

Vadim Prokopev

LAMBDA CALCULUS AND
FUNCTIONAL PROGRAMMING

Using Haskell

Bachelor’s thesis
Information Technology

2017

Author Degree

Time

Vadim Prokopev Bachelor of Information
Technology

December 2017

Title

Lambda Calculus and functional programming
Using Haskell

67 pages

Commissioned by

Jari Kortelainen

Supervisor

Jari Kortelainen

Abstract

This thesis explores the world of Lambda Calculus, functional programming, which is based
on Lambda Calculus, and Haskell as an example of a functional programming language.
Lambda Calculus is a formal system for denoting something computable. It has played an
important part in the development of the mathematical logic and was first introduced by
Alonzo Church.

Functional programming is one of the paradigms of programming. Other existing paradigms
include imperative and object-oriented ones. Functional programming influenced languages
from other paradigms, languages like C++ and Java have functional features added in the
latest revisions.

The aim of the thesis was to learn in which tasks functional programming is favorable.
When Haskell would be preferable to other possible languages, or when some specific task
should be performed using functional features and thus a language with the functional
features is preferable.

Several small programs were written in Haskell, Java and Python and then their
performance got measured. The functional approach was used in Java and Python where it
was considered more concise. Also, some subjective qualities like difficulty of writing or
readability of code of programs were evaluated.

The conclusion of research conducted showed that functional programming provides
considerable amount of utility. However, using the purely functional approach, namely
Haskell, is too restricting. For maximal efficiency mixed languages that were developed
with the functional features as one of the core components like Scala should be used if
functional features are required for the task at hand.

Keywords

Lambda Calculus, functional programming, Haskell

CONTENTS

1 INTRODUCTION .. 4

2 LAMBDA CALCULUS ... 5

2.1 Basic syntax.. 5

2.2 Introduction to a recursion .. 8

2.3 Church Encoding .. 9

2.4 Typed Lambda Calculus ... 10

2.5 Function signatures .. 11

3 HASKELL ... 12

3.1 Syntax ... 13

3.2 Data structures ... 17

3.3 Types and functions .. 20

3.4 Additional functional operations .. 28

3.5 Monads ... 32

4 CONFIGURING THE ENVIRONMENTS .. 42

4.1 Configuring Haskell ... 43

4.2 Configuring Java ... 44

4.3 Configuring Python ... 45

5 APPLICATION .. 46

5.1 Summing test .. 47

5.2 Recursion test ... 49

5.3 Derivatives list... 51

5.4 Dijkstra test ... 55

5.5 Linear equations test .. 58

6 CONCLUSIONS ... 62

REFERENCES .. 64

4

1 INTRODUCTION

Functional programming started its history with Lisp in 1950s which was followed

by other languages like Algol 60 or PAL (Turner 2012). Since then functional

programming walked a long path to become what it represents now. The basics

of functional programming is Lambda Calculus which will be discussed in the

section 2.

Haskell was the first purely functional language. It is specified and developed by

special committee starting from 1987. The first release of Haskell was in 1990

and had several major version and revisions since then. The next major revision

of Haskell is planned to be released in 2020 (Riedel 2016). Haskell will be

discussed in the section 3.

The general idea of the research behind the thesis is to explore functional

programming on the example of Haskell. It will be explored in the perspective of

Lambda Calculus and other languages. Java and Python will be used for the

comparison with Haskell. Java is the best known as an objective-oriented

programming (OOP) language, but the revision to Java 8 implemented functional

features (Oracle 2014). Python is a script language that includes functional and

OOP features.

The aim of the thesis is to understand if functional programming is viable, i.e. is

there applications when functional programming is superior to the imperative

approach. This will be done by writing several small programs for solving quite

simple various tasks in the field of mathematics. The points of the comparison will

be the following:

• Readability and understandability of a code

• Execution time

• The maximum amount of a space required during an execution

• Difficulty of the implementation

Preparations required to perform the comparison will be discussed in the section

4 and comparison itself will be performed in the section 5.

5

2 LAMBDA CALCULUS

This section is mainly based on book by Michaelson (2011).

Lambda Calculus was invented by Alonzo Church when he tried to find the

foundation of mathematics and how functions calculate (Jung 2004). His theory

says that every function is a black box which consume some inputs and produce

a desired output. Lambda Calculus as it was described by Church, is nowadays

known as Untyped Lambda Calculus as there is no distinctive types of data like

String or Integer, only functions.

Church showed that it is possible to compute anything using his system. It means

that Lambda Calculus is a Turing-complete language, i.e. anything that may be

computed by a Turing machine also may be calculated using Lambda Calculus

(Rowland 2017).

2.1 Basic syntax

Lambda Calculus consists of lambda terms. Table 1 shows all possible lambda

terms. There are not much of them as Lambda Calculus is using the very

compact syntax.

Table 1. Syntax of possible lambda terms in Lambda Calculus

𝑣 Variable Character or string that represents some value

(𝜆𝑣. 𝑀) Function Definition of function, the variable that is followed by 𝜆 is

bound and 𝑀 is a valid lambda term

𝑀 𝑁 Application Application of 𝑁 to 𝑀 where both are valid lambda terms

Let’s compare classical mathematical, Java and Lambda Calculus ways of

defining functions in an example of an addition seen in Table 2.

Table 2. Ways of defining functions using different notations

Lambda Calculus 𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦

Mathematical 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦

Java 𝑖𝑛𝑡 𝑓(𝑖𝑛𝑡 𝑥, 𝑖𝑛𝑡 𝑦) {𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 + 𝑦; }

6

In a function binder is some formal symbol that bind variables from the outside

world to the body of a function. In mathematics and Java, it is the name of a

function which is 𝑓 in the current case. There are no function names in Lambda

Calculus and variables are getting bind by 𝜆 symbol which is always the same.

Non-bound variables are called free.

Java like the most of other programming languages define types of inputs and of

the output when Lambda Calculus is untyped and everything in it is a function.

Absolutely everything is a function including numbers and thus addition is a

complex function. But to make everything less abstract and more understandable

+ will be used as usual.

For shorter notation additional 𝜆 after first one is often omitted as follows:

 𝜆𝑥. 𝜆𝑦. 𝑥 𝑦 = 𝜆𝑥. 𝑦. 𝑥 𝑦 (1)

Arguments for the functions are written after them and can be any valid lambda

terms. Variables are replaced from left to right and in the following expression 𝑀

be used as 𝑥 and 𝑁 will be used as 𝑦:

 (𝜆𝑥. 𝑦. 𝑥 + 𝑦) 𝑀 𝑁 (2)

Example. Various lambda terms

 𝜆𝑥. 𝑦. 𝑥 𝑦 𝑧 (3)

 𝜆𝑣. 𝑥 ∗ 𝑣 (4)

 𝜆𝑥. 𝑦. 𝑥 𝑥 𝑦 (5)

These terms are valid, but they are not that useful. They just follow syntax we

defined. Some basic functions should be presented to continue working with

them. The most common ones are identity, application, double application and

constant functions seen in Equations 6-9.

 𝑖𝑑 = 𝜆𝑥. 𝑥 (6)

 𝑎𝑝𝑝𝑙𝑦 = 𝜆𝑓. 𝑥. 𝑓 𝑥 (7)

 𝑡𝑤𝑖𝑐𝑒 = 𝜆𝑓. 𝑥. 𝑓 (𝑓 𝑥) (8)

 𝑐𝑜𝑛𝑠𝑡 = 𝜆𝑥. 𝑦. 𝑥 (9)

7

The identity function returns an input unchanged. The application function takes a

function and an argument and apply it to the function. The double application is

the same, but runs function again with the result of the first application as an

input. The constant function takes two inputs but always will return the first one.

Formally they are defined in the following way:

 𝑖𝑑 𝑀 = 𝑀 (10)

 𝑎𝑝𝑝𝑙𝑦 𝑀 𝑁 = 𝑀 𝑁 (11)

 𝑡𝑤𝑖𝑐𝑒 𝑀 𝑁 = 𝑀 (𝑀 𝑁) (12)

 𝑐𝑜𝑛𝑠𝑡 𝑀 𝑁 = 𝑀 (13)

Lambda Calculus is left associated, it means that expressions like 𝑀 𝑁 𝑂 are

evaluated like (𝑀 𝑁) 𝑂, that’s why 𝑡𝑤𝑖𝑐𝑒 ≠ 𝑀 𝑀 𝑁 = (𝑀 𝑀) 𝑁. If a different order

of an application is required, then parentheses should be added.

To evaluate functions the beta-reduction should be used, as it is the only way to

evaluate functions in Lambda Calculus. Another operation defined upon lambda

terms is the alpha-conversion.

The formal definition of the beta-reduction is the following:

 (𝜆𝑥. 𝑀) 𝑁 = 𝑀[𝑁/𝑥] (14)

𝑀[𝑁/𝑥] means replacing all bound occurrences of 𝑥 with 𝑁 in expression 𝑀. To

denote the beta-reduction operation →𝛽 will be used. The beta-reduction is

applied in two steps. First, the leftmost 𝜆 with the respective variable are

removed. Second, all the occurrences of that variable are replaced with the input

given.

Example. Various examples of the beta-reduction

 𝑖𝑑 𝑎𝑝𝑝𝑙𝑦 = (𝜆𝑥. 𝑥) 𝑎𝑝𝑝𝑙𝑦 →𝛽 𝑎𝑝𝑝𝑙𝑦 (15)

 𝑎𝑝𝑝𝑙𝑦 𝑖𝑑 = (𝜆𝑓. 𝜆𝑥. 𝑓 𝑥) 𝑖𝑑 →𝛽 (𝜆𝑥. 𝑖𝑑 𝑥) (16)

 𝑐𝑜𝑛𝑠𝑡 𝑀 𝑁 = (𝜆𝑥. 𝑦. 𝑥) 𝑀 𝑁 →𝛽 (𝜆𝑦. 𝑀) 𝑁 →𝛽 𝑀 (17)

There is a possible situation that an expression contains several functions with

the same name for bound variables, and the name collision can happen. To solve

that issue the alpha-conversion can help with the following formal definition:

 (𝜆𝑥. 𝑥) = (𝜆𝑦. 𝑦) {𝑦/𝑥} (18)

{𝑦/𝑥} means renaming all bound occurrences of 𝑦 with 𝑥.

8

There are two ways of applying the beta-reduction: normal order reduction from

left to right or applicative order from the innermost function and it will not change

output. The Church-Rosser theorem says that every expression that can be

reduced has only one normal form, i.e. the order of the beta-reduction doesn’t

matter for the final answer (Jung 2004). However, this doesn’t mean that

reductions may be done in any order, only the ones with priority may be done.

2.2 Introduction to a recursion

The recursion has the utmost importance in Lambda Calculus, and to learn how

to do it, it is worth first looking at several special lambda terms. Let’s define the

simple function of the self-application seen in Equation 19. This function takes

any function given and apply it to itself.

 𝑠𝑎 = 𝜆𝑥. 𝑥 𝑥 (19)

Now, let’s try to plug some functions to it.

Example. The self-application with various functions

 𝑠𝑎 𝑖𝑑 = (𝜆𝑥. 𝑥 𝑥) 𝑖𝑑 →𝛽 𝑖𝑑 𝑖𝑑 = (𝜆𝑥. 𝑥) 𝑖𝑑 →𝛽 𝑖𝑑 (20)

 𝑠𝑎 𝑡𝑤𝑖𝑐𝑒 = (𝜆𝑥. 𝑥 𝑥) 𝑡𝑤𝑖𝑐𝑒 →𝛽 𝑡𝑤𝑖𝑐𝑒 𝑡𝑤𝑖𝑐𝑒 =

(𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥)) 𝑡𝑤𝑖𝑐𝑒 →𝛽 (𝜆𝑥. 𝑡𝑤𝑖𝑐𝑒 (𝑡𝑤𝑖𝑐𝑒 𝑥))

(21)

 𝑠𝑎 𝑐𝑜𝑛𝑠𝑡 = (𝜆𝑥. 𝑥 𝑥) 𝑐𝑜𝑛𝑠𝑡 →𝛽 𝑐𝑜𝑛𝑠𝑡 𝑐𝑜𝑛𝑠𝑡 =

(𝜆𝑥. 𝑦. 𝑥) 𝑐𝑜𝑛𝑠𝑡 →𝛽 𝜆𝑦. 𝑐𝑜𝑛𝑠𝑡

(22)

But what if we self-apply the self-application? It will give a very interesting but

practically useless term that is called Ω term and can be seen in Equation 23. It

represents an infinite cycle.

 Ω = 𝑠𝑎 𝑠𝑎 = (𝜆𝑥. 𝑥 𝑥) 𝑠𝑎 →𝛽 𝑠𝑎 𝑠𝑎 (23)

This term will never reduce, i.e. attempts to reduce it will return the same term.

This means that it doesn’t have a normal form. But, it is possible to have an even

worse case, a lambda term can explode infinitely and become only bigger when

it’s being reduced. The simplest example is presented in Equation 24.

9

Example. The simplest expanding by reduction lambda term

 (𝜆𝑤. 𝑤 𝑤 𝑤)(𝜆𝑤. 𝑤 𝑤 𝑤) →𝛽 (𝜆𝑤. 𝑤 𝑤 𝑤)(𝜆𝑤. 𝑤 𝑤 𝑤)(𝜆𝑤. 𝑤 𝑤 𝑤) (24)

These two terms cannot be used directly to make the recursion, but give an

intuition on problems that can occur in case of the wrong approach.

The recursion is a process of calling function from within itself. However, in

Lambda Calculus functions cannot have access to the unbound version of itself,

i.e. there cannot be a function definition like 𝑔 = … 𝑔 …, but it is possible to have

access to itself using fixed-point combinators (Hudak 2008). There are infinitely

many of them, but the most known and most often used is the Y-combinator of

Equation 25.

 𝑌 = 𝜆𝑡. (𝜆𝑥. 𝑡(𝑥 𝑥))(𝜆𝑥. 𝑡(𝑥 𝑥)) (25)

Let’s try to plug some input and see what will happen in Equation 26.

 𝑌 𝑡 = (𝜆𝑡. (𝜆𝑥. 𝑡(𝑥 𝑥))(𝜆𝑥. 𝑡(𝑥 𝑥))) 𝑡 →𝛽

(𝜆𝑥. 𝑡(𝑥 𝑥))(𝜆𝑥. 𝑡(𝑥 𝑥)) →𝛽

𝑡 (𝜆𝑥. 𝑡(𝑥 𝑥))(𝜆𝑥. 𝑡(𝑥 𝑥)) =

𝑡 (𝑌 𝑡) = 𝑡(𝑡(𝑌 𝑡)) = ⋯

(26)

It’s easy to observe that our expression exploded like in Equation 24, and

therefore, it may represent an infinite cycle. To prevent it from exploding it is

possible to use conditional statements. Yet, there is nothing in Lambda Calculus

but functions. How there can be conditionals? The answer is Church Encoding.

2.3 Church Encoding

Church invented the rigorous system of how give meaning to functions (McCarthy

2012). There are all basic structures we are used to see in the modern

programming languages: integers, lists, Booleans. Even further it captures not

just plain values but whole structures like conditionals. This system is too thick to

fit inside thesis like this and will be discussed in short to give a taste of it.

What are Boolean values in general? It is choice between 𝑎 and 𝑏, so it makes

sense to define the Boolean value in Lambda Calculus as a function that takes

10

two values and returns only one of them, the encoding for corresponding values

may be seen in Equation 27 and 28.

 𝑇𝑟𝑢𝑒 = 𝜆𝑎. 𝜆𝑏. 𝑎 (27)

 𝐹𝑎𝑙𝑠𝑒 = 𝜆𝑎. 𝜆𝑏. 𝑏 (28)

The basic Boolean operations: 𝑎𝑛𝑑 and 𝑜𝑟 are defined in the following way:

 𝑎𝑛𝑑 = 𝜆𝑝. 𝜆𝑞. 𝑝 𝑞 𝑝 (29)

 𝑜𝑟 = 𝜆𝑝. 𝜆𝑞. 𝑝 𝑝 𝑞 (30)

They may look too strange and obscure but after some deductions they will start

make sense. 𝑇𝑟𝑢𝑒 returns the first argument, 𝐹𝑎𝑙𝑠𝑒 returns the second argument.

In case of the 𝑎𝑛𝑑 operation if the first argument is 𝑇𝑟𝑢𝑒 then it would return the

second argument. If the second argument is also 𝑇𝑟𝑢𝑒 then the final answer is

𝑇𝑟𝑢𝑒, else it’s 𝐹𝑎𝑙𝑠𝑒 following the classic Boolean logic. If the first argument is

𝐹𝑎𝑙𝑠𝑒 then it will return itself and it’s of course 𝐹𝑎𝑙𝑠𝑒, again following Boolean

logic. Same procedure may be done with 𝑜𝑟.

Following same ideas numbers, strings and lists may be defined. Though, this is

an interesting way to define data, it has not much practical usefulness. Now, we

will move further to Typed Lambda Calculus which has not only functions but all

other usual things like numbers.

2.4 Typed Lambda Calculus

Originally Alonzo Church depicted Lambda Calculus as a system where only

functions exist, which we already named Untyped Lambda Calculus. The real

meaning of function comes from the encoding, but it is more reasonable to apply

ideas of Lambda Calculus to usual data types that can be found in programming:

integers, float point numbers or strings to get Typed Lambda Calculus. The basic

principle of the beta-reduction to get an answer is still applied but now it is

possible to get a meaningful answer without the encoding. The simplest data type

is an integer and the simplest not unary operation is an addition. So, an addition

of an integer number and 1 is one of the simplest typed operation that is called

the successor, usually shortened to 𝑠𝑢𝑐𝑐 and has the following definition:

 𝑠𝑢𝑐𝑐 = 𝜆𝑥. 𝑥 + 1 (31)

11

Example. The beta-reduction of the successor function

 𝑠𝑢𝑐𝑐 6 = (𝜆𝑥. 𝑥 + 1) 6 →𝛽 6 + 1 (32)

The input 6 replaces the variable 𝑥 and 𝜆𝑥 is removed just like in Untyped

Lambda Calculus. Now, let’s try to define the function that takes two arguments

but apply only one and observe results.

Example. A partial application of the beta-reduction

 (𝜆𝑥. 𝑦. 𝑥 + 𝑦) 3 5 →𝛽 (𝜆𝑦. 3 + 𝑦) 5 (33)

Using the beta-reduction 𝑥 was substituted by the input 3 and the new function

was created which now sums 3 and the input. This method of taking just one

argument is the golden nugget of Haskell called currying and will be discussed

further in the appropriate section. It is possible to give a name to this new

function and use it as usually.

Example. Creating a function from a partial application

 𝑎𝑑𝑑𝑇ℎ𝑟𝑒𝑒 = (𝜆𝑥. 𝑦. 𝑥 + 𝑦) 3 →𝛽 (𝜆𝑦. 3 + 𝑦) (34)

Now let’s use the double application with the successor function and the integer 2

as inputs. The resulting equations with the applied beta-reductions may be seen

in Equation 35. Note, 𝑥 in the twice function was alpha-converted to 𝑦.

Example. The application of 𝑡𝑤𝑖𝑐𝑒 and 𝑠𝑢𝑐𝑐 functions with a number

 𝑡𝑤𝑖𝑐𝑒 𝑠𝑢𝑐𝑐 2 = (𝜆𝑓. 𝜆𝑦. 𝑓 (𝑓 𝑦)) (𝜆𝑥. 𝑥 + 1) 2 →𝛽

(𝜆𝑦. (𝜆𝑥. 𝑥 + 1) ((𝜆𝑥. 𝑥 + 1) 𝑦)) 2 →𝛽

(𝜆𝑥. 𝑥 + 1)((𝜆𝑥. 𝑥 + 1) 2) →𝛽 ((𝜆𝑥. 𝑥 + 1) 2) + 1 →𝛽 2 + 1 + 1

(35)

2.5 Function signatures

Adding types reduces an abstraction and implies that all functions have specific

signatures for what types it takes. Let’s define types for some functions we’ve

been using so far in Equations 36-40. Arrow → is just a separator.

12

 𝑖𝑑 ∷ 𝑎 → 𝑎 (36)

 𝑐𝑜𝑛𝑠𝑡 ∷ 𝑎 → 𝑏 → 𝑎 (37)

 𝑎𝑝𝑝𝑙𝑦 ∷ (𝑎 → 𝑏) → 𝑎 → 𝑏 (38)

 𝑡𝑤𝑖𝑐𝑒 ∷ (𝑎 → 𝑎) → 𝑎 → 𝑎 (39)

 𝑠𝑢𝑐𝑐 ∷ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (40)

Terms in parentheses denote functions that takes corresponding input and output

values. If type is not set explicitly line in 𝑠𝑢𝑐𝑐 then there is no restriction to

specific types, but there must be correlation between types. Different letters don’t

mean that types will be different, but the same letters mean that types must be

the same. It should be noted that there is no distinction between inputs and the

return value.

The identity function should return an object of the same type as it was given,

because it is the same object without any changes. The constant function takes

two arguments but always returns the first one, so type of second argument can

be any while the return type is the same to the type of first argument as it returns

it unchanged. The application function takes a function that should be able to use

the second argument given, so both should be the same type and return type of

the given function and the application function should be the same. The double

application function should get a function which takes an argument and the return

variable of the same type because the function should be able to run again using

a result of the first run as an argument. Our successor function can operate only

on numeric value and has integer signature. (Reddy 2009.)

We’ve discussed partial application and it is possible to divide expression at any

arrow that is not inside parentheses to get the signature of the partially applied

function, e.g. 𝑎𝑝𝑝𝑙𝑦 giving only one of two arguments will give the following:

 𝑎𝑝𝑝𝑙𝑦 𝑓 ∷ 𝑎 → 𝑏 (41)

3 HASKELL

This section is mainly based on the book by Lipovača (2011).

Lambda Calculus is just a basis for functional programming which in its own

manner implement its logic and may differ between languages. Functional

13

programming inherits the main idea of Lambda Calculus of being all about

functions and their compositions. Nowadays, a wide range of modern languages

support functional operations like Java or Python, but for this thesis the most

functional language was chosen - Haskell to emphasize the functional approach

in the process of writing programs. Haskell is the general-purposed, strongly-

typed, lazy-evaluated, purely functional language. It was named after logician

Haskell Curry.

3.1 Syntax

The syntax of real Haskell looks alike our convenience notation with the named

functions in Lambda Calculus, e.g. the left part of Equation 32 is already the valid

Haskell syntax, but to be specific let define a simple function and discuss

noticeable and not that obvious points of syntax by reimplementing the identity

function as in Equation 6 in the following way:

 𝑖𝑑 𝑥 = 𝑥 (42)

The name of a fucntion must start with a lowercase letter followed by the

arguments which is separated from an implementation part by the equal sign.

There is no the 𝑟𝑒𝑡𝑢𝑟𝑛 keyword (though, it will appear later) to return a value like

in in Java or Python because in Haskell every function must return some value.

By default, Haskell functions are prefix functions just like in Lambda Calculus.

Let’s redefine all the other basic functions we used in Lambda Calculus part in

the following way:

 𝑎𝑝𝑝𝑙𝑦 𝑓 𝑥 = 𝑓 𝑥 (43)

 𝑡𝑤𝑖𝑐𝑒 𝑓 𝑥 = 𝑓 (𝑓 𝑥) (44)

 𝑐𝑜𝑛𝑠𝑡 𝑥 𝑦 = 𝑥 (45)

The one simplification that is possible to make is that 𝑐𝑜𝑛𝑠𝑡 function names the

second variable and doesn’t use it. Haskell provides a way of ignoring variables

by substituting it with the underscore as follows:

 𝑐𝑜𝑛𝑠𝑡 𝑥 _ = 𝑥 (46)

Conditionals, which already were mentioned in Lambda Calculus part, are a little

different in Haskell from other languages. It is usually required to write what

happens if the predicate is true and to omit the so-called 𝑒𝑙𝑠𝑒 part. In Haskell it

doesn’t hold, as every function should return something. Therefore, the pattern

14

becomes ‘if – condition – then – this – else – that’. The keyword 𝑡ℎ𝑒𝑛 to separate

the predicate from the first execution path is added as there are no parentheses

or braces. The general syntax for conditional statements is presented in Equation

47. Terms in angle brackets denote placeholders for values.

 𝑖𝑓 <𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒> 𝑡ℎ𝑒𝑛 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛> 𝑒𝑙𝑠𝑒 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛> (47)

Example. The application of an if statement in Haskell

 𝑖𝑓 𝑥 < 100 𝑡ℎ𝑒𝑛 2 ∗ 𝑥 𝑒𝑙𝑠𝑒 𝑥 (48)

The important feature of Haskell’s if statements is that they are valid expressions,

i.e. they may be written anywhere where expressions like 𝑥 + 𝑦 may be written,

which means that an if expression can contain another if expressions inside itself.

But, what if we need to choose between many clauses like switch in other

languages, which is preferred to the nested if statements? Haskell has its own

case syntax that looks like the switch syntax in other languages, but it is not used

that often. Instead, a syntactic sugar of multiple declarations is used that will

compile to the case syntax. The multi-declaration syntax is helpful to declare

corner cases. The multi-declaration has the following syntax:

 <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒> <𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠> = <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>

[<𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒> <𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠> = <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>] …

(49)

There can be any number of function declarations as needed which is denoted by

… after brackets.

Example. The multi-declaration of the power function

 𝑝𝑜𝑤𝑒𝑟 _ 0 = 1

𝑝𝑜𝑤𝑒𝑟 0 _ = 0

𝑝𝑜𝑤𝑒𝑟 𝑥 𝑦 = 𝑥 ∗ 𝑝𝑜𝑤𝑒𝑟 𝑥 (𝑦 − 1)

(50)

The underscore symbol as an argument means that we don’t use the value of this

variable for choosing the path of the execution. The declaration with just named

variables without specific values will catch all the remaining cases. The power

function of any number to the integer power is defined as the multiplication of the

base by itself power times. In programming it is usually achieved using cycles.

15

But, Haskell don’t have cycles and a recursion should be used instead. To solve

some task recursively the base case should be defined and then call that will

converge to the base case. The base case is the power equals to 0 and then

𝑥0 = 1. Otherwise, 𝑥𝑦 = 𝑥 ∗ 𝑥𝑦−1 and we can multiply 𝑥 by the 𝑥 to the power

minus one. The corner case of 0 as 0𝑦 = 0, except 00 case, which is not covered.

But what if we need to check several predicates? Then the guard syntax is

exactly what we need. It is the system that holds predicates and test them one

after another. The guard syntax is presented in Equation 51. Vertical lines should

be aligned to each other, otherwise the compiler will not succeed in

understanding it properly.

 <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒> <𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠>

 | <𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒> = <𝑒𝑥𝑟𝑒𝑠𝑠𝑖𝑜𝑛>

 [| <𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒> = <𝑒𝑥𝑟𝑒𝑠𝑠𝑖𝑜𝑛>] …

(51)

As with the multi-declaration there can be as many guard statements as needed.

Example. The power function with the guard syntax

 𝑝𝑜𝑤𝑒𝑟 𝑥 𝑦

 | 𝑦 == 0 = 1

 | 𝑥 == 0 = 0

 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = 𝑥 ∗ 𝑝𝑜𝑤𝑒𝑟 𝑥 (𝑦 − 1)

(52)

Usually, the last predicate is replaced by 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 keyword. This keyword is just

another name for 𝑇𝑟𝑢𝑒 which is the simplest predicate. It will catch all cases

when previous clauses didn’t work out. Running a function that declared using

the guard syntax and none of predicates returned 𝑇𝑟𝑢𝑒 will cause an error.

The main thing in programming is variables. Variables in Haskell are immutable,

if you set them you cannot modify only use it. This may sound limiting but tasks

that usually are solved by Haskell are being more like described and not followed

step by step. To introduce local variables 𝑤ℎ𝑒𝑟𝑒 and 𝑙𝑒𝑡 constructions are used.

To create the 𝑤ℎ𝑒𝑟𝑒 statement, keyword 𝑤ℎ𝑒𝑟𝑒 is added in the end of a function

and all required variables or even functions may be defined there as in Equation

16

53. It is often used to make complex functions less burdensome. All expressions

should be aligned to each other.

 <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒>

 𝑤ℎ𝑒𝑟𝑒 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>

 [<𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>] …

(53)

There can be any number of expressions. Also, it is possible to write the 𝑤ℎ𝑒𝑟𝑒

statement for the function declared inside another 𝑤ℎ𝑒𝑟𝑒 statement.

Example. The function with the 𝑤ℎ𝑒𝑟𝑒 statement

 𝑐𝑢𝑏𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑖𝑑𝑒 = 6 ∗ 𝑠𝑞𝑢𝑎𝑟𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒

 𝑤ℎ𝑒𝑟𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑠𝑖𝑑𝑒 ∗ 𝑠𝑖𝑑𝑒

(54)

The 𝑙𝑒𝑡 construction has similar capabilities. But, with one advantage, it is a valid

expression, i.e. it may be written anywhere where any expressions like 𝑥 + 𝑦

and if statements can be placed. 𝑙𝑒𝑡 can be written both line by line and inline

and has two following syntaxes:

 𝑙𝑒𝑡 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛> [; <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>] … 𝑖𝑛 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛> (55)

 𝑙𝑒𝑡 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>

 [<𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>]…

𝑖𝑛 <𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛>

(56)

In the inline syntax several expressions are separated by a semicolon, in the

several line declaration same expressions should be aligned just like in the guard

syntax.

Example. Previous example using 𝑙𝑒𝑡

 𝑐𝑢𝑏𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑖𝑑𝑒 =

 𝑙𝑒𝑡 𝑠𝑖𝑑𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑠𝑖𝑑𝑒 ∗ 𝑠𝑖𝑑𝑒

 𝑖𝑛 6 ∗ 𝑠𝑖𝑑𝑒𝑆𝑢𝑟𝑓𝑎𝑐𝑒

(57)

An important feature derived from Lambda Calculus is lambda or anonymous

functions shown in Equation 58. They are helpful if some small function which will

be used only once in any of three additional functional operations that will be

defined in the appropriate section.

17

 \<𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠> → <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑜𝑑𝑦> (58)

Backslash is used as it resembles 𝜆 to denote start of the anonymous function.

Example. The function that takes an argument and multiplies it by itself

 \𝑥 → 𝑥 ∗ 𝑥 (59)

3.2 Data structures

There are two major data structures used in Haskell: lists and tuples. Lists are

infinitely expandable but can contain only one type of objects inside. Lists are the

main data structure in Haskell. Strings are also lists, and all list methods may be

applied to them. Lists are declared by putting elements inside brackets as in

Equations 60 and 61.

 [′𝑎′,′ 𝑏′, ′𝑐′] (60)

 [[1,2,3], [4], [8,9]] (61)

But this is just a syntactic sugar for the way lists are defined. Lists are defined

recursively as either an empty list or an element tailed by a list. Informally it may

de shown as follows:

 𝑙𝑖𝑠𝑡 = 𝑒𝑚𝑝𝑡𝑦 𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∶ 𝑙𝑖𝑠𝑡 (62)

The infix function : is a type constructor, but will be discussed in the next section.

What is important, is that it is used to prepend elements to the existing list and it

is right associative, so it is possible to chain them as follows:

 1: 2: 3: [] (63)

Because of this it is possible to unroll lists into first values using the following

syntax:

 𝑥: 𝑦: 𝑥𝑠 = 𝑎0: 𝑎1: [𝑎2. . 𝑎𝑛] (64)

Trying to unroll a list to more variables than there are present will result in an

error. The main operations possible to do with lists are depicted in Table 3. There

are more important functions in lists, but they will be defined after learning about

additional functional operations in Haskell.

18

Table 3. Common list operations

Concatenate two lists 𝑙𝑖𝑠𝑡1 ++ 𝑙𝑖𝑠𝑡2

Prepend 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 to the 𝑙𝑖𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∶ 𝑙𝑖𝑠𝑡

Get the element at this position 𝑙𝑖𝑠𝑡 !! 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Merging two lists into lists of tuples, total

length will be length of the shortest list

𝑧𝑖𝑝 𝑙𝑖𝑠𝑡1 𝑙𝑖𝑠𝑡2

Get the first element ℎ𝑒𝑎𝑑 𝑙𝑖𝑠𝑡

Get the last element 𝑙𝑎𝑠𝑡 𝑙𝑖𝑠𝑡

Get list but without the first element 𝑡𝑎𝑖𝑙 𝑙𝑖𝑠𝑡

Get list but without the last element 𝑖𝑛𝑖𝑡 𝑙𝑖𝑠𝑡

Get a size of 𝑙𝑖𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑖𝑠𝑡

Skip 𝑛 first elements of 𝑙𝑖𝑠𝑡 or empty list if 𝑛 is

bigger than size of 𝑙𝑖𝑠𝑡

𝑑𝑟𝑜𝑝 𝑛 𝑙𝑖𝑠𝑡

Take 𝑛 first elements of 𝑙𝑖𝑠𝑡 or unmodified 𝑙𝑖𝑠𝑡

if 𝑛 is bigger than size of 𝑙𝑖𝑠𝑡

𝑡𝑎𝑘𝑒 𝑛 𝑙𝑖𝑠𝑡

To modify a list or any other data structure it is required to construct a new one. It

sounds limiting but recursive data structures may be more suitable in tasks that

involves the recursion itself (Braithwaite 2017). Because it is not possible to

change them in place; the creation of a new data structure is required. Some

basic functions have been already defined, but for example removing one

element in position 𝑛 may be performed with the following functions:

 𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑡 𝑛 𝑙𝑖𝑠𝑡 = 𝑡𝑎𝑘𝑒 𝑛 𝑙𝑖𝑠𝑡 ++ 𝑑𝑟𝑜𝑝 (𝑛 + 1) 𝑙𝑖𝑠𝑡 (65)

Lists are so powerful in Haskell that there is special syntax to create lists with the

definition of simple rules that are called list comprehensions. It looks and works

like set comprehensions in classical mathematics.

Example. Squares of the first 10 natural number as set and list comprehensions

 {𝑥2|𝑥 ∈ ℕ, 𝑥 ≤ 10} (66)

 [𝑥^2|𝑥 ← [1. .10]] (67)

19

The general syntax of list comprehensions is the following:

 [<𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛> | <𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠> [, <𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠>]]

 <𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠> = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← 𝑙𝑖𝑠𝑡 [,<𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑟𝑖𝑏𝑙𝑒>]

 <𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠> = 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 [,<𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒>]

(68)

Another way to create lists are ranges. The various ways of creating them are

shown in Table 4.

Table 4. List generators

Returns a list of 𝑥 with the length 𝑛 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑛 𝑥

Returns a list with all elements from 𝑠𝑡𝑎𝑟𝑡 to

𝑒𝑛𝑑 with the increment of 1

[𝑠𝑡𝑎𝑟𝑡. . 𝑒𝑛𝑑]

Returns an infinite list from 𝑠𝑡𝑎𝑟𝑡 and the

increment of 1

[𝑠𝑡𝑎𝑟𝑡. .]

Returns a list with all elements from 𝑠𝑡𝑎𝑟𝑡 to

𝑒𝑛𝑑 with the increment of 𝑠𝑡𝑒𝑝

[𝑠𝑡𝑎𝑟𝑡, (𝑠𝑡𝑎𝑟𝑡 + 𝑠𝑡𝑒𝑝). . 𝑒𝑛𝑑]

Returns an infinite list from 𝑠𝑡𝑎𝑟𝑡 and the

increment of 𝑠𝑡𝑒𝑝

[𝑠𝑡𝑎𝑟𝑡, (𝑠𝑡𝑎𝑟𝑡 + 𝑠𝑡𝑒𝑝). .]

The second important data structure in Haskell are tuples. Tuples are relatively

short as they cannot be infinite, but may mix any types together. The typical

pattern is to use tuples when a function should return a concrete amount of

outputs. Tuples don’t have much helpful methods. It has only two methods which

work only for two-element tuples: 𝑓𝑠𝑡 and 𝑠𝑛𝑑 which return the first or second

element of tuple accordingly, but only work on two-element tuples as seen in

Equations 69 and 70.

 𝑓𝑠𝑡 (𝑎, 𝑏) = 𝑎 (69)

 𝑠𝑛𝑑 (𝑎, 𝑏) = 𝑏 (70)

To get values from tuples with more elements the following syntax may be used:

 (𝑥, 𝑦, 𝑧) = 𝑡𝑢𝑝𝑙𝑒 (71)

If some function returns a tuple with three elements, this construction allows

unrolling it into three variables. This syntax may be expanded to as many

elements as needed.

20

Haskell doesn’t have any other internal data structures. Before creating new data

structures, types should be discussed first.

3.3 Types and functions

Haskell is a strongly typed language, i.e. every variable knows its type at the

compile time. Signatures of functions in Haskell resemble ones in Typed Lambda

Calculus but with added complexity and control. Signature of functions in Lambda

Calculus part was already written in the Haskell notation to make the transition

seamless. Declaring functions in Haskell does not require signatures but it’s

considered a good practice and usually helps the programmer himself.

An important feature of types in Haskell is type inference, the compiler can

deduct which type should be the variable. Types may be defined using the

following syntax:

 𝑑𝑎𝑡𝑎 <𝑛𝑎𝑚𝑒> [<𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠>] = <𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟> [| <𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟>] …

<𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟> = <𝑛𝑎𝑚𝑒> [<𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠>]

(72)

The type declaration should have unique name and from 1 to many constructors

separated by |. Constructors are functions which takes from 0 to many

arguments. Parameters will be discussed a little bit later.

Example. The possible three-constructor type

 𝑑𝑎𝑡𝑎 𝑆ℎ𝑎𝑝𝑒 = 𝐶𝑖𝑟𝑐𝑙𝑒 | 𝑆𝑞𝑢𝑎𝑟𝑒 | 𝑅ℎ𝑜𝑚𝑏𝑢𝑠 (73)

Constructor may be recursive which is important feature for creating new data

structures. One of the most popular data structures are trees. A common one is a

binary tree which is a tree with maximum two children. A binary tree consists of a

node and each node either empty or contains value and links to the left and right

branches which are also trees. It can be defined as in the following example.

Example. The simple binary tree type

 𝑑𝑎𝑡𝑎 𝑇𝑟𝑒𝑒 𝑎 = 𝐸𝑚𝑝𝑡𝑦 | 𝑁𝑜𝑑𝑒 𝑎 (𝑇𝑟𝑒𝑒 𝑎) (𝑇𝑟𝑒𝑒 𝑎) 𝑑𝑒𝑟𝑖𝑣𝑖𝑛𝑔 (𝑆ℎ𝑜𝑤) (74)

Types can be defined to implement specific classes. Type classes as name imply

classify types into categories that have specific functionality, they are like Java

21

interfaces, e.g. 𝐸𝑞 type class means that type can checked for equivalence using

(==) and its counterpart (/=) . Type classes always start with capital letter and

has the following general form:

 𝑐𝑙𝑎𝑠𝑠 <𝑐𝑙𝑎𝑠𝑠 𝑛𝑎𝑚𝑒> 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤ℎ𝑒𝑟𝑒

 <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠>

 [<𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠>]

(75)

Example. Simplified 𝐸𝑞 type class definition

 𝑐𝑙𝑎𝑠𝑠 𝐸𝑞 𝑎 𝑤ℎ𝑒𝑟𝑒

(==) ∷ 𝑎 → 𝑎 → 𝐵𝑜𝑜𝑙

 (/=) ∷ 𝑎 → 𝑎 → 𝐵𝑜𝑜𝑙

(76)

When defining function signatures, it is possible to restrict arguments to specific

classes, i.e. any type that belongs to that class can be used. The syntax of writing

function signatures is the same as it was defined in Lambda Calculus and adding

idea of class restrictions leads to the following:

 <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒> ∷ [<𝑐𝑙𝑎𝑠𝑠 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠> ⇒] <𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑛𝑑 𝑜𝑢𝑡𝑝𝑢𝑡> (77)

Example. The function with two inputs of 𝐸𝑞 class and return value of 𝑁𝑢𝑚 class

 𝑓 ∷ (𝐸𝑞 𝑎, 𝑁𝑢𝑚 𝑏) ⇒ 𝑎 → 𝑎 → 𝑏 (78)

Having definitions of types and classes, it is possible to make a type an instance

of the class. It has the following syntax:

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 <𝑐𝑙𝑎𝑠𝑠 𝑛𝑎𝑚𝑒> <𝑡𝑦𝑝𝑒 𝑛𝑎𝑚𝑒> 𝑤ℎ𝑒𝑟𝑒

 <𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠>

(79)

Example. The declaration of 𝑆ℎ𝑎𝑝𝑒 type as an instance of 𝐸𝑞 type class

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐸𝑞 𝑆ℎ𝑎𝑝𝑒 𝑤ℎ𝑒𝑟𝑒

 𝐶𝑖𝑟𝑐𝑙𝑒 == 𝐶𝑖𝑟𝑐𝑙𝑒 = 𝑇𝑟𝑢𝑒

 𝑆𝑞𝑢𝑎𝑟𝑒 == 𝑆𝑞𝑢𝑎𝑟𝑒 = 𝑇𝑟𝑢𝑒

 𝑅ℎ𝑜𝑚𝑏𝑢𝑠 == 𝑅ℎ𝑜𝑚𝑏𝑢𝑠 = 𝑇𝑟𝑢𝑒

 _ == _ = 𝐹𝑎𝑙𝑠𝑒

(80)

22

It should be noted that it is possible to use type constructors inside pattern

matching. We defined our function the way we did it in Equation 49, if any of

three cases occur then shapes are indeed the same and answer is 𝑇𝑟𝑢𝑒,

otherwise it is 𝐹𝑎𝑙𝑠𝑒. Though, this example is illustrative, it is unnecessary to

define such functions with obvious implementations and this type may be written

as deriving 𝐸𝑞 type class. The derivation of classes by types has the following

general syntax:

 <𝑡𝑦𝑝𝑒 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛> 𝑑𝑒𝑟𝑖𝑣𝑖𝑛𝑔 (<𝑐𝑙𝑎𝑠𝑠 𝑛𝑎𝑚𝑒> [,<𝑐𝑙𝑎𝑠𝑠 𝑛𝑎𝑚𝑒>] …) (81)

Our 𝑆ℎ𝑎𝑝𝑒 also cannot be shown as string and thus it cannot be printed to the

console. Function 𝑠ℎ𝑜𝑤 is defined in 𝑆ℎ𝑜𝑤 type class is doing exactly that

behavior and our class may be extended to derive this behavior also.

Example. 𝑆ℎ𝑎𝑝𝑒 type deriving 𝐸𝑞 and 𝑆ℎ𝑜𝑤 type classes

 𝑑𝑎𝑡𝑎 𝑆ℎ𝑎𝑝𝑒 = 𝐶𝑖𝑟𝑐𝑙𝑒 | 𝑆𝑞𝑢𝑎𝑟𝑒 | 𝑅ℎ𝑜𝑚𝑏𝑢𝑠 𝑑𝑒𝑟𝑖𝑣𝑖𝑛𝑔 (𝐸𝑞, 𝑆ℎ𝑜𝑤) (82)

To continue our immersion into types let’s create the type that can be

parametrized. Parameters are the types that can be hidden inside another type. If

the type has only one constructor, it is good practice to name it after the type.

Example. The simplest parametrized type

 𝑑𝑎𝑡𝑎 𝐵𝑜𝑥 𝑎 = 𝐵𝑜𝑥 𝑎 (83)

Now it is possible to assign some variable inside 𝐵𝑜𝑥.

Example. 𝐵𝑜𝑥 type with different arguments

 𝐵𝑜𝑥 ′𝑎′ ∷ 𝐵𝑜𝑥 𝐶ℎ𝑎𝑟 (84)

 𝐵𝑜𝑥 4 ∷ 𝐵𝑜𝑥 𝐼𝑛𝑡 (85)

In functions it is possible to declare that any 𝐵𝑜𝑥 will work not with some specific

internals, though it is possible to define it if needed. In signatures there can be

only concrete types. A concrete type is any type that run a type constructor with

all parameters filled, in case of zero parameters it is always concrete type, i.e.

𝐵𝑜𝑥 4 is a concrete type, but 𝐵𝑜𝑥 is a type constructor.

23

Example. Valid and invalid function signatures

 𝑡𝑎𝑘𝑒𝐹𝑟𝑜𝑚𝐴𝑛𝑦𝐵𝑜𝑥 ∷ 𝐵𝑜𝑥 𝑎 → 𝑎 (86)

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐵𝑜𝑥 ∷ 𝑎 → 𝐵𝑜𝑥 𝐼𝑛𝑡 (87)

 𝑚𝑒𝑠𝑠𝑈𝑝𝑊𝑖𝑡ℎ𝐵𝑜𝑥𝑒𝑠 ∷ 𝐵𝑜𝑥 → 𝑎 (88)

As it was mentioned it is possible to do pattern matching of type constructors with

arguments in functions, i.e. it is possible to peak into insides of types and process

them accordingly.

Example. Function that says if there is 42 inside 𝐵𝑜𝑥 type

 𝑖𝑠𝐼𝑡𝐴𝑛𝑠𝑤𝑒𝑟 ∷ 𝐵𝑜𝑥 𝐼𝑛𝑡 → 𝑆𝑡𝑟𝑖𝑛𝑔

𝑖𝑠𝐼𝑡𝐴𝑛𝑠𝑤𝑒𝑟 (𝐵𝑜𝑥 42) = "𝑇ℎ𝑒 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 ℎ𝑒𝑟𝑒"

𝑖𝑠𝐼𝑡𝐴𝑛𝑠𝑤𝑒𝑟 _ = "𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔"

(89)

Helpful feature of Haskell types is a possibility to create synonyms for types in the

following way:

 𝑡𝑦𝑝𝑒 <𝑠𝑦𝑛𝑜𝑛𝑦𝑚 𝑛𝑎𝑚𝑒> = <𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑦𝑝𝑒 𝑛𝑎𝑚𝑒> (90)

The keyword 𝑡𝑦𝑝𝑒 is very misleading, it is only making a type synonym and not

declaring new type. The best example when type synonym may be helpful is

String. String is a list of characters then the type synonym for that is defined as

the following:

 𝑡𝑦𝑝𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 = [𝐶ℎ𝑎𝑟] (91)

Type synonyms are useful for the clearer description of a function. E.g. we want

to write a program that will operate with names and prices of products

represented by strings and doubles accordingly.

Example. Type synonyms for easier understanding of code

 𝑡𝑦𝑝𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑁𝑎𝑚𝑒 = 𝑆𝑡𝑟𝑖𝑛𝑔 (92)

 𝑡𝑦𝑝𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑃𝑟𝑖𝑐𝑒 = 𝐷𝑜𝑢𝑏𝑙𝑒 (93)

Let’s return to our 𝐵𝑜𝑥, right now it is just a wrapper around anything and is good

only for the illustrative purpose. But by just adding another constructor and

24

renaming will create one of the most important types in Haskell, 𝑀𝑎𝑦𝑏𝑒, which

has the following definition:

 𝑑𝑎𝑡𝑎 𝑀𝑎𝑦𝑏𝑒 𝑎 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 | 𝐽𝑢𝑠𝑡 𝑎 (94)

This type has the great power of holding value or not, this is the Haskell way of

dealing with exceptions. Every function that can fail will return either 𝐽𝑢𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 in

case of a success or 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 in case of a failure. Let’s create a function that take

numerical 𝑀𝑎𝑦𝑏𝑒 type, i.e. (𝑁𝑢𝑚 𝑎) ⇒ 𝑀𝑎𝑦𝑏𝑒 𝑎, and try to multiply it by 2.

Example. The function that tries to multiply 𝑀𝑎𝑦𝑏𝑒 value by 2.

 𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝐵𝑦2 ∷ (𝑁𝑢𝑚 𝑎) ⇒ 𝑀𝑎𝑦𝑏𝑒 𝑎 → 𝑀𝑎𝑦𝑏𝑒 𝑎

𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝐵𝑦2 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝐵𝑦2 (𝐽𝑢𝑠𝑡 𝑎) = 𝐽𝑢𝑠𝑡 (𝑎 ∗ 2)

(95)

Now our program will never crash if we’ll supply 𝑀𝑎𝑦𝑏𝑒 value parsed by other

function that could fail. It is easy to generalize multiplication and use two 𝑀𝑎𝑦𝑏𝑒

and try to multiply them. If any of them is 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 then answer should be

𝑁𝑜𝑡ℎ𝑖𝑛𝑔 otherwise the multiplication of the insides.

Example. The function that try to multiply two 𝑀𝑎𝑦𝑏𝑒 values with numbers inside

 𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 ∷ (𝑁𝑢𝑚 𝑎) ⇒ 𝑀𝑎𝑦𝑏𝑒 𝑎 → 𝑀𝑎𝑦𝑏𝑒 𝑎 → 𝑀𝑎𝑦𝑏𝑒 𝑎

𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 _ = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 _ 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 (𝐽𝑢𝑠𝑡 𝑎) (𝐽𝑢𝑠𝑡 𝑏) = 𝐽𝑢𝑠𝑡 (𝑎 ∗ 𝑏)

(96)

Last thing that should be said is how to extract values from types. First, type that

will have values extracted should be defined.

Example. 𝐶𝑜𝑙𝑜𝑟 type that will be used for arguments extraction

 𝑑𝑎𝑡𝑎 𝐶𝑜𝑙𝑜𝑟 = 𝐶𝑜𝑙𝑜𝑟 𝐷𝑜𝑢𝑏𝑙𝑒 𝐷𝑜𝑢𝑏𝑙𝑒 𝐷𝑜𝑢𝑏𝑙𝑒 (97)

Now, let’s define functions to extract these values, like we have red, green and

blue values.

25

Example. Functions to get arguments from 𝐶𝑜𝑙𝑜𝑟 type

 𝑟𝑒𝑑 ∷ 𝐶𝑜𝑙𝑜𝑟 → 𝐷𝑜𝑢𝑏𝑙𝑒

𝑟𝑒𝑑 (𝐶𝑜𝑙𝑜𝑟 𝑟𝑒𝑑 _ _) = 𝑟𝑒𝑑

(98)

 𝑔𝑟𝑒𝑒𝑛 ∷ 𝐶𝑜𝑙𝑜𝑟 → 𝐷𝑜𝑢𝑏𝑙𝑒

𝑔𝑟𝑒𝑒𝑛 (𝐶𝑜𝑙𝑜𝑟 _ 𝑔𝑟𝑒𝑒𝑛 _) = 𝑔𝑟𝑒𝑒𝑛

(99)

 𝑏𝑙𝑢𝑒 ∷ 𝐶𝑜𝑙𝑜𝑟 → 𝐷𝑜𝑢𝑏𝑙𝑒

𝑏𝑙𝑢𝑒 (𝐶𝑜𝑙𝑜𝑟 _ _ 𝑏𝑙𝑢𝑒) = 𝑏𝑙𝑢𝑒

(100)

It is working, and it is possible to call 𝑔𝑟𝑒𝑒𝑛 (𝑜𝑢𝑟𝐶𝑜𝑙𝑜𝑟) and get the 𝑔𝑟𝑒𝑒𝑛

component of the type. But there is simple and preferable way called record

syntax. It allows to give names to arguments that will automatically create

functions to get them. Also, it allows to create type with setting arguments by

names and in any order.

Example. The definition and creating 𝐶𝑜𝑙𝑜𝑟 type using the record syntax

 𝑑𝑎𝑡𝑎 𝐶𝑜𝑙𝑜𝑟 = 𝐶𝑜𝑙𝑜𝑟 {𝑟𝑒𝑑 ∷ 𝐷𝑜𝑢𝑏𝑙𝑒, 𝑔𝑟𝑒𝑒𝑛 ∷ 𝐷𝑜𝑢𝑏𝑙𝑒, 𝑏𝑙𝑢𝑒 ∷ 𝐷𝑜𝑢𝑏𝑙𝑒} (101)

 𝐶𝑜𝑙𝑜𝑟 {𝑔𝑟𝑒𝑒𝑛 = 2, 𝑟𝑒𝑑 = 1, 𝑏𝑙𝑢𝑒 = 3} (102)

Haskell is left associative just like Lambda Calculus, i.e. the left-most function will

try to take all arguments it encounters. But Haskell also has support for the infix

functions. To make any binary function infix it should be written inside backticks.

Example. Usage of Equation 96 in infix manner

 𝐽𝑢𝑠𝑡 3 `𝑚𝑎𝑦𝑏𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒` 𝐽𝑢𝑠𝑡 4 = 𝐽𝑢𝑠𝑡 12 (103)

Functions that consist only of special characters like +, ∗, /, ==, ., $ are

considered infix by default. To make such function prefix or to refer to it

parentheses are required (+), (==), etc.

Example. Using multiplication as prefix function

 (∗) 3 4 = 12 (104)

26

One of such infix functions is the application function $. The application function

has the same form as Equation 7 and signature as Equation 39. It will not run

until the right part is calculated completely. In general, $ may be replaced with

parentheses that start here and go until the end of expression.

Example. Differences between results with $, without it and with parentheses

 𝑠𝑢𝑐𝑐 2 ∗ 3 = 9 (105)

 𝑠𝑢𝑐𝑐 (2 ∗ 3) = 7 (106)

 𝑠𝑢𝑐𝑐 $ 2 ∗ 3 = 7 (107)

In the first case 𝑠𝑢𝑐𝑐 2 was evaluated first and 3 ∗ 3 = 9. In the second case (2 ∗

3) evaluated first and then 𝑠𝑢𝑐𝑐 6 = 7. In third case 𝑠𝑢𝑐𝑐 encounters $ and lets

everything after it to be evaluated first, 2 ∗ 3 = 6 and 𝑠𝑢𝑐𝑐 $ 6 = 𝑠𝑢𝑐𝑐 6 = 7.

$ has such property, because it is possible to set a fixity for the infix functions in

Haskell. Functions may be set precedence from 0 to 9, where function + has 6, ∗

has 7, but $ has 0 and always evaluated the very last. Another point that the fixity

declaration allows to set is left, right or no associativity, which sets in which order

functions with the same precedence will be evaluated. The following construction

is used to define fixity:

 <𝑓𝑖𝑥𝑖𝑡𝑦> <𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒> <𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒> [,<𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒>] … (108)

 <𝑓𝑖𝑥𝑖𝑡𝑦> = 𝑖𝑛𝑓𝑖𝑥 𝑜𝑟 𝑖𝑛𝑓𝑖𝑥𝑙 𝑜𝑟 𝑖𝑛𝑓𝑖𝑥𝑟

As an example, let’s define a function with different fixity than usual. The simplest

operations to notice are addition with multiplication.

Example. Addition that will be evaluated before multiplication

 𝑖𝑛𝑓𝑖𝑥𝑙 8 +++

(+++) ∷ (𝑁𝑢𝑚 𝑎) ⇒ 𝑎 → 𝑎 → 𝑎

𝑥 +++ 𝑦 = 𝑥 + 𝑦

(109)

 2 +++ 3 ∗ 4 = 5 ∗ 4 = 20 (110)

 2 ∗ 3 +++ 4 ∗ 5 = 2 ∗ 7 ∗ 5 = 70 (111)

27

It should be noted that functions with the same precedence, but a different

associativity must not be used inside one expression, as it is undefined in which

order to execute them and an error will occur. The same will happen if two

functions without associativity will be used in the same expression.

Another function that is helpful in functional programming for defining the order of

execution is the function composition. Function composition is applying a function

on the result of another one. Both functions should take one argument. Ways of

defining it in math and Haskell can be seen in Equations 112 and 113.

 𝑓(𝑔(𝑥)) = (𝑓 ∘ 𝑔)(𝑥) (112)

 𝑓 (𝑔 𝑥) = (𝑓 . 𝑔) 𝑥 (113)

Function composition has the following signature and definition in Haskell:

 (.) ∷ (𝑎 → 𝑏) → (𝑏 → 𝑐) → (𝑎 → 𝑐)

𝑓 . 𝑔 = \𝑥 → 𝑓 (𝑔 𝑥)

(114)

Now we can create a new function using function composition. E.g. a function

that will double an argument and then subtract 2. Ways to define it with and

without the function composition may be seen in the following example.

Example. The function that doubles an argument and then subtract two from it

 𝑓 𝑥 = 𝑠𝑢𝑏𝑇𝑤𝑜 (𝑑𝑜𝑢𝑏𝑙𝑒 𝑥) (115)

 𝑓 𝑥 = (𝑠𝑢𝑏𝑇𝑤𝑜 . 𝑑𝑜𝑢𝑏𝑙𝑒) 𝑥 (116)

Although it works, there is another preferred method. Instead of applying a

function we can just define a function, i.e. we can omit an argument because

when function will approach some argument, it will apply it to it.

Example. Previous example written in point-free style

 𝑓 = 𝑠𝑢𝑏𝑇𝑤𝑜 . 𝑑𝑜𝑢𝑏𝑙𝑒 (117)

It is widely encouraged to make all functions in Haskell like this, if possible. It is

called point-free style. The name can be confusing, but it originates from the

topology and the choice of operator (.) in Haskell is just an unfortunate

coincidence. (Haskell 2011.)

28

Officially all Haskell functions may take only one argument. But still we saw

functions that disobey that rule like power function in Equation 50. Haskell has a

special internal operation, which was already mentioned in Lambda Calculus part

called currying, which is also named after the logician Haskell Curry. Currying is

like a one-step beta-reduction in Lambda Calculus. It is a process of forming a

new function by taking the first argument and then in case of several arguments

this newly built function is taking it as an argument. Formally, it may be defined

as in Equation 118. A function that takes two arguments is the function with 𝑎

already inside that takes 𝑏 as an argument.

 𝑓 𝑎 𝑏 = (𝑓 𝑎) 𝑏 (118)

Example. The maximum function and how it can be seen with currying

 𝑚𝑎𝑥 𝑎 𝑏 = 𝑖𝑓 𝑎 > 𝑏 𝑡ℎ𝑒𝑛 𝑎 𝑒𝑙𝑠𝑒 𝑏 (119)

 𝑚𝑎𝑥 ∷ (𝑂𝑟𝑑 𝑎) ⇒ 𝑎 → 𝑎 → 𝑎

 𝑚𝑎𝑥 5 𝑏 = 𝑖𝑓 5 > 𝑏 𝑡ℎ𝑒𝑛 5 𝑒𝑙𝑠𝑒 𝑏 (120)

 𝑚𝑎𝑥 5 ∷ (𝑁𝑢𝑚 𝑎, 𝑂𝑟𝑑 𝑎) ⇒ 𝑎 → 𝑎

If only one argument is passed it will return a function with a partial application

and it will become a function that returns 5 or any bigger number. Any function

goes through such process and the partial application will be helpful after learning

about special operations including mapping.

3.4 Additional functional operations

There are three additional functional operations: mapping, filtering and folding.

These operations are possible only due to fact that in Haskell functions are the

first-order objects, i.e. they can be passed like a variable. Mapping is the process

of applying a specific function to some data structure. Usual 𝑚𝑎𝑝 function works

only for lists. The way of extending such functionality to the other types will be

discussed in the next subsection. 𝑚𝑎𝑝 has the following signature:

 𝑚𝑎𝑝 ∷ (𝑎 → 𝑏) → [𝑎] → [𝑏] (121)

It takes a list and function that takes one input which must be the same type as

the elements in a list and return a list with the same size with the elements of the

29

same or different type. Writing more explicitly, the result of mapping will be the

following:

 𝑚𝑎𝑝 𝑓 [𝑎0, 𝑎1 … 𝑎𝑛] = [𝑓 𝑎0, 𝑓 𝑎1 … 𝑓 𝑎𝑛] (122)

The implementation would look as follows:

 𝑚𝑎𝑝 _ [] = []

𝑚𝑎𝑝 𝑓 (𝑥: 𝑥𝑠) = (𝑓 𝑥): (𝑚𝑎𝑝 𝑓 𝑥𝑠)

(123)

Example. The mapping of self-multiplication over a list

 𝑚𝑎𝑝 (\𝑥 → 𝑥 ∗ 𝑥) [1,2,3,4] = [1,4,9,16] (124)

Filtering is a process of removing elements that do not follow a predicate. It

returns a list whose size will be between 0 and the initial size where the elements

don’t change their types or values. It has the following signature:

 𝑓𝑖𝑙𝑡𝑒𝑟 ∷ (𝑎 → 𝐵𝑜𝑜𝑙) → [𝑎] → [𝑎] (125)

The possible implementation will be the following:

 𝑓𝑖𝑙𝑡𝑒𝑟 _ [] = []

𝑓𝑖𝑙𝑡𝑒𝑟 𝑓 𝑥: 𝑥𝑠

 | 𝑓 𝑥 = 𝑥 ∶ (𝑓𝑖𝑙𝑡𝑒𝑟 𝑓 𝑥𝑠)

 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = 𝑓𝑖𝑙𝑡𝑒𝑟 𝑓 𝑥𝑠

(126)

Example. Getting all the elements bigger than 2

 𝑓𝑖𝑙𝑡𝑒𝑟 (\𝑥 → 𝑥 > 2) [1,2,3,4] = [3,4] (127)

Folding is the process of generating one value from a list also sometimes referred

to as reducing. Folding requires a function that takes two arguments, a starting

value and a list. Folding is the most powerful function of functional programming.

There are two types of folding: folding from the left 𝑓𝑜𝑙𝑑𝑙 and from the right 𝑓𝑜𝑙𝑑𝑟.

Equations 128 and 129 show the simplified signatures.

 𝑓𝑜𝑙𝑑𝑙 ∷ (𝑏 → 𝑎 → 𝑏) → 𝑏 → [𝑏] → 𝑏 (128)

 𝑓𝑜𝑙𝑑𝑟 ∷ (𝑎 → 𝑏 → 𝑏) → 𝑏 → [𝑎] → 𝑏 (129)

Folding may be calling a function in the infix manner as follows:

 𝑖𝑛𝑓𝑖𝑥𝑙 𝑓

𝑠𝑡𝑎𝑟𝑡 `𝑓` 𝑎0 `𝑓` 𝑎1 `𝑓` … `𝑓` 𝑎𝑛

(130)

30

 𝑖𝑛𝑓𝑖𝑥𝑟 𝑓

𝑎0 `𝑓` 𝑎1 `𝑓` … `𝑓` 𝑎𝑛 `𝑓` 𝑠𝑡𝑎𝑟𝑡

(131)

It should be noted that the left folding will call a function next time only when the

previous call is evaluated, when the right folding makes all the calls first and only

then starts to evaluate.

If a function for folding is a lambda function, then arguments are usually called

𝑎𝑐𝑐 and 𝑥, to denote the accumulator and the current value accordingly. Folding

applies the function between an accumulator and the values of the list one by one

until the list is over.

Example. Summing all elements of list

 𝑓𝑜𝑙𝑑𝑙 (+) 0 [1,2,3,4] = 10 (132)

Sometimes, folding doesn’t change the type of values, and it is possible to use

the first value of list as the starting value. For that there is shorthand functions

𝑓𝑜𝑙𝑑𝑙1 and 𝑓𝑜𝑙𝑑𝑟1.

Example. Summing a list with the starting value being the first element of the list

 𝑓𝑜𝑙𝑑𝑙1 (+) [1,2,3,4] = 10 (133)

Let’s return to our 𝑇𝑟𝑒𝑒 and define a function to add an element to it. If the current

value is smaller than the value of the current node, then we put it to the left. If it is

bigger, then to the right. In case of equality return just current tree. It should be

noted that this function does not create an optimal tree.

Example. The function to add an element to our 𝑇𝑟𝑒𝑒 type

 𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 ∷ (𝑂𝑟𝑑 𝑎) ⇒ 𝑎 → 𝑇𝑟𝑒𝑒 𝑎 → 𝑇𝑟𝑒𝑒 𝑎

𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 𝑥 𝐸𝑚𝑝𝑡𝑦 = 𝑁𝑜𝑑𝑒 𝑥 𝐸𝑚𝑝𝑡𝑦 𝐸𝑚𝑝𝑡𝑦

𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 𝑥 (𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 𝑙𝑒𝑓𝑡 𝑟𝑖𝑔ℎ𝑡)

 | 𝑥 == 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑁𝑜𝑑𝑒 𝑙𝑒𝑓𝑡 𝑟𝑖𝑔ℎ𝑡

 | 𝑥 < 𝑣𝑎𝑙𝑢𝑒 = 𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 𝑥 𝑙𝑒𝑓𝑡) 𝑟𝑖𝑔ℎ𝑡

 | 𝑥 > 𝑣𝑎𝑙𝑢𝑒 = 𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒 𝑙𝑒𝑓𝑡 (𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 𝑥 𝑟𝑖𝑔ℎ𝑡)

(134)

31

Now this function can utilize the existing tree and add an element, which in fact

mean that it will construct new tree as the variables are immutable. By using

folding it is possible to utilize this function to create a tree from a list like the

following:

 𝑓𝑜𝑙𝑑𝑟 𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 𝐸𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 (135)

But, it also possible to utilize left folding even if 𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒 has a wrong

signature. The function 𝑓𝑙𝑖𝑝 which is defined in Equation 136 can help to change

order of arguments.

 𝑓𝑙𝑖𝑝 𝑓 𝑥 𝑦 = 𝑓 𝑦 𝑥 (136)

And instead a binary tree may be created in the following manner:

 𝑓𝑜𝑙𝑑𝑙 (𝑓𝑙𝑖𝑝 𝑎𝑑𝑑𝑇𝑜𝑇𝑟𝑒𝑒) 𝐸𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 (137)

As already mentioned, lists are a powerful and important tool in Haskell. There

are several functional ways of interacting with lists shown in Table 5.

Table 5. Functional list operations

Skips elements while predicate 𝑓 returns true

and returns all further elements

𝑑𝑟𝑜𝑝𝑊ℎ𝑖𝑙𝑒 𝑓 𝑙𝑖𝑠𝑡

Returns elements of a list while predicate 𝑓

returns true, then skips all the other elements

𝑡𝑎𝑘𝑒𝑊ℎ𝑖𝑙𝑒 𝑓 𝑙𝑖𝑠𝑡

Element-wise application of function 𝑓 𝑧𝑖𝑝𝑊𝑖𝑡ℎ 𝑓 𝑙𝑖𝑠𝑡1 𝑙𝑖𝑠𝑡2

Returns true if, predicate 𝑓 returns true on at

least one element

𝑎𝑛𝑦 𝑓 𝑙𝑖𝑠𝑡

Returns true if, predicate 𝑓 returns true for all

elements

𝑎𝑙𝑙 𝑓 𝑙𝑖𝑠𝑡

Having so many functional tools, let’s use them to calculate some examples.

Example. Various functional operations

 𝑚𝑎𝑝 (𝑚𝑎𝑝 (\𝑥 → 𝑥 ∗ 𝑥)) [[1,2,3], [4,5,6]] = [[1,4,9], [16,25,36]] (138)

 𝑓𝑖𝑙𝑡𝑒𝑟 (\𝑥 → 100 `𝑚𝑜𝑑` 𝑥 == 0) [1. .100] = 𝑤ℎ𝑜𝑙𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑜𝑓 100 (139)

 𝑡𝑎𝑘𝑒𝑊ℎ𝑖𝑙𝑒 (\𝑥 → 𝑥 `𝑒𝑙𝑒𝑚` "𝑎𝑒𝑦𝑢𝑖𝑜") 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑓𝑖𝑟𝑠𝑡 𝑣𝑜𝑤𝑒𝑙𝑠 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔 (140)

 𝑧𝑖𝑝𝑊𝑖𝑡ℎ (^) [2,2. .] [0. .] = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑖𝑠𝑡 𝑤𝑖𝑡ℎ 𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓 𝑡𝑤𝑜 (141)

32

3.5 Monads

Monads are the most core concepts of Haskell. Functional programming is mostly

about composing functions and monads allow changing the way functions are

composed (Boyer 2014). Before speaking about monads, 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 should be

discussed first. Both ideas come from category theory which will not be covered

in this thesis.

𝐹𝑢𝑛𝑐𝑡𝑜𝑟 type class describe how to apply functions to some type. It has the

following definition without default implementation for 𝑓𝑚𝑎𝑝:

 𝑐𝑙𝑎𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 𝑓 𝑤ℎ𝑒𝑟𝑒

 𝑓𝑚𝑎𝑝 ∷ (𝑎 → 𝑏) → 𝑓 𝑎 → 𝑓 𝑏

(142)

𝑓𝑚𝑎𝑝 is the more general version of 𝑚𝑎𝑝 and for the lists they produce the same

results. 𝑓𝑚𝑎𝑝 signature may resemble the application function signature seen in

Equation 38. The important feature of that class definition is that 𝑓 that we will

make an instance of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 type class is not a concrete type. It can be seen by

lines 𝑓 𝑎 and 𝑓 𝑏 which imply that 𝑓 should take some arguments, and thus, it is

not a concrete type but a type constructor. This means that we can make our 𝐵𝑜𝑥

introduced in Equation 83 an instance of this type class.

Example. 𝐵𝑜𝑥 type can be an instance of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 type class

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 𝐵𝑜𝑥 𝑤ℎ𝑒𝑟𝑒

 𝑓𝑚𝑎𝑝 𝑓 (𝐵𝑜𝑥 𝑎) = 𝐵𝑜𝑥 (𝑓 𝑎)

(143)

Now it is possible to apply a function to the internals of 𝐵𝑜𝑥 and get back the

result still packed into 𝐵𝑜𝑥.

Example. Mapping of 𝑠𝑢𝑐𝑐 function upon 𝐵𝑜𝑥 object

 𝑓𝑚𝑎𝑝 𝑠𝑢𝑐𝑐 (𝐵𝑜𝑥 4) = 𝐵𝑜𝑥 5 (144)

As previously, let’s expand it to 𝑀𝑎𝑦𝑏𝑒 type as this is one of the most important

types in Haskell and its being 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 is helpful. It is easy to see that the

application of function upon 𝑀𝑎𝑦𝑏𝑒 is either an application of a function with

internals as argument or 𝑁𝑜𝑡ℎ𝑖𝑛𝑔, if there is no value. It is very similar to 𝐵𝑜𝑥 but

33

there is fallback strategy in 𝑀𝑎𝑦𝑏𝑒. 𝑀𝑎𝑦𝑏𝑒 defined as an instance of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 in

the following way:

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 𝑀𝑎𝑦𝑏𝑒 𝑤ℎ𝑒𝑟𝑒

 𝑓𝑚𝑎𝑝 𝑓 (𝐽𝑢𝑠𝑡 𝑎) = 𝐽𝑢𝑠𝑡 (𝑓 𝑎)

 𝑓𝑚𝑎𝑝 𝑓 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

(145)

The important thing that should not be overseen when making something a

𝐹𝑢𝑛𝑐𝑡𝑜𝑟 are 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 laws. They are not implied by Haskell, but when somebody

would use something as 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 they would expect a specific behavior to be

followed. 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 laws have the following formal definition:

 𝑓𝑚𝑎𝑝 𝑖𝑑 𝑎 = 𝑖𝑑 𝑎 (146)

 𝑓𝑚𝑎𝑝 (𝑓 . 𝑔) 𝑎 = 𝑓𝑚𝑎𝑝 𝑓 (𝑓𝑚𝑎𝑝 𝑔 𝑎) (147)

The first law states that there should be no difference between mapping identity

and applying identity, i.e. mapping doesn’t have side-effects. The second law

states that there should be no difference between mapping function composition

or mapping functions one by one. These laws are important as in functional

programming pure functions must return the same results with the same input,

and if laws are not obeyed it can be wrong and thus unreliable.

To uncover full potential of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 let’s make our 𝑇𝑟𝑒𝑒 introduced in Equation

74 an instance of it. How do we apply some function to all elements inside 𝑇𝑟𝑒𝑒?

First, we apply a function to the value of the current node and then apply a

function to both the left and right trees, which again will either a call function on

current value and branches. If branch is 𝐸𝑚𝑝𝑡𝑦, it will return 𝐸𝑚𝑝𝑡𝑦 then.

Example. 𝑇𝑟𝑒𝑒 type can also be an instance of 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 type class

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 𝑇𝑟𝑒𝑒 𝑤ℎ𝑒𝑟𝑒

 𝑓𝑚𝑎𝑝 𝑓 𝐸𝑚𝑝𝑡𝑦 = 𝐸𝑚𝑝𝑡𝑦

 𝑓𝑚𝑎𝑝 𝑓 (𝑁𝑜𝑑𝑒 𝑥 𝑙 𝑟) = 𝑁𝑜𝑑𝑒 (𝑓 𝑥) (𝑓𝑚𝑎𝑝 𝑓 𝑙) (𝑓𝑚𝑎𝑝 𝑓 𝑟)

(148)

Because of currying it is possible to use functions that requires more than one

argument with 𝑓𝑚𝑎𝑝. In Haskell 𝑎 and (𝑎 → 𝑏) are both valid objects, i.e. a list of

functions is as natural as a list of integers. Let’s imagine, some 𝑓 ∷ 𝑎 → 𝑏 → 𝑐,

which and 𝑓 𝑎 ∷ (𝑏 → 𝑐) which may be stored inside a list in the following way:

 𝑓𝑚𝑎𝑝 𝑓 [𝑎0, 𝑎1 … 𝑎𝑛] = [(𝑓 𝑎0), (𝑓 𝑎1) … (𝑓 𝑎𝑛)] (149)

34

Example. A list of multiplications and its signature

 𝑓𝑚𝑎𝑝 (∗) [4,5] = [(∗ 4), (∗ 5)] (150)

 𝑓𝑚𝑎𝑝 (∗) [4,5] ∷ [𝐼𝑛𝑡 → 𝐼𝑛𝑡] (151)

Now we need to access functions inside a list, the naïve way is to iterate through

this list and apply it using a lambda function.

Example. Applying a list of functions

 𝑓𝑚𝑎𝑝 (\𝑓 → 𝑓 9) 𝑎 = [36,45]

 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑓𝑚𝑎𝑝 (∗) [4,5]

(152)

We have just used a list of functions over a single value, what if we want to run

that function over a list of values? Then more mapping is required.

Example. Applying a list of functions on a list of arguments

 𝑓𝑚𝑎𝑝 (\𝑓 → 𝑓𝑚𝑎𝑝 𝑓 [9,10]) 𝑎 = [[36,40], [45,50]]

 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑓𝑚𝑎𝑝 (∗) [4,5]

(153)

But this is barely readable! There is enhanced way called 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟. It

is a type class with the following definition:

 𝑐𝑙𝑎𝑠𝑠 (𝐹𝑢𝑛𝑐𝑡𝑜𝑟 𝑓) ⇒ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑓 𝑤ℎ𝑒𝑟𝑒

 𝑝𝑢𝑟𝑒 ∷ 𝑎 → 𝑓 𝑎

 (<∗>) ∷ 𝑓 (𝑎 → 𝑏) → 𝑓 𝑎 → 𝑓 𝑏

(154)

For something to be 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 it must be 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 first. 𝑝𝑢𝑟𝑒 function

puts a value into the minimal context, it means that the value will be inside type 𝑓

but it is still the same value. <∗> looks like 𝑓𝑚𝑎𝑝 and its implementation usually

uses it. 𝐵𝑜𝑥 can be easily an instance of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟.

Example. 𝐵𝑜𝑥 is an instance of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐵𝑜𝑥 𝑤ℎ𝑒𝑟𝑒

 𝑝𝑢𝑟𝑒 = 𝐵𝑜𝑥

 𝐵𝑜𝑥 𝑓 <∗> 𝑥 = 𝑓𝑚𝑎𝑝 𝑓 𝑥

(155)

35

𝑝𝑢𝑟𝑒 function puts a value into the minimal context and the result depends into

which context it should be put, i.e. 𝑝𝑢𝑟𝑒 9 may have as many interpretations as

there are instances of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 class. It is possible to enforce to

which type function 𝑝𝑢𝑟𝑒 will use like shown in Equation 156.

Example. Using 𝑝𝑢𝑟𝑒 to enforce numeric 𝐵𝑜𝑥

 𝑝𝑢𝑟𝑒 4 ∷ 𝑁𝑢𝑚 𝑎 ⇒ 𝐵𝑜𝑥 𝑎 = 𝐵𝑜𝑥 4 (156)

To show how <∗> works Equation 153 will be refined into Equation 157. It

perfectly replaces the lambda function that we had and make the order of

arguments more readable. Though, there is a little difference of list being

flattened which happens due to the list’s implementation of <∗>.

Example. Applying a list of function on a list of arguments using <∗>

 𝑎 <∗> [9,10] = [36,40,45,50]

 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑓𝑚𝑎𝑝 (∗) [4,5]

(157)

But a list of functions is still created old way, let’s try to use 𝑝𝑢𝑟𝑒 function.

Example. Creating a list of function with the help of 𝑝𝑢𝑟𝑒 function

 𝑝𝑢𝑟𝑒 (∗) <∗> [4,5] = [(∗ 4), (∗ 5)] (158)

Now, if we combine it with the previous example it will yield the following formula.

Example. Combining 𝑝𝑢𝑟𝑒 and <∗>

 𝑝𝑢𝑟𝑒 (∗) <∗> [4,5] <∗> [9,10] = [36,40,45,50] (159)

It is now more readable and what’s more important it is scalable. Let’s imagine a

function 𝑔 that takes more than one argument. Then the following form can be

used to apply function to as much arguments as needed:

 𝑝𝑢𝑟𝑒 𝑔 <∗> 𝑥 [<∗> 𝑦] … (160)

36

And it still possible to improve it, instead of calling 𝑝𝑢𝑟𝑒 𝑔 <∗> it is possible to

write 𝑔 <$> where 𝑓 <$> 𝑥 = 𝑓𝑚𝑎𝑝 𝑓 𝑥. It leads to the ultimate way to use

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟:

 𝑔 <$> 𝑥 [<∗> 𝑦] … (161)

Now it is possible to come to the monads. A type that we make an instance of

𝑀𝑜𝑛𝑎𝑑 type class should be already an instance of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑜𝑟. Class

definition has the following form:

 𝑐𝑙𝑎𝑠𝑠 (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑚) ⇒ 𝑀𝑜𝑛𝑎𝑑 𝑚 𝑤ℎ𝑒𝑟𝑒

 𝑟𝑒𝑡𝑢𝑟𝑛 ∷ 𝑎 → 𝑚 𝑎

 (≫=) ∷ 𝑚 𝑎 → (𝑎 → 𝑚 𝑏) → 𝑚 𝑏

 (≫) ∷ 𝑚 𝑎 → 𝑚 𝑏 → 𝑚 𝑏

 𝑥 ≫ 𝑦 = 𝑥 ≫= _ → 𝑦

 𝑓𝑎𝑖𝑙 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝑚 𝑎

 𝑓𝑎𝑖𝑙 𝑚𝑠𝑔 = 𝑒𝑟𝑟𝑜𝑟 𝑚𝑠𝑔

(162)

It is easy to see that 𝑟𝑒𝑡𝑢𝑟𝑛 function is the same as 𝑝𝑢𝑟𝑒 function, it puts value

into the minimal context. It should be noted that 𝑟𝑒𝑡𝑢𝑟𝑛 is just the name of a

function and don’t have anything related with the return keyword in languages like

Java. The second function ≫= is called 𝑏𝑖𝑛𝑑 and is the main part of a monad. It

takes a monadic value and a function that takes a normal value and returns a

monadic one. Function ≫ is a shortcut for taking two monadic values and return

the second one. 𝑓𝑎𝑖𝑙 function is called when something is not right, the default

implementation throws an error which is greatly discouraged and should be

replaced with something more graceful like returning 𝑁𝑜𝑡ℎ𝑖𝑛𝑔.

There are three monads where we have already used two of them widely: lists

and our favorite 𝑀𝑎𝑦𝑏𝑒, third is the most important monad is 𝐼𝑂 which will be

discussed a little bit later.

Now we will define 𝑀𝑎𝑦𝑏𝑒 as an instance of 𝑀𝑜𝑛𝑎𝑑 in Equation 163. Monads

work best with types that can be in several states or have several values inside

like tuples and making 𝐵𝑜𝑥 an instance of 𝑀𝑜𝑛𝑎𝑑 serve little to none purpose.

The minimal class definition requires to implement 𝑟𝑒𝑡𝑢𝑟𝑛 and 𝑏𝑖𝑛𝑑 functions,

37

however, as I have already mentioned leaving the default implementation for 𝑓𝑎𝑖𝑙

is greatly discouraged. In 𝑀𝑎𝑦𝑏𝑒 some failure will just result in 𝑁𝑜𝑡ℎ𝑖𝑛𝑔.

 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑜𝑛𝑎𝑑 𝑀𝑎𝑦𝑏𝑒 𝑤ℎ𝑒𝑟𝑒

 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝐽𝑢𝑠𝑡

 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 ≫==𝑁𝑜𝑡ℎ𝑖𝑛𝑔

 𝐽𝑢𝑠𝑡 𝑥 ≫= 𝑓 = 𝑓 𝑥

 𝑓𝑎𝑖𝑙 _ = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

(163)

It was the first part of working with monads – defining an instance. The second

part requires an appropriate function to work with monads. Let’s imagine, we play

a game with adding integers to the sum and if the sum becomes too big then it is

the end of our game. Our function should take a usual value and return a

monadic one.

Example. The function that takes two values and check if the sum is too big

 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 ∷ (𝑂𝑟𝑑 𝑎, 𝑁𝑢𝑚 𝑎) ⇒ 𝑎 → 𝑎 → 𝑀𝑎𝑦𝑏𝑒 𝑎

𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑠𝑢𝑚 𝑥

 | 𝑛𝑒𝑤𝑆𝑢𝑚 ≥ 10 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

 | 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = 𝐽𝑢𝑠𝑡 𝑛𝑒𝑤𝑆𝑢𝑚

 𝑤ℎ𝑒𝑟𝑒 𝑛𝑒𝑤𝑆𝑢𝑚 = 𝑠𝑢𝑚 + 𝑥

(164)

Now, we have two parts that can be combined to work together. Also, we should

note that the function can work by itself, without using 𝑏𝑖𝑛𝑑. The following results

may be seen of calling function normal and monadic way.

Example. Using the function with and without 𝑏𝑖𝑛𝑑 operation

 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 3 4 = 𝐽𝑢𝑠𝑡 7 (165)

 𝑟𝑒𝑡𝑢𝑟𝑛 4 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 3 = 𝐽𝑢𝑠𝑡 7 (166)

It is easy to see that our function takes two values and return a monadic value of

𝑀𝑎𝑦𝑏𝑒. But what if we want to apply function several times? Then we just call

𝑏𝑖𝑛𝑑 function as much times as needed because usual call doesn’t let us do it.

38

Example. Chaining of 𝑏𝑖𝑛𝑑 operations

 𝑟𝑒𝑡𝑢𝑟𝑛 4 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 3 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 2 = 𝐽𝑢𝑠𝑡 9 (167)

This is the simple way of chaining calls of functions that work with monads. Now

let’s tinker arguments to make it return 𝑁𝑜𝑡ℎ𝑖𝑛𝑔.

Example. Chains that will result in 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

 𝑟𝑒𝑡𝑢𝑟𝑛 4 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 3 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 11 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 (168)

 𝑟𝑒𝑡𝑢𝑟𝑛 4 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 11 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 2 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 (169)

 𝑟𝑒𝑡𝑢𝑟𝑛 11 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 3 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 2 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 (170)

We don’t care when it fails, only whether it fails or not. Creating a failover function

with signature 𝑎 → 𝑀𝑎𝑦𝑏𝑒 𝑏 it is possible to chain operations and we don’t need

to check at each step whether the game is over or not.

There was one more function that we didn’t use yet, ≫. It is possible to use it to

create the 100% failure as only the second value will be returned.

Example. Using ≫ to make whole chain return 𝑁𝑜𝑡ℎ𝑖𝑛𝑔

 𝑟𝑒𝑡𝑢𝑟𝑛 4 ≫ 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 ≫= 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 2 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 (171)

So far, we’ve been writing everything inline and it becomes hard to read and write

in case of a big number of calculations. Monads provide another feature called 𝑑𝑜

notation. Let’s rewrite our expression using it and show how compiler converts it.

Example. Rewriting the chain of operations into 𝑑𝑜 notation

 𝑝𝑙𝑎𝑦𝐺𝑎𝑚𝑒 = 𝑑𝑜

 𝑥 ← 𝑟𝑒𝑡𝑢𝑟𝑛 4

 𝑦 ← 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑥 3

 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑦 2

(172)

 𝑟𝑒𝑡𝑢𝑟𝑛 4 ≫= (\𝑥 → 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑥 3 ≫= (\𝑦 → 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑦 2)) (173)

 𝑝𝑙𝑎𝑦𝐺𝑎𝑚𝑒 = 𝐽𝑢𝑠𝑡 9 (174)

39

So, what can we see? At the same time variables behave like normal and

monadic values. 𝑟𝑒𝑡𝑢𝑟𝑛 4 returns monadic value but 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑥 3 should use

normal value it means that ← inside 𝑑𝑜 has the power of uncovering a monadic

value and assigning it to the variable. The important feature is that type of a

function is the last action performed, that’s why we don’t bind last action with ←,

as it will be done automatically for us. Let’s try to rewrite some example with

failure inside it.

Example. A fail game with 𝑑𝑜 notation

 𝑝𝑙𝑎𝑦𝐹𝑎𝑖𝑙𝐺𝑎𝑚𝑒 = 𝑑𝑜

 𝑥 ← 𝑟𝑒𝑡𝑢𝑟𝑛 4

 𝑦 ← 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑥 11

 𝑎𝑑𝑑𝑇𝑜𝑆𝑢𝑚 𝑦 2

(175)

 𝑝𝑙𝑎𝑦𝐹𝑎𝑖𝑙𝐺𝑎𝑚𝑒 = 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 (176)

It looks like imperative programming but with the power of the implicit exception

handling.

After looking on some examples of monads it worth mentioning that there are

several laws that monads define. They are like 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 laws, are not implied by

Haskell but everybody expects them to hold. In fact, we’ve already encountered

the first monad law shown in Equations 165 and 166. It states that these two

ways of calling a function must yield the same results. The second law states that

binding of 𝑟𝑒𝑡𝑢𝑟𝑛 function should not alter the input. The third law states that it

should be no difference between chaining using 𝑏𝑖𝑛𝑑 function or using a usual

application. Formally they may be defined in the following way:

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 ≫= 𝑓 = 𝑓 𝑥 (177)

 𝑚 ≫= 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑚 (178)

 𝑚 ≫= 𝑓 ≫= 𝑔 = 𝑚 ≫= (\𝑥 → 𝑓 𝑥 ≫= 𝑔) (179)

The first law should hold true because that the way a function should apply a

monadic value with a function that takes a non-monadic argument. The second

law should hold true because 𝑏𝑖𝑛𝑑 must unfold 𝑀𝑜𝑛𝑎𝑑 to a normal value and

apply any function that must take a normal value and return monadic one. 𝑟𝑒𝑡𝑢𝑟𝑛

40

function should just put a normal value into the minimal monadic context.

Summing these two facts gives to us that binding 𝑟𝑒𝑡𝑢𝑟𝑛 function should unfold

and instantly fold a monadic value back resulting in the zero changes. The third

law is harder to see why it should hold true. Binding to the lambda function

unfolds 𝑚 and allows us to apply a function usual way to the inside 𝑥 which is as

we stated in the first monad law should be the same as binding. Then we use

𝑏𝑖𝑛𝑑 to apply the second function 𝑔.

Another important monad is 𝑊𝑟𝑖𝑡𝑒𝑟. It allows to utilize logging in Haskell. The

idea is to have a tuple with the main object that is being processed and log

messages that are appended to the log object. The usual pattern is the following:

create a function that returns 𝑊𝑟𝑖𝑡𝑒𝑟 type, inside the function call 𝑡𝑒𝑙𝑙 function to

append something to the log and then call 𝑟𝑒𝑡𝑢𝑟𝑛 with the answer.

Example. The function that make whole division by 2 and says what the input

was

 𝑙𝑜𝑔𝐷𝑖𝑣𝑖𝑣𝑒𝐵𝑦𝑇𝑤𝑜 ∷ 𝐼𝑛𝑡 → 𝑊𝑟𝑖𝑡𝑒𝑟 𝑆𝑡𝑟𝑖𝑛𝑔 𝐼𝑛𝑡

 𝑙𝑜𝑔𝐷𝑖𝑣𝑖𝑑𝑒𝐵𝑦𝑇𝑤𝑜 𝑥 = 𝑑𝑜

 𝑡𝑒𝑙𝑙 "𝐼𝑛𝑝𝑢𝑡 𝑤𝑎𝑠" ++ 𝑠ℎ𝑜𝑤 𝑥

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 `𝑑𝑖𝑣` 2

(180)

It is possible to make several calls to 𝑡𝑒𝑙𝑙 function and all of them will be

appended to each other.

It’s not necessary should be 𝑆𝑡𝑟𝑖𝑛𝑔 to store logs. It can be any type that is an

instance of 𝑀𝑜𝑛𝑜𝑖𝑑 type class. It has the following definition:

 𝑐𝑙𝑎𝑠𝑠 𝑀𝑜𝑛𝑜𝑖𝑑 𝑚 𝑤ℎ𝑒𝑟𝑒

 𝑚𝑒𝑚𝑝𝑡𝑦 ∷ 𝑚

 𝑚𝑎𝑝𝑝𝑒𝑛𝑑 ∷ 𝑚 → 𝑚 → 𝑚

 𝑚𝑐𝑜𝑛𝑐𝑎𝑡 ∷ [𝑚] → 𝑚

 𝑚𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑓𝑜𝑙𝑑𝑟 𝑚𝑎𝑝𝑝𝑒𝑛𝑑 𝑚𝑒𝑚𝑝𝑡𝑦

(181)

𝑀𝑜𝑛𝑜𝑖𝑑 class define one binary associative operation and an identity element,

e.g. numbers are monoids under addition which is binary associative operation

41

with the identity element of 0. Same goes for numbers under multiplication with

the identity element of 1. There are three rules that can formally define it shown

in Equations 182-184.

 𝑚𝑒𝑚𝑝𝑡𝑦 `𝑚𝑎𝑝𝑝𝑒𝑛𝑑` 𝑥 = 𝑥 (182)

 𝑥 `𝑚𝑎𝑝𝑝𝑒𝑛𝑑` 𝑚𝑒𝑚𝑝𝑡𝑦 = 𝑥 (183)

 (𝑥 `𝑚𝑎𝑝𝑝𝑒𝑛𝑑` 𝑦) `𝑚𝑎𝑝𝑝𝑒𝑛𝑑` 𝑧 = 𝑥 `𝑚𝑎𝑝𝑝𝑒𝑛𝑑` (𝑦 `𝑚𝑎𝑝𝑝𝑒𝑛𝑑` 𝑧) (184)

To make it easier to understand let’s watch an example of addition. In means that

𝑚𝑎𝑝𝑝𝑒𝑛𝑑 = + and 𝑚𝑒𝑚𝑝𝑡𝑦 = 0. Rewriting with substitution will lead to the

following results:

 0 + 𝑥 = 𝑥 (185)

 𝑥 + 0 = 𝑥 (186)

 (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) (187)

Now it is extremely easy to see that monoids mean. Same procedure may be

performed for multiplication. One of the most important monoids is list with

𝑚𝑒𝑚𝑝𝑡𝑦 = [] and 𝑚𝑎𝑝𝑝𝑒𝑛𝑑 = ++. The last function that wasn’t covered is

𝑚𝑐𝑜𝑛𝑐𝑎𝑡. It has default implementation which folds using 𝑚𝑎𝑝𝑝𝑒𝑛𝑑 between all

elements and 𝑚𝑒𝑚𝑝𝑡𝑦. Usually this is good and there is no need in implementing

it ourselves.

Now it is time to speak about the most important monad in the whole Haskell –

𝐼𝑂. Haskell has strict rules and a usual code is not allowed to perform any IO

operations. Main idea behind functional programming is functions that return

same output by the same input, so-called pure functions. The reliability of the

answer is what differentiate them from impure functions. To call impure functions,

functions that can interact with a system should be inside an impure calculation

itself. To make it work the very first 𝑚𝑎𝑖𝑛 function should be impure and indeed it

is. Let’s introduce a simple IO function to be used in 𝑚𝑎𝑖𝑛:

 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 ∷ 𝑆𝑡𝑟𝑖𝑛𝑔 → 𝐼𝑂 () (188)

We have 𝐼𝑂 which is monad but what does it wrap in current case? () is a zero-

element tuple with a type () and there is only one such tuple. It is used to

represent a dummy value that this is IO action without any kind of return value.

Now we can create the most canonical program.

42

Example. Haskell’s Hello World

 𝑚𝑎𝑖𝑛 = 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 "𝐻𝑒𝑙𝑙𝑜 𝑊𝑜𝑟𝑙𝑑! " (189)

Because 𝑚𝑎𝑖𝑛 is monadic calculation it is possible to use 𝑑𝑜 syntax.

Example. Hello World with 𝑑𝑜 syntax

 𝑚𝑎𝑖𝑛 = 𝑑𝑜

 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 "𝐻𝑒𝑙𝑙𝑜"

 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 "𝑊𝑜𝑟𝑙𝑑! "

(190)

Let’s make our program more interactive by requesting prompt from user by

𝑔𝑒𝑡𝐿𝑖𝑛𝑒 which has the following signature:

 𝑔𝑒𝑡𝐿𝑖𝑛𝑒 ∷ 𝐼𝑂 𝑆𝑡𝑟𝑖𝑛𝑔 (191)

It returns 𝐼𝑂 with 𝑆𝑡𝑟𝑖𝑛𝑔 hidden inside it, ← can be used to retrieve normal value

out of monad inside 𝑑𝑜 block.

Example. A simple program that asks for user prompt

 𝑚𝑎𝑖𝑛 = 𝑑𝑜

 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 "𝑊ℎ𝑎𝑡 𝑖𝑠 𝑦𝑜𝑢 𝑛𝑎𝑚𝑒? "

 𝑛𝑎𝑚𝑒 ← 𝑔𝑒𝑡𝐿𝑖𝑛𝑒

 𝑝𝑢𝑡𝑆𝑡𝑟𝐿𝑛 ("𝐻𝑒𝑙𝑙𝑜" ++ 𝑛𝑎𝑚𝑒)

(192)

4 CONFIGURING THE ENVIRONMENTS

To conduit the research, environments for writing, compiling and executing on

Haskell, Java and Python are needed. Besides installing the basic compiling and

execution environments some additional libraries and tools are needed to

perform benchmarking on points given. It is hard to precisely measure CPU time,

and elapsed time will be calculated instead. All work was done on Windows 7,

64-bit system but most steps should be similar for Linux and OS X systems.

43

4.1 Configuring Haskell

Haskell has several compilers with Glasgow Haskell Compiler (GHC) being the

most popular one. It is distributed as part of Haskell Platform that also contains

various helpful tools. Together they can be downloaded from Haskell official

website (Haskell 2017a). For simpler and more Unix-like usage, Cygwin toolset

with its own command prompt that supports Unix commands is downloaded from

Cygwin official website (Cygwin 2017).

Some Integrated Development Environment (IDE) would be helpful but as our

code will be compiled and ran through Cygwin, a text editor with Haskell plugin

will suffice. Atom was chosen as one with immense support from the Haskell

community. Atom is downloaded from Atom official website (GitHub Inc 2017).

The Haskell plugin for Atom can be installed from Atom-Haskell official website

(Atom-Haskell 2017). Opening the command prompt at the folder with Atom 𝑎𝑝𝑚

utility that can be found at the 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ\𝑏𝑖𝑛 and running the following

command will setup Haskell plugins for Atom:

 𝑎𝑝𝑚 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒-ℎ𝑎𝑠𝑘𝑒𝑙𝑙 𝑖𝑑𝑒-ℎ𝑎𝑠𝑘𝑒𝑙𝑙 𝑖𝑑𝑒-ℎ𝑎𝑠𝑘𝑒𝑙𝑙-𝑐𝑎𝑏𝑎𝑙

ℎ𝑎𝑠𝑘𝑒𝑙𝑙-𝑔ℎ𝑐-𝑚𝑜𝑑 𝑎𝑢𝑡𝑜𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒-ℎ𝑎𝑠𝑘𝑒𝑙𝑙

(193)

Then binary dependencies may be installed using 𝑠𝑡𝑎𝑐𝑘 that is part of Haskell

Platform. The following commands should be executed in the command prompt:

 𝑠𝑡𝑎𝑐𝑘 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑠𝑡𝑦𝑙𝑖𝑠ℎ-ℎ𝑎𝑠𝑘𝑒𝑙𝑙

𝑠𝑡𝑎𝑐𝑘 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑔ℎ𝑐-𝑚𝑜𝑑

(194)

Programs are written with the . ℎ𝑠 extension and will be compiled from the Cygwin

command prompt. The flag -𝑂 is required for the compiler to perform optimization

routines (Haskell 2017b). The complete command to compile with optimization is

the following:

 𝑔ℎ𝑐 -𝑂 <𝑓𝑖𝑙𝑒 𝑛𝑎𝑚𝑒> (195)

To get measurements we are interested program should be run with the +𝑅𝑇𝑆 -𝑆

flags (Haskell 2017b). With these flags, the measurement information will be

send into the error stream. To redirect the error stream from the command

44

prompt to a file, the 2>𝑓𝑖𝑙𝑒 syntax is used which is the standard Unix way. The

complete command to run a program with measurements redirected to the file is

the following:

 ./<𝑓𝑖𝑙𝑒 𝑛𝑎𝑚𝑒> +𝑅𝑇𝑆 -𝑆 2>𝑜𝑢𝑡𝑝𝑢𝑡 (196)

Figure 1 shows sample output without redirecting stream. The points of interest

are the maximum residency and MUT which is the calculation time.

Figure 1. Sample output of running a Haskell program with measurements

4.2 Configuring Java

First, latest Java Development Kit (JDK) is downloaded from Java official website

(Oracle 2017). Java has good choice of IDEs and will stick to Eclipse which I’ve

been using for very long time. It can be downloaded from Eclipse official website

(The Eclipse Foundation 2017).

To measure time of execution, time difference with help of 𝑆𝑦𝑠𝑡𝑒𝑚. 𝑛𝑎𝑛𝑜𝑇𝑖𝑚𝑒()

which will be used before will be executed before to store initial value and after

main workload and difference between values will be used to determine CPU

time (Nadeau 2008).

45

To find used memory it is not enough to get used memory after the main

workload by using internal tools offered by 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 class as garbage cleaner

may be used during computation. Instead, to check the maximum used memory

VisualVM tool will be used (Oracle 2016). It is distributed as part of JDK and can

be found at 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ\𝑏𝑖𝑛\𝑗𝑣𝑖𝑠𝑢𝑎𝑙𝑣𝑚. 𝑒𝑥𝑒. The heap graph is shown on

Figure 2.

Figure 2. 𝑉𝑖𝑠𝑢𝑎𝑙𝑉𝑀 screen with used memory graph

4.3 Configuring Python

Python has long going simultaneous release of version 2 and 3, version 3 was

chosen as it is recommended. It can be downloaded from Python official website

(Python Software Foundation 2017d).

As IDE Atom will be continued to use. For easier development Python Tools

(Aquilina 2017) and Python Autocomplete Package (Sadovnychyi 2017) are

installed with the following command:

 𝑎𝑝𝑚 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑝𝑦𝑡ℎ𝑜𝑛-𝑡𝑜𝑜𝑙𝑠 𝑎𝑢𝑡𝑜𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒-𝑝𝑦𝑡ℎ𝑜𝑛 (197)

46

To make latter package work 𝑗𝑒𝑑𝑖 Python package should be installed (Python

Software Foundation 2017b) using 𝑝𝑖𝑝 in the following way:

 𝑝𝑖𝑝 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑗𝑒𝑑𝑖 (198)

To measure elapsed time, 𝑡𝑖𝑚𝑒 library already included into standard Python

installation. The following code snippet shows how the elapsed time will be

measured:

 𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑖𝑚𝑒

𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒. 𝑡𝑖𝑚𝑒_𝑐𝑙𝑜𝑐𝑘()

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛()

𝑝𝑟𝑖𝑛𝑡(𝑡𝑖𝑚𝑒. 𝑡𝑖𝑚𝑒_𝑐𝑙𝑜𝑐𝑘() − 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒)

(199)

𝑝𝑠𝑢𝑡𝑖𝑙 will be used to measure the peak memory during an execution (Python

Software Foundation 2017c). It is not included in Python immediately but can be

downloaded with Python package manager 𝑝𝑖𝑝 (PyPA 2016). To install 𝑝𝑠𝑢𝑡𝑖𝑙 the

following command should be executed in command prompt:

 𝑝𝑖𝑝 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑝𝑠𝑢𝑡𝑖𝑙 (200)

The following code snippet will show an example of using 𝑝𝑠𝑢𝑡𝑖𝑙 to get the

maximum memory used for the main thread:

 𝑖𝑚𝑝𝑜𝑟𝑡 𝑜𝑠

𝑖𝑚𝑝𝑜𝑟𝑡 𝑝𝑠𝑢𝑡𝑖𝑙

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑝𝑠𝑢𝑡𝑖𝑙. 𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑜𝑠. 𝑔𝑒𝑡𝑝𝑖𝑑())

𝑝𝑟𝑖𝑛𝑡(𝑝𝑟𝑜𝑐𝑒𝑠𝑠. 𝑚𝑒𝑚𝑜𝑟𝑦_𝑖𝑛𝑓𝑜().𝑝𝑒𝑎𝑘_𝑤𝑠𝑒𝑡

(201)

5 APPLICATION

The comparison of Haskell to other languages will be introduce with several

rather small examples. Examples of features to test are additional functional

operations (mapping, filtering, folding), pattern matching, cycles, etc. All source

code of the comparison programs may be found at the thesis repository at my

GitHub account (Prokopev 2017).

47

5.1 Summing test

First, some baseline performance for languages should be measured. One of the

simplest tests is to run an empty cycle to see how much time is needed for that.

But due to the nature of Haskell not having any cycles, and Python also not

having usual cycles, the summing of numbers up to some 𝑛 will be used. Based

on tests 1e8 is a value where all languages start to require noticeable time.

Additionally, 1e9 value will be used to test whether the time consumption will

grow linearly or not.

One thing that should be considered is the size of an integer that a programming

language can handle. Python’s integer is unbounded. Haskell has two different

ones: 𝐼𝑛𝑡 and 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 where the first is faster but bounded at 263. Java’s 𝑙𝑜𝑛𝑔 is

bounded at same max value as Haskell’s 𝐼𝑛𝑡, and to work with bigger numbers

𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 is required. Tests on Haskell and Java will be performed using both.

On Figures 3 and 4 summing in Haskell and Python are shown, which are

defined like a sum of the all elements of a list. In Java the classical way with

using a cycle is shown that can be seen on Figure 5. Also in Java the summing

takes a Boolean argument to define whether use 𝑙𝑜𝑛𝑔 or 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟.

Figure 3. Haskell summing list

Figure 4. Python summing list

48

Figure 5. Java summing with 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟

The results may be seen in Table 6. The results of the time consumption are the

following: Java and Haskell are extremely fast if using small bounded version of

integer values, but in case of working with numbers which exceeds 263 their

speed fades. Python that have only unbounded integer is much slower even

compared to Haskell’s unbounded one. Also, there is another implementation of

Python called PyPy which I by this test is around 3 times faster than usual Python

and developers state that it should be 7.5 times faster on average (The PyPy

project 2017).

Table 6. Results of the summing test

 Time Max memory

Haskell 𝐼𝑛𝑡 1e8 0.078 s 42 KB

Haskell 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 1e8 3.96 s 42 KB

Python 1e8 14.174 s 10.496 MB

Java 𝑙𝑜𝑛𝑔 1e8 0.089 s 1.16 MB

Java 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 1e8 4.797 s 569.312 MB

Haskell 𝐼𝑛𝑡 1e9 1.016 s 42 KB

Haskell 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 1e9 40.258 s 42 KB

Python 1e9 2 m 14 s 10.613 MB

Java 𝑙𝑜𝑛𝑔 1e9 1.165 s 9.289 MB

Java 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 1e9 46.285 s 496.17 MB

Memory footprint is slighter harder thing to interpret and some clarifications are

needed. Haskell has extremely, and suspiciously low memory footprint which is

happening due to the powerful optimization GHC provides. Python memory

usage doesn’t differ much from counting bigger sum which is positive sign. Java

49

memory usage on task with 𝑙𝑜𝑛𝑔 and 1e8 is such small because Java Virtual

Machine (JVM) didn’t have enough time to start all usual routines and thus such

measured value is inaccurate. On the other hand, values that were received for

𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 are also unrepresentative if we don’t mention that garbage cleaner

ran several times during execution which may be seen on Figure 6. Yet, giving

JVM more allocated memory then it can reserve more memory as seen in Figure

7 where Java heap has 4 GB space.

Summary of first test: due to lazy evaluation and list ranges Haskell allows

summing using a simple structure with small memory footprint. Java with

𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟, on the other hand, adds unnecessary complexity and uses

enormous amount of memory to be able to sum big numbers.

Figure 6. Java memory usage when using 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟

Figure 7. The 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 memory usage with an increased heap space

5.2 Recursion test

The second test will be recursive algorithm to find n-th Fibonacci number.

Fibonacci sequence is typical example of algorithm that can be expressed using

recursion and typical example of how to make simple algorithm run for too long.

50

Base case is getting number at 1 and 2 position which both are equal to 1,

otherwise return sum of two previous, namely (𝑛 − 1) and (𝑛 − 2) numbers

(MathWorld 2017). It should be noted that recursive implementation is extremely

bad algorithmically-wise. In Haskell this algorithm can have implementation

shown on Figure 8. Implementations in other languages will be similar, the main

difference is that Haskell allows to use multi-declaration function which is just

syntactic sugar for switch or if-else structures that can be implemented in two

other languages. On Figure 8 and 9 it is easy to notice that the implementation of

Fibonacci in Haskell and Python are not that different.

Figure 8. The inefficient Fibonacci implementation in Haskell

Figure 9. The inefficient Fibbonaci implementation in Python

Table 7. Results of the Fibonacci test

 Time Max memory

Haskell 𝑓𝑖𝑏 40 1.383 s 42 KB

Python 𝑓𝑖𝑏(40) 57.166 s 10.637 MB

Java 𝑓𝑖𝑏(40) 0.553 s 1.16 MB

Haskell 𝑓𝑖𝑏(50) 2 m 37 s 42 KB

Python 𝑓𝑖𝑏(50) 58 m 20 s 11.91 MB

Java 𝑓𝑖𝑏(50) 1 m 9 s 15.674 MB

The results are presented in Table 7. This test is just more complicated summing.

The time consumption between Haskell and Java is not that big as it was in

51

Python, but previous test showed that Python’s unbounded integer is not efficient

for performing big number of operations. Haskell’s memory footprint didn’t

change at all which is due to the amazing optimization. Python and Java memory

usage don’t go much behind their minimum requirement of about 10 MB each.

Implementation of this test was again similar, and no big differences may be

found.

The summary of the second test: Haskell still has amazingly low memory

footprint, Python is not good for a big amount of summing which is performed not

by 𝑠𝑢𝑚 function.

5.3 Derivatives list

As functional programming implies it should be good at working with

mathematical functions. To check it, the program that will find simple derivatives

will be written. Derivatives show how the functions value is changing by

infinitesimal change in the input variable or variables (MathWorld 2017).

The following functions’ derivatives will be implemented:

• Power

• Cosine

• Sine

• Natural logarithm

• Sum

• Subtraction

• Multiplication

• Division

The first step of writing this program is to define special structures upon which

derive action will be defined. Then the derive function should be written. Also, the

simplification function with some basic rules like 0 + 𝑥 = 𝑥 and 0 ∗ 𝑥 = 0 was

created. Lastly, it would be preferable to teach structures how to be printed into a

human-readable format. An optional feature that would parse an input into our

special structure world will not be implemented as being too complex.

52

Besides defining functions that were already mentioned constructors for

numbers, number 𝑒 and variable were defined. Because Haskell allows to use

constructors of types inside pattern matching it is simple to define derivative. E.g.

derivative of sum of anything is derivative of first argument plus derivative of

second argument. More about derivates may be Writing it mathematical and

Haskell ways will yield the following equations:

 (𝑎 + 𝑏)′ = 𝑎′ + 𝑏′ (202)

 𝑑𝑒𝑟𝑖𝑣𝑒 (𝑆𝑢𝑚 𝑎 𝑏) = 𝑆𝑢𝑚 (𝑑𝑒𝑟𝑖𝑣𝑒 𝑎) (𝑑𝑒𝑟𝑖𝑣𝑒 𝑏) (203)

It is extremely simple yet powerful syntax that Haskell allows us to do.

Implementations in Java and Python were done using OOP. The main difference

is that in Haskell type was introduced and then functions were created that take

argument of our type and return that same type. Also, it was made an instance of

𝑆ℎ𝑜𝑤 type class to allow conversion to human-readable String.

In Java and Python on the other hand we created class for each type constructor

we have in Haskell and defined operations inside class. Additionally, Java

required that all of them was implementing same interface which has name of

function we need, namely functions 𝑑𝑒𝑟𝑖𝑣𝑒 and 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦. Haskell didn’t require

that as everything was of the same type and Python has dynamic typization

which allows to use classes any way we like.

On Figure 10 the definition of 𝐷𝑒𝑟𝑖𝑣𝑎𝑏𝑙𝑒 type is shown which only derives 𝐸𝑞 as it

obvious how it should be implemented. Figure 11 and 12 shows one of the

derivable class in Java and Python on example of 𝑆𝑖𝑛 class. Figure 13 shows

𝐷𝑒𝑟𝑖𝑣𝑎𝑏𝑙𝑒 interface in Java that define two functions used by classes.

53

Figure 10. Haskell definition of 𝐷𝑒𝑟𝑖𝑣𝑎𝑏𝑙𝑒 type

Figure 11. Python declaration of 𝑆𝑖𝑛 class

54

Figure 12. Java declaration of 𝑆𝑖𝑛 class

Figure 13. Java 𝐷𝑒𝑟𝑖𝑣𝑎𝑏𝑙𝑒 interface

It is easy to see similarities and slight differences between Java and Python

implementations. Definition of one class has constructor, two functions of interest

namely derive and simplify and utility function that converts whole class to

human-readable String. The main difference that Java is stricter like requirement

of @𝑂𝑣𝑒𝑟𝑟𝑖𝑑𝑒 annotations and requirement of the interface.

Table 8. Results of the derivatives test

 Time Max memory

Haskell < 0.001 s 42 KB

Python 0.0003 s 10.68 MB

Java 0.011 s 9 MB

Table 8 holds the results. The time consumption is extremely low in this test.

Haskell spend so low time that there was not enough precision to measure it.

55

Python suddenly was much faster that Java probably due to fact of using of

classes and Java requires more time to create ones. Memory consumption

shows usual values which is just the runtime requirements.

Speaking about implementation this test was much simpler to write on Haskell.

Amount of lines required are much less compared to other two languages.

Haskell types has something in common with OOP definition of classes with

additional possibility to use internal in the pattern matching.

The summary of this test: Haskell is amazing for writing a solution for tasks that

may be expressed directly in mathematics. Also, it is faster and doesn’t use much

memory. Between Java and Python there are almost no differences.

5.4 Dijkstra test

One of the most important fields of mathematics is the graph theory. Besides how

to store a graph in a computer it is important how to work with it. Due to Haskell’s

pure functional approach it is impossible to change variables after an assignment

and because, as it was already stated many times, all data structures in Haskell

are recursive. Combining these two facts leads us to the conclusion that to make

a several operations upon some structure, each operation should be performed in

its own recursive call, which is a tough challenge.

The Dijkstra algorithm has the following steps:

1. Set the shortest distance to starting node to 0.

2. Set the shortest distance to other nodes to infinity.

3. Take the current node and set the new shortest distance to the destination

node, if the sum of distance to the current node and the distance from the

current node to the destination node is smaller than the distance currently

assigned to the destination node.

4. Repeat previous step for all possible destination nodes.

5. Designate the current node as finished.

6. Set the current node to the node that was already visited, wasn’t finished

and has the least distance. If such node does not exist, then the process is

finished or else repeat steps 3-5.

56

More detailed information and examples are provided by Abiy et al. (2017).

The first step in any task that involves graphs is to create the graph itself. The

simplest idea is to store list of nodes and list of edges. However, to make it easier

to find edges from given node maps are usually used (Python Software

Foundation 2017a). Furthermore, it possible to put the cost by using given edge

by using tuples as it may be seen in Figure 14.

Figure 14. Creating a graph using map, lists and tuples in Python

In a such task an imperative programming is preferable than a functional one as

changing states and conditionals are rather complicated tasks in functional

programming as may be seen on Figure 15. For comparison Figure 16 shows

same algorithm in Python which is more verbose but much simpler to write and

understand. Also, OOP allows to create classes to represent nodes of a graph

shown on Figure 17. Defining helper functions inside classes simplifies the work

with graphs.

Figure 15. The Dijkstra algorithm in Haskell

57

Figure 16. The Dijkstra algoritm in Python

Figure 17. 𝑁𝑜𝑑𝑒 class definition in Java, with 𝑎𝑑𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 creating a bidirectional edge

58

Table 9. Results of the Dijkstra test

 Time Max memory

Haskell < 0.001 s 42 KB

Python 0.0003 s 10.59 MB

Java 0.159 s 3.48 MB

The results are presented in Table 9. The time consumption in this test shows

that Java wastes too much time working with classes where Haskell and Python

which has great internal arrays. The memory footprint is may be considered

meaningless as the only test with different value was the summing test on Java

using 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟.

Implementation of Dijkstra algorithm on Haskell was the tough task which is

doable but requires good understanding of recursion. In Java and Python

everything was much simpler because of the cycles and mutability of variables.

However, some subtasks were made in Java and Python using functional

features.

5.5 Linear equations test

The best way to solve system of linear equation on a computer is to transform it

into the matrix form. For example, there is given the following system of

equations:

 𝑥 + 𝑦 + 𝑧 = 6

2𝑦 + 5𝑧 = −4

2𝑥 + 5𝑦 − 𝑧 = 27

(202)

To transform this to the matrix form there should be the matrix with coefficients,

the vector with variables and the vector with the right-hand side numbers.

Converting this system will yield the following matrix and vectors:

[
1 1 1
0 2 5
2 5 −1

] ∗ [
𝑥
𝑦
𝑧

] = [
6

−4
27

]
(203)

The general form of the system of equation in the matrix form is following:

 𝐴𝑋 = 𝐵 (204)

59

There are three important facts about matrix multiplication shown in Equations

205-207. Where 𝐴−1 denote the inverse matrix of 𝐴 and 𝐼 is an identity matrix.

 𝐴−1𝐴 = 𝐼 (205)

 𝐼𝐴 = 𝐴 (206)

 𝑖𝑓 𝑋 = 𝑌 𝑡ℎ𝑒𝑛 𝐴𝑋 = 𝐴𝑌 (207)

Using these two facts it is possible to make the following transformations:

 𝐴𝑋 = 𝐵 → 𝐴−1𝐴𝑋 = 𝐴−1𝐵 → 𝐼𝑋 = 𝐴−1𝐵 → 𝑋 = 𝐴−1𝐵 (208)

One of the ways to find the inverse matrix is to find the adjugate of the matrix and

divide it by determinant. The adjugate is defined as the matrix where each value

𝑥𝑖𝑗 is replaced by the corresponding minor 𝑀𝑗𝑖. The minor 𝑀𝑖𝑗 may be found as

determinant of the original matrix with row 𝑖 and column 𝑗 removed. The

determinant may be found in a variety of ways where the most common ones are

LU decomposition and Laplace expansion, where latter will be used. Definitions

and examples may be found at MathWorld (2017).

In the end, solving a system of linear equations becomes a problem of finding the

adjugate with minors, multiplying it by a vector and dividing it by the determinant.

Corresponding snippets of code may be seen on Figures 18-22.

Figure 18. The function to get the adjugate in Haskell

60

Figure 19. The function to find the determinant in Java using Laplace Expansion

Figure 20. The function to find the determinant in Python using Laplace expansion

Figure 21. The function to multiply a matrix and a vector in Haskell

Little support function 𝑢𝑛𝑐𝑢𝑟𝑟𝑦 has signature (𝑎 → 𝑏 → 𝑐) → (𝑎, 𝑏) → 𝑐 and helps

when function takes two arguments, but we have packed them into tuple. As

unfolding tuple usually requires assigning variables or usage of function like 𝑓𝑠𝑡

this function helps to tide a code by passing to it tuple directly to a function.

61

Figure 22. The function to find a minor in Java

The results of the test are presented in Table 10. The time consumption

predictably shows lightning-like speed of Haskell which again cannot be

measured by internal tools. Python is surprisingly much faster that Java. The

most probable bottleneck in Java is 𝐿𝑖𝑠𝑡 which is extremely slow compared to

internal arrays in Python and Haskell.

Table 10. Results of the linear equations test

 Time Max memory

Haskell < 0.001 s 42 KB

Python 0.00076 s 10.637 MB

Java 0.16 s 9.87 MB

The implementation of this task had different challenges on different languages.

For example, Haskell’s lack of cycles forced to create the matrix with indices and

then to map from these indices to minors to get the adjugate as may be seen on

Figure 18. In other languages two nested cycles were used which is more

intuitive and easier to understand.

The functional approach was used in Java and Python languages when it was

preferable. In Python, for example, the weighted sum of minors to find the

determinant using Laplace Expansion is using mapping, though it is possible to

62

implement it like in Java using cycle. The amount of lines required to use these

two different approaches may be compared on Figures 19 and 20.

Division of matrix by scalar is done with mapping which is intuitive. But, functional

features in Java are just like whole code in Java in general, are too verbose and

may look less appealing than in other languages. First, 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑆𝑒𝑡, 𝐿𝑖𝑠𝑡,

𝑀𝑎𝑝) should be converted to 𝑆𝑡𝑟𝑒𝑎𝑚 using the same-named function. Functional

operations in Java can be performed only with 𝑆𝑡𝑟𝑒𝑎𝑚. Afterwards, 𝑆𝑡𝑟𝑒𝑎𝑚

should be either collected back into some 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 or reduced (folded) to a

single value. On Figures 23-25 it is easy to notice how a short mapping operation

in Haskell grows in Python and Java.

Figure 23. Division of vector by scalar in Haskell

Figure 24. Division of vector by scalar in Python

Figure 25. Division of vector by scalar in Java

6 CONCLUSIONS

Haskell is an amazing choice for writing applications that define results and not

process it. Usually it is said that Haskell suits any mathematical task, but the

Dijkstra test showed that though it is still mathematics, it was a rather

complicated task. In the derivatives and linear equations tests Haskell

outperformed Java and Python completely because derivates are just defined

which is the best possible case for Haskell. All tests showed the low memory

footprint and lowest time consumption which indicates the high efficiency of

optimized Haskell code.

Overall, functional programming is a powerful tool that simplifies specific tasks,

but sticking to purely functional programming is over-limiting and makes some

things too complicated. Some compromise should be achieved to utilize

63

functional features but not to lose typical imperative programming ones. Python,

Java or even C++ all have functional features added to them, which means that

functional approach is popular. But, as it was seen Java add too much verbosity

for the simple functional features like mapping. In some of languages functional

features may look ugly, and thus, shouldn’t be used even if they are added there.

Instead, mixed imperative-functional languages should be used in tasks that

require the functional features sometimes. The modern examples of such

languages include F# and Scala. These languages were aimed to have the

functional features without forfeiting everything from the imperative paradigm in

the favor to the functional one.

64

REFERENCES

Abiy, T., Pang, H., Khim, J., Ross, E., Williams, C. 2017. Dijkstra's Shortest Path

Algorithm. WWW document. Available at: https://brilliant.org/wiki/dijkstras-short-

path-finder/ [Accessed 21 November 2017]

Aquilina, M. 2017. Python Tools package. WWW document. Available at:

https://atom.io/packages/python-tools [Accessed 21 November 2017]

Atom-Haskell. 2017. Atom-Haskell official website. WWW document. Available at:

https://atom-haskell.github.io/ [Accessed 20 October 2017]

Boyer, S. 2014. Super quick intro to monads. WWW document. Available at

https://www.stephanboyer.com/post/83/super-quick-intro-to-monads [Accessed

16 October 2017]

Braithwaite, R. 2017. Why Recursive Data Structures? WWW document.

Available at: http://raganwald.com/2016/12/27/recursive-data-structures.html

[Accessed 13 October 2017]

Cygwin. 2017. Cygwin official website. WWW document. Available at:

http://www.cygwin.com/ [Accessed 21 November 2017]

GitHub Inc. 2017. Atom official website. WWW document. Available at:

https://atom.io/ [Accessed 20 October 2017]

Haskell. 2011. Pointfree. WWW document. Available at:

https://wiki.haskell.org/Pointfree [Accessed 29 October 2017]

Haskell. 2017a. Haskell official website. WWW document. Available at:

https://www.haskell.org/ [Accessed 20 October 2017]

https://brilliant.org/wiki/dijkstras-short-path-finder/
https://brilliant.org/wiki/dijkstras-short-path-finder/
https://atom.io/packages/python-tools
https://atom-haskell.github.io/
https://www.stephanboyer.com/post/83/super-quick-intro-to-monads
http://raganwald.com/2016/12/27/recursive-data-structures.html
http://www.cygwin.com/
https://atom.io/
https://wiki.haskell.org/Pointfree
https://www.haskell.org/

65

Haskell. 2017b. Haskell Performance Resource. WWW document. Available at:

https://wiki.haskell.org/Performance/GHC [Accessed 21 November 2017]

Hudak, P. 2008. A Brief and Informal Introduction to the Lambda Calculus. PDF

document. Available at:

http://www.cs.yale.edu/homes/hudak/CS201S08/lambda.pdf [Accessed 11

October 2017]

Jung, A. 2004. A short introduction to the Lambda Calculus. PDF document.

Available at: http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf

[Accessed 10 October 2017]

Lipovača, M. 2011. Learn You a Haskell for Great Good!. WWW document.

Available at: http://learnyouahaskell.com/ [Accessed 10 October 2017]

MathWorld. 2017. Mathematics online encyclopedia. WWW document. Available

at: http://mathworld.wolfram.com/ [Accessed 21 November 2017]

McCarthy, J. 2012. Church Encoding. Blog. Available at:

http://jeapostrophe.github.io/2012-08-20-church-e-post.html [Accessed 13

November 2017]

Michaelson, G. 2011. An Introduction to Functional Programming Through

Lambda Calculus. Mineola, New York: Dover Publications, Inc.

Nadeau, D. R. 2008. Java tip: How to get CPU, system, and user time for

benchmarking. WWW document. Available at:

http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_tim

e_benchmarking [Accessed 20 October 2017]

Oracle. 2014. What’s New in JDK 8. WWW document. Available at:

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

[Accessed 20 November 2017]

https://wiki.haskell.org/Performance/GHC
http://www.cs.yale.edu/homes/hudak/CS201S08/lambda.pdf
http://www.cs.bham.ac.uk/~axj/pub/papers/lambda-calculus.pdf
http://learnyouahaskell.com/
http://mathworld.wolfram.com/
http://jeapostrophe.github.io/2012-08-20-church-e-post.html
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://nadeausoftware.com/articles/2008/03/java_tip_how_get_cpu_and_user_time_benchmarking
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

66

Oracle. 2016. VisualVM official website. WWW document. Available at:

https://visualvm.github.io/ [Accessed 21 November 2017]

Oracle. 2017. Java official website. WWW document. Available at:

http://www.oracle.com/technetwork/java/index.html [Accessed 20 October 2017]

Prokopev, V. 2017. The practical part source code repository. WWW document.

Available at: https://github.com/vadimjprokopev/Thesis [Accessed 21 November

2017]

PyPA. 2016. 𝑝𝑖𝑝 documentation. WWW document. Available at:

https://pip.pypa.io/en/stable/ [Accessed 21 November 2017]

Python Software Foundation. 2017a. Implementing graph. WWW document.

Available at: https://www.python.org/doc/essays/graphs/ [Accessed 21 November

2017]

Python Software Foundation. 2017b. 𝑗𝑒𝑑𝑖 documentation. WWW document.

Available at: https://pypi.python.org/pypi/jedi [Accessed 21 November 2017]

Python Software Foundation. 2017c. 𝑝𝑠𝑢𝑡𝑖𝑙 entry page. WWW document.

Available at: https://pypi.python.org/pypi/psutil [Accessed 20 October 2017]

Python Software Foundation. 2017d. Python official website. WWW document.

https://www.python.org/ [Accessed 20 October 2017]

Reddy, U. 2009. Lambda Calculus Examples. PDF document. Available at:

http://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/lambda-calculus-

handout.pdf [Accessed 10 October 2017]

https://visualvm.github.io/
http://www.oracle.com/technetwork/java/index.html
https://github.com/vadimjprokopev/Thesis
https://pip.pypa.io/en/stable/
https://www.python.org/doc/essays/graphs/
https://pypi.python.org/pypi/jedi
https://pypi.python.org/pypi/psutil
https://www.python.org/
http://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/lambda-calculus-handout.pdf
http://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/lambda-calculus-handout.pdf

67

Riedel, H. V. 2016. Haskell Prime 2020 committee has formed. WWW document.

Available at: https://mail.haskell.org/pipermail/haskell-prime/2016-

April/004050.html [Accessed 20 November 2017]

Rowland, T. 2017. Church-Turing Thesis. WWW document. Available at:

http://mathworld.wolfram.com/Church-TuringThesis.html [Accessed 11 October

2017]

Sadovnychyi. D. 2017. Python Autocomplete Package. WWW document.

Available at: https://atom.io/packages/autocomplete-python [Accessed 21

November 2017]

The Eclipse Foundation. 2017. Eclipse official website. WWW document.

Available at: https://www.eclipse.org/ [Accessed 21 November 2017]

The PyPy project. 2017. How fast is PyPy? WWW document. Available at:

http://speed.pypy.org/ [Accessed 27 October 2017]

Turner, D. A. 2012. Some History of Functional Programming Languages. PDF

Document. Available at: https://www.cs.kent.ac.uk/people/staff/dat/tfp12/tfp12.pdf

[Accessed 20 November 2017]

https://mail.haskell.org/pipermail/haskell-prime/2016-April/004050.html
https://mail.haskell.org/pipermail/haskell-prime/2016-April/004050.html
http://mathworld.wolfram.com/Church-TuringThesis.html
https://atom.io/packages/autocomplete-python
https://www.eclipse.org/
http://speed.pypy.org/
https://www.cs.kent.ac.uk/people/staff/dat/tfp12/tfp12.pdf

