

Petteri Paju

IMGUI EXTENSIONS IN UNITY3D

Bachelor’s Thesis
Degree Programme in Information Technology / Game

Programming

2017

Tekijä/Tekijät

Tutkinto

Aika

Petteri Paju

Insinööri (AMK) Joulukuu 2017

Opinnäytetyön nimi

IMGUI Extensions In Unity3D

69 sivua
0 liitesivua

Toimeksiantaja

Kaakkois-Suomen Ammattikorkeakoulu / GameLab

Ohjaaja

Lehtori Niina Mässeli

Tiivistelmä

Tämän opinnäytetyön tarkoituksena on tutkia ja havainnollistaa kuinka Unity 3d pelimootto-
rin käyttöliittymää voidaan laajentaa. Editori laajennukset voivat lisätä Unityn editoriin uusia
työkaluja ja toimintoja. Editori laajennukset voivat hyödyntää pelinkehitystö, parantamalla
työnkulkua, vähentämällä virheitä ja automatisoimalla yleisiä tehtäviä. Editori laajennukset
rakennetaan Unityn sisään joko visuaalisina työkaluina tai automatisoituina komentoina,
jotka voidaan aktivoida napeilla.

Opinnäytetyö sisältää sekä teoriaa, että käytäntöä, siitä kuinka Unityn editori toimii. Käyttö-
liittymä esittelee teorian Unityn käyttöliittymästä, sekä yleiset elementit joita käytetään edi-
tori laajennusten toteuttamiseen. Koska tästä aiheesta ei ole useita aikaisempia opinnäyte-
töitä, tavoitteena on tarjota selkeitä esimerkkejä, jotka demonstroivat editori laajennusten
toiminnollisuutta. Opinnäytetyön lopussa esitellään käytännönosuus, jonka aiheena oli
luoda esimerkki peli, jonka kehityksen tueksi luotiin erilaisia editori laajennuksia. Päätavoit-
teena oli esitellä eri tapoja, kuinka editori laajennuksia voidaan käyttää.

Vaikka aiheeseen liittyy joitakin toimintoja ja aihealueita, jotka jäivät työn ulkopuolelle, työ
onnistuneesti käsitteli tärkeimmät aihealueet, jotka liittyvät editori laajennuksiin. Yleisellä
tasolla työ kävi läpi perusasiat, muutamia yleisiä käytäntöjä sekä edistyneempiä menetel-
miä. Käytännönosuus demonstroi mainiosti mahdollisuuksia, joita editorilaajennukset
tarjoavat.

Asiasanat

ohjelmointi, unity, ui, imgui, käyttöliittymä, c#

Author (authors)

Degree

Time

Petteri Paju

Bachelor of
Engineering

 December 2017

Thesis Title

IMGUI Extensions In Unity3d

69 pages
0 pages of appendices

Commissioned by

Kaakkois-Suomen Ammattikorkeakoulu / GameLab

Supervisor

Niina Mässeli, Senior

Abstract

The goal of this thesis was to study and demonstrate how the Unity3d game engines user
interface can be extended. Editor extensions can add new tools and functionalities to Unity
editor. Editor extensions can be very beneficial to game development, by improving the
workflow, adding safety, and automating common tasks. Editor extensions are built inside
Unity as either visual tools or automated tasks triggered by menu clicks.

The thesis contains both theory and practice about Unity editor works. The thesis dis-
cusses the theory of Unity editor system as well as the most commons elements that are
used to build custom tools. As there are not many previous studies about the topic, the
thesis aims to provide illustrative examples to demonstrate how editor extensions work.
The thesis concludes with a case study, where a sample game was made along with differ-
ent kind of editor extensions. The main goal of the case is to showcase how editor exten-
sions can be used in different ways.

While there were some features and topics that were cut out from the thesis, it successfully
covered most crucial information necessary for developing editor extensions. The overall
thesis was able to cover the basics, some good to know practices as well as some ad-
vanced topics. The case study serves as a serviceable demonstration of possibilities pro-
vided by editor extensions.

Keywords

programming, unity, ui, imgui, user-interface, c#

CONTENTS

1 INTRODUCTION .. 7

2 EDITOR EXTENSIONS .. 7

2.1 Advantages ... 9

2.2 Disadvantages .. 10

2.3 Example extensions .. 11

2.4 PlayMaker ... 11

2.5 Anima2D ... 12

2.6 Editor Console Pro .. 13

3 IMGUI-SYSTEM ... 14

3.1 Events ... 14

3.2 Editor Assembly .. 16

3.3 Serialization .. 17

3.4 SerializedObject and SerializedProperty .. 21

4 EDITOR-WINDOWS ... 22

4.1 Inspector-Window ... 23

4.1.1 Custom Editor ... 23

4.2 Editor Window-class ... 24

4.3 Scene View ... 25

4.3.1 Gizmos .. 26

4.3.2 Handles ... 27

4.4 Menus ... 28

4.4.1 Settings ... 29

5 LAYOUT AND APPEARANCE ... 31

5.1 GUI and GUILayout .. 31

5.2 Element Groups .. 33

5.3 GUIStyle and GUISkin .. 35

6 UI CONTROLS ... 37

6.1 Basis Controls... 37

6.2 Serialized Controls .. 39

6.2.1 PropertyField .. 40

6.2.2 PropertyDrawer ... 41

6.2.3 Built-In PropertyAttributes ... 42

6.2.4 Custom PropertyAttributes .. 44

6.3 Undo and ChangeCheck .. 45

7 CASE .. 47

7.1 Game Introduction .. 47

7.2 Tools Overview ... 48

7.3 Maps and Game Tiles ... 50

7.4 Missions .. 51

7.5 Mission Conditions and Events ... 54

7.6 Items ... 57

7.7 Characters .. 59

7.7.1 Stats.. 60

8 CONCLUSIONS ... 61

REFERENCES .. 63

LIST OF FIGURES

LIST OF TABLES

TERMS AND ABBREVIATIONS

Control An element in UI. Control can be an

element like button, label, or textbox.

GUI / UI User-interface, made of both visual and in-

teractive components.

Inspector A window that allows viewing and modify-

ing properties of UnityEngine.Objects.

Serialization A progress where data is translated from

one format to another for transfer and stor-

age purposes.

ScriptableObject A special script class in Unity. Instances of

this class can be saved to a file. Inherits

from UnityEngine.Object

UnityEngine.Object A base class for gameObjects and compo-

nents in Unity

7

1 INTRODUCTION

The main purpose of this thesis is to research and illustrate how appearance

and functionality of Unity game-engine can be extended. Editor extensions

are an asset in game development, regardless of the scale of the project. Edi-

tor extension can improve readability of a UI and optimize a workflow, poten-

tially giving a major boost in the development speed. Instead of allowing the

project to be limited by default Unity tools, by extending editor one can create

whole new ways to develop a game.

The thesis begins by explaining in detail what editor extensions are and why

they should be used while illustrating some potential pratfalls that they bring.

After the concept of editor extensions has been explained, the thesis moves to

examine Unity Editor and discusses some basic concepts critical to under-

standing how the system works. Next topics move from theory to practice and

start to examine different elements used to create editor extensions, such as

containers and UI-elements. Before talking about the case, the goal is to cover

the most common editor elements, their uses and how they are implemented.

The case study demonstrates how different tools are used in practice. The

topic of the case study was to create editor tools for a 2D-turn-based strategy

game. The case aims to illustrate how different kind of editor tools are imple-

mented and how they change the way a game can be developed.

2 EDITOR EXTENSIONS

Unity is a very extensive game engine and can be used to develop any kind of

game, from text adventures to open-world 3D-games. Thanks to this exten-

siveness Unity has become one of the most used game engines in the indus-

try. This fact also exposes one of its flaws, namely that Unity lacks many

game genre-specific tools. Unity’s tools are generic by design so that they can

be used in different kind of projects. Different types of games, however, re-

quire all kinds of different tools and features, that Unity simply does not pro-

vide. This, of course, makes sense, since filling the engine with too many dif-

ferent tools would make any game engine very convoluted and alienate begin-

ners.

8

In contrast to a multi-purpose game engine, like Unity, there exist many game

engines, that are aimed towards a specific type of game genre. Because

these engines are made with a specific type of game in mind, they can include

more tools that are necessary for the specific game type. For example, RPG

Maker game engine can be used to create old-school 2D-roleplaying games.

RPG Maker includes many visual tools like character creation, event-genera-

tion, and map-drawing tools, some of these tools can be seen in Figure 1. In

the same way that Unity has tools, that can be used in any kind of game, RPG

Maker has tools that can be used in any kind of RPG-game. The distinction is

that with RPG Maker it is much easier to create RPG games because a devel-

oper has all necessary tools from the get-go. This becomes even clearer with

engines that are developed specifically for a single game in mind. Developing

a similar game with default Unity tools would take much longer and be less in-

tuitive.

Figure 1. RPG Maker (Enterbrain Inc. 2017)

This brings us to Unity editor extensions. Editor extensions are custom tools

that provide additional functionality to Unity Editor. These tools alter how de-

fault Editor tools work or implement completely new functionalities. Just like

tools in RPG Maker, these custom tools can make the game development pro-

cess more intuitive and reduce the development time. (Tadres 2015, 17.)

There are different kinds of editor tools. Some tools are simple minor UI-

changes or macros that automate some basic action. Other tools serve as the

backbone for the entire game development, whole new visual tools that com-

9

pletely change the way the game is developed. Some tools are made specifi-

cally for certain projects or game studio, others are sold as commercial prod-

ucts in Unity Asset Store. (Tadres 2015, 17.)

2.1 Advantages

As mentioned above, editor extensions are very advantageous to the project.

A basis example is action automation or macros. Macros are used to auto-

mate sequences of manual inputs into a single button click. Macros can make

commonly repeated actions faster and reduce the risk of mistakes that could

happen if action was done repeatedly by hand. (Tadres 2015, 24.)

Some extensions can alter the appearance of default Editor UI. Unity allows

developers to add custom tooltips and alter how some objects appear in the

editor. Hand tailoring UI makes it easier for new members of the team to un-

derstand the project. Tooltips are especially useful for newcomers. Unity Edi-

tor can be extended to inform a user when game object is missing a reference

or a necessary component, or even automatically fix the issue. By making

tools safer and easier to use, even non-programmer members of the develop-

ment team can develop the game in Unity. (Smith & Queiroz 2015, 507-508.)

Some more complex tools are visual interfaces for actions that would normally

need coding to be accomplished. A great example is many visual scripting

tools sold in Unity Asset Store. These tools are like Blueprint in Unreal Engine,

seen in Figure 2. Visual scripting tools allow users to create behavior trees,

that would normally need user-written scripts. In short, editor extension can be

used to reduce the amount of code that needs to be written for the game.

(Miles 2016, 60.)

Figure 2. Unreal Engine Blueprint (Epic Games 2017)

10

The examples above express some core advantages for editor extensions:

speed, safety, and usability. In essence, editor extensions make game devel-

opment more intuitive, reducing the overall development time by optimizing

the workflow. (Smith & Queiroz 2015, 530.)

2.2 Disadvantages

In some ways, editor extensions can also work against the project. Developing

of complex tools takes time, that could be better used developing the actual

game. When creating tools, it is important to evaluate whatever the time in-

vested in creating a tool is worth the time the tool would save. Whatever tools

should be made depends on many factors such as the scale of the project,

complexity of the actual tool and how often it would be used. If the project is

small, investing a lot of time in editor tools might, in the end, prolong the de-

velopment time. Longer and more complex the actual project is, more benefi-

cial the tools will be to the project. (Blow 2004.)

Another problem with editor extensions is that they may introduce new func-

tionality to Unity that developers must learn to use. While some more popular

editor extensions sold in Unity Asset store are well documented and have a lot

of tutorials online, this might not be the case for extensions that are built in-

house. When introducing new tools to the project, it is important that they are

well documented so that even new members of the team can learn to use

them.

Extensions can also introduce some new vulnerabilities to the project. Be-

cause Unity is constantly releasing new versions, there is a danger that cus-

tom made editor tools become incompatible with the newest version, making it

harder to migrate game to the newer version. Editor tools are also subject to

changes in the project itself. Major changes in the base game require equal

changes to editor tools, this, in turn, increases the development time.

Like any program, editor extensions are vulnerable to bugs, which can cause

corruption and data loss. This is especially true for tools that modify data trees

11

and files. Poorly made tools can fail to save changes or even accidentally de-

lete data. This risk can be reduced with backups, failchecks and frequent test-

ing.

2.3 Example extensions

There are many 3rd party made editor extensions available in Unity Asset

Store, some free and others for sale. Extensions range from simple debug

tools to extensive game toolkits. In past, many tools have become so popular

that they have been officially integrated into Unity. Because these tools are by

themselves a commercial product, they are highly finalized. It is important to

note that for tools built for in-house usage visual appearance is not the first

priority. As long as tools works and are at least fairly usable, investing addi-

tional time for the outer appearance of tools might be a waste of resources.

2.4 PlayMaker

One of the most popular editor extensions is a visual scripting tool Playmaker

made by Hutong Games (Figure 3). PlayMaker is a node-based programming

tool, which allows the user to create script-like behavior with visual tools. Con-

ceptually Playmaker is similar to Blueprints in Unreal Engine. Playmaker visu-

alizes function calls and logic with nodes and wires connecting them. This al-

lows even less programming oriented developers to create logic for games.

Due to visual nature of the tool, it is easy to understand how the “code” works.

Playmaker made behavior has a smaller risk of syntax and logic errors than

regular code, due to its visual nature. (Miles 2016, 60-61.)

Figure 3. Visual scripting in Playmaker (Hutong Games 2017)

12

Other Playmaker features include Network support, editor localization and vis-

ual debugging. PlayMaker is widely used to a point where Unity has released

official video tutorials for the PlayMaker. Other developers have also released

their own add-ons to the Playmaker further expanding its range of usage.

PlayMaker is still a 3rd party tool and is sold in Asset Store for 65$. (Hutong

Games 2017.)

2.5 Anima2D

Anima2D (Figure 4) is a 2D-animation tool developed by Mandarina Games.

Anima2D completely changes the workflow of how 2D objects are animated in

Unity. Anima2D's main feature is bones, a skeleton that warps the 2D-sprite it

is attached to. Bones are a common tool in both 2D and 3D animation, they al-

low intuitive animation of a character because one can move specific part of

the character's body without moving other. (Mandarina Games 2015.)

Figure 4. Anima 2D (Mandarina Games 2015).

As editor extension Anima2D is a bit different from Playmaker, which essen-

tially adds convenience to programming progress, but generates results that

could be achieved by regular programming. Anima2D adds functionality not

possible with normal Unity animation tools. Anima2D is integrated to Unity in-

terface and work together with normal animation window (seen in Figure 4).

13

Anima2D became free in 2017, thanks to a deal between Unity Technologies

and Mandarina Games. Before that, the add-on was on sale for 60$. Accord-

ing to Anima2D's co-founder Sergi Valls, who has now joined the Unity Tech-

nologies, the end goal of the partnership is to completely integrate Anime2D

the tools to Unity as opposed to keep them as a separate plugin. (CG Channel

Inc 2016.)

2.6 Editor Console Pro

Editor console Pro (Figure 5) is meant to replace Unity's own Debug-console

(Figure 6). Editor Console Pro serves the same basic function as the normal

Console. The purpose of a console window is to display errors and messages

generated by Unity. While the normal Console handles this job well, it is very

basic and often displays a lot of useless information, making the window look

crowded. Editor Console Pro is more organized and easier to read. Editor

Console Pro even display the actual code, which causes the error instead of

just giving the script row number of the error or warning.

Figure 5. Editor-Console Pro (FlyingWorm 2017)

The biggest selling point for the Editor Console Pro is its additional features,

that make debugging process easier. The developer can search Console win-

dow for specific entries, track changes made to variables, debug standalone

versions of the game and permanently hide unnecessary messages. (The

Knights of Unity 2016). All these functions are meant to make Console window

more usable and informative. Unlike other tools mentioned in this chapter,

Console Window pro is a utility tool, not directly used to develop the game, but

nevertheless a great example of how editor extensions can be used in variety

of different ways.

14

Figure 6. Unity Debug Console (Unity Technologies 2015)

3 IMGUI-SYSTEM

IMGUI (Immediate Mode GUI) is the name of the system used by Unity to cre-

ate UI for its editor. IMGUI used to be the primary system for in-game UI until

it was replaced by the new Unity UI-system in 2014. The Unity Developer Blog

describes IMGUI and Unity UI as Immediate mode GUI and Retained mode

GUI respectively. (Unity Technologies 2015.)

Understanding the difference between two systems is key to understanding

how IMGUI works. As Retained GUI-system, the current Unity UI retains infor-

mation about the elements that are being drawn on the screen. This means

that elements drawn to UI are created only once in code, and any changes to

the said element are done by changing values of that element. In contrast, IM-

GUI-elements are recreated every time the UI is re-drawn using values pro-

vided by the code. So, to change the content of the button, one must change

the values that code gives to the button before it is recreated. IMGUI is a sys-

tem that constantly redraws itself, unlike Unity UI, that only needs to be re-

drawn when an element is changed. (Unity Technologies 2015.)

3.1 Events

Drawing IMGUI-UI happens inside a single draw-loop, usually called OnGUI or

something similar. To handle events like button presses IMGUI takes ad-

vantage of Unity event-system which allows UI to behave differently depend-

ing on the current event. The basic flow of drawing IMGUI is shown in Figure

7. (Unity Technologies 2015.)

15

Figure 7. IMGUI flow-tree (Unity Technologies 2015)

As can be seen in Figure 7, what happens inside a GUI.Button-method de-

pends on the current event, some of which depends on user’s action. The

most commonly used events are explained in Table 1.

Table 1. Event Types

Name of EventType Set condition

EventType.MouseDown
Set when the user has just pressed
a mouse button down.

EventType.MouseUp
Set when the user has just
released a mouse button.

EventType.KeyDown Set when the user has just pressed a key.

EventType.KeyUp Set when the user has just released a key.

EventType.DragUpdated Set when Drag & drop operation updated.

EventType.DragPerform Set when Drag & drop operation performed.

EventType.Repaint Set when IMGUI needs to redraw the screen.

Controls such as buttons and input fields are called inside OnGUI-method. In-

side control methods, exists a switch-case statement that determines how

each control acts during different events. A simplified version of the content of

button-method can be seen in Figure 8. (Unity Technologies 2015.)

16

Figure 8. IMGUI button example

3.2 Editor Assembly

Editor scripting is not too different from normal Unity scripting, it uses the

same programming languages and can do anything that normal Unity script

can. There are however some things that must be taken into account when

writing editor scripts.

First, all editor scripts belong to a different assembly as other Unity code. A

normal game code is a part of CSharp-assembly, while editor scrips are a part

of CSharp-Editor-assembly. Editor-assembly will not be included in built ver-

sion of the game, for this reason, scripts inside CSharp-assembly should

never refer to a script inside Editor-Assembly, doing so will cause an error dur-

ing the build process (Tadres 2015, 28). Editor-assembly scripts, however,

can safely refer CSharp-Assembly scripts.

To include a script in Editor-assembly, the script file must be stored in a folder

named “Editor” or its subfolders. There can be multiple Editor-folders. Scripts

included in Editor-Assembly can use UnityEditor-namespace, which includes

API necessary for editor extensions. Besides additional functionality provided

by Unity Editor API, editor scrips function like regular scripts. (Tadres 2015,

28-29.)

17

3.3 Serialization

Serialization means a process where data is translated from one format to an-

other for transfer and storage purposes. The opposite is called deserialization,

in which serialized data is translated back to its original format (Kogent Learn-

ing Solutions 2009, 514). Unity uses serialization for many things, such as

garbage collection, object instantiation, and prefab management. Unlike most

of the scripts in Unity, which are written in C#, Unity serialization is written in

C++ (Unity Technologies 2012a). Unity serialization system is very crucial for

editor extensions, which need to modify and save data.

Unity serialization affects any serializable class that is referred by UnityEn-

gine.Object-objects. UnityEngine.Object is a base class for most built-in ob-

jects in Unity. Most commonly serialization is called when a user enters or ex-

its play-mode in the Editor (Figure 9). When the user presses the play button

to test the game, Unity reloads all of its mono assemblies, which destroys all

user-defined data in UnityEngine.Objects. To preserve the data, Unity serial-

izes every UnityEngine.Object in C#-side and saves the serialized data to the

C++-side of Unity, where the data will be unaffected by C#-assembly reload.

After serialization, all data on C#-side is destroyed and later re-created with

the data stored in C++-side. For the user, this process is normally unnoticea-

ble, as objects before and after serialization seem identical. (Unity Technolo-

gies 2012a.)

Figure 9. Serialization data flow

Unity can serialize any object that inherits from UnityEngine.Object as well as

any serializable class inside that Object. Serialization works for all common

primitive data types such as integers, strings, and arrays. Any non-abstract

18

custom class can be serialized as demonstrated in Figure 10. To make a cus-

tom class serializable, the class must be preceded with Serializable-attribute.

When a custom class is marked as serializable, all public serializable fields of

the class are serialized by default (Unity Technologies 2012a). To serialize pri-

vate or protected fields developer must add Serializefield attribute above the

field (Tadres 2015, 76). Public fields can also be marked with a NonSerialized

attribute, this means that serialization will ignore these fields during serializa-

tion and fields are reverted to back to default values (Wagner 2010,159).

NonSerialized attribute is used with fields that contain temporary data that

doesn’t need to be saved.

Figure 10. Serialized class

For editor extensions, marking class serializable is important. Because all

public instances of a serialized class are also exposed in Inspector-window as

shown in Figure 11. Now all changes to instances of the class will also survive

the serialization process. Serializable fields can also be hidden from Inspector

with HideInInspector-attribute. (Tadres 2015, 76.)

Figure 11. Serialized class in Inspector

19

There are several limitations that need to be taken into account when dealing

with the Unity serialization. For example, Unity serialization cannot serialize

objects marked as static, constant or read-only (Unity Technologies 2014).

One of the most prominent limitations in Unity serialization system in terms of

editor extensions is the lack of support for polymorphism for custom classes.

This problem is best described in the example in Figure 12 below.

Figure 12. Polymorphism problem

In this example, we have a simple polymorphic class structure with classes

Sword and Potion, both derived from parent class Item. If one wants to create

an editor tool, that creates items and stores them in a chest, for example, one

naturally wants to store all items as a single list of Items. This is where Unity

serialization problem comes in. When the items in the list are serialized, they

are serialized as Items, ignoring any data that belongs to its child classes

Sword and Potion. Deserialized objects are naturally recreated as Items, but

now without the data which belong to their original classes, Sword or Potion.

The data is simply gone and unrecoverable and all that remains is a generic

list of Items. Only classes not affected by this issue are classes derived from

UnityEngine.Object (Unity Technologies 2014).

Lack of polymorphism support poses a huge problem for extensions that cre-

ate and modify data. There is no way to make the exact solution in Figure 12

to work with Unity serialization, but there are several ways to work around the

problem. However, each “solution” to the problem brings with it a whole bunch

of new problems. This chapter explores three possible solutions.

The first solution is obvious: To not use polymorphism at all. Instead of using a

class structure with inheritance, it is worth considering condensing the whole

class structure to a single superclass. As any programmer can attest to, this is

20

generally a bad idea. For very simple class structure this can be a valid solu-

tion, but even for a slightly complicated class structure, this solution is hardly

even worth considering. Compressing all behavior of class structure to single

class makes the code more complicated and closes doors on many possibili-

ties that polymorphism gives to a program.

The second solution (Figure 13) is to make sure that when an object is stored,

it is stored as its respective type. The reason for the whole problem in Figure

12 is that Sword and Potion were saved and serialized as Items. If objects are

saved in separate lists dedicated to the specific type, the objects are serialized

correctly. These separate lists are later combined when serialization is no

longer an issue. This workaround possesses the disadvantage of the need to

manage a potentially huge number of lists for each serialized type as well as

saving and combining the lists. Like previous solutions, this solution is viable

for a simple class structure but becomes harder to manage the bigger the

class structure is.

Figure 13. A list Serialization

The final solution discussed here is making class structure derive from Scrip-

tableObject-class. ScriptableObject is a class derived from UnityEngine.Object

class and is not therefore affected by the problem. ScriptableObject is a spe-

cial class that functions like any script, but instances of the script must be

saved on the disk as files (Tadres 2015, 189-190). All data derived from Scrip-

table objects are serialized as expected. The downside to this solution is that

for every single item created, it is necessary to create a new ScritableObject-

file. Not only does this increase the number of files in the project, but also

makes it necessary for editor extension to manage all created files. But with

proper file management, this solution can be very beneficial. One last issue

with this solution is that values inside ScritableObjects cannot be exposed in-

side MonoBehaviour-inspector. To accomplish this one must create a custom

21

property drawer for the ScriptableObject-class. This process is explained in

chapter 6.2.2 (Unity Technologies 2014.)

As discussed in this chapter, understanding Unity serialization and its limita-

tions is very important when creating complex editor extensions. Unfortu-

nately, there is no perfect solution to get around all limitations that Unity serial-

ization provides, but by understanding how the system works one can come

up with many solutions to the problem. What solution is the best for each situ-

ation depends on many factors such as data complexity, performance needs

and how easy it is to implement. Is creating editor extension worth any down-

side it causes? This question is vital when developing an extension.

3.4 SerializedObject and SerializedProperty

Default Unity Editor tools rely heavily on serialization. Instead of creating a

separate editor for every component and object individually, Unity is able to

generate generic editors by using SerializedObjects and SerializedProperties.

SerializedObjects are serialized representations of any UnityEngine.Object.

SerializedProperties in turn, are serialized representation of properties inside

SerializedObjects. SerializedObjects are used by Editor-class to generate all

default inspectors for user-made components (Unity Technologies 2017a).

Accessing SerializedProperties is very different from normal C#-scripting. To

refer to property one must use method called FindProperty, which finds prop-

erties based on their name in the code, asking for non-existent property re-

sults in error (Tadres 2015, 105). As demonstrated in Figure 14, this process

is very different from traditional C#-programming. The example prints the

value of myInt to the Unity Debug console.

Figure 14. SerializedObject editor script

22

The interesting part about these serialized-classes is that they are completely

generic (Tadres 2015, 105). Modifying SerializedProperties is done with ge-

neric accessor control, called PropertyField. PropertyFields automatically gen-

erate an appropriate controller for the variable; strings get textboxes, booleans

get checkboxes etc. Even though SerializedProperties are generic, they do

hold information about what kind of variable each property originally was. By

using this information stored in a propertyType variable, Unity determines

what type of accessor control should be used (Unity Technologies 2017b). For

example, when propertyType is ProperyType.Boolean, Unity uses the boolean

accessor control: a checkbox. This process is repeated to all properties inside

serializedObject as well as every serializable property inside serializable cus-

tom classes. (Smith & Queiroz 2015, 514.)

Despite being very different from normal C#-code, there are many advantages

to using SerializedObjects to modify object instead of modifying the object di-

rectly. SerializedObject have inbuilt functionalities such as Undo, multi-object

editing, and prefab-management. It is important to note that all this functional-

ity can be manually implemented to tools, that do not use SerializedObject.

(Tadres 2015, 104-105.)

While Unity does recommend using SerializedObjects whenever possible,

there are legit reasons not to use the feature. Disadvantages with

serializedObjects are caused by their generic nature. Because SerializedProp-

erties only contain data, but not methods of the class instance, it can be chal-

lenging to implement some class specific behavior for custom tools. Especially

when making tools that manage complex data trees and use custom classes

and methods. In some cases, modifying object directly and creating Undo-

functionality manually is a better option. (Meier 2014.)

4 EDITOR-WINDOWS

This chapter discusses different ways editor scripts are called and where edi-

tor tools can be drawn. While simple macros can be called using a hotkey or

menu-click, most editor extensions require some sort of container on the

screen, where editor tools are drawn. These containers include different

23

menus and windows. Some of these containers are whole new windows cre-

ated via code, but it is also possible to insert custom tools inside existing Unity

UI-elements such as menus and Inspector window.

4.1 Inspector-Window

Inspector window is used to display and modify the information of selected

UnityEngine.Object, in the context of Inspector windows this means either

Component or MonoBehaviour script. With Inspector window, the user can

and modify properties of the selected object (Pierce 2012, 29-30). It is im-

portant to note that in UnityEditor each UnityEngine.Object can have a custom

Editor-class object associated with it. When Object is displayed in Inspector

window, Unity calls its respective Editor class, which tells how Object should

be drawn in Inspector. Normally Editors for user made classes are automati-

cally generated, but this default behavior can be overridden by creating a new

Editor derived-class which affect all objects of the specific class. (Unity Tech-

nologies 2017a.)

The default Inspector for MonoBehaviour only allows displaying and modifying

public or serializable fields within the scripts (Cogut 2015, 143). Default In-

spector provides simple controls to modify data; Input fields for string-data, a

Colour picker for Colour-data and so on. But functionality provided by default

controls is fairly limited. What if a developer wants an integer data to be within

certain range or have a button that reverts some data back to default values?

For more complex behavior, the developer can either modify default Inspec-

tor’s functionality with PropertyAttributes or override existing inspector for the

MonoBehaviour with Custom Editors. All custom editor behavior can also be

temporarily disabled by enabling Debug-mode in Inspector window.

4.1.1 Custom Editor

Every object derived from UnityEngine.Object-class can have its own Editor-

class, which override how the Object is displayed in the editor as well as affect

the Scene View. By overriding the OnInspectorGUI-method of Editor-class, it

is possible to draw completely customized UI, specifically for the class. These

self-made UIs can have functionalities that are far beyond what default In-

spector can accomplish. (Tadres 2015, 107,)

24

To create Custom Editor-class, one must first create a new script under Edi-

tor-folder. The new script must implement both UnityEditor and UnityEngine -

namespaces, derive from Editor-class and be preceded with CustomEditor at-

tribute before it is declared. CustomEditor attribute tells Unity which objects In-

spector the Editor-class overrides (Smith & Queiroz 2015, 514). Figure 15

shows a bare-boned sample of editor script for MonoBehaviour-class Monster.

As can be seen it is also possible to draw default inspector, by using

DrawDefaultInspector-method (Tadres 2015, 82).

Figure 15. Custom Inspector

Editor-class can access properties of the inspected object in two ways: by re-

ferring the object itself or by accessing the serialized representation of the ob-

ject. Editor-class automatically serializes the inspected object and stores it to

private serializedObject-variable, which is SerializedObject-type. Direct refer-

ence to the inspected object is stored in target-variable, which is an Object-

type. If multiple objects of the same type are chosen, each object is stored in-

side the targets-array. To apply multi-object editing, the editor class must be

marked with CanEditMultipleObjects attribute. (Unity Technologies 2017a).

As discussed in chapter 3.4, using SerializedObjects is recommended,

because of automatic Undo and multi-object-editing -functionality.

4.2 Editor Window-class

Editor Window-class is used to create tools, that exist outside of Inspector

windows. Editor Windows-tools can be dragged, docked and resized at will,

though this behavior can vary depending on the type of editor window in ques-

tion as well as parameters given to the window (Tadres 2015, 111).

25

Unlike Inspectors, which inherit from Editor-class, Editor Windows is its own

separate class. Different from Editor class, Editor Windows are not tied to any

specific object or class. To modify objects inside an Editor window, a devel-

oper must supply editor windows with object references manually. An object

reference can be passed to EditorWindows using methods like GameOb-

ject.Find, Resources.Load, static variables or manually loading the asset from

the project. Unlike inspectors, Editor Windows can be used to edit multiple dif-

ferent objects at once, even if they are not the same type. This gives develop-

ers the great freedom to create just about any kind of tools necessary.

Besides differences mentioned above, Editor Windows function like custom In-

spectors: Both have OnGUI-loop, where tools are created, both use same IM-

GUI-elements and structures. Because both Editor-types are so similar, mi-

grating tools from one type of editor to another is an easy task. One can draw

inspector of any UnityEngine.Object inside Editor Window, by using CreateEd-

itor-method, allowing the developer to reuse editors in multiple locations (Unity

Technologies 2017a). Editor Windows are opened by using GetWindow-

method. This method can be called by other editor scripts or custom menu-

commands using MenuItems (see chapter 4.4).

4.3 Scene View

Scene View is a 3D preview of the game, that user can interact with. Normally

this view is used to select and translate objects. Unity Editor makes it possible

to alter the behavior of Scene View. Not only can any normal IMGUI-tools be

drawn to the screen, Scene View also has a set of 3D tools called Handles,

that can only be used inside the Scene View. Compared to menu/button ori-

ented tools built in Inspectors and Editor windows, Scene View tools can be

highly intractable and allow intuitive mouse interaction with the scene. Scene

View extensions can also be used to display additional information to the user,

like displaying weapon ranges for example.

There are at least three ways to draw content to Scene View. The most com-

mon way is to use override OnSceneGUI-method of the Editor-class. Since

Editor-class is used by the Inspector, any tools implemented this way should

26

be specific to object currently being inspected. Scene View tools are drawn to

the Scene View open and close along with the Inspector (Tadres 2015, 140).

The second way is to use Gizmos, mostly used for visual aids and debugging

(Thorn 2015. 63). The third way is to use undocumented onSce-

neGUIDelegate, which is a delegate that belongs to the SceneView-class. On-

SceneGUIDelegate is called every time Scene View is redrawn, allowing im-

plementation of interactive editor tools that are constantly in view regardless of

the selected object.

4.3.1 Gizmos

Gizmos are visual only elements. Unlike most editor tools, Gizmos are defined

in UnityEngine-side by implementing OnDrawGizmos and OnDrawGiz-

mosSelected -methods inside MonoBehaviour-scripts. Gizmos have an ad-

vantage over normal editor scripts since elements created inside OnDrawGiz-

mos are always drawn to Scene View unless the actual object is disabled or

when the inspector is collapsed. When an object is selected OnDrawGiz-

mosSelected is called instead of OnDrawGizmos. OnDrawGizmosSelected al-

lows the creation of visually different tools for the selected object, making it

easy to distinguish and select objects. (Thorn 2015, 63-68.)

As can be seen in Figure 16 Gizmos can be used to draw simple shapes like

lines, spheres, and cubes. The only complex shape that can be drawn is a

mesh. The appearance of drawn gizmos can be a solid color or wireframe. Ad-

ditionally, Gizmos can also draw icon and textures. Icons must be located in-

side folder Assets/Gizmos folder inside the project. (Tadres 2015, 54-59.)

Figure 16. Gizmos (Unify Community Wiki)

27

Gizmos are useful for debugging. They display things like weapon ranges, the

field of view and other things normally invisible. Since Gizmos are not intracta-

ble, they can’t really be used for much and its functionality is limited compared

to Handles-class. They are mostly used in conjunction with other editor tools

as a visual aid. (Thorn 2015, 63.)

4.3.2 Handles

Handles are a Scene View specific tool. Handles can do everything Gizmos

can, which include drawing different shapes as visual aids, but also draw inter-

actable controls to the Scene View. Normal IMGUI-tools can be drawn inside

Scene View with Handles, by creating a 2D block inside Scene View with Beg-

inGUI and EndGUI-methods and drawing tools inside like you would do any

OnGUI-method. Unlike Gizmos, Handles disappear when the object is dese-

lected (unless they are drawn using onSceneGUIDelegate). (Tadres 2015,

159.)

The most prominent advantage of Scene View tools is that they can be inter-

active. Handles-class includes several interactive elements, that respond to

mouse interaction. Everyone who uses Unity is familiar with common handles,

shown in Figure 17. Normally handles are used to alter the position, scale,

and rotation of game objects (Tadres 2015, 159). These handles can also be

used to modify any value, either directly or indirectly. Handles directly modify

vectors, quaternions, and floats, but since a script can be used to react to han-

dle interaction, scripts can react to changes any way necessary. Custom han-

dles can be therefore used to change data that has no actual visible represen-

tation in the game world.

Figure 17. Default Handles

28

Handle-elements handle mouse interaction automatically, but to implement

whole new interactive tools, it becomes necessary to detect and handle

mouse interaction manually. Handling mouse interaction is a combination of

events discussed in chapter 3.1 and HandleUtility-class. HandleUtility-class is

used to translate coordinates between 2D-space on the screen and 3D-space

in the game world. Scripts use events to detect user interaction and act ac-

cordingly. Events detect both mouse and keyboard events. (Tadres 2015,

145.)

4.4 Menus

Menu-elements can be used to call any method from menus, making them

useful for running macros. Replacing manual actions with macros speeds up

the development process and reduce a risk of mistakes. Menu items can also

be used to open editor windows and creating assets.

Creating new menus inside editor tools is done by using GenericMenu-class.

GenericMenus are created inside editor scripts along with other UI elements.

Creating custom menus usually happens after a button press, typically right

mouse or UI button. Menus are created either under mouse location (Figure

18) or inside a predetermined rectangle on the screen. (Unity Technologies

2017e.)

Figure 18. Creation of GenericMenu

Adding menu items is done by using AddItem-method. As demonstrated in

Figure 18, AddItem-method accepts following arguments: location and name

of the item in the menu, boolean, onClick-callback, and optional generic argu-

ment for the callback. (Unity Technologies 2017e.) To improve readability of

menus, one can use AddSeperator to create separating slashes between ele-

ments.

29

Modifying built-in Unity menus is done with attributes Menu Item and Context

Menu. These attributes precede a method which they invoke when clicked.

Menu Items add elements to Unity main menu and Inspector context menu.

Context Menu can only add elements to the Inspector-window (Tadres 2015,

95). Since context menus are a part of the Inspector, they naturally work on an

object-by-object basis. Thanks to this, the Context menu can call non-static

methods of the inspected object. Therefore, Context menu behavior can vary,

depending on a state of that object. MenuItems, on the other hand, can only

call static methods, like in Figure 19. (Smith. 2015, 522.)

Figure 19. Creation of MenuItem

Location of menu elements is determined by a path, which is given as an ar-

gument to the attribute. To add an element to GameObject-menu, a path for

the element would be “GameObjects/Item Name”. Most menus allow a creat-

ing of submenus, which makes menus more organized. To create a submenu,

one must create a path as follows: “ParentMenu/Submenu/Item Name”. (Dick-

inson 2015. 257.)

One MenuItem specific functionality is an ability to add shortcuts as a part of

the menu path. Unity uses special characters to represent the modifier keys:

% for ctrl/cmd, # for shift, & for alt, and underscore if shortcut doesn’t use

modifier keys. Shortcuts are also displayed in the menu. (Dickinson 2015,

257.)

4.4.1 Settings

More complex the tools become, more it will be necessary to allow users to al-

ter the behavior of the tools to fit their needs. For example, if we have a tool

that draws green lines to Scene View, it could be hard to see the line in a

green environment. It would be possible to change the line color via code, but

30

the more user-friendly approach to this is to create a settings-element for it, in

Preferences-Window (Figure 20). Unity Preference window is a normal set-

tings windows found in most programs.

Figure 20. Custom Preference Section

A developer can add their own sections to Preference windows using Prefer-

enceItem attribute. PreferenceItem is similar to MenuItem; it is placed above

static function and takes a path as an argument. Static method following the

argument is used to generate the UI inside the Preferences Windows. Prefer-

ences-window uses the same IMGUI-tools as Editor Windows and Inspector.

(Unity Technologies 2017f.)

Preference Windows can be used to modify static values, but since static val-

ues do reset during serialization, they are not an ideal option for preferences.

To save persistent data Unity has inbuilt local storages for editor settings,

called EditorPrefs and SessionState. Both these classes are used to save and

load simple data. Difference between the two classes is that data saved by

SessionState reset when the program is closed, whereas data saved by Edi-

torPrefs persist between Unity sessions (Unity Technologies 2017g). Saving

and loading data to local storage is only possible for 4 types of variables:

strings, integers, floats and Booleans (Tadres 2015, 224). Getting around this

limitation is possible by serializing the object as a JSON string and save that

to the storage.

31

5 LAYOUT AND APPEARANCE

When designing tools, it is important to take in consideration their usability.

How visually clear the tool is to use, is very important, especially for the tools

that are sold in Asset Store. While in-house tools do not need to be visual

masterpieces, a clear, readable UI makes a tool easier to use and learn.

Tools can easily be made more organized by improving the layout or adding

visual elements like images and icons.

In general, layout-wise the IMGUI-system is like to HTML-markup language,

used to create web pages. Both Unity Layout System and HTML work on a

box-model system, where all elements are considered rectangular boxes

(Vodnik 2015, 84). The boxes determine the size and position of the content.

With box-model it is easy to determine where one element ends and other be-

gins.

5.1 GUI and GUILayout

In past IMGUI system was also used to create in-game UI. To keep game

tools separate from editor tools, IMGUI-controls are separated to both Uni-

tyEngine and UnityEditor -namespaces. In-game UI uses GUI-class and Editor

UI uses EditorGUI-class. Both classes are similar to each other but have

some tools that other does not. Since functionality between two classes is in-

distinguishable both classes can be used in inside Editor. (Tadres 2015, 87.)

There are also two variants of each IMGUI class: GUILayout and EditorGUI-

Layout. These classes are auto-layout versions of GUI and EditorGUI-classes

respectively. These layout versions include the same tools as their base coun-

terparts, with identical functionality. The main difference is that GUILayout-ele-

ments automatically determine their location and size in UI, whereas base-

GUI -tools need coordinates in which the elements are drawn (Tadres 2015,

81). Figure 21 demonstrates the difference between the two approaches.

32

Figure 21. GUI vs. GUILayout

Non-layout GUI controls require a rectangle, which dictates its size and posi-

tion relative the top-left corner of the window. The rectangle is either predeter-

mined by a developer like in Figure 21 or calculated like any variable. Calcu-

lating the rectangle allows controls to be positioned differently depending on

circumstances. Unlike GUILayout-controls, whose positions are determined by

other controls, the position of GUI controls is completely unrestricted, making

them ideal for objects that need to be dragged for example. (Doran 2014, 56.)

The problem with GUI is that calculating coordinates can be a hassle. This is

especially problematic with custom Inspectors, are not aware of their own size

or position. As demonstrated by Figure 22, GUI controls in Editor window

works as expected, but in Inspector the controls are overflow outside of the

expected area. As evident the GUI-system consider the origin to be at the top-

left corner of whole Inspector Windows, instead of just the custom Editor as

one would expect.

Figure 22. GUI-coordinate problem

If the same code is used on EditorWindow, GUI controls work more like ex-

pected, with correct positioning and overflow behavior. This is due to the fact,

that EditorWindow-class is aware of both its size and position, which GUI uses

to perform its calculations (Unity Technologies 2017h). This makes EditorWin-

33

dow more suited for GUI-controls. GUI-controls are however used in Inspec-

tors with PropertyDrawers (see chapter 6.2.2), where Unity provides the con-

trol with a rectangle where controls are drawn.

GUILayout calculates the position of each control, relative to the window and

each other. At the start of every frame, the Layout event records all layout ele-

ments on the window and calculates their rectangles. Since Layout event runs

before any other IMGUI-event, all other events can use this information.

Mouse events use the information to check if the mouse has been clicked in-

side the controls and Repaint-event draws the actual visual controls inside the

rectangle. (Unity Technologies 2015.)

By default, all layout-elements are ordered from top-to-bottom in order which

they are declared in the script. Aligning controls horizontally is done with Lay-

out-groups. Layout-groups are examined in more detail in next sub-chapter,

but they are vital to understanding the example in Figure 23. Essentially Lay-

out-groups tell the Layout-event how elements inside of it should be aligned.

Figure 23 below visualizes how layout system sees controls. (Tadres 2015,

90-91.)

Figure 23. Layout graph

5.2 Element Groups

Element groups (Figure 24) can group multiple elements together. These

groups can change how elements are displayed or they can simply be visual

containers. Layout groups are an invaluable tool when organizing UI-elements

as they can alter how the UI is structured and displayed. Layout groups are

methods that tell the UI-system where the group begins and ends. For Hori-

zontal groups, these methods are called BeginHorizontal and EndHorizontal.

34

All UI-elements between the begin and the end are considered as a part of the

group, including nested groups. (Tadres 2015, 90.)

Figure 24. Common Element Groups

Among the most useful groups are the aforementioned Vertical and Horizontal

layout groups. As can be seen in Figure 25, these groups can be nested with

each other to create organized groups of controls. Groups can also be given

styles, which can give them visually distinct look, further improving the reada-

bility of the editor (Tadres 2015, 92.)

Figure 25. Vertical and Horizontal Layout Groups

As tool became bigger, it becomes hard to fit all elements inside a single win-

dow. To fix this one can add a scrollbar to a window by implementing

ScrollView group (Figure 26). Scroll view automatically hides any overflowing

controls and creates a scrollbar. Scroll view can be added to an entire window

or just be a group on its own. Depending on a size of the content the scroll

view can be horizontal or vertical. The current position of the scroll is stored in

35

a variable, which gets updated by BeginScrollView-method. (Simon 2015, 21-

23.)

Figure 26. Scroll View

5.3 GUIStyle and GUISkin

GUIStyles determine the visual styles of individual controls. GUI styles affect

visual properties such as fonts, backgrounds, colors, and how the element re-

sponds to mouse interactions such as click and hovers. GUISkins (Figure 27)

are separate files, containing a collection of GUIStyles and settings. In short,

the script determines the structure and style of elements and GUIStyles

determine the visual appearance of the content. Both sides can affect the size

of the element. (Tadres 2015, 168-170.)

Figure 27. GUI Skin

GUISkins include a collection of default styles for common controls like but-

tons, toggles, and labels. When a new GUISkin is implemented to a script, all

36

controls use their respective GUIStyle by default, without the need to assign

the style of each element separately. GUISkin also includes an array of Cus-

tom GUIStyles, which is a collection of user-defined styles that can be as-

signed to controls individually. Most controls accept GUIStyle as an argument,

which allows overriding the default style with a custom style (Figure 28).

(Tadres 2015, 179-181.)

Figure 28 Custom style

In legacy UI, GUISkin could be assigned to UI via Inspector, but since that is

not an option for editor most scripts, GUISkin-files must be manually loaded

via script. There are several ways to accomplish this, but the most straightfor-

ward approach is using EditorGUIUtility.Load-method. Load-method can be

used to load any asset located in folder Assets/Editor Default Resources

(Sapio 2017, 19). Methods require the name of the asset in string form. Load-

ing of the GUISkin should happen in OnEnable-method of the Editor-class

(Figure 29), which runs before any other method as the object first becomes

active. Applying the GUISkin to the entire editor is done by assigning a

GUISkin to the skin-property of a GUI-class, this can only be done inside On-

GUI-method.

37

Figure 29. Loading GUISkin

6 UI CONTROLS

Most UI-elements in Unity Editor are familiar tools, seen in just about any

piece of software. The user can trigger some functionality with a button or

change some value by typing text in an input field. Some UI-elements are non-

interactable, that exist to give user information, such as labels and images.

6.1 Basis Controls

Buttons are one of the most basic elements, used most Editor-tools. There are

several different types of buttons across both GUI and EditorGUI-classes. The

most basic button is oddly enough GUI-class exclusive-element. As seen in

Figure 30 the button reacts to the user clicking the button, returning true when

user released the mouse button. What happens when button returns true de-

pends on the tool. Some example uses for buttons could be: Opening and

closing windows, deleting elements or running macros, basically any complex

action that cannot be accomplished by other UI-elements. (Doran 2014, 57.)

Figure 30. Basic Button

38

Input controls can be used to change values of the variables in a script. There

are many different Input controls for different data types such as integers

string and vectors. String datatypes have text fields, booleans have check-

boxes, colors have color selectors and so on. Some data types have several

different input controls, for examples, numeric data types can be modified ei-

ther by an input-field or a slider. Some controls open additional editor windows

to make editing easier. Several different Input controls can be seen in Figure

31.

Figure 31. Basic Editor controls

While all these controls are visually very different their implementation is

mostly the same. Input controls are normal methods which, create the control,

handle user input and return the final inputted value. An example of this can

be seen in Figure 32, where string variable is modified using TextField-control.

(Simon 2015, 15.)

Figure 32. Input Field example

Another common control type is a popup menu, these controls allow the user

to pick an option from a pop-up list (Figure 33). Unlike input controls, Popups

do not directly change the value to what is currently selected in popup-box.

39

Instead, the popup-method returns the index of the selected option, for this

reason, Popup-methods return either integers or enums. The text of the op-

tions come from either user-defined array or are automatically generated from

enum-names. (Smith & Queiroz 2015, 516-518.)

Figure 33. Popup example

Popups are an easy way to give the user a clear way to choose between mul-

tiple choices. Many programs use similar tools in a Settings-window for the

same purpose. Without a popup user would have to input the value manually,

relying on his own memory to know the right index for the desired option. Giv-

ing a user easy way to choose between option makes tools easier to use and

reduce the risk of mistakes.

6.2 Serialized Controls

As mentioned in chapter 3.4, there are two approaches to writing editor tools.

The first one is modifying script variable directly with normal input controls

mentioned above or by modifying the serialized representation of the object.

UnityEditor-namespace includes several tools, that are used to modify serial-

ized properties. The tools have a ton of inbuilt functionalities not available for

normal editor tools. The most useful parts of these controls are inbuilt Undo

and multi-edit -functionalities. The tools are generic and work with any serializ-

able class. (Unity Technologies 2017a.)

40

6.2.1 PropertyField

PropertyField is a field that automatically determines the type of variable that it

is given and generates an appropriate accessor control. As can be seen in the

Inspector script in Figure 34 a function call is always the same for every varia-

ble regardless of the type. It is important to note, that developer has no direct

control over what type of control is going to be shown, so the developer can-

not specifically call IntField or IntSlider for example. To have a control over

how the property is shown, one can use PropertyAttributes as in Figure 34,

with ExInt-variable. (Tadres 2015, 93.)

Figure 34. PropertyField Script

To use PropertyField one must use a SerializedProperty, which is a serialized

representation of the variable that is being modified. In OnInspectorGUI-

method there are two important methods, that are required to make Property-

Fields work. First, there is Update-method of the SerializedObject, that holds

the variable. This method refreshes the SerializedObject, making sure that all

properties are in sync with the actual object. At the end, there is ApplyModi-

fiedProperties-method. As the name suggests this method applies all changes

made to the original object. (Unity Technologies 2017a.) This method also rec-

ords which properties were changed and creates Undo-steps for the changes.

(Tadres 2015, 104-105.)

41

6.2.2 PropertyDrawer

PropertyDrawers determines how properties are shown by a PropertyField.

Like custom Inspectors, PropertyDrawers can change how an entire serializa-

ble class is drawn by overriding the default PropertyDrawer for the entire

class. PropertyDrawers can also be called by attributes, thus changing only

appearances of desired properties. As can be seen in the previous example in

Figure 34, using Range-Attribute with the integer variable changed accessor

control to a slider, which is a PropertyDrawer. (Tadres 2015, 104-105.)

The developer can create his own custom PropertyDrawers. PropertyDrawers

can easily be reused between multiple editors since they are automatically

used by default Inspectors and PropertyFields. As mentioned above Property

Drawers can be used in two ways: Overriding a whole class or with a single

property with attributes. The example in Figure 35, overrides an entire class.

After this example, all default Inspectors and PropertyFields will use the cus-

tom PropertyDrawer to display all instances of the ScaledCurve-class. (Unity

Technologies 2012b.)

Figure 35. Custom PropertyDrawer-class

The process of creating custom PropertyDrawers is quite like creating a cus-

tom Inspector. The biggest difference between the two is, that for the perfor-

mance reason, PropertyDrawers cannot use layout-classes. Because of this

limitation, the position of all elements must be manually calculated. This also

42

applies to the height of the PropertyDrawer: all PropertyDrawers must return

their height with GetPropertyHeight-method. If PropertyHeight is too small, the

PropertyDrawer will overlap with others as demonstrated by Figure 36. (Unity

Technologies 2015.)

Figure 36. Property Height example

6.2.3 Built-In PropertyAttributes

PropertyAttributes are placed above declaration of a variable (property) in a

script. PropertyAttributes are a simple way of doing implementing changes to

the editor without rewriting entire Inspector. This chapter discusses built-in at-

tributes, that exist in Unity.

Built-in attributes like Space, Header, Tooltip, and HideInInspector can im-

prove readability of the editor. Space-attribute inserts spaces between ele-

ments, this is useful when trying to organize different element groups. By com-

bining this with Header-attribute which inserts a text label above the element,

one can improve the readability of the inspector by separating different ele-

ments based on their usage. Tooltip-attribute created a helpful tip-text that ap-

pears when a hover over the element, providing additional information about

the element. This is especially helpful for team members who are not familiar

with the object and what each variable is used for. In Figure 37, it is easy to

see how much even minor changes to the inspector can improve the readabil-

ity. (Tadres 2015, 97-99.)

43

Figure 37. Layout attributes

There are a few attributes that can actually change which built-in Property-

Drawers is used to draw the field. These built-in attributes are Multiline, Tex-

tArea and Range. These attributes are demonstrated in Figure 38. Multiline-

attribute allows a user to write string-variables in a multiline textbox, which can

contain more text than default input control as well as allows the user to insert

line breaks with Enter-key. TextArea is like Multiline but can contain more text

thanks to a scrollbar. These two attributes are used with fields that contain a

lot of text. (Tadres 2015, 94-95.) The final relevant built-in attribute is the

Range attribute, which turns a normal integer and float input control to a slider,

with set minimum and maximum values. (Dickinson. 2015, 382.) This is useful

if values must be kept within a certain range.

Figure 38 Input attributes

Since implementing these built-in attributes is very easy, they are worth know-

ing because they can make default inspector easier to read and use. While

additional functionality provided by attributes is still relatively simple, they can

alter editor without the need to write a completely new custom editor for the

object.

44

6.2.4 Custom PropertyAttributes

Like built-in attributes, custom PropertyAttributes are placed before a variable

declaration. By themselves attributes do not do anything, they are simply used

to inform the Editor which PropertyDrawer is going to be used to display the

next property and store any arguments given to the attribute. Before the prop-

erty is rendered, the Unity check if the property has an attribute (or an associ-

ated PropertyDrawer for the class) attached to it and automatically renders the

appropriate PropertyDrawer. Otherwise, Unity uses default PropertyDrawers.

The general flow how Unity determines which PropertyDrawer is used can be

seen in Figure 39. (Unity Technologies 2012b.)

Figure 39. PropertyDrawer Flowchart

Programming-wise there is nothing too complicated about creating PropertyAt-

tributes. The example below (Figure 40) shows the creation of a simple Prop-

ertyAttribute and PropertyDrawer, which can store and reset floats to default

values. Custom Attribute-classes inherit from PropertyAttribute class. As can

be seen in the example, if the attribute-class has a word “Attribute” in its

name, the attribute must be declared without the word. So, in this case, the

“DefaultFloatAttribute” is declared simply as “DefaultFloat”.

45

Figure 40. Custom PropertyAttribute

The process of creating PropertyDrawer for the attribute is same as creating

custom Editors. A class is preceded by CustomPropertyDrawer-attribute,

which links the PropertyDrawer to the PropertyAttribute. A reference to the

PropertyAttribute is stored to the attribute-property of the PropertyDrawer-

class, which gives PropertyDrawer access to the attribute and its properties.

6.3 Undo and ChangeCheck

As mentioned before, normal UI-controls do not have a built-in Undo-function-

ality. This is a very big issued since Undo-functionality is a universally ex-

pected function, that exists in almost any program. Undo is expected for a rea-

son, as it reduces a risk of mistakes.

Implementing Undo-functionality is done by using Undo-class, which is part of

UnityEditor-namespace. Undo-class takes a snapshot of UnityEngine.Object

and save its state. This state is then saved to the Undo-stack and can be re-

covered by performing Undo. Undo-class can also keep track of object man-

agement actions like object creation and deletion. All different methods are ex-

plained in Table 2. (Unity Technologies 2017j.)

46

Table 2. Undo-methods

Method Description

Add Component Add Component to GameObject, with Undo

DestroyObjectImmediate Destroys object, with Undo

RecordObject Creates Undo a single object

RecordObjects
Create Undo for multiple objects.
Same as RecordObject.

RegisterCompleteObjectUndo
Records complete state of the object, any changes
made after the call will be ignored upon Undo.

RegisterCreatedObjectUndo
Create an Object, with the possibility to undo the cre-
ation.

RegisterFullObjectHierarchy-
Undo

Records complete state of the hierarchy object, any
changes made after the call will be ignored upon
Undo. Similar to RegisterCompleteObjectUndo.

SetTransformParent Change the parent of the object, with Undo

To create and Undo-step, one must record the state of the object before any

changes are made. Placing Undo-method before changes are made creates a

snapshot of the object before changes, which is then used to create the Undo-

step. Most Undo-methods take 2 arguments, the target object that is being

recorded and the name of the Undo-step that will be displayed in Edit-menu.

(Unity Technologies 2017j.)

For performance reasons Undo-methods should only be called before the

changes are made. The approach on the left script of Figure 41, works well for

actions that only happen on when triggered, like button clicks. But calling

Undo-methods for Input-fields, which are rendered once per frame, can lead

to performance issues with bigger tools. To avoid this issue, one should take

advantage of ChangeCheck-groups, which can be used to trigger Undo-meth-

ods only when specific controls are changed.

Figure 41. Two ways of Undo-implementation

47

ChangeCheck-groups work like other element groups: all controls between

begin and end are considered a part of the same group. If Unity detects that a

control inside the group has been changed, the EndChangeCheck-method will

return true. By changing the actual property value inside the if-block, it is pos-

sible to call Undo-method before the changing the actual value. This way

Undo-methods are only called when necessary. As evident by Figure 41 while

several properties can be grouped inside a single group, using ChangeCheck

groups for Undo does complicate the script quite a bit. To avoid this one must

either use property fields or abandon Undo-functionality altogether. (Unity

Technologies 2017k.)

7 CASE

The purpose of the case is to demonstrate how IMGUI extensions can be ben-

eficial to the game development process, how the tools work and what kind of

solutions were used. For this purpose, a simple turn-based RPG-game was

created, with several tools to be used to develop the game. While the game

was only created as a proof of concept for editor tools, it is nevertheless de-

veloped as a real game. The idea is that the base of the game is fully func-

tional and one could use existing tools to develop a full game.

This chapter discusses each feature of the game in conjunction with the tools

that are used for the said feature, reasons why certain features were imple-

mented and advantages provided by editor tools. This, of course, leaves out

many gameplay-only features of the game such as pathfinding and AI, which

are irrelevant to the topic of this thesis.

7.1 Game Introduction

Before further talking about the tools, it is appropriate to give a brief introduc-

tion to the game seen in Figure 42. The game, currently code-named Shogun

Tactics, is a turn-based strategy game, similar to games like Fire Emblem and

Final Fantasy Tactics. The game takes place in isometric-2D levels, with mini-

mum 2 teams participating, one being a player-controlled team, the rest AI-

controlled. To beat a level, the player must accomplish a variety of different

objectives such as defeating all enemies or surviving a certain number of

turns.

48

The combat is a standard turn-based combat, where a team takes a turn to

move all its units and after that, the next team does the same. During a turn

characters can move, attack, guard, and use items. A character can move and

attack any tile within a certain range. Movement and attack ranges vary de-

pending on character and weapon equipped.

Figure 42. Shogun Tactics

The game is divided into missions, each with different objectives. Upon com-

pleting the objective player advances to the next mission, with shops and

other in-between scenes between the missions. In shops, the player can buy

and sell equipment and recovery-items. The game has been programmed in a

way that technically anything can be loaded between missions, allowing flexi-

bility when it comes to game structure. However, currently the game contains

only two missions, with one shop in between.

7.2 Tools Overview

There are a ton of tools made for the project. The core idea for all tools was to

make them as reusable as possible, meaning that they could easily be called

from any other editor. This allows great flexibility with editor layouts and re-

duces the amount of programming that’s needed to be done when implement-

ing new tools for the project.

Tools, in general, do not use SerializedObject, propertyFields or Property-

Drawers. While these are all extremely useful tools, due to lack of personal

49

understanding and complications that generic nature of the tools caused, use

of them was mostly avoided. Two biggest setbacks were automatic Undo-

functionality and inability to use PropertyDrawers. While Undo-functionality

was implemented manually for all tools, using PropertyDrawers was impracti-

cal for most cases.

Editor tools are used to modify two different kinds of objects: normal serializa-

ble-classes and objects derived from UnityEngine.Object. This means that

some classes are modified with custom Inspectors and others with regular

classes which utilize IMGUI-methods. This causes some issues when imple-

menting Undo-functionalities, but otherwise, the tools are indistinguishable.

Table 3 describes types of the most important classes.

Table 3. Editors and types

Class-name Type

Missions Object

Teams Serialized

Characters Serialized

Items Object

Mission Conditions Object

Mission Events Serialized

Maps and GameTiles Object

The reason for two different types of editors is the nature of UnityEngine.Ob-

jects, namely that these objects must exist in a file or as a gameObject on a

scene. For many cases creating a separate file for every instance of the class

was considered impractical. In some other cases, alternate methods were

used for experimental purposes. The decision of which approach was used

usually boiled down to several factors: How many instances of the object are

going to be created, nature of the parent object and is polymorphism needed?

The final point is exceptionally important since as discussed in 3.3 Unity’s seri-

alization does not work well with polymorphism with not-UnityEngine.Object-

derived classes. So, in most cases, if polymorphism was required, the class

was made to derive from UnityEngine.Object and saved as files.

50

7.3 Maps and Game Tiles

The gameplay takes place in tile-based isometric 2D-maps. Each tile is a

MonoBehaviour-script represented by a 2D-graphic. Each mission is associ-

ated with a single map, that is loaded along with the mission. A character can

move around the map in horizontal and vertical direction or jump up and down

different layers. It goes without saying, that building these maps manually

would be a monotonous task: dragging and cloning each tile to its proper

place, assigning each tile to a script, setting proper sorting order, just to name

a few problems. It was clear early on, that creating a level creation-tool was

one of the top priorities.

On technical level maps are MonoBehaviour scripts, located in a scene. This

script, called GameGrid, contains a reference to all Game Tile-MonoBehav-

iours and is used to relay information of tiles to other scripts. One of the most

important functions of GameGrid is to inform another script wherever specified

coordinates have a tile or not. The maps work on singleton designs, meaning

that only one map can exist at a time.

Map Editor is a custom Inspector for GameGrid-class. The editor is responsi-

ble for creating, modifying and deleting tiles. To be accurate, actual modifying

of tiles is done with custom Inspector of selected GameTile-MonoBehaviour,

which is generated inside the GameGrid-Editor. GameTile Editor supports

Multi-Editing so that multiple tiles can be edited at the same time.

Figure 43. Map-Editor

51

As can be seen in Figure 43, the UI for MapEditor is basic. The user can cre-

ate tiles and layers with a button click. The editor is able to detect if currently

selected tiles are empty and change its behavior accordingly. When there is

no tile user has the ability to create a tile and when there is a tile user is al-

lowed to modify it. Tiles are created with a graphic last selected by the user,

removing the need for the user to assign graphics for every created tile.

MissionEditor uses SceneViewGUI-method to draw outlines for tiles in Scene

View. This makes it easy to distinguish between tiles, which is extremely help-

ful with an isometric perspective and multiple layers. To make grid easily

visible in every environment, the user can modify the color of the grid from

Preference-window.

The user can navigate the grid with a keyboard, by clicking tiles or with press-

ing arrows in navigation UI, seen in Figure 44. The different approaches are a

result of experimentation, as due to perspective and technical limitation no op-

tion seemed ideal for every situation. For example, clicking tiles that are be-

hind of another tile is hard to do with a mouse, but easy to do with a keyboard.

Figure 44. Map Grid

7.4 Missions

The game is separated to multiple missions, each with their own associated

map (see Figure 45). To make each map reusable between different missions,

missions and maps are created as separated entities. Missions contain info-

mation about teams, characters, events as well as winning and losing condi-

tions.

52

Figure 45. Mission structure

Missions are ScriptableObject-files stored on disk and Maps are stored in

Unity’s Scene-files This structure causes a bit of a problem since Missions

and Maps do not exist in the same scene, making cross-referencing between

the entities is not possible. Since Mission-ScriptableObjects do not exist on

the scene it cannot refer Maps or GameTiles located on scenes. To get

around this, Missions do not refer other tiles directly but instead, use coordi-

nate-system. For example, editor scripts frequently ask GameGrid-script if a

specific spot on the grid is empty. Using the coordinates instead of direct ref-

erences gets around any cross-reference issues. However, without fail check,

characters could spawn on top of empty tile or inside tile on top of spawn-tile.

This is because coordinates themselves do not indicate if a tile is empty or not

and do not respond to changes made to the map.

Missions Editor window (Figure 46) is the main hub for almost all other editors

made for the game. The structure of the Editor window is illustrated in Figure

47 along with all its sub-editors. Mission Editor is an Editor window, which can

load, create and delete Mission-ScriptableObjects and load their related

scenes with a button click. After the Mission-object is loaded Unity calls the

custom Inspector of the object, which is the actual main editor. Using Editor-

Window as a wrapper for all Mission Inspectors allow easy switching between

missions as well as free the normal Inspector Window for Map-editor.

53

Figure 46. Mission Editor

Mission Editor also draws characters to the Scene View. As can be seen in

Figure 46, the display for the characters is a simple triangle on the ground,

with a button above it. Pressing the button opens the character editor for that

character and allows the user to drag a character around, changing the spawn

point. The colored triangle tells three things: characters′ spawn position, the

direction the character is going to face when spawned and characters′ team.

The simplified appearance makes Scene View easy to read, without having a

ton of characters filling the screen.

Figure 47. MissionEditor structure

Going from top-down with one editor at a time. First, there is a Mission Inspec-

tor which only contains several controls of its own: Next Mission object-field,

Team Selection, and Intro Text-text field. The user can determine which

54

Loadable-ScriptableObject gets loaded after the player beats the mission, this

means other Missions or Shops. Finally, the Intro-text field determines the text

that pops up when Mission starts, this is used to tell the player his current ob-

jective.

The first child-editors are two MissionCondition-Editors, which are used to cre-

ate and modify MissionCondition-objects for defeat and victory. MissionCondi-

tions are explained more detail in 7.5. Next, there is Event Editor, which is

used to edit events, which can be triggered by Mission Conditions. Events

can, for example, kill a certain character when a certain amount of turns have

passed or to give a character an item when another character is killed.

Finally, there is a sub-editor-slot. Sub-editor slot is used by Team Editor (like

in Figure 47) or Character Editor depending on what is being edited. Sub-edi-

tor slot is used to save space. The user can also open sub-editors as a sepa-

rate window by pressing the pop-button.

7.5 Mission Conditions and Events

To make the game more varied it is necessary to implement different types of

missions. The different mission can have different winning and losing condi-

tions. For example, the most common victory condition is when all enemies

have been defeated. But some other mission may require the player to survive

x-number of turns or protect certain character to the end. It soon became ap-

parent, that similar system would be useful for triggering gameplay-events.

For this purpose, the MissionCondition-class was created. MissionCondition is

an abstract base class for all different mission conditions. There are several

different types of mission conditions, each with its own logic how the condition

is determined. Currently implemented conditions are explained in Table 4

Table 4. Condition types

Condition-name Description

UnitsDead Return true when certain characters are defeated

UnitsDeadAmount
Return true when certain number of enemies are
defeated

TeamsDead Return true when entire team is defeated

PointReached
Return true when a member of a team has
reached any of determined points.

TurnsPassed
Return true when certain number of turn have
passed

55

Mission conditions are checked when any character performs an action or

when a turn ends. By checking conditions as often as possible, it is ensured

that response to all condition types is instant. What happens when a condition

is true depends entirely on the code, that uses it. When MissionCondition for

victory conditions is true the game ends and player advances to the next mis-

sion, but if the same condition was set to defeat condition the mission restarts.

MissionConditions are also used for spawning characters after the first turn.

On the editor side, all mission conditions have their own custom inspector,

which can be drawn inside other editors. As demonstrated in Figure 48, cus-

tom Inspectors follow the same class structure as MissionConditions, with

MissionConditionEditor as a base class. Having identical class structure is

crucial for polymorphic editor tools because now any custom editors for Mis-

sionCondition-object can be cast to a base MissionConditionEditor-class. For

example, the script in Figure 49 is now able to determine if the custom editor

is MissionConditionEditor and call a class-specific initialization method. If a

mission condition has no custom editor or doesn’t inherit from MissionCondi-

tionEditor-class, it is simply drawn without initialization.

Figure 48. Mission Condition class structure

Figure 49. Polymorphism with editors

56

Implementing Mission Condition to editor provided a couple challenges. Be-

cause Mission Conditions are ScriptableObjects, they must be saved to file.

To avoid a cluster of files in the project, the files are stored inside the Mission-

ScriptableObject itself, by using AssetsDatabase.AddObjectToAsset-method.

This method can attach any UnityEngine.Object to another object. As done in

Figure 50, by using HideFlags-class it is possible to completely hide these at-

tached objects from the view. The advantage of this approach is that, when

Mission-file is deleted, all its MissionConditions are removed along with it, so

there is no need to remove each file individually.

Figure 50. HideFlags

To make MissionConditions easily usable in different contexts, a new control

called ConditionSelector (Figure 51) was created. This control handles creat-

ing and deleting mission conditions as well as generating the custom Inspec-

tors for conditions. The actual control contains three elements: foldout, label,

and popup. The control can be used anywhere as long as it can refer to a mis-

sion, which many conditions require anyway. For example, TeamsDead-condi-

tion inevitably needs information about how many teams the mission contains.

Figure 51. ConditionSelector-control

57

One of the main use of Mission conditions is Mission Events. Mission Events

can trigger certain behavior when conditions determined by MissionCondition

are fulfilled. Currently, there are only few event types: Visu16-events,

GiveItem-events, and KillCharacter-events. Visu16-events use external

Visu16-plugin to display conversation-cutscenes. GiveItem events add a

certain item to characters inventory and KillCharacter-event kills certain char-

acters.

7.6 Items

Items are built with attributes. This means there is only one Item-class and

items are defined entirely by attributes that they hold. Attributes are Scrip-

tableObjects attached to an Item-ScriptableObject, similar to how MissionCon-

ditions are attached to a Mission (See 7.5). ItemAttributes contain data and

behavior that affect how item behaves in the game. This system is very flexi-

ble, instead of having separate classes for every item type, having each item

defined by their attributes makes it easy to create combinations of different

kind of behaviors. Each item can have any of attributes described in Table 5,

with example item shown in Figure 52.

Table 5. ItemAttribute types

Name Description

CommonAttribute
Contains base information common to all item
such as name, value, and description. Must be
present in all items.

WeaponAttribute Weapon range and Weapon-type.

GearSlot-attribute Determines slots that can the item be equipped to.

StatsAttribute
Determines changes item makes to Characters
stats when equipped.

Use_RecoverAttribute
Allows the item to be used in Inventory, to heal
Character.

58

Figure 52. Example Item

When items are loaded in a script, the script can check if the item has specific

attributes attached to it and act accordingly. The most prominent example for

this is characters inventory. In the inventory, the player can equip and unequip

items. If the player clicks an item in inventory a popup-menu shows up. The

content of this menu depends on the attributes of the item. If the item has

gearSlot-attribute, the menu shows the equip-button. If the item has Use_Re-

covery-attribute, the player can choose to use the item. The inventory also dis-

plays player information about the item. Just like the popup menu, how this

view is constructed depends on the attributes. The Figure 53 shows how the

sword created in Figure 52 will show up in the game.

Figure 53. In-game item in Inventory

Items are stored in ItemDatabase-ScriptableObject. ItemDatabase has a sim-

ple custom Inspector, which generates individual item-editors for all stored

items. By using ItemDatabases editor it is easy to modify and create new

59

items. When Item-editor is created it loops through every ItemAttribute-Scrip-

tableObject and creates the associated Inspectors. Attributes are created and

destroyed using Item-Editors.

7.7 Characters

Characters in the game are built of two components: Character-data and vis-

ual GameObject. GameObjects are only created in-game, based on Charac-

ter-data. In the editor user never sees the character visually, instead, they are

represented by arrows and indicators. Character data is what one would ex-

pect, it contains information like character name, stats, and inventory.

There are two types of characters: Unique and not-Unique character. Unique

characters are essentially player characters, characters whose data need to

be saved and loaded between missions. As demonstrated by Figure 54, how

data is loaded varies a bit depending on the character type. The reason for dif-

ferentiating the two-character type is twofold: to tell the game which charac-

ters are saved and to tell the editor what properties of characters are editable.

Because unique-characters are out of developers direct control after first in-

game usage, it makes no sense to allow users to modify unique characters on

a mission by mission basis.

Figure 54. Loading Character-data during gameplay

In editor-side, the data for unique characters are stored in ScriptableObject-

database, called CharacterDatabase, along with template-data of reusable

not-unique characters. When the game first uses a unique character, the

game loads the information of the character from this database. Non-unique

characters get their data directly from the mission.

60

Figure 55. Character Editor

Character Editor (Figure 55) is used by Mission Editor and Character Data-

base to modify properties of Character data. The Character editor has several

child editors for stats, spawn conditions (Mission Conditions) and inventory.

These two editors are only used by Character editor but are nevertheless

treated as separate editor in code. This is to allow any possible future reusing

of editors elsewhere.

7.7.1 Stats

Stats represent a strength of a character based on numeric values. Stats de-

termine how many life points the character has, how much damage he does

and what kind of weapons he can equip. Stats are also affected by items char-

acter has equipped, so for example, chest plates improve character defense

and weapons improve attack. Stats and equipped items can be edited with the

Stats-editor (Figure 56).

Figure 56. Stats Editor

61

Stats editor has several features, that demonstrate how useful editor exten-

sions can be. Stats-editor has several input-fields for each stat, but next to the

there is also non-interactable label field, which previews the actual final stat,

which takes account items that character has equipped. This feature allows

designers to get a more accurate idea of how strong the character is, without

having to do all manual calculation themselves, saving a lot of time.

Choosing items from a popups list is easy. Since each popup only displays

items valid to current equipment-slot, there is no possibility of equipping a

wrong type of item. Without editor tools, this process would be much more te-

dious. An Item-object would have to be manually dragged to the editor or se-

lected from a list containing every single item. To make this process work

without editor tools all items would have to be well organized in the project

and have a very informative naming conventions. Also without tools, there

would be no way to check if the item can even be equipped to a specific

equipment slot.

8 CONCLUSIONS

The purpose of this thesis was to illustrate how IMGUI extensions work and

how they can be implemented. Overall thesis covered all crucial elements of

an extensions creating process, with exception of potential releasing of exten-

sions in Asset Store. Since this topic was a fairly obscure it was important to

go over the basics and then display how editor extensions can revolutionize

how games can be developed. While creating editor extensions is strongly en-

couraged, they can take time to create and sometimes an cause new prob-

lems. However, as demonstrated by many examples in the thesis, editor ex-

tensions can both speed up the game development process and allow even

non-programmers to take part in the technical development of the game.

If one follows Unity’s development, developers are going to keep adding new

functionalities to the editor. According to Unity roadmap, there are plans for

IMGUI debugger tools, Visual scripting and a whole new type of editor tools

called UIElements. However, due to lack of reliable sources and the fact that

they are features under development, they were left out of the thesis. (Unity

Technologies 2017l.)

62

Building a game with editor tools was a major undertaking. While it is hard to

estimate exactly how long each part of the project takes, overall developing of

the game took most likely half of the development time and tools took the

other half. While that sounds like a lot, it is important to keep in mind, that now

with all tools in place, one could easily develop the full game with these tools.

If the game was developed further, the time saved with editor tools would be-

come greater, longer the development process is.

The biggest challenges, as far as editor extensions are concerned, came from

advanced editor issues, such as designing data-structure ideal for both game

and editor, figuring different ways to reuse editors and working with serializa-

tion. While there are a couple of issues, that could need further development,

things learned from this project were enormous. Thesis provided a way to

deepen personal knowledge of both editor-scripting and game programming in

general.

63

REFERENCES

Blow J. 2004. Game Development: Harder Than You Think. Available at:
http://queue.acm.org/issuedetail.cfm?issue=971564. [Accessed: 30.9.2017].

Cogut V. 2015. Unity 5 for Android Essentials.
Birmingham: Packt Publishing.

CG Channel Inc. 2016. Unity Technologies to make Anima2D available for
free. Available at: http://www.cgchannel.com/2016/12/unity-technologies-to-
make-anima2d-available-for-free/. [Accessed 20.11.2017]

Dickinson C. 2015. Unity 5 Game Optimization.
Birmingham: Packt Publishing.

Doran J. 2014. Unity Game Development Blueprints. Birmingham:
Packt Publishing.

Enterbrain Inc. 2017. RPGMaker VX Features. Available at:
http://www.rpgmakerweb.com/products/programs/rpg-maker-vx-ace [Ac-
cessed 30.9.2017].

Hutong Games. 2017. PlayMaker-website. Available at: http://www.hutong-
games.com/. [Accessed 20.11.2017].

Kogent Learning Solutions. 2009. Java 6 Programming Black Book.
New Delhi: Dreamtech Press.

Mandarina Games. 2015. Anima2D Features. Available at: https://an-
ima2d.com/features/. [Accessed 20.11.2017].

Meier R. 2014 Custom editors in unity3d - part 6: serializedobject,
serializedproperty, propertydrawer. Available at: http://www.ryan-
meier.com/blog/?p=67. [Accessed 30.9.2017].

Miles J. 2016. Unity 3D and PlayMaker essentials: game development from
concept to publishing. Boca Raton: CRC Press.

Sapio F. 2017. Getting Started with Unity 5.x 2D Game Development. Bir-
mingham: Packt Publishing.

Simon J. 2015. Unity 3D UI Essentials. Birmingham: Packt Publishing.

Smith M. & Queiroz C. 2015. Unity 5.x Cookbook.
Birmingham: Packt Publishing.

Pierce G. 2012. Unity iOS Game Development.
Birmingham: Packt Publishing.

Tadres A. 2015. Extending Unity with Editor Scripting.
Birmingham: Packt Publishing.

64

The Knights of Unity. 2016. Asset Review – Editor Console Pro.
http://blog.theknightsofunity.com/asset-review-editor-console-pro/. [Accessed
20.11.2017].

Thorn A. 2015. Mastering Unity Scripting. Birmingham: Packt Publishing.

Unity Technologies. 2012a. Unity Serialization. Available at:
https://blogs.unity3d.com/2012/10/25/unity-serialization/. [Accessed
30.9.2017].

Unity Technologies. 2012b. Unity Serialization. Available at:
https://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/. [Accessed
30.9.2017].

Unity Technologies. 2014. Serialization in Unity. Available at:
https://blogs.unity3d.com/2014/06/24/serialization-in-unity/. [Accessed
30.9.2017].

Unity Technologies. 2015. Going deep with IMGUI and Editor Customization.
Available at: https://blogs.unity3d.com/2015/12/22/going-deep-with-imgui-and-
editor-customization/. [Accessed 30.9.2017].

Unity Technologies. 2017a. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/Editor.html [Accessed 30.9.2017].

Unity Technologies. 2017b. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/SerializedProperty-property-
Type.html. [Accessed 30.9.2017].

Unity Technologies. 2017c. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/HelpURLAttribute.html. [Accessed
30.9.2017].

Unity Technologies. 2017d Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/PopupWindow.html. [Accessed
30.9.2017].

Unity Technologies. 2017e. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/GenericMenu.html. [Accessed
30.9.2017].

Unity Technologies. 2017e. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/ScriptableWizard.html. [Accessed
30.9.2017].

Unity Technologies. 2017f. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/PreferenceItem.html. [Accessed
30.9.2017].

Unity Technologies. 2017g. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/SessionState.html. [Accessed
30.9.2017].

65

Unity Technologies. 2017h. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/EditorWindow-position.html [Ac-
cessed 30.9.2017].

Unity Technologies. 2017i. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/EditorGUILayout.html [Accessed
30.9.2017].

Unity Technologies. 2017j. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/Undo.html. [Accessed 30.9.2017].

Unity Technologies. 2017k. Unity Scripting Reference. Available at:
https://docs.unity3d.com/ScriptReference/EditorGUI.BeginChangeCheck.html.
[Accessed 30.9.2017].

Unity Technologies. 2017l. Unity Scripting Reference. Available at:
https://unity3d.com/unity/roadmap. [Accessed 1.12.2017].

Vodnik S. 2015. HTML5 and CSS3, Illustrated Complete. Boston: Cengage
Learning.

Wagner B. 2014. Effective C# (Covers C# 4.0): 50 Specific Ways to Improve
Your C#. London: Pearson Education.

66

LIST OF FIGURES

Figure 1. RPG Maker (Enterbrain Inc. 2017). Available at: https://fo-
rums.rpgmakerweb.com/index.php?threads/changing-actor-graphic.47710/.
[Accessed 22.11.2017].

Figure 2. Unreal Engine Blueprint (Epic Games 2017). Available at:
https://docs.unrealengine.com/latest/INT/Engine/Blue-
prints/UserGuide/Types/MacroLibrary/. [Accessed 22.11.2017].

Figure 3. Visual scripting in Playmaker (Hutong Games 2017). Available
at:https://hutonggames.fogbugz.com/default.asp?W1156. [Accessed
22.11.2017].

Figure 4. Anima 2D (Mandarina Games 2015). Available at: https://an-
ima2d.com/features/. [Accessed 22.11.2017].

Figure 5. Editor-Console Pro (FlyingWorm 2017). Available at: http://flying-
worm.com/. [Accessed 22.11.2017].

Figure 6. Unity Debug Console (Unity Technologies 2015). Available at:
https://blogs.unity3d.com/2015/01/21/addcomponentstring-api-removal-in-
unity-5-0/. [Accessed 22.11.2017].

Figure 7. IMGUI flow-tree (Unity Technologies 2015). Available at:
https://blogs.unity3d.com/2015/12/22/going-deep-with-imgui-and-editor-cus-
tomization/.[Accessed 22.11.2017].

Figure 8. IMGUI button example

Figure 9. Serialization data flow

Figure 10. Serialized class

Figure 11. Serialized class in Inspector

Figure 12. Polymorphism problem

Figure 13. A list Serialization

Figure 14. SerializedObject editor script

Figure 15. Custom Inspector

67

Figure 16. Gizmos (Unify Community Wiki). Available at:
http://wiki.unity3d.com/index.php?title=Interpolate. [Accessed 22.11.2017].

Figure 17. Default Handles

Figure 18. Creation of GenericMenu

Figure 19. Creation of MenuItem

Figure 20. Custom Preference Section

Figure 21. GUI vs. GUILayout

Figure 22. GUI-coordinate problem

Figure 23. Layout graph

Figure 24. Common Element Groups

Figure 25. Vertical and Horizontal Layout Groups

Figure 26. Scroll View

Figure 27. GUI Skin

Figure 28 Custom style

Figure 29. Loading GUISkin

Figure 30. Basic Button

Figure 31. Basic Editor controls

Figure 32. Input Field example

Figure 33. Popup example

Figure 34. PropertyField Script

Figure 35. Custom PropertyDrawer-class

Figure 36. Property Height example

68

Figure 37. Layout attributes

Figure 38 Input attributes

Figure 39. PropertyDrawer Flowchart

Figure 40. Custom PropertyAttribute

Figure 41. Two ways of Undo-implementation

Figure 42. Shogun Tactics

Figure 43. Map-Editor

Figure 44. Map Grid

Figure 45. Mission structure

Figure 46. Mission Editor

Figure 47. MissionEditor structure

Figure 48. Mission Condition class structure

Figure 49. Polymorphism with editors

Figure 50. HideFlags

Figure 51. ConditionSelector-control

Figure 52. Example Item

Figure 53. In-game item in Inventory

Figure 54. Loading Character-data during gameplay

Figure 55. Character Editor

Figure 56. Stats Editor

69

LIST OF TABLES

Table 1. Event types. Made with information from:
https://docs.unity3d.com/ScriptReference/EventType.html. [Accessed
22.11.2017].

Table 2. Undo-methods. Made with information from:
https://docs.unity3d.com/ScriptReference/Undo.html. [Accessed 22.11.2017].

Table 3. Editors and types.

Table 4. Condition types.

Table 5. ItemAttribute types.

