-2 unknown Cotton 100 1.261 Pass 

co019-1 unknown Cotton 100 1.617 Pass 



 
 

co019-2 unknown Cotton 100 2.126 Pass 

co020-1 unknown Cotton 100 1.708 Pass 

co020-2 unknown Cotton 100 1.500 Pass 

co021-1 unknown Cotton 100 1.564 Pass 

co021-2 unknown Cotton 100 1.467 Pass 

co022-1cc unknown No Match 30.397 Fail 

co022-2cc unknown No Match 25.965 Fail 

co023-1 unknown Cotton 100 1.785 Pass 

co023-2 unknown Cotton 100 1.246 Pass 

co024-1 unknown Cotton 100 1.677 Pass 

co024-2 unknown Cotton 100 1.926 Pass 

co025-1 unknown Cotton 100 1.995 Pass 

co025-2 unknown Cotton 100 1.465 Pass 

co026-1 unknown Cotton 100 1.198 Pass 

co026-2 unknown Cotton 100 1.655 Pass 

co027-1 unknown Cotton 100 1.244 Pass 

co027-2 unknown Cotton 100 1.131 Pass 

co028-1cc unknown No Match 8.488 Fail 

co028-2cc unknown No Match 7.624 Fail 

co029-1b unknown Cotton 100 1.617 Pass 

co029-2b unknown Cotton 100 1.298 Pass 

co030-1 unknown Cotton 100 1.785 Pass 

co030-2 unknown Cotton 100 3.074 Pass 

pes001-1b unknown Polyester 100 2.710 Pass 

pes001-2b unknown Polyester 100 2.452 Pass 

pes002-1b unknown Polyester 100 2.983 Pass 

pes002-2b unknown Polyester 100 1.999 Pass 

pes003-1b unknown Polyester 100 2.165 Pass 

pes003-2b unknown Polyester 100 2.900 Pass 

pes004-1b unknown Polyester 100 2.334 Pass 

pes004-2b unknown Polyester 100 2.583 Pass 

pes005-1 unknown Polyester 100 2.584 Pass 

pes005-2 unknown Polyester 100 1.765 Pass 

pes006-1 unknown Polyester 100 2.161 Pass 

pes006-2 unknown Polyester 100 1.831 Pass 

pes007-1 unknown Polyester 100 1.967 Pass 

pes007-2 unknown Polyester 100 1.877 Pass 

pes008-1b unknown Polyester 100 2.857 Pass 

pes008-2b unknown Polyester 100 2.841 Pass 

pes009-1 unknown Polyester 100 0.922 Pass 

pes009-2 unknown Polyester 100 1.242 Pass 

pes010-1 unknown Polyester 100 1.220 Pass 

pes010-2 unknown Polyester 100 0.965 Pass 

pes011-1 unknown Polyester 100 1.696 Pass 

pes011-2 unknown Polyester 100 1.404 Pass 

pes012-1 unknown Polyester 100 0.769 Pass 

pes012-2 unknown Polyester 100 1.126 Pass 

pes013-1 unknown Polyester 100 1.221 Pass 

pes013-2 unknown Polyester 100 2.032 Pass 

pes014-1 unknown Polyester 100 0.918 Pass 

pes014-2 unknown Polyester 100 1.177 Pass 

pes015-1b unknown Polyester 100 2.762 Pass 

pes015-2b unknown Polyester 100 3.697 Pass 

pes016-1 unknown Polyester 100 1.431 Pass 



 
 

pes016-2 unknown Polyester 100 1.316 Pass 

pes017-1 unknown Polyester 100 2.019 Pass 

pes017-2 unknown Polyester 100 1.729 Pass 

pes018-1 unknown Polyester 100 1.365 Pass 

pes018-2 unknown Polyester 100 1.212 Pass 

pes019-1b unknown Polyester 100 2.211 Pass 

pes + paperilappu unknown No Match 25.958 Fail 

pes019-2b unknown Polyester 100 1.617 Pass 

pes020-1 unknown Polyester 100 2.791 Pass 

pes020-2 unknown Polyester 100 3.296 Pass 

pes021-1 unknown Polyester 100 2.035 Pass 

pes021-2 unknown Polyester 100 1.899 Pass 

pes022-1 unknown Polyester 100 1.279 Pass 

pes022-2 unknown Polyester 100 1.328 Pass 

pes023-1 unknown Polyester 100 1.315 Pass 

pes023-2 unknown Polyester 100 1.607 Pass 

pes harso unknown No Match 4.107 Fail 

pes024-1 unknown Polyester 100 1.084 Pass 

pes024-2 unknown Polyester 100 2.017 Pass 

pes025-1 unknown Polyester 100 0.874 Pass 

pes025-2 unknown Polyester 100 1.088 Pass 

pes026-1b unknown Polyester 100 2.371 Pass 

pes026-2 unknown Polyester 100 1.588 Pass 

pes027-1 unknown Polyester 100 1.945 Pass 

pes027-2 unknown Polyester 100 1.722 Pass 

pes028-1c unknown No Match 18.212 Fail 

pes028-2c unknown No Match 16.677 Fail 

pes029-1c unknown No Match 7.597 Fail 

pes029-2c unknown No Match 10.499 Fail 

wo001-1cc unknown No Match 18.376 Fail 

wo001-2cc unknown No Match 17.892 Fail 

wo002-1 unknown Wool 100 1.477 Pass 

wo002-2 unknown Wool 100 1.329 Pass 

wo003-1 unknown Wool 100 1.217 Pass 

wo003-2 unknown Wool 100 1.198 Pass 

wo004-1 unknown Wool 100 0.913 Pass 

wo004-2 unknown Wool 100 0.933 Pass 

wo005-1b unknown Wool 100 1.326 Pass 

wo005-2b unknown Wool 100 1.457 Pass 

wo006-1 unknown Wool 100 1.989 Pass 

wo006-2 unknown Wool 100 0.824 Pass 

wo007-1b unknown Wool 100 1.956 Pass 

wo007-2b unknown Wool 100 2.058 Pass 

wo008-1cc unknown No Match 6.137 Fail 

wo008-2cc unknown No Match 6.066 Fail 

wo009-1cc unknown No Match 21.062 Fail 

wo009-2cc unknown No Match 21.170 Fail 

wo010-1c unknown No Match 17.643 Fail 

wo010-2cc unknown No Match 20.051 Fail 

wo011-1 unknown Wool 100 1.429 Pass 

wo011-2 unknown Wool 100 2.063 Pass 

wo012-1 unknown Wool 100 1.196 Pass 

wo012-2 unknown Wool 100 1.189 Pass 

wo013-1 unknown Wool 100 1.575 Pass 



 
 

wo013-2 unknown Wool 100 1.591 Pass 

wo014-1b unknown Wool 100 2.603 Pass 

wo014-2b unknown Wool 100 1.782 Pass 

wo015-1 unknown Wool 100 0.777 Pass 

wo015-2 unknown Wool 100 1.037 Pass 

wo016-1b unknown Wool 100 3.513 Pass 

wo016-2b unknown Wool 100 3.603 Pass 

wo017-1b unknown Wool 100 2.138 Pass 

wo017-2b unknown Wool 100 2.315 Pass 

wo018-1 unknown Wool 100 0.735 Pass 

wo018-2 unknown Wool 100 0.877 Pass 

wo019-1b unknown Wool 100 2.797 Pass 

wo019-2b unknown Wool 100 2.234 Pass 

wo020-1 unknown Wool 100 1.422 Pass 

wo020-2cc unknown No Match 13.489 Fail 

wo021-1 unknown Wool 100 0.817 Pass 

wo021-2 unknown Wool 100 1.203 Pass 

wo022-1 unknown Wool 100 1.033 Pass 

wo022-2 unknown Wool 100 1.523 Pass 

wo023-1cc unknown No Match 8.000 Fail 

wo023-2cc unknown No Match 8.088 Fail 

wo024-1 unknown Wool 100 1.446 Pass 

wo024-2 unknown Wool 100 1.886 Pass 

wo025-1 unknown Wool 100 1.246 Pass 

wo025-2 unknown Wool 100 1.426 Pass 

  



 
 

Attachment 3. Identification report – CO100% and PES100% with fire retardant finishing 

 Routine Analysis (Analyze Stored Data) 
                   

  

Acquired:       Re-analyzed:       
  

Date:   20.10.2017     Date:   2.11.2017    
  

Time:   12:38:37     Time:   12:11:24    
  

Author/Operator: NIRSystems Default User   Author/Operator:  NIRSystems Default User  

Instrument Model:  NIRSystems NIRS Analyzer Pro            
  

Serial number:  5939               
  

                   
  

Library:  telaketju_lib               
  

Output Project: ident_test               
  

 

Time Sample ID Selected  ID as ID Result P/F 

13:59:08 frco007-1 unknown   No Match 11.791 Fail 

13:52:17 frco001-2 unknown   No Match 5.505 Fail 

13:53:00 frco002-1 unknown   No Match 6.263 Fail 

13:53:55 frco002-1 unknown   No Match 5.043 Fail 

13:54:46 frco003-1 unknown   No Match 12.682 Fail 

13:55:12 frco003-2 unknown   No Match 12.881 Fail 

13:55:47 frco004-1 unknown   Cotton 100 2.535 Pass 

13:56:06 frco004-2 unknown   Cotton 100 2.319 Pass 

13:56:30 frco005-1 unknown   No Match 10.125 Fail 

13:56:50 frco005-2 unknown   No Match 9.812 Fail 

13:57:49 frco006-1 unknown   No Match 9.984 Fail 

13:58:13 frco006-2 unknown   No Match 10.104 Fail 

13:41:18 trevira001-1 unknown   No Match 7.533 Fail 

13:42:21 trevira001-2 unknown   Polyester 100 2.791 Pass 

13:43:14 trevira002-1 unknown   No Match 4.621 Fail 

13:43:39 trevira002-2 unknown   Polyester 100 2.214 Pass 

13:44:23 trevira003-1 unknown   No Match 5.121 Fail 

13:44:52 trevira003-2 unknown   No Match 5.150 Fail 

13:45:27 trevira004-1 unknown   No Match 5.023 Fail 

13:46:05 trevira004-2 unknown   No Match 5.372 Fail 

13:46:54 trevira005-1 unknown   No Match 5.629 Fail 

13:47:16 trevira005-2 unknown   No Match 5.543 Fail 

12:32:07 trevira006-2 unknown   No Match 5.775 Fail 

12:31:27 trevira006-1 unknown   No Match 5.366 Fail 

12:33:56 pesfr001-1 unknown   No Match 28.811 Fail 

12:34:48 pesfr001-2 unknown   No Match 49.877 Fail 

12:36:15 pesfr002-1 unknown   Polyester 100 3.120 Pass 

12:36:43 pesfr002-2 unknown   No Match 23.816 Fail 

12:37:13 pesfr003-1 unknown   No Match 23.246 Fail 

12:37:39 pesfr003-2 unknown   No Match 25.369 Fail 

12:38:06 trevira007-1 unknown   No Match 5.714 Fail 

12:38:37 trevira007-2 unknown   No Match 5.405 Fail 

 


