

Jari Laurila

Developing Computerized Maintenance

Management System

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

16 December 2017

 Abstract

Author
Title

Number of Pages
Date

Jari Laurila
Developing Computerized Maintenance Management System
52 pages + 2 appendices
16 December 2017

Degree Master of Engineering

Degree Programme Information Technology

Instructor

Ville Jääskeläinen, Head of Master’s Program in IT

The objective of this thesis was to evaluate the applicability of the Dynamics 365 platform to
the development of a Computerized Maintenance Management System (CMMS). Having a
CMMS to manage maintenance operations is important to many companies and Dynamics
365 is a potential platform for creating one.

The thesis starts with background research in maintenance. Essential requirements for a
CMMS are then defined and compared to the existing functionality and extendibility and
customization capabilities of Dynamics 365. Based on the analysis a set of requirements is
then defined for a prototype implementation.

The thesis then describes the implementation of the prototype. Information is provided on
the various customizations and extensions done to the system. The application implemen-
tation consists of JavaScript front-end code and C# back-end code.

After the implementation the prototype was evaluated by conducting functional testing and
a technical review. Based on the findings the applicability was demonstrated and guidance
to future development given.

Dynamics 365 proved to be a powerful platform for creating business applications. However,
it is a complex product that offers multiple ways of developing functionality. For the best
results, developers should get familiar with the platform and use the available tools and 3rd
party components.

Keywords maintenance, CMMS, Dynamics 365, prototyping

Contents

Abstract

List of Abbreviations/Acronyms

1 Introduction 1

1.1 Background 2

1.2 Objectives and Scope 2

1.3 Method and Process 3

2 Maintenance Fundamentals 4

2.1 Impact of Maintenance 4

2.2 Maintenance Types 4

2.3 Maintenance Management 7

2.4 Computerized Maintenance Management Systems 7

3 Dynamics 365 11

3.1 Overview and Standard Applications 11

3.2 Dynamics 365 as Application Platform 14

3.3 Extending Dynamics 365 15

3.4 Solutions 21

4 CMMS Requirements 23

4.1 Fit-gap Analysis 24

4.2 Functionality Selected for Prototype 25

5 Solution Implementation 27

5.1 Overview 27

5.2 Schema Customizations 28

5.3 Views and Forms 36

5.4 Web Resources 37

5.5 Back-end Code 43

5.6 Security Roles 47

6 Testing and Evaluation 48

7 Discussion and Conclusions 51

References

Appendices

Appendix 1. Fit-gap analysis

Appendix 2. Custom entity definitions

List of Abbreviations

API Application Programming Interface

CDN Content Delivery Network

CMMS Computerized Maintenance Management System

CM Corrective Maintenance

ERP Enterprise Resource Planning

FSM Field Service Management

HTTP Hypertext Transfer Protocol

IT Information Technology

LOB Line of Business

MTTF Mean Time to Failure

MRO Maintenance, Repair and Operations

PM Preventive Maintenance

RDL Report Definition Language

RTF Run to Failure

SDK Software Development Kit

SPA Single Page Application

xRM Anything Relationship Management

1

1 Introduction

The world today is heavily dependent on technology and automation. As technology ad-

vances we can do more with machines but we also become more dependent on them.

In many industries the equipment required to produce goods and services is expensive

to own, operate and maintain and faults even in a single piece of equipment can halt an

entire production. In addition to direct production losses, the downtime caused by an

equipment failure may damage company reputation and in some cases, lead to fines and

penalties. Equipment failure can also jeopardize health and safety. These things make

maintaining the equipment properly a key activity for companies and in some industries

companies spend up to 50% of their operational costs on maintenance. In today’s com-

petitive environment, understanding the total cost of maintenance and optimizing these

costs has a big impact on company profitability. (Campbell, 2016)

Today, the companies typically manage their equipment using a software product. Com-

puterized Maintenance Management System (CMMS) are software products that help

companies run their maintenance operations efficiently. With these systems, companies

can plan preventive maintenance, manage corrective maintenance, track machine

hours, tires and other consumables, monitor warranty periods, track labor and fuel costs

and manage inventory. More advanced CMMS systems integrate also with other com-

pany functions such as project planning, resourcing, and accounting. (Equipment World)

There are many good commercial CMMS systems on the market. However, some com-

panies have specific requirements for managing their equipment or want a solution that

can be integrated to their existing IT infrastructure and other operational systems. For

them, the ability to customize and further develop the system and to integrate it tightly to

other business applications is important. Increasingly, companies are also looking for

cloud-based solutions. Solution providers that can offer CMMS solutions that meet these

criteria can gain significant competitive advantage compared to point solutions or solu-

tions requiring on-premise installation.

Microsoft Dynamics 365 (xRM) is part of Microsoft’s Dynamics 365 suite. In addition to

providing out of the box business applications it is an enterprise application platform that

supports many key business applications out of the box: sales, customer service, field

service and project service. Currently it does not include CMMS functionality, but many

2

of the functionalities such as work order management are closely related to CMMS key

features. Dynamics 365 (xRM) offers to independent software vendors a platform for

building business applications. These applications can leverage other functionality in the

platform and use the same, extensible data model. Potentially it could be a good platform

for implementing a cloud-based CMMS application that meets customer requirements

and enables the solution provider to offer the solution globally.

1.1 Background

Kauko Oy is a Finnish system integrator specializing in mobile knowledge work and Field

Service Management solutions. The company provides digital transformation services to

customers using Dynamics 365. Based on the identified need, the company wishes to

explore the possibility of adding a CMMS solution into their offering, either as a packaged

software solution or as a solution accelerator that cuts development time and cost.

1.2 Objectives and Scope

The objective of this thesis is to evaluate the applicability of the Dynamics 365 (xRM)

platform to the development of a Computerized Maintenance Management System. The

thesis aims to answer the following research question:

- How can a CMMS be implemented using Dynamics 365 (xRM)?

The output of this thesis is not a complete software product but rather a functional pro-

totype that can that can be used to demonstrate and evaluate how such a product can

be implemented. Based on the findings recommendations for future development can

then be given. The goal is also to be able to use the prototype as a foundation for the

first customer implementation.

3

1.3 Method and Process

This study was conducted as follows:

1. The study started with a literature review of the existing knowledge related to

maintenance and Computerized Maintenance Management Systems. It defined

the key concepts and the motivation for implementing CMMSs.

2. Microsoft Dynamics 365 platform and the out of the box functionality and appli-

cation platform capability were also investigated.

3. Relevant Dynamics 365 development technologies were examined.

4. Based on the information discovered, a fit-gap analysis was then made to see

what functionality is missing from Dynamics 365 and features were then selected

for prototype implementation.

5. Based on the analysis, the study designed a prototype implementation of CMMS.

6. Finally, the study evaluated the design. Evaluation was done by doing functional

testing and by conducting a technical review. Based on the findings the design

can be developed further.

The fit-gap analysis method that was used in step 4. It is a methodology for identifying

where a system fits or does not fit the stated needs. It can be used in many business

situations, frequently it is used in selecting new software solutions. The fit-gap anal-

ysis is performed by comparing the functionality of the planned system to the current

business practice and identifying where the system fits the requirements and where

there are gaps. The fit-gap analysis then allows to understand why the gaps occur,

what is needed to solve them and allows prioritization of the solution (Infotivity, 2017)

4

2 Maintenance Fundamentals

This section first introduces the impact of maintenance and then gives definitions to dif-

ferent maintenance types. Finally, the section explains why there is a need for comput-

erized solutions for maintenance management and introduces Computerized Mainte-

nance Management Systems.

2.1 Impact of Maintenance

Maintenance costs are a major part of operating costs for many industries. Depending

on the industry they can be up to 50% of total production costs. Additionally, downtime

caused by poor maintenance can cause even bigger cost due to rework, rejected prod-

ucts, fines and damage to company reputation. Especially in capital-intensive

businesses, the profitability of the business is tightly related to proper maintenance. For

these reasons, it is important for companies to have an optimized maintenance manage-

ment strategy that is both cost effective and ensures reliable operation of the equipment

(Campbell, 2016)

2.2 Maintenance Types

According to the EN 13306:2001 standard, maintenance is defined as a combination of

all technical, administrative and managerial actions during the life cycle of an item in-

tended to retain it in, or restore it to, a state in which it can perform the required function.

The standard divides maintenance types into two major categories: preventive mainte-

nance and corrective maintenance. Preventive maintenance is further divided into

condition-based maintenance and predetermined maintenance. The relationships be-

tween maintenance types are shown in Figure 1.

5

 Maintenance – Overall view (EN 13306:2010)

Corrective Maintenance

Corrective maintenance is carried out reactively after a fault has been recognized. It aims

to restore the equipment in question into a state in which it can again perform a required

function. (CEN, 2010). Depending on the maintenance plan (or lack of one) corrective

maintenance can be either planned or unplanned. Planned corrective maintenance is

typically result of run to failure (RTF) maintenance plan where no maintenance is per-

formed on the asset until the failure event. Unplanned corrective maintenance is typically

result of a breakdown not stopped by preventive maintenance. Based on the fault and

the business conditions corrective maintenance can either be done immediately after the

fault occurs or it can be delayed and performed later, often while preventive maintenance

is next performed. Corrective and unplanned maintenance is typically much more costly

than planned and preventive maintenance. Despite this, it needs to be part of mainte-

nance strategy, since equipment failure cannot often be reliably predicted, or the failing

components are easy to replace and inexpensive. (Fiix software, 2017)

Preventive Maintenance

Preventive maintenance is performed proactively before the equipment fails. It intends

to reduce the probability of failure or degradation of the functioning of an item. Preventive

maintenance is scheduled: Predetermined maintenance is done based on established

6

maintenance programs for intervals of time or units of use and condition-based mainte-

nance is done based on monitoring the equipment and scheduling maintenance based

on the actual condition of the equipment. (CEN, 2010)

Predetermined Maintenance

Predetermined maintenance is based on a maintenance program based on established

intervals of time or units of use but without considering the actual condition of the equip-

ment. (CEN, 2010) The programs are typically provided by equipment manufacturers

and are based on their knowledge of the failure mechanisms and mean-time-to-failure

(MTTF) statistics for the equipment and its parts. The failure probability is typically higher

when the equipment or part is new or worn out. This MTTF or bathtub curve is shown in

Figure 2. Predetermined maintenance does not guarantee that the equipment does not

fail and often leads to unnecessary repairs since the programs are based on failure sta-

tistics and not on the actual condition of the equipment. Managing predetermined

maintenance can be complex since each equipment can have multiple maintenance pro-

grams and companies can have a large number of equipment. (Mobley, 2002)

 Typical bathtub curve (Mobley, 2002)

7

Condition Based Maintenance

Condition based maintenance tries to predict failure. It is based on regular monitoring of

the condition, operating efficiency and other indications of the system. The monitoring

can be done either on site or remotely via a network connection to the equipment. Mon-

itoring can be done continuously, or it can be scheduled to happen at predetermined

intervals. Monitoring can be either taking measurements from the equipment, inspecting

it for wear and tear or running tests on the equipment. Condition-based maintenance is

most complex maintenance type to implement but can be the most economical one since

only the parts needing repair or replacement are maintained. (Mobley, 2002)

2.3 Maintenance Management

In today’s business environment companies must constantly look for ways to gain com-

petitive advantage. Many industries are very capital intensive and when maintenance

costs represent so high percentage of total operating costs it is no wonder that compa-

nies are looking for ways to reduce maintenance costs. This must naturally be done

without sacrificing equipment reliability or decreasing the quality of products and ser-

vices. If equipment effectiveness, reliability or workforce productivity can be increased

or usage of materials can be reduced this can have a significant impact on the company

bottom line. For many companies, implementation of maintenance productivity programs

often results in savings of 5% to 15% of total maintenance costs. (Campbell, 2016)

The activities of the management that determine the maintenance objectives, strategies

and responsibilities and the implementation of them is called maintenance management.

(CEN, 2010)

2.4 Computerized Maintenance Management Systems

Computerized Maintenance Management Systems are packaged software tools de-

signed specifically to support companies in maintenance management. Most businesses

that maintain equipment today have some sort of CMMS in use and there are hundreds

of commercially available packages to choose from. The growth and evolution in IT has

led to a dramatic increase in the capability and availability of software tools to support

maintenance. This also means that existing systems can become outdated even in a

very short time. Technology is however not a replacement for strategy and software

should only be considered an enabler. Selection of wrong software, poor implementation

8

and poorly articulated goals often lead to project failures. Understanding CMMS func-

tionality, comparing different software options and aligning them with business goals to-

gether with management support are key to successful implementations. Typically,

smaller companies using specialized solutions are most satisfied with their CMMSs. The

two most important features for successful implementation are ease of adapting to

maintenance processes and user-friendliness. (Campbell, 2016)

Work Order Management

Work orders are at the heart of CMMS: They are used to initiate, track, and record all

maintenance related activities. Work orders start as requests, which are then approved,

the work is planned and scheduled, performed and finally recorded. Work orders contain

detailed data about the maintenance in question and they produce valuable information

on maintenance performance, costs and equipment history. Among the information

tracked with work orders are:

- maintenance tasks and their start and completion dates

- detailed spare part usage

- detailed work instructions for each step

- labor and materials costs

- information about who performed the work

- life cycle information: where the work order originated from, when it was sched-

uled, approved, performed etc.

After the work order has been completed the information can be used to track mainte-

nance costs for the equipment. The two main types of expenses that are tracked are time

and material charges. Work order backlog is useful for determining staffing requirements

and shutdown periods. (Wireman, 2013)

9

Equipment management

Equipment management contains information about each equipment in the system in-

cluding subcomponents and even individual parts. The information can include basic in-

formation about the equipment such as identifying information, categorization

information, and instructions, blueprints and pictures. It is also used to record the mainte-

nance history of the equipment: the preventive and corrective maintenance done to it,

what parts were replaced and when and what the downtime of the equipment has been.

This enables analysis of equipment performance and maintenance costs.

Preventive maintenance module

The preventive maintenance module is used to create preventive maintenance plans for

the equipment. The plans include service tasks to be performed for certain equipment at

predetermined intervals of time or other usage metrics. These plans are then used by

the system to automatically create work orders for equipment. The system can schedule

work based on calendar time such as daily, weekly, monthly or yearly or based on a

certain meter reading i.e. every 1000h machine hours. To be able to schedule mainte-

nance based on meter readings the system needs to support logging of meter readings.

They can be entered into the system manually or they can be uploaded automatically.

(Wireman, 2013)

Planning and scheduling

One of the most important functions of a CMMS is planning and scheduling maintenance

work. Planning of maintenance is strategic and refers to the design of maintenance work

over time and how it will be done. Scheduling, on the other hand, is tactical and refers to

what work will be done on what day and with what resources. For CMMS, planning refers

to determining the maintenance policy for assets, including preventive maintenance pro-

grams, tasks, parts, and resources required for maintenance. Scheduling in CMMS re-

fers to developing daily, weekly and monthly schedules, determining priorities for work,

assigning maintenance work to technicians and maximizing asset availability. (Plant

Services, 2010)

10

Inventory control and purchasing

Maintenance, Repair, and Operations (MRO) supplies are consumed in the production

process but are not part of the end product. For many organizations, MRO inventory can

account up to 40% of the annual procurement budget. For reliable operation, it is im-

portant to have the right parts available at the right time without tying up too much capital

to inventory. It is also important to manage suppliers and purchases: some parts may

have long lead times and the internal cost of processing purchase orders can be signifi-

cant. Having an accurate and up to date data about inventory is key for solid MRO man-

agement (Modern Materials Handling, 2017).

11

3 Dynamics 365

This section introduces Microsoft Dynamics 365. The section starts with an overview of

the suite and then describes how it can be extended both by customers using it and by

3rd party solution developers.

3.1 Overview and Standard Applications

Dynamics 365 is Microsoft’s business application suite. The newest generation was

launched in 2016 and combines Enterprise Resource Management (ERP) and Anything

Relationship Management (xRM) functionality into a single platform. Dynamics 365 ERP

is based on the Dynamics AX product and Dynamics 365 xRM is based on the Dynamics

CRM product. Out of the box, the suite contains six business applications, which can be

deployed separately or in any combination based on the customer need.

Technically, ERP and xRM are separate products and have their own databases, code

and user interfaces. Microsoft is working on bringing the products closer to each other

and is using the same product name for both, which can be confusing to readers not

familiar with the products. For the scope of this thesis the Dynamics 365 will be used to

refer to the xRM part of the product, which covers most of the applications and Dynamics

365 for Finance and Operations to refer to the ERP part, which covers Finance and Op-

erations.

Sales

Dynamics 365 for Sales helps companies manage their sales pipeline. The application

enables salespeople keep track of their accounts and contacts and to use a guided pro-

cess to manage sales from lead to order. The application can be used to create sales

related materials like quotes, orders, and invoices. The application also supports many

marketing functions such as marketing campaigns and customer feedback. For manag-

ers, there is comprehensive analytics about the sales team performance.

12

Customer Service

Dynamics 365 for Customer Service allows companies to run customer service opera-

tions. Companies can use it to manage cases using queues, routing, service level

agreements, and entitlements. There is also a knowledge base that can be used to find

out and share information about products and services. The application includes a portal

that can be used to provide end customers self-service and case tracking functionality.

Marketing

Dynamics 365 for Marketing helps companies create personalized digital marketing cam-

paigns and to unify them with sales so that they can create better customer experiences.

Field Service Automation

Dynamics 365 for Field Service provides a complete Field Service Management solution

that includes managing service locations and customer assets, work order management,

resource management, product inventory, scheduling, and dispatch. The solution also

includes functionality that enables automatic creation of recurring work orders that can

be used for scheduling preventive maintenance tasks. There is also inventory manage-

ment that can be used to track real-time inventory levels by warehouse.

Project Service Automation

Dynamics 365 for Project Service Automation enables companies do project planning,

contract estimation, and resource management. Time and expenses can be tracked and

billed.

Finance and Operations

Dynamics 365 for Finance and Operations is the ERP application in the product family.

It includes support for the typical ERP functions like financial management, production,

human resources, and planning.

13

Dynamics architecture

Dynamics 365 integrates into Office 365 and enables collaboration and working with Of-

fice documents without switching between applications. Microsoft’s Business Intelli-

gence products Power BI and Cortana Intelligence are natively embedded to the plat-

form. Dynamics 365 is a cloud-based solution and runs on Microsoft’s cloud platform

Azure, but with some limitations, it can also be run on premises. The architecture of

Dynamics 365 is shown in Figure 3.

 Dynamics 365 architecture

A key feature of Dynamics 365 is the ability for customers to adapt the out of the box

applications to suit their needs by modifying the data model and processes. Additionally,

the suite includes a business application platform that enables tech-savvy customers to

implement low-code line of business (LOB) apps using the tools listed in Table 1.

Table 1. Dynamics business application platform components

Tool Purpose

PowerApps Building cross-platform mobile apps with-

out coding.

14

Flow Automating workflows between applica-

tions.

Common Data Model Secure unified view to business data.

Finally, the platform contains support for creating 3rd party business applications on top

of the platform and distributing them to Dynamics 365 users via a digital marketplace

called AppSource. The rest of this chapter is devoted to describing the support for cre-

ating new applications. (Microsoft, 2017)

3.2 Dynamics 365 as Application Platform

Dynamics 365 offers developers a platform for creating line-of-business (LOB) applica-

tions. An LOB application is a business-critical software application that is vital to running

an enterprise. The platform contains support for developing applications for both the ERP

and xRM modules, but since only the xRM capabilities are in the scope of this thesis,

only that application development capability will be covered in this chapter.

Building applications on top of a platform offers developers a lot of advantages compared

to starting from scratch. For Dynamics 365 these include (Microsoft, 2017):

- rapid application development

- user interface ready for international use

- extensible data and security model

- extensible business logic

- Office 365 integration

- cross-platform mobile applications

15

- business intelligence

- support for standard web technologies

Developers also benefit from the periodic updates to the platform: New features are in-

troduced twice a year and bug and security fixes as required. This way developers can

leverage Microsoft’s development effort in their solutions and can focus on developing

their core functionality.

3.3 Extending Dynamics 365

Dynamics 365 can be extended in various ways. There are several customization points

in the system that can be used either separately or in any combination. Each customiza-

tion point serves a specific purpose and it is often necessary to use several of them to

build a complete application. The customization points are explained below and are

shown in Figure 4.

 Dynamics 365 Customization points (Microsoft, 2017)

16

Customizing applications

The simplest way to extend Dynamics is by customizing the out of the box applications.

Users can customize the views, forms, and entities without coding. They can add new

fields, modify or delete existing ones and do basic customization of views and reports. It

is also possible to create actions and processes that perform various actions when some-

thing happens, for example sending an email when a record is created. For some use

cases, simple customization might be the only thing needed to take the application into

production use. When extending the system, some customization to the entities etc. is

almost always done.

Client-side extensions

Dynamics 365 includes clients for web, phones, and tablets. Each of these can be ex-

tended using JavaScript and HTML and the extensions can be applied to all clients rather

than writing separate code for each client. Simple tasks like validation, automation and

process enhancement and enforcement can be done by extending the Dynamics forms

with JavaScript code using the provided SDK. The object model of the SDK is shown in

Figure 5.

 Xrm.Page object model (Microsoft, 2017)

Client-side extensions can also be complete HTML files that use 3rd party JavaScript

libraries such as jQuery. The HTML files are rendered inside Dynamics web pages as

17

iframes. Client-side extensions are best used to implement UI customizations. They can

access Dynamics 365 data and services using Web Services or Dynamics Web API,

which is an OData 4.0 RESTful API.

18

Server-side extensions

Microsoft provides a Software Development Kit (SDK) for extending Dynamics on the

server. Server-side development is done using .NET and is used to create code to handle

custom business logic or custom workflow activities.

Plugins are the most advanced way to extend business processes. They allow develop-

ers to write code that is executed when an event is fired by the platform. The platform

fires events in various situations, but to most developers, the interesting events are when

records are created, updated or deleted. Developers can hook code to events by setting

the event properties shown in Table 2. Multiple plugins can be hooked to the same event

and many events can be hooked into the same plugin. For all plugins, there is a 2-minute

time limit for execution. If it exceeded the system terminates the plugin execution and an

exception is thrown.

Table 2. Event properties

Property Use

Entity The database object type

Message The event: Create, Update, Delete, etc.

Pipeline stage Pre-validation, Pre-operation, Post-operation

Synchronous / asynchro-

nous

Whether the event processing needs to be done imme-

diately or queued by the system for later execution.

Since the plugins can run before the system modifies the database, they can be used for

doing advanced validation. Also, since they are used in a transaction context they are

19

well suited for complex database modification, where a single failure could lead into a

corrupted database. Figure 6 shows how the event execution pipeline works.

 Event execution pipeline (Microsoft, 2017)

Custom Workflow Activities can be used to create business processes that can be called

from within Dynamics forms, processes and the Web API. They are registered to the

system using the same parameters as plugins and additionally they have input and out-

put parameters. Custom Workflow Activities are executed based on explicit calls and not

on events.

Metadata and data models

Dynamics 365 uses a metadata-driven architecture that gives developers the flexibility

to modify the data structure without any change in the code on the server or client appli-

cations. The metadata architecture also hides the underlying data storage layer from the

developers, which means that it cannot be accessed directly, only via system provided

20

APIs. Developers can add new metadata objects to Dynamics or they can modify existing

objects by adding, modifying and deleting attributes. This includes changes to many of

the system defined objects. To preserve system integrity and proper functioning of ap-

plications developers can protect metadata objects from further customization. This pro-

tection is always in place for critical system-defined objects. Metadata model also in-

cludes localization support: In addition to the system names, the metadata objects in-

clude localizable display names that are used by the client applications based on the

language in use. The metadata objects and their use are described in Table 3.

Table 3. Metadata objects (Microsoft, 2017)

Metadata object Description

Entity A container for data representing an object. Entities are the

things, persons, places, and objects in the system. Entities con-

tain a set of attributes.

Attribute Defines the information about the entity that needs to be stored.

The attributes have a name and a datatype: text, number, date,

image, currency, option set etc.

Relationship A relationship defines an association between entities. Dynam-

ics supports 1: N, N:1, N: N and self-referential entity relation-

ships.

Option set Option sets define a collection of named values for an attribute.

Option Option is a single value available in an option set.

21

Reports

Dynamics 365 reporting is based on Microsoft SQL Server Reporting Services. Reports

can be created by querying the metadata model using FetchXML-queries and authoring

the layout using Report Definition Language (RDL). There is also a user-friendly editor

called Visual Studio Report Designer. Dynamics reports can be integrated into Dynamics

forms and dashboards and they can also be accessed via an HTTP interface.

Integrated applications

Developers also have an option of creating separate applications that integrate to some

Dynamics 365 functionality. These applications can integrate to Dynamics back-end via

Web Services and they can also be embedded into front-end applications using HTML.

3.4 Solutions

Solutions are the way to package the various extensions into redistributable packages.

For 3rd party application developers, they are the way to provide their application to the

customers. With solutions, the various solution components can be managed and de-

ployed together. The solution components that can be included in a solution are listed in

Figure 7. It should be noted that data is not a part of the solution and to include data in

a deployment some other mechanism than solution must be used.

 Solution components (Microsoft, 2017)

Solutions are created using the Solution Editor. Using the solution editor developers can

select the components to be included in the solution and manage their dependencies.

22

Developers can use the solution editor to set the publisher and version number of solu-

tion and it can also be used to export the solution as a redistributable file. The user

interface of Solution editor is shown in Figure 8.

 Solution editor

Dynamics solutions can be either managed or unmanaged. Managed solutions are com-

pleted solutions that are meant to be distributed and installed. Unmanaged solutions are

solutions under development or ones that are not meant for distribution. Managed solu-

tions can lock down system functionality and they provide a way to resolve potential

conflicts between solutions customizing the same entity or another area of the solution.

Managed solutions can also be uninstalled.

23

4 CMMS Requirements

This chapter begins the technical part of the thesis. Based on the literary review a list of

essential requirements for a CMMS was created. In the real world, the exact require-

ments for a CMMS vary a lot between organizations but there are many basic require-

ments that any feasible CMMS should implement. The minimum identified requirements

are listed in Table 4.

Table 4. Identified requirements for CMMS

Category Requirements

Work Order

Management

R1.1 Tracking planned and actual labor

R1.2 Tracking planned and actual materials

R1.3 Sortable work order backlog

R1.4 Resourcing work orders to technicians

R1.5 Managing work order status

Preventive

Maintenance

R2.1 Creating Preventive Maintenance Programs

R2.2 Scheduling maintenance based on calendar time

R2.3 Scheduling maintenance based on meter reading

R2.4 Manual scheduling

R2.5 Forecasting labor, material and tool requirements

R2.6 Combining due Preventive Maintenance

R2.7 Written Predictive Maintenance procedures

Corrective

Maintenance

R3.1 Punch list management for equipment

R3.2 Scheduling corrective maintenance

24

Asset

Management

R4.1 Tracking equipment information

R4.2 Saving work orders to equipment history

R4.3 Tracking cost and repair information on component level

R4.4 Corrective maintenance management

R4.5 Bill of materials for each piece of equipment

R4.6 User defined screens for storing additional information about

equipment

Inventory

Management

R5.1 Tracking inventory on-hand

R5.2 Tracking unit price information

R5.3 Support for multiple warehouses

R5.4 Support for warehouse to warehouse transfer

R5.5 Generation of purchase orders

Reporting R6.1 Predefined reports

R6.2 Custom report editor

R6.3 Maintenance budget reporting module

R6.4 Tracking equipment downtime

The focus in the prototype was on functional requirements that define how the system

should behave and what the inputs and outputs to the system are. Additionally, systems

have non-functional requirements like accessibility, performance, interoperability etc. but

no non-functional requirements were included in the list since they typically are very case

specific.

4.1 Fit-gap Analysis

In this thesis, a fit-gap analysis was performed by comparing the requirements found in

Table 4 to the standard functionality of Dynamics 365. Each requirement was analyzed

for the fitting Dynamics functionality and given a rating from 1 (poor) to 5 (great) based

on how well Dynamics 365 functionality fits the requirement. The identified gaps are also

25

listed along with the classification on if the requirement can be met by customizing or

extending Dynamics 365. The results of the analysis are shown in Appendix 1. The re-

sults show for example that requirement R2.3 has a poor fit (1), since there is no func-

tionality in Dynamics 365 for it and to implement support for it would require extending

the system. Requirement R1.1 on the other hand has great fit (5), since there is identified

functionality in the system and the implementation can be done by customizing the sys-

tem.

4.2 Functionality Selected for Prototype

Based on the fit-gap analysis requirements were then selected for the prototype imple-

mentation. The selected requirements are shown in Table 5. The table shows which re-

quirements were selected, the rationale of selecting them and what technologies are

required for implementing the requirement.

Table 5. Requirements selected for the prototype implementation

Requirement Rationale Technology

R1.1 & R1.2 Fit validation Customization

R2.2 Fit validation Customization

R2.3 Functional gap

Usability

Customization

Front-end development

Back-end development

R2.4 Usability Front-end development

26

R2.6 Functional gap Back-end development

R2.7 Functional gap SQL Server Reporting

Services

R3.1 & R3.2 Functional gap Customization

Front-end development

Back-end development

R4.4 Functional gap Customization

Front-end development

R5.1 Fit validation Customization

The focus of the prototype implementation is not to cover all the requirements but rather

to implement functionality to fit the key functional gaps, verify the fit of key requirements

and to test the various extension and customization technologies. This approach results

in good coverage of key questions while keeping the development effort small.

27

5 Solution Implementation

This chapter describes the actual implementation of the solution. It starts with an over-

view of creating a Dynamics 365 solution and then describes the various objects added

to the solution.

5.1 Overview

The solution implementation started by creating a new Dynamics 365 solution to contain

all the customizations and extensions needed. The solution was named Kauko CMMS

and the publisher set to Kauko Oy. Solution publisher information is used when distrib-

uting solutions and it helps to manage schema namespace by having a prefix for

metadata entities. For Kauko Oy the prefix is kau and it is used in the naming of all

custom entities, attributes, and resources. Solutions support versioning and upgrades so

a version number of 0.1 was set. To test the localization ability of Dynamics 365 it was

decided to localize the solution to the Finnish language.

Dynamics 365 supports dependency tracking of solution components. This enables de-

velopers to create solutions that depend on other solutions and only include the neces-

sary customizations to their solutions. The system then enforces that the necessary com-

ponents are present in the system when importing solutions. Dependencies are also en-

forced when uninstalling solutions so that the integrity of the other solutions is not com-

promised by removing components that they require. Dynamics 365 out of the box func-

tionality can also be used as the foundation of solutions and entities and other objects

already present in the system can be depended on and customized further. By using

standard object model developers can leverage the functionality already present and cut

development time while maintaining interoperability with other solution providers. For the

implementation, it was chosen to depend on Dynamics 365 for Field Service schema

and the minimum version of Dynamics 8.2, so these were installed in the development

instance.

28

5.2 Schema Customizations

Schema or the data model is at the heart of the solution since it describes what data will

be processed by the system and how the data is stored. For the implementation, the

existing schema in the system was evaluated against the requirements and the following

questions were asked:

- What existing entities can be used in which role?

- What new attributes and relationships need to be created?

- What new entities need to be created?

The goal in the implementation was to minimize the customizations done so that the

requirements are met, but the end users still have the flexibly to add their own customi-

zations based on their specific needs.

Equipment management

Customer Asset (msdyn_customerasset) entity was chosen to represent a single piece

of equipment that can be maintained. It is the foundation of asset management and en-

ables storing information about equipment and managing the life cycle. The attributes

listed in Table 6 were added to the entity.

Table 6. Customizations to the msdyn_customerasset entity

Attribute Type Use

kau_asssettype Option Set Filtering asset categories,

separating solution assets

from generic Customer As-

set entities

29

kau_serialnumber Text Serial number / identifier

for the asset

kau_description Text / multiple lines Description data for the as-

set

Preventive maintenance

For defining preventive maintenance programs, it was chosen to use standard schema

entities that are part of the Field Service application. These entities allow the definition

of collections of service tasks and spare parts that are needed during maintenance. The

entities and their selected role in the prototype are listed Table 7.

Table 7. Entities for managing preventive maintenance programs

Entity Purpose

msdyn_incidenttype Represents a single maintenance pro-

gram.

msdyn_incidenttypeproduct Represents spare parts required for the

maintenance program.

msdyn_incidenttypeservicetask Represents a work item to be done as part

of maintenance

30

Product Represent the spare part catalog.

msdyn_servicetask Represents different work items that can

be done as part of maintenance.

For actual maintenances of equipment, it was also decided to use the standard schema,

which is focused around the Work Order entity. The relevant entities and their selected

roles in prototype implementation are listed in Table 8.

Table 8. Entities for managing maintenance work orders

Entity Purpose

msdyn_workorder Represents a single maintenance.

msdyn_workorderincident Represents a maintenance program to be

done as part of the maintenance.

msdyn_workorderservicetask Represents work done as part of mainte-

nance. Allows tracking of hours.

msdyn_workorderserviceproduct Represents spare parts allocated and

used as part of the maintenance. Allows

tracking of MRO costs.

31

To enable scheduling the schema additions in Table 9 were made.

Table 9. Schema additions for scheduling

Entity Object Purpose

msdyn_incidenttype kau_product Defines the product that

this maintenance program

is used for.

msdyn_incidenttype kau_maintenanceInterval Setting the interval be-

tween maintenances

msyn_incidenttype kau_maintenanceInterval

type

Option set defining the

measure for scheduling

maintenance (machine

hours, oil change, number

of uses)

msdyn_workorderincident kau_maintenancePro-

gramNumber

Identifying which mainte-

nance program this is (ie.

10th 1000h maintenance)

msdyn_workorderincident kau_operatingHours Actual / predicted machine

hours at maintenance time.

32

msdyn_workorder kau_workOrderDate Tracking when a mainte-

nance work order was per-

formed

Two custom entities were also created for scheduling: kau_operatinghours entity stores

the operating hours measurements and kau_usageplans stores information about the

predicted daily use of the equipment. Using the information in these entities it is possible

to calculate when preventive maintenance programs are due for each equipment and to

create a tentative maintenance schedule automatically. The custom entity definitions are

given in Appendix 2.

Corrective maintenance

Support for corrective maintenance was implemented by using two custom entities.

kau_faultList entity allows storing fault information for assets and recording fix and

downtime information about faults. kau_faultCode entity allows classification of faults

for planning and reporting purposes. The entity definitions are shown in Appendix 2.

Entity model diagram

The resulting entity model diagram for equipment management, preventive and correc-

tive maintenance is shown below in Figure 9. It shows the relevant system entities, cus-

tom entities and key relationships between entities. Many of the system defined entities

and attributes have been left out for simplicity. The custom entities that were created in

the implementation are shown in orange color and the system entities in blue color. For

each entity the primary key attribute is marked with [PK] -text. Also shown are the added

custom and most important system attributes.

33

 Solution metadata model with custom entities (equipment management, preventive
and corrective maintenance)

Inventory management

Inventory management functionality of Field Service application was analyzed, and it

was found to fit the requirements without modifications. The relevant entities and their

purpose are defined in Table 10.

34

Table 10. Inventory management entities

Entity Purpose

Product Represents a product.

msdyn_warehouse Represents a warehouse.

msdyn_productinventory Presents the inventory.

msdyn_purchaseorder Represents a purchase order.

msdyn_purchaseorderproduct A purchase of single product in an order.

msdyn_inventorytransfer Journal for logging transfers between

warehouses.

msdyn_workorder Allocation and use of MRO parts.

The simplified inventory management model with key entities and their relationships are

shown in Figure 10. The entities in green are Organization-owned entities, meaning that

they are viewable by all users in Dynamics 365.

35

 Solution metadata model (inventory management)

Product entity is one of the most central entities in Dynamics 365 and is used by many

of the standard applications. Being able to use it directly in the prototype is a demonstra-

tion of benefits of developing applications on top of the platform.

36

5.3 Views and Forms

Customizing views and forms using the solution editor is the no-code solution for cus-

tomization. It was used for functionality that needed only simple changes like adding new

metadata fields. The biggest customizations made in the project are described below.

Asset form

New fields added to the metadata were also added to the customer asset form. Addition-

ally, the work orders, fault lists and operating hours related to the customer asset were

added as associated views to the form to allow viewing the most important asset related

information on one page.

Fault code management

Fault code is a new custom entity as described in 5.2. For managing fault codes, the

system automatically creates a default read-only view that lists all the fault codes and

can be used to open the default edit form for each code. To make the management of

fault codes easier this view was changed from the read-only grid to editable grid, which

supports inline editing of existing records.

Sitemap

The new entities and views were added to the sitemap, which is the navigation UI of the

application. To make the application more usable, unused parts of Dynamics 365 were

removed from the sitemap. The sitemap of the solution is shown in Figure 11.

37

 Application sitemap

Sitemaps can include multiple levels of menus: areas in the top, groups below them and

finally sub areas that are menu items that navigate to various parts of the application.

Sitemaps are security aware and the users see only the parts of the application that they

have access to.

5.4 Web Resources

For usability purposes, it was decided to implement some of the functionality using HTML

and JavaScript and to include them in the solution as Web resources. Web resources

are added to Dynamics solutions as files. There are restrictions to file names and exten-

sions, so it is best to keep the number of files small. To avoid having to rename some 3rd

party files with Dynamics incompatible names, some files were included using Content

Delivery Network (CDN) service and not included in the solution as files.

Development tools

In the implementation, 3rd party JavaScript libraries were included using npm package

manager, which takes care of dependency management and versioning and provides a

registry for discovering and installing packages. The packages used in the implementa-

tion are described Table 11.

38

Table 11. 3rd party JavaScript libraries used in the project

Package Usage License

@progess/kendo-ui User interface compo-

nents

Commercial

jQuery HTML document traversal Open source

vis.js Timeline control Open source

xrm-webapi-client A promise based library for

Dynamics CRM Web API

Open source

underscore utility functions Open source

To make the JavaScript easily maintainable a build system was setup around Webpack,

which is a static module bundler that analyzes code for dependencies, includes relevant

modules and packages the code into bundles. It supports plugins and loaders to perform

various tasks as part of the build process. The build system was configured to use

BabelJS to transpile JavaScript into cross-browser compatible version and UglifyJS to

make the code smaller and faster.

The editor used in development as WebStorm IDE. It provides several key functionalities

that enhance developer productivity: syntax highlighting, code completion, error detec-

tion and code refactoring.

39

Single Page Application

Since usability is a big factor in an enterprise application, user navigation (web page

loads) to perform key use cases should be minimized. For this purpose, the web pages

were implemented using a Single Page Application (SPA) design that allows changing

the web page content without reloading the page from the server. All the required user

interface components are retrieved from the server when the page loads and JavaScript

code is then used to render parts of the user interface as required. The SPA design was

done using Kendo UI router, which allows tracking the application state and using views

and layouts to render the UI. The router uses fragment part of URL to store the state and

to determine the views to render. Since the state is part of URL, it can be used to book-

mark the specific location in the application and to enable proper functionality of browser

back-button.

40

Dynamics Web API

Communication with Dynamics 365 to read, write, update and delete data and to execute

custom workflow activities was done using the Dynamics Web API. It implements OData

(Open Data Protocol) version 4.0, which is an OASIS standard for building and consum-

ing RESTful APIs. An open source library xrm-webapi-client was used to make working

with Web API from JavaScript easier. The library supports all the needed API function-

ality including batch queries, asynchronous calls and invoking custom workflow activities.

The library returns results from API calls as JSON objects and automatically detects

Dynamics CRM server URL and authentication tokens from the pages embedded in Dy-

namics 365. Sample code to retrieve customers and customer assets in a single API call

is shown in Figure 12.

 Example asynchronous Web API query to retrieve customer assets and customers

Scheduling view

Scheduling view was done using vis.js timeline control. It shows the assets in a list that

can be filtered by asset type and site. Users can navigate in time by selecting the time

41

scale and moving forward and back in time. The scheduling view allows users to see

upcoming maintenance tasks, change their status, reschedule them and open the related

work orders and asset pages. The user interface of scheduling view is shown in Figure

13.

 Scheduling view user interface

Work order management

Work order page was implemented as a Kendo UI TabStrip, which shows the various

maintenance programs linked to the work order as tabs as well as the faults and spare

parts linked to the work order. The various lists of tasks in the tabs were implemented

using Kendo UI Grid widget. Using work order page, service tasks can be marked com-

pleted along with notes, products can be used from inventory and faults can be associ-

ated with the work order and marked fixed. Users can also print out the work order in-

structions. The user interface of work order page is shown in Figure 14.

 Work order page showing work order service tasks

42

Fault list

Fault list was implemented using Kendo UI Grid. It shows the faults associated to the

equipment along with fault codes and statuses. Users can also create new corrective

maintenance work orders from selected faults. The user interface of fault list page is

shown in Figure 15.

 Fault list

Logging machine hours

Machine hours logging was implemented as a separate HTML page. It allows users to

filter the assets using asset type and site and to record new measurements for each

measurement type. Previous measurement date and the recorded value are shown for

reference. The page was implementing using Kendo UI Grid widget. The user interface

of the page is shown in Figure 16.

 Machine hour logging user interface

After the development was completed, the finalized HTML and JavaScript files were

packaged using the build system and the resulting bundles were added to the solution

43

using the solution designer. As a best practice, they were added to a separate folder with

the solution publisher prefix. This resulted in the following URL naming for them:

https://tenant-name.crm4.dynamics.com//WebResources/kau_/filaname.ext.

5.5 Back-end Code

Back-end business logic was developed by creating a single .NET assembly containing

all the necessary code. Combining the code into a single assembly makes managing the

solution simpler and when running in cloud-based environment external references to

other assemblies are not supported. Development was done using C# programming lan-

guage in Visual Studio 2017 Enterprise.

Dynamics 365 interacts with custom assemblies using the IPlugin interface. The inter-

face has a very simple signature consisting of only one method shown in Figure 17.

 IPlugin interface description

Using the IServiceProvider reference in the Execute method, developers can access

the various services available to the plugin and interact with the system. The services

are listed in Table 12.

https://tenant-name.crm4.dynamics.com/WebResources/kau_/filaname.

44

Table 12. Services available to plugins

Interface Use

IPluginExecutionContext Access to input and output parameters

and to message name.

IOrganizationService Access to Dynamics 365 data.

ITracingService Logging diagnostic information.

The prototype implementation consisted of two plugins and three custom workflow activ-

ities. The activities were registered to Dynamics 365 using the execution pipeline param-

eters shown in Table 13.

Table 13. Execution pipeline parameters for prototype messages

Entity Messages Stage Mode

kau_operating-

hours

Create Pre-validation Synchronous

kau_usage-

plan

Create

Update

Pre-validation Synchronous

none kau_ScheduleMaintenace Post-operation Asynchronous

45

none kau_MoveBooking Post-operation Synchronous

None kau_CreateFaultWorkOrder Post-operation Synchronous

Validating of user input

Two user input validations were done on the server side because of their complexity:

validation of machine hours logging and usage plans. For machine hours, the validation

consisted of checking if a newer measurement already exists and for usage plans the

validation checked that there are no overlaps in planned usage segments that would

make determining the next maintenance dates unambiguous. In case of a validation fail-

ure an exception is thrown and because of the configuration the transaction is rolled

back, and the invalid values are not entered into the database.

Scheduling Preventive Maintenance

Scheduling preventive maintenance and moving existing maintenance to a new date

were implemented as custom workflow activities so that they can be invoked explicitly

from other processes and the front-end code. The implementation consisted of calculat-

ing when maintenance is due and creating new records in the database. To stay within

the 2-minute execution time limit for the code the scheduling is done per asset. Figure

18 shows how the back-end plugin can be called from front end JavaScript.

Associating faults to work orders

Creating a new corrective maintenance work order and associating faults to it is a com-

plex operation requiring creation and update of several objects. For this reason, it was

implemented as custom workflow activity, which runs in a transaction context so in case

of error there are no partial updates to the database.

46

 JavaScript code to call custom workflow activity from the user interface

Adding code to the solution

Custom workflow activities were first defined using the solution editor. The implemented

messages were then registered using Plugin Registration tool that uploads the assembly

.dll file to the server and registers the messages and their properties. The plugin and the

message registrations were then added to the solution using solution editor. The plugin

Registration tool user interface is shown in Figure 19.

 Plugin registration tool

47

Plugin Registration tool can also be used to debug plugins. Developers can use it to

install a profiler component to the server and capture trace data from plugin execution

and then replay it using the tool and then use Visual Studio for debugging.

5.6 Security Roles

Dynamics 365 allows very comprehensive access control to data, UI components, and

system functionality. Access control is role-based and each user can be assigned multi-

ple roles. For solution developers, it is essential to define the security roles but setting

the exact permissions is typically done when implementing the solution to a specific cus-

tomer. For the prototype, the security roles shown in Table 14 were defined.

Table 14. Security Roles

Role Allowed functionality

Maintenance Technician Accessing asset information, logging op-

erating ours, performing work orders.

Managing faults.

Equipment operator Accessing asset information, logging op-

erating hours, logging faults.

Foreman Accessing asset information, scheduling

work orders, performing work orders,

Managing faults.

Business manager Accessing asset information, accessing

cost and time usage, accessing reports.

48

Dynamics 365 includes by default several roles typically used in a business setting. Often

these should be extended with solution specific permissions rather than creating new

roles, but in the prototype, case the existing roles were not a match, so new roles were

created.

6 Testing and Evaluation

This section evaluates the solution against the objectives of this thesis defined in Section

1.2. The evaluation consists of functional testing to see if the system meets the require-

ments defined in Section 4.2 and a technical review to analyze how well the selected

technologies performed and how well the implementation fit into the Dynamics 365 solu-

tion model. The user interface of the completed prototype running inside Dynamics 365

is shown in Figure 20.

 Finalized prototype

Functional testing

Functional testing was done by creating a test plan that consisted a set of test cases that

cover the functional requirements of the system. Each test case consisted of a user story

that defines what a user wants to accomplish, steps needed to perform the test, the

required input data and expected results. Since the implementation project is a

prototype, the focus of the test cases was on positive testing that tests that the system

49

does what it is supposed to do with valid inputs. For the same reason, the number of

test cases was limited to cover only the essential functionality. An example test case that

shows the steps and expected results of printing out work order instructions in PDF

format is shown in Figure 21. The test cases are written in Finnish due to the testing

team being Finnish.

 An example test case

After the test plan was ready, the actual testing was done using the following process:

1. A test instance for Dynamics 365 was provisioned from the cloud. The instance

was configured to use Finnish as the base language and Euro as the currency.

The instance was provisioned with Field Service application already installed.

2. The test solution was imported as a managed solution

3. A fictional company operating heavy equipment was set up. For testing asset

data was entered from a market leading equipment manufacturer for excavators,

drills, dozers, and trucks. Based on the publicly available information, preventive

maintenance programs including the maintenance tasks and spare parts were

entered.

50

4. Test users were created, and security roles were assigned to them

5. Test cases were run

6. Results were recorded

The tests were run several times during the project and based on the findings the proto-

type functionality was changed and errors fixed. When all test cases were successfully

passed the system was considered to meet the defined functional requirements.

Technical review

Overall, the technologies used in the implementation fit the Dynamics 365 extendibility

model well and all the key extendibility points of Dynamics 365 were used to craft the

solution, so the study gave a good insight to extending Dynamics 365. Key findings of

the development are described below.

Schema modifications proved to be very straightforward. The standard schema fits the

requirements very well and required only a handful of changes. The only inconvenience

in developing the schema is versioning: It is not straightforward to roll back schema

changes when working with unmanaged solutions since removing the objects from the

solution do not remove them from the database.

The development of web resources with the selected JavaScript libraries worked well.

Building complex pages with a lot of data require many queries to the server. To increase

page load performance, it was found to be beneficial to bundle queries and to use batch

mode, which resulted in fewer roundtrips to the server. With batch mode, it was also

possible to perform several data modifications inside one transaction. Another optimiza-

tion point was to modify queries to return only the minimum attributes needed and to

perform the queries in asynchronous mode when possible to minimize the time the single

threaded JavaScript code is blocking user interface updates.

51

Building back-end code was made a bit more challenging due to cloud-based server not

allowing direct access to debugging interface. This was helped by using a mockup library

to allow creating unit tests that mimic server operations.

7 Discussion and Conclusions

The objective of this thesis was to design a prototype of a Computerized Maintenance

Management System using Dynamics 365. The work started with a background research

to understand the domain and to gather requirements for the prototype. Dynamics 365

as an application platform was studied and a technical solution to implement the require-

ments was found and the prototype was created. The prototype was then proven suc-

cessful by the functional testing and the technical review.

Dynamics 365 is a powerful platform for create applications. Developers got a lot of func-

tionality out of the box and can create complex business applications with relatively small

development effort. But Dynamics 365 is also very large and complex and offers many

possible ways to solve a use case. When choosing development strategy for customi-

zations, it is best to understand how the platform works and implement features in a

standard way. Some of the lessons learned in the project are:

- 3rd party libraries and tools used in the project helped cut development time. Es-

pecially the build system for web resources helped by enabling the use of modern

JavaScript that is packaged into browser compatible bundles. Many great tools

are available open source for Dynamics 365 development activities: solution de-

velopment, testing and building. Their use is highly recommended.

- Kendo UI is a powerful way to build user interfaces for Dynamics 365. Support

for Single Page Applications, MVVM-architecture and the various user interface

components produce modern web pages that meet the user’s expectations.

- For performance reasons the amount of data retrieved with queries should be

kept as small as possible. Complex queries take a lot of time to execute and

require a lot of bandwidth to return the results to browser. When possible, multiple

queries should be bundled together to reduce the number of roundtrips to the

server.

52

- Some of the data i.e. asset type list is slowly changing and should be cached to

browser local storage to reduce the number of queries to the server.

- Transaction context is available in many operations and it should be used when

possible to enable rollback in case an error happens in the middle of a complex

operation

- Plugin development can be complex, since there are many event parameters and

possibly system and 3rd party components are hooked to the same event. In many

cases it might be a better idea to use custom workflow activities than hooking up

complex code to events that are called often (i.e. Update message is called every

time a single record changes, which happens very often in a large system with

many users).

As the result of the study, the project gave the case company valuable information about

developing Dynamics 365 applications and a lot of the code created in the prototype is

applicable to future projects. The results of the prototype project also resulted in devel-

opment process and tool improvements in the case organization:

- a continuous integration (CI) environment was taken into use to automate build

process. The cloud based solution listens to changes in solution components

and automatically builds redistributable solution packages when a change in any

component happens.

- Visual Studio Team services was taken into use for agile development and test-

ing. It enables tracking of work items, bugs and test cases.

- Scribe online was taken into use for migrating data between Dynamics 365 in-

stances.

Based on the findings in this study, the case company also understands maintenance

and maintenance management better and can apply the lessons learned to customer

projects.

53

References

Campbell, J. D. (2016). Uptime, 3rd Edition. CRC Press.

CEN. (2010). CEN - EN 13306:2010 Maintenance - Maintenance terminology. European

Committee for Standardization.

Fiix software. (2017, 11 16). Preventive maintenance (PM). Retrieved from

https://www.fiixsoftware.com/maintenance-strategies/preventative-maintenance/

Infotivity. (2017, 11 27). What is Fit-GAP Analysis? Retrieved from

http://www.infotivity.com/fit-gap.html

Microsoft. (2017, 11 22). Dynamics 365 application platform. Retrieved from

https://msdn.microsoft.com/en-us/library/mt706473.aspx

Microsoft. (2017, 11 32). Dynamics 365 Process architecture. Retrieved from

https://msdn.microsoft.com/fi-fi/library/gg309387.aspx

Microsoft. (2017, 11 23). Event execution pipeline. Retrieved from

https://msdn.microsoft.com/fi-fi/library/gg327941.aspx

Microsoft. (2017, 11 22). Extend Microsoft Dynamics 365. Retrieved from

https://msdn.microsoft.com/fi-fi/library/gg327974.aspx

Microsoft. (2017, 11 22). Introduction to Solutions. Retrieved from

https://msdn.microsoft.com/fi-fi/library/gg334576.aspx

Microsoft. (2017, 11 21). Microsoft Dynamics 365: Intelligent Business Applications.

Retrieved from http://dynamics.microsoft.com/en-us

Microsoft. (2017, 12 9). The metadata and data models in Microsoft Dynamics 365.

Retrieved from https://msdn.microsoft.com/en-us/library/gg309434.aspx

Microsoft. (2017, 12 4). Use the Microsoft Dynamics 365 Web API. Retrieved from

https://msdn.microsoft.com/en-us/library/mt593051.aspx

Microsoft. (2017, 11 26). Use the Xrm.Page object model. Retrieved from

https://msdn.microsoft.com/en-us/library/gg328474.aspx

Mobley, R. K. (2002). An Introduction to preventive maintenace.

Modern Materials Handling. (2017, 11 26). The case for managing MRO inventory.

Retrieved from

http://www.mmh.com/article/the_case_for_managing_mro_inventory

Mounla, R. (2017). Microsoft Dynamics 365 Extensions Cookbook. Packt Publishing.

Plant Services. (2010, 8 10). Effective planning and scheduling. Retrieved from

https://www.plantservices.com/articles/2010/08assetmanager/

Wireman, T. (2013). Succesfully Utilizing CMMS/EAM Systems. Reliabilityweb.com.

Appendix 1

 1 (1)

Fit Gap Analysis

Appendix 2

 1 (4)

Custom Entity Definitions

Kau_faultList entity definition

Attribute Purpose

kau_customerasset identifies the asset

kau_faultcode Category of the fault, enables classifica-

tion and tracking

kau_startDate Date when the fault was logged

kau_faultState Option Set describing the state of the fault

(new, fixed, checked)

kau_endDate Date when the fault was fixed

kau_duration Estimated / actual duration of fixing the

fault

kau_msdyn_workorder Work order where fault is fixed

Appendix 2

 2 (4)

Kau_faultCode entity definition

Attribute Purpose

kau_faultCode Alphanumberic fault code

kau_name Name of the fault code

kau_description More detailed description of the fault

kau_assetType Identified the asset category that this fault

can occur in.

kau_parentFaultCode Parent fault code. Allows hierarchical fault

code structure.

Appendix 2

 3 (4)

kau_usagePlan entity definition

Attribute Purpose

kau_customerasset identifies the asset

kau_startDate Start date of the usage plan

kau_endDate End date of the usage plan

kau_hoursPerDay Estimated usage of the asset/day

Appendix 2

 4 (4)

kau_operatingHours entity definition

Attribute Purpose

kau_customerasset Identifies the asset

kau_measurementDate Date of the measurement

kau_operatingHoursType Option Set that defines what measure-

ment this is

kau_hours The measurement value

