

Simon Mensah

INTERNET OF THINGS:
A Review on Connectivity Gateway Protocols and Semantic

Interoperability

INTERNET OF THINGS:
A Review on Connectivity Gateway Protocols and Semantic

Interoperability

 Simon Mensah
 Master’s Thesis
 Autumn 2017
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Simon Mensah

Title of the Master’s Thesis: Internet of Things. A Review on Connectivity Gateway
Protocols and Semantic Interoperability
Supervisor: Kari Laitinen
Term and year of completion: Autumn 2017 Number of pages: 72

The main objective of this Master’s thesis was to present a detailed overview of the
most promising protocols designed for the Internet of Things (IoT) application
implementation. The objective was also to serve as a comprehension for new
researches and application developers to choose the best protocol for their
applications deployment. A review on the existing IoT architectures, the protocol
stacks, IoT gateway performance and data management with semantic
interoperability of the protocols were presented to serve as a guide for developers.
Also, a quick overview on the upcoming 5G cellular technology, which has been
planned to have more promising technology for IoT full deployment is also presented
to give an idea of what IoT will be in near future.

This thesis work was conducted mainly by a collection of relevant scientific papers
and approved standards of the Internet of Things (IoT) technology. Also, players in
the IoT industry were personally contacted for further real-time application
implementation challenges and the constrains they face in terms of the choice of
protocol and the interconnectivity or interoperability with other applications due to
different protocol standards.

As long as there is no common standard for IoT protocol implementation, the result
of this study will serve as a guide for IoT application developers to help them to
choose the right application protocol when developing an IoT product. Again, due to
the lack of common standard for IoT, interconnectivity or interoperability between
devices from different vendors is a challenge for consumers, hence, the result of this
thesis will help consumers to choose carefully from the vast IoT products on the
market today in other to interoperate the product the buy. However, future studies on
this subject could be conducted to investigate how to achieve a semantic
interoperability among the application layer protocols presented in this work so that
data from one vendor application can be represented in the similar format in another
vendor application.

Keywords: Internet of Things, Protocol, CoAP, MQTT, HTTP, IoT gateway, 5G

4

PREFACE

I would like to thank my supervisor Kari Laitinen for his guidance and dedication to
supervise this thesis. My sincere gratitude also goes to my family who has always
stood by me and encouraged me to strive to the end. Finally, I thank Kaija Posio
from ICT department for reviewing my work and also sincere thanks to all my friends.

Oulu, 13.11.2017

Simon Mensah

5

TABLE OF CONTENTS

ABSTRACT 3

PREFACE 4

TABLE OF CONTENTS 5

ABBREVIATIONS 7

1 INTRODUCTION 9

1.1 The Internet of Things (IoT) 10

1.2 IoT review 11

2 IOT ARCHITECTURE 15

2.1 Sensors connectivity and network or the device layer 16

2.2 Gateway and network layer 17

2.3 Management service layer 18

2.4 Application layer 20

3 IOT GATEWAY PROTOCOL AND IP STACK 22

3.1 Hypertext transfer protocol (HTTP) 23

3.2 Representational state transfer (REST) 24

4 CoAP PROTOCOL 26

4.1 CoAP message types 27

4.2 CoAP message format 29

4.3 Message transmission between client and server 31

4.3.1 Requests 32

4.3.2 Response 33

4.4 CoAP security 34

5 MQTT PROTOCOL 36

5.1 MQTT messaging 37

5.1.1 Connect and subscribe messaging explained 38

6

5.2 MQTT messaging formats 40

5.3 MQTT QoS 41

5.3.1 QoS level 0 42

5.3.2 QoS level 1 42

5.3.3 QoS level 2 43

5.4 MQTT variable header 44

5.4.1 Keep alive timer 46

5.4.2 Will messages 47

5.4.3 Topic wildcards 48

5.5 MQTT security 49

6 COMPARISON OF MQTT AND CoAP PROTOCOLS 51

6.1 Interoperability within IoT 52

6.1.1 Interoperability between application layer protocols 54

6.1.2 Semantics interoperability 55

7 IOT IN 5TH GENERATION MOBILE COMMUNICATION (5G) 57

7.1 5G technology vision 58

7.1.1 Services 58

7.1.2 5G target performance 60

7.1.3 5G key technologies 66

8 CONCLUSION 67

9 REFERENCES 69

7

ABBREVIATIONS

AMQP Advanced Message Queuing Protocol

CDF Cumulative Distribution Function

CoAP Constrained Application Protocol

CONNECT Connection request

CoRE Constrained RESTful Environments

DTLS Datagram Transport Layer Security

FTT File Transmission Time

GDP Gross Domestic Product

GIS Geographic information system

IDC International Data Corporation

IETF Internet Engineering Task Force

IIoT Industrial Internet of things

IoE Internet of Energy

IoM Internet of Media

IoP Internet of People

IoS Internet of Services

IoT Internet of Things

IP Internet Protocol

ITU International Telecommunication Union

LTE Long Term Evolution

MCPTT Mission Critical Push-to Talk

MCS Mission Critical Services

MIMO Multiple Input Multiple Output

MIoT Massive Internet of Things

MQTT Message Queue Telemetry Transport

NACK Negative Acknowledgement

NFV Network Functions Virtualization

OIC Open Interconnect Consortium

QoS Quality of Service

REST Representational State Transfer

RIT Radio Interface Technologies

8

RTT Round-Trip Time

SDN Software-Defined Network

SenML Sensor Markup Language

SMS Short Message Services

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

SSN Sensor Semantic Network

TCP Transmission Control Protocol

TLS Transport Level Security

TLV Type-Length-Value

UDP User Datagram Protocol

URI Uniform Resource Identifier

URLLC Ultra-Reliable and Low Latency Communications

VPN Virtual Personal Network

WSN Wireless sensor network

WWW World Wide Web

9

1 INTRODUCTION

Over the past decades, an effort has been made by the information and

communications technology industries to continuously increase the number of

Internet enabled devices. These devices, besides the traditional computers and

mobile devices, are devices that ranges from home or domestic appliances,

industrial machinery and automation, healthcare, transport, energy, buildings, cities

and people are been connected to the Internet. Adding more devices, which were

traditionally offline to the Internet, has become possible or feasible due to the

technological advancement with the hardware, software developments and the idea

of network convergence known as the Internet Protocol (IP) convergence. This

avalanche of many new devices and other things being connected to the Internet

was known as the evolution of the Internet, which is nowadays termed as the

Internet of Things (IoT).

The main idea of IoT is to connect things that are not yet connected to the Internet

and to provide interconnectivity between other devices and the things to the global

information and communications infrastructure. This interconnectivity of things will

allow not only communication between devices and things but it will offer intelligence

to the things being connected and also makes their data available to other network

systems to utilize.

However, different devices from different manufacturers having different hardware

platforms and networking protocols exist within the IoT, which makes it

heterogeneous network of things. The interaction or interoperability with diverse

devices from different manufacturers with different service platforms and networks

need to be adapted to realize IoT applications. Moreover, the IoT networks could be

complex due to the dynamic state of some devices and the things within the IoT.

This means that some connected devices can change their states from, for example,

sleeping to waking up, connected to disconnected as well as in the context of a

device location and speed. The number of connected devices can change

dynamically at any particular time which means that the number of devices that need

to be managed will be of enormously high scale. Data collection and management

from different sources is also critical to IoT applications.

10

1.1 The Internet of Things (IoT)

In recent times, the most widely discussed term in the wireless communications

technology field of engineering is the Internet of Things, abbreviated IoT. The phrase

“IoT” was first used by Kevin Ashton in 1999 (Ashton, 2009) when he was making a

presentation to Procter & Gamble. In his presentation, he asserted that not only

humans should generate or capture and create data but computers and other

embedded devices should be able to gather their own information by sensing or

interacting with their internal states or external environments. In effect, the

introduction of IoT, other devices or “things” will extend the traditional Internet by

making network connections more relevant and valuable than ever before and also

add an entire new meaning to the information and communication technology field.

In short terms, the IoTs can be described more transformational than the traditional

Internet they have will have an effect on the way people live.

The IoT is a network of physical objects or “things” communicating with each other.

They are embedded with electronics, sensors and actuators with computing power,

software and network connectivity that enables users becoming an integral part of it.

The IoT has gone through a lot of development and considerations with different

definitions based on the Internet. Dr. Ovidiu Vermesan and Co. (Dr.Vermesan, et al.,

2011) in their work described the term by considering the greater internet working as

the Internet of Energy (IoE), Internet of Media (IoM), Internet of People (IoP) and

Internet of Services (IoS). Cisco (Evans, 2012) decided to coin the term as the

Internet of Everything where it was viewed as a system comprising of things, where

Process, data and people together formed a “Network of Networks”. In Cisco view,

the IoE will connect People, process, data and the “things” together to form a

network suitable and beneficial to aid in tracking “things” and also to deal with some

global challenges, such as drought, climate change, sources or drinkable water, and

hunger.

The IoT is fast expanding and the application areas as listed by (Asín & Gascón,

2016) include smart cities, smart water, smart metering, security and emergency,

retail, logistics, industrial control, smart agriculture, smart animal faming, domestic

and home automation and eHealth. However, since the application areas cover

different environments and the devices involved are diverse, it makes the IoT very

11

heterogeneous and hence challenges and barriers, such as connectivity, power

management, complexity, rapid development, security and quality of service, which

are always associated with wireless sensor network (WSN) standard challenges,

were listed by Chase (Chase, 2013) as a development impediment of the IoT. Other

challenges that Gubbi (Gubbi, Buyya, Marusic, & Palaniswami, 2013) and his

colleagues noted were privacy, participatory sensing, data analytics, geographic

information system (GIS) based visualization and cloud computing. Moreover, the

IoT connectivity challenge also come with the architectural and protocol challenges

that (Gubbi, Buyya, Marusic, & Palaniswami, 2013) considered in their work as an

open challenge.

Today’s industrial equipment manufacturers are confronted if not with all but most of

the above-mentioned challenges when preparing products for the IoT. Therefore, for

the IoT to work successfully and to meet the predicted volume of devices that are

connected to the Internet by 2020, an analysis shows that it needs to be built on

open, flexible hardware, software and networking platforms, which are capable of

evolving and adapting. However, in this thesis work the challenge of IoT connectivity

gateway protocols and their interoperability are reviewed.

1.2 IoT review

Ever since industries started to connect virtually every device and “things” from trash

cans to thermostat in an event of collecting real time data, nowadays businesses

have been becoming aware that the real value in the IoT is not just the data

collection and processing, but it is the analyzing of the data to derive a business

insight.

According to International Data Corporation’s (IDC) (MacGillivray, 2016) predictions,

the IoT market will reach seven billion dollars ($7,065B) globally by 2020, which will

be a jump from two billion dollars ($2,715B) in 2015. Figure 1 below illustrates the

IDC prediction tree of the IoT.

12

FIGURE 1. IDC IoT Market Revenue ($B) (MacGillivray, 2016)

The Gartner (Meulen, 2015) prediction in 2015 pointed out that by 2016, 6.4 billion

“things” will be connected worldwide and by 2020 the number of connected devices

will reach 20.8 billion. Cisco (Bradley, Reberger, Dixit, & Gupta, 2013) has also

predicted that the value of the Internet of Everything through cost savings,

productivity gains, new revenues and improving citizen experiences could generate

$4.6 trillion globally by 2022 in the public sector. In addition, McKinsey (Ip, 2016)

estimated that the size of the total IoT market in 2015 was risen to $900Million and

this will grow to $3.7billion by 2020. Figure 2 illustrates an IoT potential economic

impact by 2025 captured by McKinsey Global Institute analysis.

13

FIGURE 2. IoT economic Potential (Ip, 2016)

However, Ericsson (Richard Möller, 2016) focused its predictions on the number of

sensors and devices expected to be connected to the Internet by 2021. In the report,

it was stated that by 2018 the number of IoT sensors and devices will exceed the

number of mobile phones and by 2021 about 28 billion devices will be connected, of

which about 16 billion will be IoT related. Figure 3 shows an infographic comparing a

cellular IoT, non-cellular IoT, PC/laptop/tablet, mobile phones, and fixed phones

connection devices between the years 2015 and 2021

14

FIGURE 3. IoT connected devices are expected to surpass mobile phones in 2018

(Richard Möller, 2016)

The above-mentioned economic analysis of the IoT and the Industrial Internet of

things (IIoT) and many other similar forecasts have been conducted elsewhere

focusing on the economic value and the driving results of rich analytical sensor-

based data sets. Moreover, aside the economic value impact of the IoT and IIoT,

almost all the forecasts sorted to the mentioned areas, such as logistics,

manufacturing, services and supply chain will be the core areas that can deliver the

most economic value.

15

2 IOT ARCHITECTURE

Having realized the economic importance of IoT in the previous sections, it is

considered important also to look into the technology that makes it possible to make

the economic values reality. However, this chapter is dedicated to deal with the

technology that will start with the IoT architecture layers. The IoT architecture layer

takes a form similar to the ISO/OSI reference model ((ISO) & IEC, 1994), the

Transmission Control Protocol (TCP) and Internet Protocol (IP) Suite, and the US

Department of Defence 4-layer model (DoD4) (Shimonski, 2005). Table 1 illustrates

the aforementioned models within the internetworking architecture.

TABLE 1. 7-layer stack and 4-layers’ stacks or OSI, TCP and DoD4

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

TCP Model

Application

Transport

Internet

Network Access

DoD4 Model

Process

Host-to-Host

Internet

Network Access

From table 1 it can be seen that the (TCP) Internet model and DoD4 model are 4-

layered and they map to each other. Moreover, the proposed IoT architecture model

was based on the aforementioned model, that is, ISO, TCP and DoD4 are also a 4-

layered model. In fact, based on ISO, TCP and DoD4, the IoT could have been

implemented without further architectural modelling but they failed to conceive IoT

features and issues such as connectivity and communications, data collection and

analysis, device management, scalability, interoperability, integration and security.

Thus, there was the need to restructure all the three models to conform with IoT

16

features and issues. The IoT architecture model consists of various components and

it is a 4-layer centric architecture where specific technologies can be realized at each

layer. Table 2 shows the IoT 4-layered model, which shows what components are

realized at each layer.

TABLE 2. IoT architectural model (Chung, 2017)

IoT Architecture
layers

Components

Application
Layer

Environment, Energy, Healthcare, Transportation, People
tracking, Surveillance, Supply Chain, Retail

Management
Service Layer

Device Modelling, Configuration and
Management

Data flow
Management,
Security Control

Gateway and
Network Layer

WAN (GSM, UMTS, LTE, LTE-A, 5G near
future)

WiFi, Ethernet,
Gateway Control

Sensors
Connectivity
and Network

Sensor Networks, Sensor/Actuators, Tags (RFID, Barcode)

2.1 Sensors connectivity and network or the device layer

The layer at the bottom basically represents the IoT devices and they come in

various types and forms of architecture, properties and capabilities. A device can be

considered as an IoT device if such a device has any form of communication that

can be connected to the Internet directly or indirectly. Table 3 illustrates some

example devices that can be found at the Sensors Connectivity and Network Layer.

The devices at the sensor layer have the capability to sense and collect information

in real time for processing. They are of Low-Power and low data rate for connectivity.

Application areas of some of these sensors can be termed as body sensor,

environmental sensors and surveillance sensors.

17

TABLE 3. IoT sensor Layer

Sensors
Layers

Technologies

Infographic example

LAN

WiFi, Ethernet

PAN

Bluetooth, ZigBee, Z-Wave,
6LoWPAN, UWB, Wired

Sensors or
Actuators

Infrared, Solid State, GPS,
Photoelectric, Accelerometer,
Photochemistry, Catalytic,
Gyroscope

Tag

RFID and Barcode (1D, 2D)

2.2 Gateway and network layer

The Gateway and Network Layer also known as the Communication Layer, supports

the connectivity of the devices in a sensor or at a device layer. It consists of diverse

protocols which aid in the communication between the devices and the cloud. The

most notable of these protocols are the Hypertext Transfer Protocol (HTTP) with the

RESTful approach, the Message Queue Telemetry Transport (MQTT) and the

Constrained Application Protocol (CoAP). The IoT protocols will be studied in greater

18

detail in subsequence chapters. Table 4 shows the Gateway and Network Layer with

the technologies that are involved in it.

TABLE 4. IoT Gateway and Network Layer (Chung, 2017).

Gateway Network WAN
3G, LTE, LTE-A, M LoRa, Sigfox, future
5G

LAN
WiFi, Ethernet

Gateway

Micro-Controllers, Radio Communication Module, Signal
Processor, and Modulator, Access Point, Embedded/OS, SIM
module Encryption.

Moreover, one most important aspect of the Gateway and Network Layer is its ability

to aggregate data and also to host a broker communication. The broker

communications and data aggregation combine communications and data from

different devices and then route the information to the specific device through a

gateway service (Fremantle, 2015). The Gateway and Network Layer is also capable

of supporting, for example an HTTP Server and a MQTT broker to enable

communications between devices. Moreover, it serves as a bridge and transforms

between different protocols, such as HTTP APIs based on MQTT message to a

device (Fremantle, 2015).

2.3 Management service layer

The Management Service Layer consists of two main functional parts as indicated in

table 2. The two main functional parts are the Device Modelling, Configuration and

Management part and the Data Flow Management and Security Control part.

However, before considering the functions of the parts of the Management Service

Layer, it is also important to describe what is management service. Table 5 depicts

some of the services that the Management Service Layer can offer.

19

TABLE 5. IoT Management Service Layer components (Chung, 2017).

Management Service Layer

Services Components of the service

Operational Support System (OSS)

Device Management / Configuration /
Management, Performance Management,
Security Management

Service Analytic Platform Statistical Analytics, Data Mining, Text
Mining, In-Memory Analytics, Predictive
Analytics

Billing Support System (BSS) Billing Report

Security Access Control, Encryption, Identify Access

Business Rules Management
(BRM)

Rule Definition / Modelling / Simulation /
Execution

Business Process Management
(BPM)

Workflow Process Modelling / Simulation /
Execution

As illustrated in table 5 the Management Service Layer has important roles in the IoT

architecture. The roles can be grouped into two parts. The data service management

is in charge of processes, such as information analytics, security control, process

modelling and device management. The data management has two forms of

techniques, the Periodic and Aperiodic data management schemes (Chung, 2017).

In the Periodic IoT data management information or data is collected periodically by

an IoT sensor for an analysis. For instance, a temperature sensor monitor will record

a number of information about the weather or a condition of an industrial machine

within a certain period of time. However, not all gathered information gathered will be

necessary for an analysis, hence a refining of the data collected by the sensor is

required to filter out the unwanted and to keep the ones needed for the actual

purpose of collecting the data.

 In the Aperiodic data collection technique an IoT sensor collects data and requires

an immediate response or attention on the information as soon as the event

happens. For example, if an IoT sensor device is monitoring a patient if security is

monitored, the delivery of the information should be immediate and would require an

immediate response as well. Beside the data management unit, there is also the

data management unit which provides management on data information flow,

information access, integration and data control (Chung, 2017). There is also the

20

data abstraction unit which provides services, such as information extraction

processing, and can be used as a common business mode.

2.4 Application layer

The IoT Application Layer is the topmost layer and it is the layer that serves as an

interface between the sensor application and the end users. It constitutes of various

applications sectors such as environmental, industrial, healthcare, smart home asset

tracking, and several others as illustrated in table 6 below. It is also a layer that hosts

the IoT Application Layer protocols such as the Hypertext Transfer Protocol (HTTP),

MQTT, CoAP, Advanced Message Queuing Protocol (AMQP), Extensible Messaging

and Presence Protocol (XMPP), Simple Object Access Protocol (SOAP). The first

three above-mentioned IoT protocols will be dealt with in detail in the following

sections.

Moreover, since different applications from diverse industries and sectors are having

different protocols and classifications based on the type of network, coverage area,

size, business model, real time or non-real-time systems, the Application Layer

protocols are able to allocate, link and exchange data or information among other

application systems. The IoT classification is based on application domains, such as

Personal and Home, Enterprise, Utility and Mobile. These classifications define the

size of an application domain and also determine the characteristics of it.

 For instance, the Personal and Home application domain represents a small scale.

This mean a limited number of users, individuals or home. The enterprise IoT

represents a large scale of users, in a community level. The utility IoT represents a

much larger scale of users such as a national or regional of IoT support and the

Mobile IoT, which are usually spread across other domains due to their mobility

nature and the devices involves are mostly battery operated and portable. Table 6

illustrates some of the main application domains and market areas and sectors that

the Application Layer can host.

21

TABLE 6. IoT Application Layer

Application Layer

Application
Sectors

A’
plication Domain
Smart Environmental, Smart Energy, Smart Transportation,
Smart Healthcare, Smart Retail, Smart Industry, Smart Military
applications

Market Areas

Supply Chain, People Tracking, Asset Management, Fleet
Management, Surveillance

22

3 IOT GATEWAY PROTOCOL AND IP STACK

To start with, like in any other form of communication between Human-to-Human

(H2H) or D2D (Device-to-Device) there should be a protocol that promotes or helps

individuals or devices to understand each other. In the case of the IoT

communication between D2D or (Machine-to-Machine) M2M and the cloud, there is

a broad set of protocols that facilitate communications. Table 7 shows the protocol

stack of the IoT in comparison with the ISO/OSI model and the (TCP) protocol stack.

TABLE 7. IoT Protocol Stack

ISO/OSI
Reference
Model

IoT Protocol Stack TCP Protocol Stack

Application
Layer

Application Layer Protocol
HTTP/REST, CoAP, XMPP, AMQP,
MQTT, DDS, SNMP, DNP, SSH,
IPfix, EBHTTP, DLMS, MODBUS,
NTP, LTP

Application Layer Presentation

Layer

Session Layer

Transport Layer

Transport Layer Protocols
TCP, MPTCP, UDP, DCCP, SCTP,
TLS, DTLS

Transport Layer

Network Layer

Network Layer
IPv4/IPv6, 6LoWPAN, ND, DHCP,
ICMP

Internet Layer

Data Link Layer Physical Layer
3GPP MTC. IEEE 802.11 Series,
IEEE 802.15 Series, 802.3, 802.16,
WirelessHART, Z-WAVE, UWB,
IrDA, PLC, LonWorks, KNX

Link Layer

Physical Layer

The focus of this thesis is to discuss in detail the applications of the main and most

well-known IoT potential protocols at the Application Layer. The three most popular

IoT protocols which this thesis work is studying are summarized in the table 8 below.

23

TABLE 8. A summary of IoT Application Layer protocols

Protocol

Transport
Protocol

Messaging

WAN
(2G, 3G,
4G)

Power

Compute
Resources

Security

HTTP/
REST

TCP Rqst/Rspnse Excellent Fair 100Ks/RAM
Flash

Low-
Optimal

MQTT TCP Pub/Subsrb
Rqst/Rspnse

Excellent Good 10Ks/RAM
Flash

Medium-
Optimal

CoAP UDP Rqst/Rspnse Excellent Excellent 10Ks/RAM
Flash

Medium-
Optimal

The following sections of the chapter will be a presentation of the details of the

above summarized IoT protocols.

3.1 Hypertext transfer protocol (HTTP)

HTTP (Fielding & Reschke, 2014) is the most widely and popularly adapted

Application Layer protocol on the World Wide Web. The standardization of HTTP has

been done by the Internet Engineering Task Force (IETF) in collaboration with the

World Wide Web Consortium (W3C) (MIT). HTTP works on a Client-Server

messaging technology where the client requests for a Hypertext Markup Language

(HTML) page from a server and the server also responses with an HTML page. As

illustrated in table 8 HTTP relies on the TCP as a transport protocol, which uses

sockets to transfer data. The connection between the client and server begins with

the client via a socket connection on the port 80, which is the assigned port number

for HTTP to the Server. When the connection is established, it means that the server

accepts the request of the client, which is in an HTML page form, and other objects.

However, upon the connection establishment, the HTML pages and the objects are

then exchanged between the client browser and the web server. After the completion

of the request, the TCP terminates the connection between the client and the server

and also clears the memory so that previous requests from the client are removed.

With the HTTP, requests, such as GET, PUT, POST and DELETE, are the four

methods mostly used. The GET request displays a web page and its objects upon a

24

request to the user. The PUT and POST request methods are used to modify server

resources and the DELETE request removes resources that are not needed.

Moreover, there are two HTTP connection types that can be established with the

TCP. These are the Non-Persistent (HTTP/1.0) and Persistent (HTTP/1.1)

connections. The main difference between the Non-Persistent (HTTP/1.0) and

Persistent (HTTP/1.1) depends on the number of TCP connections needed to

transmit a Uniform Resource Locator (URL) of a web page and its objects. Figure 4

shows an HTTP connection scheme between a client and a server.

FIGURE 4. HTTP establishing TCP connection between Client and Server

(WIKIBooks, 2015)

In figure 4 the Round-Trip Time (RTT) is the time spent to send a packet from a

client to a server and to get a response. It also represents the time required to

establish a TCP connection, send a request, and get a response or receive a file with

its transmission time. Mathematically, the total RTT, from the beginning of TCP

connection establishment to the receiving of the file requested, can be expressed as

2 x RTT + File Transmission Time (FTT).

3.2 Representational state transfer (REST)

REST is a language and operating system independent software architecture for

designing network applications and distribution of an HTTP system to connect

machines together. REST is a stateless, Client-to-Server, cacheable, point -to-point

25

with uniform interface and its designed as a lightweight system (Vermesan Ovidiu,

June 1, 2014). The communication mode begins when a client sends a message in

the form of a request to a server and the server replies back to the client in a

response form indicating whether the request sent by the client was successful or

whether there was an error. With REST, the communication between devices to the

cloud is possible over the TCP/IP where an HTTP is used to connect to the world

wide web (www).

26

4 COAP PROTOCOL

CoAP (Shelby, Hartke, & Bormann, Internet Engineering Task Force (IETF), 2014) is

an Internet based Client-to-Server model document transfer protocol similar to HTTP

and it has been standardized within the IETF, the Constrained RESTful

Environments (CoRE) working group (Bormann, Jimenez, & Melnikov, 2010). It is

designed for constrained devices and constrained networks. Constrain devices are

embedded devices with limited power, memory and processing resources and they

are expected to be connected and function similar to mainstream processes. HTTP

is the main protocol because the connectivity between a client and server is too

heavy for such devices. CoAP was developed to address the limitations HTTP has

over constrained devices, such as sensors and devices with Low-Power connected

via Lossy Networks (LLNs).

The design model of CoAP is equivalent to HTTP Client-to-Server model but most of

its implementation is within M2M or D2D communications and they can act both as a

client and a server role. CoAP does not support the Transmission at Transport

Control Protocol but it runs over the User Datagram Protocol (UDP). It utilizes the

UDP broadcast and multicast for addressing and the interaction between a client and

server is asynchronous over the UDP. However, since the datagram-oriented

transport is connectionless, the Client-to-Server communication of CoAP is also

connectionless and it can be used on top of Short Message Services (SMS) and

other Packet based communication protocol.

Moreover, devices connected with CoAP have the ability to discover and explore

each other to negotiate ways to exchange data among themselves. CoAP also

supports the observe resource state changes methodology. It is a state transfer

model which allows a client to continuously receive responses from a server. This is

important for example in an IoT healthcare application where data from a sensor

attached to a patient is vital and needs to be monitored constantly. In other words,

CoAP is an asynchronous message exchanger which happens via

observe/notifications. Similar to HTTP, a client uses the GET request command in an

observable mode to express interest in any updates from the server. The client

receives a notification each time the state of the resource changes at the server.

27

CoAP is also designed as a Conditional Observer (Technical Report - Protocol

Analysis , 2014) or an event-based model. This means that it allows the client to be

notified only when certain actions on the observed resources are met. Since

messages are not received at every event that occurs but only at events that are

needed, energy can be save due to the control messages received. For instance, in

an IoT application for temperature monitoring, a sensor may send an update every

second, even though nothing significant has changed from one data transfer to the

other. With CoAP observed resources, only interesting events that happen

periodically or an observed value changes with a pre-specified step size will be

notified. Another feature of CoAP is that it supports proxies, i.e., a client can request

data from a CoAP server with HTTP requests.

4.1 CoAP message types

In the course of exchanging messages within the CoAP Network, there are four

defined message types. These are Confirmable, Non-Confirmable,

Acknowledgement and Reset.

When a client sends a request to a server with Confirmable Messages (CON), it

requires that the receiving end will acknowledgement (ACK) the message with the

same message ID. This transmission between a client and server is usually used

when a reliable delivery of a data is required. A retransmission of the data occurs

after a waiting time for an ACK elapses and it will repeat the circle until an ACK is

received with the message ID. Figure 5 shows a reliable message transmission

between a client and server.

28

FIGURE 5. CoAP Confirmable message transmission (Chen, 2014)

A Non-Confirmable data transmission technique does not require ACK and it is

unreliable. This type of data exchange technique uses a NON-message type, which

contains a message ID to supervise the transmission. It is most prevalent with data

streams where data is sent and there is a possibility that data is lost or received out

of order during the transmission. Figure 6 shows Non-Confirmable message

transmission between a client and server.

FIGURE 6. CoAP Non-confirmation message transmission (Chen, 2014).

Moreover, as depicted in figure 5, an ACK message with a message ID is sent to the

client (sender) from the server (receiver) that a specific Confirmable message (CON)

has arrive.

CoAP supports piggybacked messages too. When a client sends a request using

CON type or NON-type messaging it receives an ACK message immediately if it is a

Confirmable message. The ACK contains a response message of successful or

failed delivery of the sent message. Again, when a server receives a CON message

request and it is unable to response the request immediately, it sends an empty ACK

so that in case a client will resend the message after certain time elapses. However,

a new CON is sent to the client whenever the server is ready to response to the

message and the client replies with an ACK to confirm the CON message from the

server. Figure 7 shows separate responses when a client used the GET request to

request a temperature from a client.

29

FIGURE 7. CoAP CON request message with separate responses (Chen, 2014).

 Therefore, an ACK message of Confirmable messages does not indicate success or

failure of any request, but an ACK message may also carry a piggybacked response.

The Reset also known as the Negative Acknowledgement (NACK) is an error

message sent from a receiving end (Server) to notify the sender (Client) that a

specific message is lost or the receiver failed to process the message. In other

words, a reset message is sent to reject error and unknown messages when specific

messages (Confirmable or Non-Confirmable) are received but some context is

missing to be properly processed.

4.2 CoAP message format

CoAP is based on the exchange of compact messages that by default are

transmitted over UDP. Messages of CoAP are encoded in a simple binary format

and it is a fixed-size 4-byte header followed by optional extensions such as a

variable -length Token Value, a sequence of zero or more CoAP options in the Type-

Length-Value (TLV) format and an optional payload that takes up the rest of the

datagram. Table 9 shows the structure of CoAP message format. The 4-byte header

consists of the Version (Ver, 2-bit), Type (T, 2-bits), Token Length (TKL, 4-bits),

Code (8-bit) and a message ID (8-bits).

30

TABLE 9. CoAP message format

Ver
(2bits)

Type
(2bits)

TKL
(4bits)

Code
(8bits)

Message ID (16bits)

Token 0-8 bytes (if any, indicated by TKL)

Options (if any)

Payload (if any)

The 2-bit unsigned integer version file specifies the CoAP version number and for

RFC-7252 CoAP specification implementation it is set to 1 (01 binary). This means

that every message must have this version number. Otherwise messages with an

unknown version number are silently ignored. Other values are reserved for future

versions.

Type (T) is also a 2-bit unsigned integer within the header that indicates whether a

message is of type Confirmable, Non-Confirmable, Acknowledgement, or Reset. The

Token Length is a 4-bit unsigned integer within the header that indicates the length

of the variable-length Token field, which is between 0 and 8 bytes. If the number is

set to 0, it means that there are no options and the payload (if any) follows

immediately the header. However, if the number is greater than 0, the field indicates

the number of options to immediately follow the header.

Code is also an 8-bit unsigned integer within the header and it is split into subfields;

a 3-bit class (most significant bits) and a 5-bit detail (least significant bit). The class

can indicate a request, a successful response, a client error response or a server

error response. The message ID is a 16-bit unsigned integer within the header, too,

and it is used to detect a message duplication and to match messages of the type

Acknowledgement/REST to messages of the type Confirmable/Non-Confirmable.

The Token Value is next to the header and it is 0 to 8 bytes as given by the Token

Length field within the header. It is used to correlate requests and responses.

However, the 8-byte long header help to protect attacks, such as spoofing, and it is a

rule that all CoAP messages have Tokens even if they have zero-length.

As stated earlier, CoAP options may only be present if the variable-length Token

field value is a non-zero. The option field holds information that affects the

31

performance and functionality of the CoAP. Moreover, CoAP defines the number of

options that can be included in a message and each option instance in a message

specifies the option number, the length of the option and the option value itself.

Details and an exhausted list of options are elaborated in the RFC-7252

documentation (Shelby, Hartke, & Bormann, 2014). The payload is also optional and

can only be available when it is non-zero-length and prefixed by a one-byte payload

marker (0xFF), which indicates the end of options and the start of the payload.

Payload Data extends from after the marker to the end of the UDP datagram. An

absence of the payload marker represents a zero-length payload and the presence

of a marker on other hand, followed by a zero-length payload, must be processed as

a message format error. Moreover, the request and response messages from client

and server respectively can contain payload data. It can also be carried along with a

Confirmable message and a Non-Confirmable message. It can also be Piggybacked

on Acknowledgement messages.

4.3 Message transmission between client and server

Exchanges of messages between CoAP endpoints (Client-to-Server) are performed

asynchronously. CoAP uses the UDP protocol for transporting messages. It is bound

to be unreliable, which means that messages may arrive out of order, may appear

duplicated or may go missing without noticing.

However, CoAP implements a lightweight reliable mechanism similar to the TCP

protocol, that has features such as;

➢ Simple stop-and -wait retransmission reliability with exponential back-off for

Confirmable messages

➢ Duplicate detection for both Confirmable and Non-Confirmable messages.

Messages transmitted within CoAP use Request and Responses transmission

techniques. Details of these transmission techniques are explained in the following

sections.

32

4.3.1 Requests

The request methods of CoAP are similar to that of HTTP request methods of GET,

POST, PUT and DELETE. The GET method is used to retrieve the state of

information resource, which is given in the Uniform Resource Identifier (URI).

Information, such as sensor values, for example temperature, device names or a

state of a device, can be retrieved by the GET method. The POST and PUT methods

are similar in operation, they are simply used to create a new resource or when a

target resource is updated. The DELETE method request is used to remove the

resource specified by the URI.

As stated earlier in this chapter CoAP supports observe method of resource changes

and it is another form of request method for the client to use to observe a resource

over a certain period of time. This method was designed because the GET, POST,

PUT and DELETE methods do not work well when a Client wants to observe a

resource from a server. The observe method allows the CoAP sever node to send

notifications continuously after it has received a registration message from a client.

The aim of the server is to keep the client updated by notifying the observer (client)

of the latest resource values.

When an observer (client) is interested in observing a resource, it sends a

registration message to the server. The message sent applies the GET request with

an observe option value set to “0”. The server adds the client to the list of observers

of the resource and starts sending notifications. The notification messages have a

set value in the observe field and they are used to check the updated measurement.

In the case where a server is not able to add a new observer, it sends a response

without the observe option value. Figure 8 taken from RFC7641 (K., 2015) shows

how a client registers its interest in a resource and receives a notification. In this

example, a client is interested in observing the temperature at the server and starts

by sending a registration message to the server. The server adds the client

(observer) to its database and starts sending notifications to the observer. When the

client no longer interested in observing the temperature, it sends a deregistration

message with an observer option set value “1”.

33

FIGURE 8. Client observing a resource in CoAP from RFC7641 (K., 2015)

Another way for a client to stop observing is to reject a notification by sending a

Reset message. Also, the transmission messages between the server and the client

could be a Confirmable or Non-Confirmable. In the case of Confirmable message,

the server will expect an Acknowledgement from the client. If after a defined period

of time with several retransmissions, it did not receive the Acknowledgement, the

server consider that the client is no longer interested in observing the resource and

then removes the client from the observer list.

4.3.2 Response

When a request is sent from a client to a server, the server responds with a matching

request by means of the client Generated Token. A response is identified by the

Code field in the CoAP header being set to a Response Code. The following are the

Response Code classes within the CoAP:

34

4.3.2.1 Success 2.xx

This class or Response Code indicates that the client request was successfully

received, understood and accepted.

4.3.2.2 Client error 4.xx

This class of Response Code is intended for cases in which the client seems to have

an error. This Response Code applies to any request method.

4.3.2.3 Server error 5.xx

The server error class Response Code indicates cases in which the server is aware

that it has an error or is incapable of performing the request. These Response Codes

are applicable to any request method.

4.4 CoAP security

As in any communication between devices, security is important and it is not different

in the CoAP protocol which has been a standard (ISO/IEC 20922) (Richard J

Coppen, 2016) for IoT applications. However, when considering security of any

communication systems, there are three elements that should be considered. These

are the system integrity, authentication and confidentiality. The Datagram Transport

Layer Security (DTLS) RFC 6347 (Rescorla E., 2012) has been developed as a

security protocol for CoAP. First of all, CoAP uses a datagram transport and DTLS

can achieve the above-mentioned security elements. It is well suited for securing

applications and devices that are delay sensitive, has the mechanism of reordering

messages which are arriving out of order, retransmission of lost messages during

the handshake and message sizes. It is tolerant to errors during decryption but no

error messages and no session termination. It also adds three implements: 1 Packet

retransmission, two assigning sequence number within the handshake and three

replay detections.

The DTLS is composed of two layers. The lower layer, known as the DTLS Record

Protocol, provides connection security and it has two basic properties:

➢ Connection is private by using a symmetric encryption

35

➢ Connection is reliable by including a message integrity check.

These properties or options may be used alone, together or not at all.

The upper layer is composed of three protocols which include Alert, Handshake and

application Data.

➢ The DTLS Handshake Protocol is used to negotiate the security parameters

of a session later used for protected communication.

➢ The DTLS Alert Protocol can be used at any time during the handshake and

up to the closure of a session, signalling either fatal errors or warnings.

➢ The DTLS application Data Protocol is composed by the application Data

messages that are carried out the record layer and are fragmented,

compressed and encrypted based on the current connection state.

Moreover, in some conditions, the Change Cipher Spec Protocol may replace one of

the above mentioned DTLS security protocols. The Change Cipher Spec message

protocol is used to notify the Record Protocol to protect subsequent records by using

negotiate cipher suite and keys. Figure 9 illustrates the process of DTLS Handshake

protocol.

FIGURE 9. DTLS Handshake process (Chen, 2014)

36

5 MQTT PROTOCOL

The MQTT (ISO/IEC 20922) (Richard J Coppen, 2016) is a machine-to-machine

(M2M) IoT connectivity transport protocol suitable for Low-Power and Lossy

Networks. MQTT is designed as a Client-to-Server and it employs a

publish/subscribe messaging protocol paradigm. Its implementation is based on the

TCP/IP protocol, which is characterized as reliable, ordered and error-checked

protocol. It is extremely light weight, open, simple and easy to implement. It is

designed to provide connectivity to embedded devices, to enable communication

within constrained environments, i.e. communication in M2M and IoT devices and

applications where a small Code footprint is required or the Network bandwidth is

limited.

MQTT uses the publish/subscribe architecture which consists of the Publisher

(Client), Subscribers, a Broker (Server), Sessions and Topics. The publish/subscribe

paradigm is a communication protocol between a client and server/subscriber which

requires a central MQTT Broker to manage and route data among MQTT networks

nodes or subscribers. The publishers are lightweight sensors that connect to a

Broker to send data. Subscribers are devices or applications that are logically

attached to a client who is interested in a sensor data and they are connected to the

Broker to be informed whenever new data is received. The Broker classifies sensor

data into topics and sends them to the subscribers interested in the topics.

Technically, topics are message queues that support the publish/subscribe pattern

for clients and logically, topics allow clients to exchange information with defined

semantics.

Finally, a session identifies an attachment of a client to a server. All communication

between client and server takes place as part of a session. Figure 10 illustrates the

MQTT data transmission architecture with a Broker, which serves a data server

directing all data to their appropriate destinations.

37

FIGURE 9. MQTT data transmission architecture with a broker

As depicted in figure 10, it can be deduced that the publish/subscribe message

pattern provides a one-to-many messaging and that the Broker controls the

distribution of information between the publisher client (the source of data) and the

subscriber client (the destination of the data). The Broker stores, forwards, filters and

prioritizes published requests from the publisher client to the subscriber clients. With

the MQTT Broker system, clients can switch between the publisher and subscriber

roles depending on their objectives at a particular instance. Also, within the Broker

there are the MQTT Quality of Service (QoS) levels. The QoS levels are of 0, 1 and

2 that describe the increasing levels of the guaranteed message delivery.

5.1 MQTT messaging

MQTT defines fourteen (14) different messaging methods. The main messaging

types that end users only need to employ are the connection request to the server

38

(CONNECT), DISCONNECT, SUBSCRIBE, UNSUBSCRIBE and PUBLISH

messages. The other message types are used for internal mechanisms and

message flows. Table 10 shows a list of the messaging types.

TABLE 10. MQTT Messaging types

Enumeration Mnemonic Description

0 Reserved Reserved

1
2

CONNECT
CONNACK

Connection request to Server
CONNECT Acknowledgement

3
4

PUBLISH
PUBACK

PUBLISH message
PUBLISH Acknowledgement

5 PUBREC PUBLISH Received (assured delivery part 1)

6 PUBREL PUBLISH Release (assured delivery part 2)

7 PUBCOMP PUBLISH Complete (assured delivery part 3)

8
9

SUBSCRIBE
SUBACK

SUBSCRIBE request
SUBSCRIBE Acknowledgement

10
11

UNSUBSCRIBE
UNSUBACK

UNSUBSCRIBE request
UNSUBSCRIBE Acknowledgement

12
13

PINGREQ
PINGRESP

Ping Request
Ping Response

14 DSCONNECT Client Disconnecting

15 Reserved Reserved

5.1.1 Connect and subscribe messaging explained

Figure 11 illustrates the connection session and subscription setup between a client

and a server with a clean session flag set 1 (flag =1).

39

FIGURE 10. MQTT CONNECT and SUBSCRIBE messaging

Figure 12 illustrates the session and subscription setup between a client and a

server with a clean session flag set 0 (flag = 0).

FIGURE 11. MQTT CONNECT Subscription messaging (flag = 0)

40

5.2 MQTT messaging formats

The MQTT protocol messaging format also known as the control Packet, consists of

three parts; Fixed Header, Variable Header and Payload. Every MQTT control

Packet contains a Fixed Header. It consists of two bytes. The first byte contains the

Message Type and the Flags that have fields such as the Duplicate flag (DUP), QoS

level and RETAIN. The second field contains the Remaining Length field. Table 11

illustrates the Fixed Header fields.

TABLE 11. MQTT Fixed Header format

Field Length
(bits)

7 6 5 4 3 2 1 0

Byte 1 Message type DUP flag QoS level RETAIN

Byte 2 Remaining Length (1-4 bytes)

As depicted in table 11 byte 1 consists of the Message Type and what is term as

Flags (DUP, QoS level and RETAIN) fields. The second byte (byte 2), the Remaining

Length field has at least one-byte. Further description of the MQTT messages in the

Fixed Header fields are explained in table 12.

41

TABLE 12. MQTT message Fixed Header field explained

MQTT
Message
Fixed Header
field

Description values

Message
Type

0: Reserved 8: SUNSCRIBE

1: CONNECT 9: SUBACK

2: CONNACK 10:
UNSUBSCRIBE

3: PUBLISH 11: UNSUBACK

4: PUBACK 12: PINGREQ

5: PUBREC 13: PINGRESP

6: PUBREL 14: DISCONNECT

7: PUBCOMP 15: Reserved

DUP
(Duplicate)
Flag

A Client or a Server (Broker) attempt to re-delivers a PUBLISH,
SUBSCRIBE or UNSUBSCRIBE message. The Duplicate (DUP)
bit is set as a message flag to indicates to the receiver a message
may have already been received. This applies to messages with a
QoS value greater that zero (0).

QoS level This indicates the level of delivery assurance of a PUBLISH
message.
Level 0: At most once delivery, no guarantee. Also, known as Fire
and Forget
Level 1: At least once delivery and with acknowledged delivery
Level 2: Exactly once delivery with assurance of delivery
Level 3: Reserved

RETAIN It instructs the Server (Broker) to RETAIN the last received
PUBLISH message and deliver it as a first message to a new
subscription after it has been delivered to the current subscribers.
This is possible when the RETAIN flag is set to one (1).

Remaining
Length

It indicates the number of remaining bytes in the current message,
including Data in the variable header and the payload.

5.3 MQTT QoS

MQTT provides the typical delivery of QoS levels of message oriented middleware.

Even though the TCP/IP on which MQTT reside provides a guaranteed data delivery,

however, data loss can still occur during the data transmission if the TCP connection

breaks down. Therefore, MQTT adds three (3) QoS levels on top of the TCP.

42

5.3.1 QoS level 0

At Most Once delivery (Fire and Forget). With this QoS level, messages are

delivered in accordance to the delivery guarantees of the underlying TCP/IP

Network. No PUBACK is expected and no retry semantics are defined in the

protocol. The message is delivered to the Server or not at all. An example of

application scenario could be a temperature sensor. Temperature sensor data is

published regularly and loss of any individual value is not critical since subscribers to

the temperature data integrate lots of sample values over time and hence an

individual sample does not make any difference. Figure 13 illustrates a published

message flow with QoS level 0 delivery semantics.

FIGURE 12. QoS Level 0 At Most Once delivery semantics

5.3.2 QoS level 1

At least once delivery. With this delivery semantics, messages are guaranteed to

arrive at the server and should be acknowledged (PUBACK). However, there could

be a Duplicate (DUP) which could arise due to a delay in the arrival of an

Acknowledgement (PUBACK) or an identified (ID) failure of either the

communications link or the sending device. This means that when a sender (client)

PUBLISH is data, after sometime if PUBACK is not received, it resends the data

again with a DUP bit set in the message header resulting in duplication of messages.

However, the application can discard a Duplicate message by evaluating the

message ID field. An application scenario could be a sensor monitoring the state of a

door. This means that a door state is either OPEN/CLOSE or CLOSE/OPEN and

these changes of states are published To Subscribers, For Example In The Form Of

An Alarm Or Beacon A Buzzer. Figure 14 below shows the QoS level 1 delivery

semantics

43

FIGURE 13. QoS Level 1 At Least Once delivery semantics

5.3.3 QoS level 2

Exactly once delivery semantics. This is the highest, safest, and slowest and QoS

level and it guarantees that each message is received only once by the subscriber. It

also incurs most overheads in terms of control messages and the need for locally

storing the messages. It is also a combination of At Least Once and At Most Once

delivery guarantee semantics.

With QoS level 2, when a receiver received the PUBLISH message, it processes the

message and acknowledges it with the PUBREC message. The receiver also stores

the message with a reference to the message identifier until it has sent the

PUBCOMP. This is to avoid a duplication of processing the message twice. Also, the

store PUBLISH message stored at the client can be discarded after it has received

the PUBREC. The PUBREC message is stored upon the arrival and the client

responds with a PUBREL. The receiver on the other side also deletes all stored

messages upon receiving the PUBREL and a similar event happens at the client side

after receiving the PUBCOMP from the subscriber. Figure 15 explains the QoS level

2 semantics.

44

FIGURE 14. QoS Level 2 Exactly Once delivery semantics.

5.4 MQTT variable header

Some types of MQTT messages contain a variable header component. This variable

header component resides between the Fixed Header and the payload (Richard J

Coppen, 2016). The content of the variable header varies depending on the Packet

type. The Packet Identifier field of a variable header is common in several Packet

types. The component of many of the control Packet types consists of a 2-bytes

Packet Identifier. These control packets are PUBLISH (where QoS >0), PUBACK,

PUBREC, PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE and UNSUBACK.

Table 13 illustrates the variable header format residing between the Fixed Header

and the payload with the various fields included in it.

45

TABLE 13. Variable Header residing between Fixed Header and Payload

Field
Length
(bits)

7 6 5 4 3 2 1 0

Byte 1 Message Type - - -

Byte 2 Remaining Length

Byte 3 Protocol name UTF-8 encoded prefixed with 2 bytes string length (MSB)

Byte 4 Protocol version (0x03 for MQTT version 3)

Byte 4 Username
Flag

Password
Flag

Will
RETAIN

Will
QoS

Will
Flag

Clean
Session

Reserved

Byte 5 Keep Alive Timer MSB

Byte 6 Keep Alive Timer LSB

Byte 7 Client Identifier

Byte 8 Will Topic

Byte 9 Will Message

Byte 10 Username

Byte 11 Password

46

The variable header fields are described in table 14 in which they appear in the

header.

TABLE 14. MQTT Variable Header fields descriptions

CONNECT
Message Field

Description / Values

Protocol Name UTF-8 encoded protocol name string

Protocol Version Value 3 for MQTT Version 3

Username Flag If set to 1 it implies that payload contains a username

Password Flag If set to 1 it implies that payload contains a password. That is
if username flag is set, password flag and password must as
well be set

Will RETAIN If set to 1 it indicates or inform the Server that a Will Message
should be retain for the Client which is published in case the
Client disconnects unexpectedly

Will QoS It specifies the QoS level for the Will Message

Will Flag It indicates that the message contains a Will Message in the
Payload along with retain and will QoS Flags

Clean Session If set to 1, the Server discards any previous information about
the re-connecting Client (clean new session). If set to 0, the
Server keeps the subscriptions of a disconnecting Client
including storing QoS level 1 and 2 messages for this Client.
When the Client reconnects, the Server publishes the stored
messages to the Client

Keep Alive Timer Used by the Server to detect broken connections to the
Client

Client Identifier The Client identifier (between 1 and 23 characters) uniquely
identifies the Client to the Server. The Client identifier must
be unique across all Client connecting to a Server

Will Topic Will topic to which a Will Message is published if the Will flag
is set

Will Message Will Message to be published if will flag is set

Username and
Password

Username and Password if the corresponding Flags are set

5.4.1 Keep alive timer

Table 13 shows other fields, such as Keep Alive Timer within the variable header of

the MQTT CONNECT message. It is the maximum time interval between messages

received from the client in seconds. In case there is a drop-in connection between

the client and the server, it enables the server to detect the drop without waiting for

the long TCP/IP timeout. Within the Keep Alive Time period, the client has to send a

47

packet or data to the server. With the absence of data during the Keep Alive Time,

the client sends a PINGREQ message to the server, which the server responds with

a PINGRESP Acknowledgement.

However, after one and half (1.5) Keep Alive Time period, the server disconnects the

client as if a DISCONNECT message had been sent by the client if no message has

been received within the period. In addition, the client will disconnect or will end the

TCP/IP socket connection if it does not receive a PINGRESP message after sending

the PINGREQ message. Figure 16 shows the communication between the client and

server utilizing the Keep Alive Timer with PINGREQ.

FIGURE 15. Keep Alive Timer with PINGREQ

5.4.2 Will messages

A Will Message arises in a case where a Client is unexpectedly disconnected. When

the client is disconnected, applications depending on the client do not receive any

notification of the client demise. However, the client can specify a Will Message

along with a Will QoS and Will RETAIN Flag in the CONNECT message pay load.

Therefore, if the client unexpectedly disconnects, the server sends the Will Message

on behalf of the client to all subscribers. Figure 17 shows the Client-Server-

subscriber Will Messaging.

48

FIGURE 16. MQTT Will Messaging between Client-Server-subscriber.

5.4.3 Topic wildcards

 Subscribers are often interested in a great number of topics. However, subscribing

to every named topic is time and resource consuming. Therefore, MQTT Topic

Wildcard is used when a client wants to receive messages of different topics with a

similar structure at once. Topics can be organized through the wildcards path-type

topic strings and the Wildcard characters; the forwards slash (/), the number sign (#)

and the plus sign (+). Table 15 describes the Wildcard characters and their meaning.

TABLE 15. MQTT Wildcard characters and their meaning

Wildcard Symbol and
example

Meaning

Topic
Level
Separator

/
my/thesis/topic

It is used to separate each level within a topic tree
and provide a hierarchical structure to the topic
space.

Single-
level
Wildcard

+
my/+/topic

It matches one complete topic level. It can be used
more than once in a topic subscription.

Multi-level
Wildcard

my/#

It matches multiple topic levels. It must be the last
character of a topic subscription.

49

5.5 MQTT security

Security is prominent no matter whether it concerns bank transfers, online shopping

or accessing personal documents over the Internet. Moreover, the main idea behind

the IoT technology is to connect every object, such as cars, home and industrial

machines, so that it is possible to efficiently improve processes, either business or

personal activities. However, connecting these objects to the Internet means

exposing vital and sensitive data over the Internet. Some vital and sensitive

information might not be meant for the public consumption and leaking of such data

most often damages the reputation of the affected company or person. Hence, there

is the need to protect such data from leaking.

The Security in MQTT is divided into multiple layers and each layer prevents

different kinds of attacks. The layers at which some levels of security are

implemented are the Network level, Transport level and the Application Level.

Implementing communication between a Broker and a client over a secure network

or Virtual Personal Network (VPN) is one sure way of providing security to MQTT

connections. The best practice for the network level security is a gateway

implementation where devices are connected via a gateway and the Broker

connected over a VPN. The main role for the gateway is to process and relay

information between devices and the Internet.

The Transport Level Security (TLS), a successor of the Secure Sockets Layer (SSL),

is a cryptographic protocol designed to provide secure communication between the

client and the server over unsecure network and when confidentiality of the system

needs to be provided. It operates on top of the TCP providing a secure transport for

upper layer protocols, such as HTTP. TLS is a very secure method for encrypting

traffic but it is also resource intensive due to its required handshake and an

increased Packet overhead. However, since MQTT is built on top of the TCP, it can

use TLS to secure traffic between the MQTT client and server. But since TLS is

resource intensive and MQTT clients are lightweight and energy is of high priority,

encrypting just the payload is sufficient instead of encrypting all the Packet.

According to IANA.org port assignment and standards (Touch & Eliot Lear, Service

Name and Transport Protocol Port Number Registry, 2017), MQTT uses or is

50

assigned to port 8883 on the Broker side when TLS is used. It is a standard for

MQTT connections when it is used on top of the TLS. Moreover, when MQTT is used

over a Plaintext TCP connection, it uses the port 1883 (Touch & Eliot Lear, Service

Name and Transport Protocol Port Number Registry, 2017). The TLS and TCP port

connections can be mixed and not all clients have to be connected in the same way

to the Broker. This means that a client may connect to the Broker with TLS and to

another one with the Plaintext over TCP. TLS is a complex protocol. It is resource

intensive and computationally expensive thus some target platforms may not support

it. But with MQTT it is possible to implement security and secure packets at the

Application Layer.

When security is applied at the Application Layer, it is implemented at the data

payload where application data resides. The communication between the client and

server is ensured so that it is encrypted and the identity is authenticated. The client

identifier, username and password credentials can also be used to secure and

authenticate devices on the Application Layer. They can secure information

transmission with fully implemented transport encryption.

51

6 COMPARISON OF MQTT AND COAP PROTOCOLS

The Internet of Things network is a complex one due to the large number of physical

interconnected IoT devices and the constrained nature of the devices, environment

and the lossy type of Network they operate. One of the key challenges of

implementing an IoT project is to efficiently support machine-to-machine (M2M)

communication in constrained conditions. So far in this work it has been elaborated

that MQTT and CoAP are the most promising protocols that can be implemented in

those constrained conditions.

Although, MQTT and CoAP are totally different protocols, they have some

similarities, such as that they are designed to be used in lightweight devices and in

constrained environments. This means that they both work well with Low-Power and

constrained network devices. Due to their similarities, choosing the appropriate

protocol for the development of an IoT application could be difficult depending on the

application. However, there are many factors to be considered while planning the

right protocol to be used. In this chapter, a comparison of the MQTT protocol and

CoAP protocol will be examined based on performance evaluations from different

scenarios done elsewhere.

The main difference between CoAP and MQTT is that CoAP runs on top of the UDP

while MQTT runs on top of the TCP. Table 16 illustrates the comparisons:

52

TABLE 16. Comparison table between MQTT and CoAP

MQTT CoAP

Mode of communication within MQTT is
publish and subscribe that are highly
decoupled to each other

CoAP is request and response oriented
and has an asynchronous
communication model

MQTT generally has larger Packet size.
Smaller packets less than 127bytes
have a 1byt Packet length find and the
maximum Packet size is 256MB

CoAP has smaller Packet size as MTU
1280 bytes for IPv6, 127 bytes for
6LOWPAN and 127 bytes for IEEE
802.15.4

MQTT Header field is 2bytes CoAP Header field is 4bytes

MQTT allows 16 different messaging
types

CoAP allows for 4 messaging types

MQTT supports asynchronous
messaging

CoAP support both synchronous and
asynchronous messaging

MQTT has 3 levels of application
reliability which are the QoS levels

CoAP have 2 levels of application
reliability in the form Confirmable (CON)
and Non-Confirmable (NON)

Transmitting cycle within MQTT is much
slower

CoAP has faster transmit cycle

MQTT is not a RESTful protocol CoAP is RESTful protocol

MQTT works on flexible topic
subscription

CoAP has stable resource discovery
mechanism

For security, MQTT is unencrypted but it
uses TCP’s TLS/SSL security
encryption

CoAP uses UDP’s DTLS security

6.1 Interoperability within IoT

In general terms, interoperability is the extent by which two or more implemented

systems from different manufacturers can connect, speak, share, innovate, operate

and use data from each other by relying on each other’s services as specified by a

common protocol and standard. As stated earlier in this thesis, IoT application areas,

such as a smart grid, smart appliances, wearable and fitness devices and health, are

the main application domains but they are of different architecture and data models.

The main idea for the IoT is to connect any device to the Internet that would be able

to connect to any other device(s) or system to be able to exchange data and

information. However, the infrastructure of the various IoT application domains lacks

interconnectivity methods that could allow the interoperability between, for example

the network layers and Application Layers.

Similar to the traditional Internet, the interconnectivity or interoperability of IoT

devices and systems happens in varying degrees and at different layers within the

53

communication protocol stack. The layers where interoperability takes place, are the

Network layer, Application Layer and Data annotation level. Figure 18 shows the IoT

Network layer protocols interoperability architecture with various Low-Power

networking protocols, such as ZigBee, Z-Wave, Bluetooth, NFC, and also traditional

networking protocols, such as the Ethernet, WiFi and hardware connections.

FIGURE 17. IoT Network Layer Interoperability architecture (Pratikkumar, Amit , &

Pramod , 2015)

The Network interoperability protocols are designed for a specific domain and

applications for some standardized hardware components developed to support

multiple networking protocols.

54

However, this thesis work is on the research of identifying the interoperability among

the IoT Application Level protocols specifically between the MQTT and CoAP

protocol.

6.1.1 Interoperability between application layer protocols

As elaborated in this thesis, the most competing and proposed Application Level IoT

protocols are CoAP and MQTT. Each protocol has a unique characteristics and

massaging architecture for an IoT applications. However, the interoperability

between devices implemented with these Application Layer protocols and other

proposed IoT protocols remains a challenge.

Moreover, there are various interoperability initiatives emerging and working to solve

the interoperability challenge within the IoT Application Layer protocols. Most of the

initiatives are open source and are built on top of the IoT Application Layer protocols.

They focus on the data structure, communication model and semantics of IoT data

(OCF Solving The IOT Standards Gap, n.d.).

Notable initiative consortiums are the AllSeen Alliance and AllJoyn (AllSeen Alliance,

n.d.) which are open source, universal, secure and development connectivity

frameworks with the aim to support and enable the interoperability between the IoT

devices. The AllJoyn framework supports device discovery to interoperate and

interact. This means that products, applications and services implemented with the

AllJoyn framework can connect even without the Internet access to various network

layers, regardless of manufacturer or operating system.

Another development framework which has been developed by the Open

Interconnect Consortium (OIC) called (IoTivity, n.d.) IoTivity, is also implemented to

improve the interoperability between the IoT devices. IoTivity is an open source

framework that has discovery of devices mechanisms, data transmission in the form

of messaging and streaming model, information exchange and control mechanism,

data management, storage, data analyzes from other sources and device

management. It also provides a device diagnosis.

55

6.1.2 Semantics interoperability

Interoperability cannot only be achieved by transferring data with a common data

format within the IoT Application Layer protocol. The Semantics interoperability

provides a different dimension to the data interoperability at the Application Layer at

a higher level than raw data transferred using AllJoyn or IoTivity. The Semantic

interoperability means that two separate systems automatically interpret the meaning

of data transmitted by the two systems and arrive at same meanings. In terms of IoT

platforms, the Sensor Semantic Network (SSN) provides a set of Ontologies and

SenML (Sensor Markup Language) also provides Metamodels that are designed to

provide interoperability with the application of languages, such as JavaScript Object

Notation (JSON), Eclipse Vorto or Eclipse Ponte and Eclipse Franca (Eclipse

Foundation Open Source Project Hierarchy, n.d.). Metamodels and Ontologies are

related but metamodel is referred as strict set of rules while ontologies are

vocabularies (Tayur & Suchithra , 2017).

However, the Application Layer in terms of data methods is divided into sub-layers:

Data transfer and semantics. Table 17 shows the IoT Application Layers presented

in this sub-layer of the thesis.

TABLE 17. IoT Application Layer with sub-layer

Semantics Layer Ontology Metamodel

Data Transfer
Layer

Serialization
framework

HyperCat

Franca

IoT-A AllJoyn/IoTivity LwM2M

IoT Protocols HTTP CoAP MQTT

The Internet of Things–Architecture (IoT-A), Data Serialization framework,

AllJoyn/IoTivity, HyperCat, Ontology, Lightweight Machine-to-Machine (LwM2M),

Franca and Metamodel are initiated semantics standard architectures, frameworks

and languages proposed by IoT players and partners to have a common ground for

the interoperability within the IoT.

56

The IoT-A project was initiated and proposed by the EU as an IoT architecture model

that could allow developers to choose the architecture that will best fit the devices

they develop. Data serialization frameworks are open source and they were

developed to assist developers to define data and also to enable them to use the

data in their preferred programming language. Franca is also a data framework

developed by the Eclipse projects. It defines and transforms software interfaces and

integrates software components. HyperCat is also an interoperability layer semantic

that allows applications to explore data and available resources and also to help to

find right URIs. The Lightweight M2M semantic device management protocol

designed for sensor networks is suitable for IoT applications that have a low

bandwidth and Lossy Networks. LwM2M is developed based on the CoAP and

Datagram Transport Layer, bond to UDP and standardized by Open Mobile Alliance

(Open Mobile Alliance, n.d.).

57

7 IOT IN 5TH GENERATION MOBILE COMMUNICATION (5G)

Since the emergence of the IoT, it has gone through various stages of ubiquitous

computing with applications built with various types of sensors. As the applications of

connected “things”, the IoT is expected to grow to an average of 6-7 devices per

person by 2020 and with most of the challenges at the device and protocol levels

being solved since the past decade. The trend and the challenges currently

confronted with the implementation if the IoT is on the integration and interoperability

of IoT based systems and other network systems together with mobile data and

wireless broadband communication services. Another challenge arises with the cloud

computing that requires a new network with the capacity that can handle everything

on cloud.

However, the vision of 2020 and beyond (ITU, n.d.) cannot be fully achieved during

the current evolution of International Mobile Telecommunications-Advanced (IMT-

Advanced) technologies (Blust, 2017) based on the requirements. Hence, the birth of

the 5th Generation Mobile Communication Technology (5G), which has been

projected to have features over the legacy technologies, will represent the

convergence of all Network access technologies. The 5G technology is still in its

initial stages and it is yet to be standardized but it has been proposed that the

architecture should integrate the need for IoT applications and other seamless

integrations. An IoT integration will help in managing the challenges within the IoT

networks. This means that there will be fast and high capacity networks for IoT

applications, such as a D2D (Devices-to-Device) connection which is expected to

form the major network portion of the 5G technology.

Moreover, the economic and social impact of 5G has been reviewed by a research

commissioned by Qualcomm technologies (Karen , et al., 2017). As 5G is new and

more devices will be connected on 5G, it is expected to generate up to $12.3 trillion

worth of goods and services of the global economic output in 2035. This according to

the research represents or is equivalent to the spending power of US in 2016 on

consumer products and it is also more than the consumer spending of China, Japan,

Germany, United Kingdom and France combined in 2016. Again, the 5G technology

will support up to 22 million jobs and generate $3.5 trillion with the value chain in

58

2035. This value chain according to the research is approximately the combined

revenue of the top 13 companies on the 2016 Fortune Global 500 list (Fortune

Global 500 lists, 2017). Qualcomm research also reports that the 5G development

will sustain the global Gross Domestic Product (GDP) growth for a longer term. It has

been predicted that the total global GDP will grow from 2020 to 2035 to an

equivalent of an economy of the size of India, which is the seventh largest economy

in the world at the moment.

7.1 5G technology vision

The vision of the 5G technology has been categorized in three main components:

Services, Technology and Standards.

7.1.1 Services

The main objective of the service vision is to connect everything to the cloud.

However, to make this connecting everything to the cloud a reality, a major

transformation within the mobile technology will take place to deliver the much

needed ubiquity, low latency and adaptability to transform the entire industry. This

transformation is the core of the evolution of the 5G technology and efforts are being

made to enhance the Mobile Broadband termed as eMBB (enhance Mobile

Broadband) Network as one aspect to realize the 5G vision. The Mobile Broadband

enhancement will improve the network and enable efficient data transmission. The

cost per bit for data transmission will be much lower, which will increase the use of

the Mobile Broadband Network. Thus, an improvement on the Mobile Broadband

Network will support and extend the cellular coverage into a wider range of

structures, such as office buildings, industrial environment, shopping malls and large

venues.

Another service vision of 5G, and the most important or the main core reason for its

birth, is to extend IoTs into a Massive Internet of Things (MIoT). The machine-to-

Machine (M2M) IoT application will be improved by the 5G technology and will be

termed D2D that will enable a significant increase in the adoption and utilization

across all sectors. 5G will improve Low-Power requirements and will have the ability

59

to operate both in the licensed and unlicensed spectrum and increase in the

coverage area where cost within the MIoT will be much cheaper than what it is

today.

IoT is already in existence and many applications are being rolled out operating with

older generations of mobile and cellular technologies and other Low-Power wireless

technologies operating in both licensed and unlicensed spectrum. However, while

waiting for the 5G MIoT to be implemented and rolled out, efforts are being made to

improve the current cellular technology Long Term Evolution (LTE) to improve the

cellular IoT market. Technologies such as the LTE Cat-M1 enhancedMachine Type

Communication (eMTC) and the LTE Cat-NB1 Narrowband IoT (NB-IoT), are being

started to incorporate Low-Power to enable a cellular IoT. These LTE IoT cellular

network technologies deployments are expected in 2017 after major operators

worldwide, such as AT&T (AT&Tnewsroom, 2016), China Telecom (Joseph, 2016),

SK Telecom (Agam, 2016), Verizon (Brumfield, 2016) and Vodafone (Ibbetson,

2016) have committed to it. The above-mentioned technology (NB-IoT and eMTC)

which will be enabled by the various telecom companies around the world, is a

foundation for MIoT which will improve and extend the Low-Power operational

capabilities, have an ability to utilize both licensed and unlicensed spectrum and

reduce costs due to the economic scale.

Another 5G vision of importance is the Mission Critical Services (MCS) which, when

implemented, will support IoT applications, such as industrial automation, remote

patient monitoring, smart grid connectivity, autonomous vehicles and commercial

drones, that require a high reliability, an ultra-low latency connectivity with a high

security and availability. Figure 19 illustrates the 5G vision.

60

FIGURE 18. 5G vision and usage scenarios for 2020 and beyond (Mallinson, 2016)

7.1.2 5G target performance

The 5G target technical performance requirements have been defined by ITU-R-IMT-

2020 (SG05, 2017) for the purpose of consistency in definitions, specifications and

evaluations to ensure that manufacturers, application developers, network operators,

service and content providers and users do not operate below the minimum

performance requirements. This means that any interested group working on the 5G

technology must fulfil these minimum requirements for the work to be considered by

ITU-R for IMT-2020.

However, these minimum requirements do not restrict the full range of capabilities or

the performance Radio Interface Technologies (RITs) might have. It gives room for

further and advanced performance in order to achieve IMT-2020. Table 18 is a

summary of the ITU-R for IMT-2020 minimum technical performance requirements.

61

TABLE 18. ITU-R for IMT-2020 minimum technical performance requirements

(SG05, 2017)

Metric Performance
Requirement

Definition

Peak Data Rate DownLink (DL) is 20Gbit/s
UpLink (UL) is 10Gbit/s

It is the received Data bits
rate under ideal
conditions by a single
eMBB mobile station
assuming all assignable
radio resources are
utilized

Peak Spectral Efficiency

DL is 30bit/s/Hz
(assuming 8 streams)
UL is 15bit/s/Hz
(assuming 4 streams)

It is the maximum
received Data bit rate
under ideal conditions by
a single eMBB mobile
station assuming all
assignable radio
resources are utilized

User Experience Data
Rate

DL is 100Mbits/s
UL is 50Mbits/s

It is 5% point of the
Cumulative Distribution
Function (CDF) of the
eMBB user throughput.
That is the number of bits
correctly received by the
user during the active
period

5th percentile user
spectral efficiency

Reference to

TABLE 19

It is the 5%-point CDF of
the normalized user
throughput.

Average spectral
efficiency

Reference to TABLE 20 It is the average
throughput of all users
corresponding to the
number of correctly
received bits in the eMBB

Average Traffic Capacity DL is 10Mbit/s/m2 in the
Indoor Hotspot-eMBB

It is the total traffic
throughput served per
geographical area. That is
the correctly received bits
per an area

Latency
4ms for eMBB
1ms for URLLC

20ms (encouraged to
consider lower control
latency 10ms)

Single user for small IP
packets for both DL and
UL
eMBB and URLLC (Ultra-
Reliable and Low Latency
Communications)
Transition from Idle to

User Plane Latency

Control Plane Latency

62

Active (eMBB and
URLLC)

Connection Density

1000 000 devices per km2

For mMTC (massive
Machine Type
Communications)

Energy Efficiency

Efficient Data
transmission in a loaded
case
Low energy consumption
when there is no Data

Evaluation in the eMBB
scenario

Reliability

99.9999% (1-10-5)
success probability

Evaluation in the URLLC
scenario for 32 bytes in
layer 2 within 1ms at cell
edge

Mobility

Stationary: 0km/h
Pedestrian: 0km/h -
10km/h
Vehicular:10km/h-
120km/h
High speed vehicular:
120km/h - 500km/h

Evaluation in the eMBB
scenario

Mobility Interruption Time 0ms Evaluation in the eMBB
and URLLC scenarios

Bandwidth At least 100MHz and up
to 1 GHz for above 6GHz
operations

Evaluation in the eMBB
and URLLC scenarios

TABLE 19. 5th percentile user spectral efficiency performance (SG05, 2017)

Test environment DL (bit/s/Hz) UL (bit/s/Hz)

Indoor Hotspot-eMBB 0.3 0.2

Dense Urban-eMBB 0.225 0.15

Rural-eMBB 0.12 0.045

TABLE 20. Average spectral efficiency performance (SG05, 2017)

Test environment DL (bit/s/Hz/TRxP) UL (bit/s/Hz/TRxP)

Indoor Hotspot-eMBB 9 6.75

Dense Urban-eMBB 7.8 5.4

Rural-eMBB 3.3 1,6

As mentioned earlier in this chapter, one of the main targets of the 5G technology is

to massively connect everything to realize the full roll out of the IoT. However, it can

also be deduced from the 5G target performance in table 18 that it is really gearing

63

towards the MIoT. A capacity of 1,000 to 5,000 more than the capacity of 3G and 4G

networks will be delivered and it will support cells peak rates between 20Gbit/s and

10 Gbit/s. With the high capacity and peak rate, a connection density of about one

million (1M) devices within one-kilometer (1km) area could be achieved.

Furthermore, an energy efficiency monitor is expected to be implemented to monitor

an efficient energy consumption during the data transmission and to give a very low

energy consumption when devices or sensors are idle. It is also targeted to perform

on ultra-low latency of about 1-10 milliseconds (1-10ms) of data transmission from

one point to another, compared to the 40-60 milliseconds of today’s 3G and 4G

Networks. This target performance will support applications, such as fast-moving

vehicles at speeds 120km/h-500km/h, where the delivery of information or data

between the source and the destination will be within five milliseconds.

Another goal of the 5G performance is the interoperability between 5G, 4G and WiFi,

in which a separation of commutations infrastructures will be done to allow mobile

users move freely between these infrastructures without any break in connection.

This means that for example, cellular networks will be integrated with other

communication infrastructures, such as WiFi, and a user will not experience a

connection break when moving between the networks. Furthermore, another

performance feature will be that the networks will become programmable. This

means that operators will be able to make changes to the network to best suit, for

example, its customer needs without the need to touch the physical infrastructure.

This will be a reality when the 5G Advanced Network infrastructure is implemented

using the Software-Defined Network (SDN) and the Network Functions Virtualization

(NFV).

7.1.2.1 5G standardization plans

As stated earlier, the 5G technology is at its initial stage and still needs to be

standardized. The standardization is based on the International Telecommunication

Union (ITU) timeline and the key technologies involved are as shown in the figure 20.

64

FIGURE 19. 5G technology standardization timeline (Romano, 2017)

3GPP has categorized into a phase based approach and each phase comprises one

or more study items and one or more work items. These phases are also termed as

release standards where the release 13, which is based on the existing LTE-A, and

the release 14 marked the beginning of the study into the 5G technology are already

standardized. The Release 15, also termed phase one (1), is the beginning of the 5G

standardization and it is aiming at enabling the phase 1, which is expected to be

deployed in 2020. The Release 16 will help users into further enhancements and is

ready for the products that will make up the 5G technology.

Another form of the standardization process as presented at the IMT-2020 workshop

in Munich, Germany is as shown in figure 21 and figure 22 below.

65

FIGURE 20. IMT-2020 Standardization process (Ying Peng, 2017)

FIGURE 21. Detailed timeline and process for IMT-2020 in ITU-R (Ying Peng, 2017)

66

7.1.3 5G key technologies

As the standardization of the 5G is ongoing, there are some key technologies that

are being considered and to be enabled. These are the Advance Network Millimeter

Wave (mmWave) system, Multi-Radio Access, Advanced Massive Multiple Input

Multiple Output (MIMO), Multiple access, advance Device-to-Device (D2D), and an

advanced small cell.

With the Advanced Network technology, the aim is to create an integrated and

distributed network function which is programmable using the network software, such

as SDN and NFV. With SDN, the network control can be programmed to allow

flexibility of enhancing the network features and to aid in data forwarding paths and

functions. The NFV is a technology used to virtualize a complex hardware based

network node function into software building blocks that can be combined a chained

to create advanced communication service (Chung, 2017). It eliminates dependency

and complex hardware based Network nodes using flexible software blocks that are

called Virtualized Network Functions (VNTs).

The millimeter Wave system has huge bandwidth in the mmWave band, which is has

a frequency above 6 GHz more than LTE mmWave band. More capacity can be

gained with mmWave, for example 2.2Gbits/s of data rate can be supported by the

28GHz band using a multi-cell and 500MHz bandwidth. The Massive MIMO on the

other hand will enhance a data rate using the Full-Dimension MIMO (FD-MIMO), the

spectral efficiency will be enhanced using Multi-User MIMO and the Energy

efficiency and data rate will be enhanced accordingly using Virtual MIMO (MIMO).

The advanced D2D technology proposed for the 5G is critical for the IoT. With

Advanced D2D, offloading data from a mobile network so that the loading and cost of

processing data and signaling is reduced. Mission Critical Push-to Talk (MCPTT) is

another technology emanating from the Advanced D2D that will support the Vehicle-

to-Anything (V2X) communication. A throughput enhancement could be achieved

significantly by the Small Cells technology where a large number of small cells in a

given area will be used to realize this. Small cells are easy to deploy, self-configure

and distribute.

67

8 CONCLUSION

This thesis work was started by studying a little bit of the history of the IoT and the

global economic impact on the world market at large. It has been reviewed that by

2020, about 26 billion units, excluding computers and smartphones, will be

connected to the Internet. Having many devices connected will in return generate

some revenue in the global economy of about $1.9 trillion through sales and other

markets by 2020.

Furthermore, the existing IoT architecture, and standards that enable protocols were

presented. Chapter 2 deals with the IoT architecture where the IoT reference model

is compared with the traditional Internet to identify the differences and similarities

and the applications are also reviewed at each level. A review on the IoT gateway

connectivity protocols and the IoT protocol stacks, which provide the end to end

connectivity from a sensor to the backend application, were discussed in Chapter 0.

Here, the important features and functionalities of IoT gateway protocols were

reviewed and the IoT Application Level protocols, such as HTTP and RESTful, were

discussed. It was reviewed that even though HTTP is widely used on the www and

has been standardized, it is not suitable for many IoT applications due to some

limitation on constrained devices.

Then, Application Layer communication protocols, CoAP and MQTT were carefully

and extensively inspected in detail in chapters 4 and 5. These IoT Application Layer

protocols have been tipped as the most suitable protocols currently being

implemented in most IoT applications, the reason being that they are light weight and

are suitable for constrained devices, such as sensors. Chapter 6 is dedicated to the

comparison and interoperability between the two main IoT protocols, MQTT and

CoAP. In comparison, it was reviewed that it all depends on the preference and the

application. Either protocol is suitable for IoT applications because both are designed

for lightweight devices and suitable to a constrained environment. On the question

on the interoperability, it was reviewed that applications implemented with either

MQTT and CoAP protocol will not just interoperate even though they are similar but

each has unique characteristics and messaging architecture. Therefore, to achieve

the interoperability between any IoT protocols, a semantics interoperability must be

68

applied. The Semantic interoperability provides a different dimension to the data

interoperability at the Application Layers protocols. This means that interoperability

must take place at a higher level of the protocol stack than raw data transferred.

Finally, Chapter 7 was dedicated to review the future of the IoT and the cellular

communication technologies. It was reviewed that one of the major objectives of the

much talked cellular technology; the 5G technology, is to massively connect “things”.

Therefore, one of the core technologies being implemented is the MIoT. It is

expected that the IoT will grow to an average of 6-7 devices per person by 2020 and

with most of the challenges at the device and protocol levels being solved. That

interconnectivity and interoperability between devices and protocols will have the

same level of operation and will eliminate the interoperability challenges facing the

current IoT applications implementation.

Even though, 5G is still at its initial stages and it is yet to be standardized and

deployed by the year 2020, the IoT is included in the plan of 5G where input/output

or sensors / actuators, IoT platforms and positioning are planned to be integrated.

After 2020 we are going to experience about 26 billion units or devices being

connected to the Internet.

69

9 REFERENCES

1. (ISO), I. O., & Iec, I.1994. Information Technology-Open Syatems
Interconnection-Basic Reference Nodel: The Basic Model. Switzerland:
Iso/Iec.

2. Agam, S. 2016, July 5. Sk Telecom's Now Offering Smartphone-Like IoT Data
Plans On Its New Nationwide Wireless Network In South Korea. Network
World. Date of retrieval15.9.2017.
https://www.networkworld.com/article/3090893/like-smartphones-iot-
communications-going-long-distance.html

3. Allseen Alliance. (N.D.). Retrieved From
Https://Allseenalliance.Org/Framework

4. Ashton, K. 2009, June 22. That 'Internet Of Thing' Thing. Rfid Journal, 7, 97-
114.

5. Asín, A., & Gascón, D. 2016. Libelium Comunicaciones Distribuidas S.L.
Libelium World. Date of retrieval15.1.2017.
http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/#
show_infographic

6. AT&Tnewsroom. 2016, October 26. At&T Launches North America’s First Lte-
M Site to Grow Iot. (AT&T). Date of retrieval15.9.2017.
http://about.att.com/story/north_americas_first_ltem_site_to_grow_iot.html

7. Blust, S. M. 2017, 09 17. IMT-Advanced Standards for Mobile Broadband
Communications. (International Telecommunication Union (ITU-R))
http://www.itu.int/net/newsroom/wrc/2012/features/imt.aspx

8. Bormann, C., Jimenez, J., & Melnikov, A. 2010. Constrained Restful
Environments (CoRE). (The Internet Engineering Task Force (IETF)). Date of
retrieval 04.03.2017. https://datatracker.ietf.org/wg/core/charter/

9. Bradley, J., Reberger, C., Dixit, A., & Gupta, V. 2013. Value of The Internet of
Everything for Cities, States & Countries. Cisco Systems .

10. Brumfield, J. 2016. Verizon To Lead In Deploying Cat M1 Lte Network
Technology for IoT. (Verizon). Date of retrieval15.09.2017.
http://www.verizon.com/about/news/verizon-lte-network-technology-iot

11. Chase, J. 2013. The Evolution of The Internet of Things. Texas Instruments
Incorporated, 1-7.

12. Chen, X. 2014. Constrained Application Protocol for Internet Of Things. 1-12.
13. Chung, J.-M. (2017). Internet Of Things & Augmented Reality Emerging

Technologies. (Yonsei University). https://www.coursera.org/learn/iot-
augmented-reality-technologies

14. Cohn , R. J., Cophen, R. J., Banks, A., & Gupta, R. 2015. Mqtt V3.1 Protocol
Specification. Oasis .

15. Dr.Vermesan, O., Dr. Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker,
H., Dr. Bassi, A., . . . Dr. Doody, P. 2011. Internet of Things Strategic
Research Roadmap. IoT Cluster Strategic Research Agenda 2011, 9-52.

16. Eclipse Foundation Open Source Project Hierarchy. (N.D.). (Eclipse). 2016.
Date of retrival 05.08.2017.
http://www.eclipse.org/projects/tools/hierarchy.php

17. Evans, D. 2012. The Internet of Everything: How More Relevant and Valuable
Connections Will Change the World. Cisco Internet Business Solutions Group
(IBSG), 1-9.

70

18. Fielding, R., & Reschke, J. 2014. The Internet Engineering Task Force (IETF
Tools). Date of retrieval 03.04.2017. https://tools.ietf.org/html/rfc7230#page-5

19. Fortune Global 500 Lists. (2017). (Fortune) Retrieved September 15, 2017,
From Http://Fortune.Com/Global500/List/

20. Fremantle, P. 2015. A Reference Architecture for The Internet of Things.
London: WS02.

21. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. 2013. Internet of Things
(IoT): A Vision, Architectural Elements, and Future Directions. p.1-19.

22. Ibbetson, L. 2016. Enabling the Internet of Things with NB-IoT. Vodafone
Group. Date of retrieval 15.09.2017.
http://www.vodafone.com/content/index/what/technology-blog/enabling-
iot.html

23. Iotivity. N.D. https://www.iotivity.org/
24. Ip, C. 2016. Internet of Things: The IoT Opportunity – Are You Ready to

Capture A Once-In-A Lifetime Value Pool? Mckinsey & Company IoT
Conference. Hong Kong.

25. ITU. N.D. ITU Towards “IMT for 2020 and Beyond”. (International
Telecommunications Union (Itu)). http://www.itu.int/en/itu-r/study-
groups/rsg5/rwp5d/imt-2020/pages/default.aspx

26. Joseph, W. 2016. China Telecom Targets Nationwide NB-IoT Coverage Next
Year. (Mobile World Live). Date of retrieved 15.09.2017.
https://www.mobileworldlive.com/asia/asia-news/china-telecom-targets-
nationwide-nb-iot-coverage-next-year/

27. K. H. 2015. Observing Resources in the Constrained Application Protocol
(CoAP). (Internet Engineering Task Force (Ietf)). Date of retrieval15.04.2017.
https://tools.ietf.org/html/rfc7641
Karen. C, Jim D., Bob F., BillM., Brendan O., & Francis S. 2017. The 5G
Economy. Qualcomm. Date of retrieval 20.09.2017.
https://www.qualcomm.com/invention/5g/economy

28. Macgillivray C. 2016. IDC Futurescape: Worldwide Internet of Things 2017
Predictions. IDC Web Conference.

29. Mallinson K. 2016. The Path to 5G: As Much Evolution as Revolution. 3GPP.
Date of retrieval 5.10.2017. http://www.3gpp.org/news-events/3gpp-
news/1774-5g_wiseharbour.

30. Meulen R. V. 2015. Gartner says 6.4 Billion Connected "Things" Will be in use
in 2016, up 30 percent from 2015. Gartner Inc. Barcelona.

31. Mit, E. K. (N.D). World Wide Web Consortium (W3C). date of retrieval
03.04.2017. https://www.w3.org/standards/

32. Obermaier D. (N.D.). Getting started with MQTT a Protocol for the Internet of
Things. (Dzone Refcardz). Date of retrieval 05.06.2017.
https://dzone.com/refcardz/getting-started-with-mqtt

33. OCF Solving the IoT Standards Gap. (n.d). (Open Connectivity Foundation
(OCF)). https://openconnectivity.org/

34. Open Mobile Alliance. (n.d). (Oma). http://openmobilealliance.org/
35. Pratikkumar D., Amit S., & Pramod A. 2015. Semantic Gateway as a Service

Architecture for IoT Interoperability. New York: IEEE.
36. Rescorla E., M. N. 2012. Datagram Transport Layer Security Version 1.2.

(Internet Engineering Task Force (Ietf)). Date of retrieval 05.05.2017.
https://tools.ietf.org/html/rfc6347

71

37. Richard J Coppen, A. B. 2016. Information Technology - Message Queuing
Telemetry Transport (MQTT) V3.1.1. (International Organization For
Standardization). Date of Retrieval 05.05.2017.
https://www.iso.org/standard/69466.html

38. Richard Möller, S. B. 2016. Ericsson Mobility Report: Growth in the Number of
Connected Devices is Driven by Emerging Applications and Business Models,
and Supported by Falling Device Costs. Stockholm: Ericsson Mobility Report.

39. Romano, G. 2017. Preparing the Ground for IMT-2020. (3GPP). Date of
retrieval 08.10.2007. http://www.3gpp.org/news-events/3gpp-news/1901-
imt2020_news

40. SG05, I.-R. 2017. Draft New Report Itu-R M.[IMT-2020.Tech Perf Req] -
Minimum Requirements Related to Technical Performance for IMT-2020
Radio Interface(s). (ITU-R IMT-2020).04.10.2017. https://www.itu.int/md/r15-
sg05-c-0040/en

41. Shelby Z., Hartke K., & Bormann C. 2014. Date of retrieval 03.04.2017.
Internet Engineering Task Force (Ietf): https://tools.ietf.org/html/rfc7252

42. Shelby Z., Hartke K., & Bormann, C. 2014. The Constrained Application
Protocol (CoAP). (Internet Engineering Task Force (Ietf)). Date of retrieval
15.04.2017. https://tools.ietf.org/html/rfc7252

43. Shimonski R. 2005. Network+ Study Guide & Practice Exams. Syngress.
44. Tayur V. M., & Suchithra , R. 2017. Review of Interoperability Approaches in

Application Layer of Internet of Things. IEEE, 322-326.
45. Touch J., & Eliot Lear A. M. 2017. Service Name and Transport Protocol Port

Number Registry. Date of retrieval 12.08.2017.
https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml?&page=112

46. Touch J., & Eliot Lear, A. M. 2017. Service Name and Transport Protocol Port
Number Registry. Date of retrieval 11.08.2017.
https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml?&page=33

47. Vermesan Ovidiu, P. F. 2014. Internet of Things-from Research and
Innovation to Market Deployment. River Publishers, 1-143.

48. Wikibooks. 2015. Date of retrieval 3.04.2017
https://en.wikibooks.org/wiki/communication_networks/http_protocol

49. World R. 2016. MQTT Architecture,working Operation,use cases. Rf Wireless
World: http://www.rfwireless-world.com/tutorials/mqtt-tutorial.html

50. Ying Peng, J. J. 2017. Guidelines for Evaluation of Radio Interface
Technologies for IMT-2020 “Report ITU-R M.[IMT-2020.EVAL]”. Munich:
3GPP.

