

Weather API

Markus Paappanen

Bachelor’s thesis
December 2017
Technology, communication and transport
Degree Programme in Software Engineering

Description

Author(s)

Paappanen, Markus
Type of publication

Bachelor’s thesis
Date

December 2017

Language of publication:
English

Number of pages

28
Permission for web publi-

cation: x

Title of publication

Weather API

Degree programme

Degree Programme in Software Engineering

Supervisor(s)

Huotari Jouni, Väänänen Olli

Assigned by

Enegia Consulting Oy

Abstract

Creating a Weather API was a project assigned by Enegia Consulting Oy, a subsidiary of
Enegia Group Oy. Enegia Group’s business idea is to offer services to customers helping
them to reduce energy related costs.

The objective of the project by the Enegia Consulting Oy was to plan and implement
Weather API for other Enegia services to consumers. The Weather API would serve
weather information to a given postal code, time frame and resolution to all authorized re-
quests to the API.

The weather information was gathered from the open data service of the Finnish Meteoro-
logical Institute, and stored to the database using Weather API endpoint. The information
was gathered daily using Azure WebJob.

The Weather API was written with C# using .NET Core 1.0 development platform. The ap-
plication used time series database InfluxDB to store the weather information. Other data
such as the postal code to geolocation mapping was stored to Azure SQL database in Mi-
crosoft Azure. The solution ran in Microsoft Azure App services.

The Weather API was released to production in May 2017 and since then it has been run-
ning continuously without interruption. Further development has been planned, however,
the implementation has not yet been started.

Keywords/tags (subjects)

API, .NET Core, InfluxDB, Azure SQL, XUnit, OpenAPI Specification

Miscellaneous (Confidential information)

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

Kuvailulehti

Tekijä(t)

Paappanen, Markus
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Joulukuu 2017

Sivumäärä

28
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Weather API

Tutkinto-ohjelma

Ohjelmistotekniikan koulutusohjelma

Työn ohjaaja(t)

Jouni Huotari, Olli Väänänen

Toimeksiantaja(t)

Enegia Consulting Oy

Tiivistelmä

Säätieto-ohjelmointirajapinta-projekti toteutettiin Enegia Group Oy:n tytäryhtiön Enegia
Consulting Oy:n toimeksiannosta. Enegia Groupin liiketoiminta-ajatuksena on tarjota asiak-
kailleen palveluita, jotka auttavat vähentämään energiakustannuksia.

Säätieto-ohjelmointirajapinta-projektin (lyhyemmin Weather API) tavoitteena oli suunni-
tella ja toteuttaa säätietorajapinta, jota muut Enegian palvelut voisivat käyttää. Weather
API palvelisi säätietoja tietylle postinumerolle, aikavälille ja resoluutiolle kaikille valtuute-
tuille pyynnöille.

Säätiedot kerättiin Ilmatieteen laitoksen avoimesta tietopalvelusta ja tallennettiin tieto-
kantaan Weather API:n rajapinnan avulla. Tiedot kerättiin päivittäin Azure WebJobin
avulla.

Weather API kirjoitettiin C # -ohjelmalla käyttäen .NET Core 1.0 -kehitysalustaa. Sovellus
käytti aikasarjatietokanta InfluxDB:tä säätietojen tallentamiseen. Muut tiedot, kuten posti-
numeron paikoitustieto, tallennettiin Azure SQL -tietokantaan Microsoft Azure -palvelussa.
Ratkaisu toteutettiin Microsoft Azure App -palveluissa.

Weather API julkaistiin tuotantoon toukokuussa 2017, ja sen jälkeen se on ollut käynnissä
keskeytyksettä. Jatkokehittämistä on suunniteltu, mutta toteutusta ei ole vielä aloitettu.

Avainsanat (asiasanat)

API, .NET Core, InfluxDB, Azure SQL, XUnit, OpenAPI Specification

 Muut tiedot

http://www.finto.fi/

1

Contents

1 Introduction ... 4

1.1 Company .. 4

1.2 Assignment .. 4

1.3 Methods .. 5

2 Requirements ... 5

2.1 Functional requirements ... 5

2.2 Other requirements and constraints ... 6

3 Technologies .. 6

3.1 .NET CORE .. 6

3.2 Entity Framework Core .. 6

3.3 InfluxDB ... 7

3.4 Azure SQL Database .. 7

3.5 Microservice architecture pattern .. 7

3.6 Repository pattern .. 8

3.7 OpenAPI Specification ... 9

3.8 XUnit .. 9

4 Implementation .. 9

4.1 First draft ... 9

4.2 Weather data... 10

4.3 Weather API .. 11

4.4 InfluxDB data model .. 14

4.5 Weather WebJob ... 14

4.6 Azure SQL... 15

2

5 Continuous integration and testing ... 16

5.1 Integration testing with xUnit ... 16

5.2 Test automation .. 17

5.3 Testing environments .. 17

5.4 Dashboard and results... 17

5.5 Acceptance testing .. 18

5.5.1 Functional criteria ... 18

5.5.2 Non-functional criteria ... 18

5.6 Information security .. 19

5.7 Performance .. 19

6 Final Product .. 19

6.1 Weather information in EnerKey .. 19

6.2 Query ... 20

6.3 Response ... 21

7 Discussion and conclusions ... 23

7.1 Lessons learned ... 23

7.2 Future development .. 24

References ... 25

Appendices .. 27

Appendix 1. xUnit theory test in Weather API ... 27

Appendix 2. XUnit weather tests fixture .. 28

3

Figures

Figure 1. Interactions of the repository (The repository pattern, 2017) 8

Figure 2. First draft ... 10

Figure 3. First call sequence diagram ... 12

Figure 4. Later call sequence diagram .. 13

Figure 5. Webjob sequence diagram ... 15

Figure 7. Azure portal dashboard. Provides test results and code coverage

information. .. 18

Figure 7. Graph in EnerKey web portal .. 19

Figure 8. Example query ... 20

Figure 10. Response Example ... 22

Tables

Table 1. Azure SQL tables ... 16

4

1 Introduction

1.1 Company

Enegia Consulting Oy is a subsidiary of Enegia Group Oy (later Enegia). Enegia Con-

sulting Oy mainly produces the IT, design, consulting, and training services required

by Enegia Group. Enegia Group Oy also includes Enegia Portfolio Services Oy, Enegia

Sweden AB and intStream Oy. Enegia's head office is located in Hämeenlinna and

branches in Helsinki, Jyväskylä and Stockholm. (Yritys [Company] n.d.)

Enegia is the market leader in energy management in Finland. The company offers

solutions for energy acquisition, sales and operational efficiency. The purpose of a

customer-oriented service is to reduce the use of energy and related costs in accord-

ance with the company's slogan. The customers include municipalities and other real

estate managers, energy companies and large companies from various industries

such as Kone, Patria and Valio. Half of Finland's top 100 companies use Enegia's ser-

vices. The company manages nearly 25% of Finland's electricity consumption. (Yritys

[Company] n.d.)

The company's competitive advantage is independence, as it does not itself generate

energy or become a major user. The Group, which was established in 1995, employs

around 160 people and has a turnover of EUR 18 million in 2015. (Yritys [Company]

n.d.)

1.2 Assignment

The aim of the thesis was to create programming interface for a weather information

application (later Weather API) using the new .NET Core software component library.

The function of the Weather API is to provide weather information to other services

in Enegia, mainly for energy reporting. Energy reporting is a service in EnerKey that

makes reports from energy consumptions. EnerKey is an energy management system

that helps organizations identify possibilities to save energy. With EnerKey, compa-

nies can monitor and plan energy consumption. (EnerKey 2017.)

5

1.3 Methods

The Weather API project was conducted in two-week sprints alongside Enegia’s nor-

mal software development team. The development process contained sprint plan-

ning, retrospectives, daily standups and sprint reviews, which all are part of agile de-

velopment framework scrum. (What is Scrum Methodology. n.d.)

Scum is a sub-group of agile with the focus on delivering new software capability

every two to four weeks. Scrum tackles complexity in software development process

by making information transparent, allowing inspection and adaption based on cur-

rent conditions instead of predicted conditions. This allows better handling of ever-

changing requirements, time estimations, cost and resources. (What is Scrum Meth-

odology. n.d.)

Planning documentation was written to Enegia’s internal Confluence site. Confluence

is a team collaboration software that allows teams to publish, organize and access

company information in one centralized location. (Confluence 2017).

2 Requirements

Enegia’s business is based on services, that highly rely on information system solu-

tions. The company has internal and external tools that are consuming data sources

such as API’s and internal data storages. Weather API is one of these valuable data

sources.

Specifications were not finalized before coding phase in the spirit of agile software

development (Manifesto for Agile Software Development 2001)

2.1 Functional requirements

The functional requirements for Weather API were:

• provide weather information in hourly accuracy,

• links weather information to data about customer premises

• and stores weather data from 2013 onwards.

Later aggregation and sum of weather data were added to the requirements.

6

2.2 Other requirements and constraints

Non-functional requirements for Weather API were mainly related to performance to

be able to response to requests in a reasonable time. In normal circumstances every-

thing under two seconds can be considered reasonable time.

The usage of Weather API requires authentication and authorization for business and

cost related reasons.

While one of the used data sources is the Finnish Meteorological Institute, Creative

Commons Attribution 4.0 International license agreements for open data need to be

followed (License n.d.).

3 Technologies

3.1 .NET CORE

.NET Core is a general-purpose open source development platform maintained by

Microsoft and the .NET community on GitHub. It supports Windows, MacOS, and

many Linux environments. (Lander and Wenzel 2017.)

Behind the selection of .NET Core were characteristics, such as cross-platform sup-

port, good tooling, compatible to .NET framework, open source and it is supported

by the Microsoft. (Lander and Wenzel 2017.)

3.2 Entity Framework Core

Entity Framework Core (later EF Core) is an object-relational mapping (ORM) technol-

ogy that allows databases to work directly from .NET classes on a variety of plat-

forms, which eliminates the need to write the layer logic of the data usage. (Miller

and Vega 2017)

To highlight some of the feature, Entity framework core supported code first migra-

tions, allowing database changes to be made from the code. Migrations will also pro-

vide a way to apply changes to the database incrementally, allowing preserving exist-

ing data in the database. (Lambson 2017.)

7

3.3 InfluxDB

In the weather API project, there were two different data sources, Azure SQL and In-

fluxDB.

InfluxDB is a database optimized for time series processing, which allows for large

amounts of data to be queried and aggregated over time. (InfluxDB Version 1.3 Doc-

umentation 2017.)

InfluxDB is a database that is optimized for time-series data performance, that leads

to some tradeoffs at the cost of functionality. These tradeoffs make InfluxDB good at

handling aggregate data and large data sets. The database can also handle a high vol-

ume of reads and writes. (Design Insights and Tradeoffs in InfluxDB. n.d.)

Rapid search of data from large mass and aggregation was the main reason to experi-

ment with InfluxDB's potential in this pilot project. In the future this kind of time-se-

ries database could resolve problems with traditional databases when the data

reaches critical volume.

3.4 Azure SQL Database

Azure SQL Database is a general-purpose relational database service for Microsoft's

Azure cloud computing service. The SQL database provides scalable performance and

database pooling. (Rabeler 2017)

Azure SQL was chosen because it is easy to setup, easy to use and scales up if

needed. Therefore, there was no need for deep database management skills, which

allowed to centralize resource use to the development of the application code. In ad-

dition to the weather data time series, there were non-time series data such as

weather station information and geolocation information. All non-timeseries data

were stored to Azure SQL database.

3.5 Microservice architecture pattern

Microservice is an architectural model to make services. In the model, the service

package is broken into small services. This is the opposite of the monolithic model

8

that brings together all the services. As the services remain small, they are easier to

understand, easier to scale and each service can be developed and published as an

independent component. In addition, all long-term commitments to the technology

stack are eliminated. (Richardson 2017.)

Because weather information was easy to differentiate as a new service, it was a

good idea to create it as a microservice and thus enable it to be used in other ser-

vices in the future.

Microservice thinking had already moved ahead of the weather information pro-

gramming interface in the implementation of the facility information programming

interface.

3.6 Repository pattern

In repository pattern repository contains the logic to retrieve the data and then maps

it to the entity model. The business logic should be agnostic to the type of data that

comprises the data source layer. Repository is a layer between client business logic

and the data source as can be seen in figure 1. (The repository pattern 2017.)

Figure 1. Interactions of the repository (The repository pattern, 2017)

Repository pattern allowed Dependency Injection (DI) of repositories to controllers,

that makes possible business logic to be dependent only of the abstractions (Inter-

faces) of the repositories. That means database can be changed without changing the

business logic of the application. (Smith and Addie 2016.)

9

3.7 OpenAPI Specification

The OpenAPI Specification (formerly known as the Swagger Specification) defines a

non-language specific standard to describe RESTful API’s. The definition can be used

to generate servers and clients for multiple programming languages to consume the

API. (OpenAPI Specification 2017.)

OpenAPI Specification provided way to document the Weather API, such a way that

implementation of the service could be done with a minimum work to multiple dif-

ferent frameworks and languages.

3.8 XUnit

XUnit is an open source unit testing tool for the .NET Framework, that can unit test

projects written in C#, F# and VB.NET. It was written by the original inventor of the

NUnit v2. (Wilson 2016.)

XUnit offers many advantages over the other unit testing frameworks, such as more

assertions, easier to follow and debug and less attribute decoration. Also building

test data in constructors and tearing it down in dispose is more natural to C# devel-

oper. XUnit supports data driven tests called theories using attributes. (Killeen and

Stewart. 2017.)

4 Implementation

4.1 First draft

The planning began in November 2016 and lasted two months. In the design phase, a

weather data source, data models and technologies were designed. The purpose of

the design was to produce a weather information programming interface and the

services it needs. The first draft of the architectural design (Figure 2) was created in

the planning process, after which the implementation phase started.

10

Figure 2. First draft

4.2 Weather data

The planning was started by mapping various weather information services. The pre-

liminary mapping was based on the open data interface of the Finnish Meteorologi-

cal Institute. In the actual survey, the Foreca weather API and the Norwegian yr.no

weather service were also studied.

The interface provided by Foreca was good and it could have been scaled to other

countries. The interface could have been directly used, making the whole project un-

necessarily. Foreca's programming interface was good, however, far too extensive

and expensive to meet requirements.

The Norwegian yr.no weather service provides weather information for 10 million lo-

cations worldwide in XML format. The instructions and requirements are in Norwe-

gian because the service is produced in Norwegian taxation, and the service provid-

ers are afraid that the demand for services will grow uncontrollably if the instructions

11

are provided in English. (Information about the free weather data service - yr.no

2016)

The interface offered by Yr.no seemed to be the best option, scaling well to areas

outside Finland. Unfortunately, the API itself was getting a complete reform in 2017.

(Vêrvarsel and XML-format [Weather forecast in XML format] 2017).

Finally, it was decided to use the open data interface of the Finnish Meteorological

Institute, which provided the necessary information for the present need at reasona-

ble cost.

4.3 Weather API

The basic operation of the Weather API was described in the sequence pattern (Fig-

ure 3). The Weather API was designed for use through the High-Level Programming

Interface (Energy Reporting API). This was later changed so the Weather could han-

dle direct requests from all the other services. The first call would check whether the

postal code was previously requested. After that, the programming interface would

search for the coordinates of the postcode from the Google Programming interface

and save it in the database.

12

Figure 3. First call sequence diagram

After receiving the postcode, the coordinates of the programming interface would

search for weather stations on their own table and compare the location of the near-

est weather station. EF Core did not yet support spatial data types in the database,

however, this is on the roadmap of the development team. (Miller and Vega 2017).

Spatial data types would allow comparisons to occur in the database, thus speeding

up the programming interface.

With Weather Information, the Weather API would search the InfluxDB database for

the desired time horizon meteorological data. According to the original plan, the in-

tegrity of the data had to be verified, however, later the time was added to the

13

WeatherStation table when the weather station was in use, which made the inter-

face faster, more logical and easier to maintain.

When calling the programming interface for a second time (Figure 4), the Google In-

terface query and the storage facility table are avoided because the information is al-

ready stored on that table.

Figure 4. Later call sequence diagram

14

4.4 InfluxDB data model

The InfluxDB data model was designed to be simple; yet, it left the opportunity to

supplement the model with other data such as wind speed.

Designing avoided bad practices such as writing information to the measurement

name, adding more than one value to the individual tag, and creating too many se-

ries using tags. Good practices include saving data to tags if the information con-

tained frequently asked metadata, or want to use the information in a group by-ex-

pression. Fields are not indexed and should be preferred if cardinality is to be

avoided, or the value is interpreted as something other than a string data type, such

as a number for calculation. (Schema Design. 2017).

4.5 Weather WebJob

Azure WebJob is a feature in Azure App Service that enables running programs or

scripts in the same context as the web app. There are two types of WebJobs, continu-

ous and triggered. Continuous WebJob starts when the WebJob is created and runs

usually inside an endless loop. Triggered WebJob must be started manually or on a

schedule. (Gailey, Cephas and Dykstra 2017.)

Weather WebJob was planned as a triggered WebJob and it has a simple task, down-

load weather information from the Finnish Meteorological Institute once a day and

sends them to the weather information programming interface. This is illustrated in

the sequence diagram in Figure 5. In the implementation phase, the validity period of

the weather station was added to the weather station table. This changed the se-

quence that Weather API would also change weather station validity times to corre-

spond to the newly added values, which eliminated the need to request weather in-

formation from the five closest stations.

15

Figure 5. Webjob sequence diagram

4.6 Azure SQL

The database and model were created with Code First approach. In Code First data-

base is created through model classes using entity framework. Tables (Table 1) were

simple and had no relations. They inherited base class entity from Enegia’s internal

libraries, that gave Created, CreatedBy, LastModified and LastModifiedBy fields. Mi-

grations history table is for entity framework migrations.

16

Table 1. Azure SQL tables

5 Continuous integration and testing

5.1 Integration testing with xUnit

Test automation was implemented as integration tests, testing endpoints of the

Weather API. Unit testing was ignored to minimize resources used for testing. In-

stead of concentrating on narrow scope issues, such as functions and classes, inte-

gration tests provided more robust tests at decreased maintenance cost. Better cov-

erage was achieved with less effort for a constantly developing product. The major

advantage of skipping unit tests was avoiding mockup unit dependencies.

Test automation was implemented with xUnit unit testing framework and test data

generation was also handled with it. Before the test run, XUnit generates test data

based on provided data structures in fixture and saves the test data to databases by

calling the Weather API. During the test data creation process, xUnit also verifies the

endpoint for storing data to the Weather API. (Appendix 2) This arrangement guaran-

tees that test data is always consistent and manageable.

17

There are two types of tests in xUnit, facts and theories. Facts are tests that should

always pass regardless of the used test data. Theories are data driven tests that are

depend on a particular set of test data. The tests can contain fixture where test con-

text can be initialized, and then shared between all the tests in the test class. (Wilson

2017.)

There are only two theory tests, one for basic weather data query endpoint and one

for average weather data endpoint. Using inline data parameters, it is possible to call

those endpoints multiple times with different starting parameters. This allowed test-

ing different timeframe and resolution combinations effectively. (Appendix 1)

5.2 Test automation

Every commit to the develop branch was done by using pull request from the feature

branch. Accepting pull request would trigger pull request gate, that will build the so-

lution, run tests and publish test results. Development branch will always have solu-

tion that builds and a solution that passes tests.

5.3 Testing environments

Most of the manual testing was carried out locally using Postman and Swagger UI. In

the local environment, it was possible to disable authorization, making debugging

easier. In the cloud, there are three different environments: development, testing

and production.

5.4 Dashboard and results

Code coverage was measured using Open Cover tool, and the results of the test cov-

erage are shown in the visual studio team service dashboard (Figure 7). Measuring is

the first step towards quality.

18

Figure 6. Azure portal dashboard. Provides test results and code coverage infor-
mation.

5.5 Acceptance testing

Acceptance testing was carried out by a software project specialist at Enegia after

the frontend implementation to the EnerKey energy reporting services was done.

5.5.1 Functional criteria

The first functional criterion was that user should get weather data in every time

frame that the energy reporting uses. This included the following time frames: one

hour, one day, seven days and one to twelve months’ range.

The second functional criterion was that user should get weather data in very time

resolution in energy reporting services including resolutions: one hour, one day,

seven days, one month, three months, six months, nine months and one year.

User should get weather data for every valid postal code in Finland.

User should have yesterday’s weather data after 3:00 am.

User should see where the data is collected (weather station name)

5.5.2 Non-functional criteria

Responses should use the same formatting as other API (upper PascalCase).

19

5.6 Information security

The code was written using the known frameworks and it was reviewed by other de-

velopers at Enegia. These are the building blocks of secure development.

5.7 Performance

the only performance criterion was that the weather data should load faster than the

queries from the energy reporting API. This was tested and approved manually.

6 Final Product

6.1 Weather information in EnerKey

The result was the weather API, which is a complement to the EnerKey service re-

ports (Figure 7). Users can quickly see how outside weather affects their energy con-

sumptions, such as heating and electricity.

Figure 7. Graph in EnerKey web portal

As a by-product a great amount of information about potential new technologies

such as InfluxDB, Azure SQL, and .NET Core were acquired.

20

6.2 Query

Weather API query (Figure 8) contains PostalCodeCountry body that accepts an array

of postal code and country combinations. This way EnerKey can query weather infor-

mation for multiple facilities at once. Next there is resolution and time frame that

both accept values in ISO 8601 date format. After that the starting points are given.

Start has key and value, key can be any string and value must be time given in ISO

8601 coordinated universal time (UTC) format. In figure 9 query example, resolution

PT1H and time frame P1M returns hourly weather data for a month for every start

point given.

Figure 8. Example query

21

6.3 Response

Response uses Enegia’s timeseries container (figure 10) to deliver responses. Postal

codes work as keys that contain many sub containers. Weather API only uses Value

container, where keys defined in query work as a key for the response data group.

Every measurement has a measurement point (weather station), value and

timestamp.

22

Figure 9. Response Example

23

7 Discussion and conclusions

Weather API went to production in 30 May 2017 as a soft launch, which means users

were not notified about this new feature. Only one bug has been found since that

and it was fixed on 3 August 2017.

Research, planning and implementation phases took roughly 320 hours according to

Jira issues. This includes only time before the launch and not project meetings like

such as meetups and project planning sessions.

All requirements were fulfilled, and Weather API has been fully operational since the

launch.

7.1 Lessons learned

There is no need to reinvent the wheel, there are plenty of good patterns and princi-

ples already figured out. Basic principles such as don’t repeat yourself (DRY) and

SOLID principles, should always be followed. DRY pattern was introduced by Andy

Hunt and Dave Thomas in their book Pragmatic Programmer and DRY pattern dic-

tates that every piece of system knowledge should have one authoritative, unambig-

uous representation (Venners 2003). SOLID acronym contained five principles that

Robert Martin (2000) introduced in his article about Design Principles and Design

Patterns. Five principles are: Single Responsible Pattern, Open/Closed principle, Lis-

kov Substitution principle, Interface Segregation principle and Dependecy Inversion

principle (Martin 2000).

Developer should pursue clean and maintainable code. Over engineering six-layer

logic when two is more than enough is counter intuitive.

Planning good test cases will save developers time in the long run. It is important to

priorities testing cases and at least cover every basic case. Writing tests that will not

test anything worth testing and are hard to maintain, will take time from the devel-

opment process.

24

Code reviews are good and inexpensive way to improve quality. Every developer has

their unique way of looking challenges and can catch issues that others have missed.

Asking for guidance and opinions will often lead to better result than working solo.

7.2 Future development

The process of updating Weather API to new .NET Core 2.0 and Entity Framework

Core 2.0 has already started. In addition, as soon as EF Core supports spatial data

types, they should be implemented to Weather API.

As EnerKey service are sold to other countries weather information should be col-

lected from those countries. Most likely, the first new country to be added is Sweden

followed by other Nordic countries after that.

There is also need for weather forecasts, so that the customers and Enegia’s internal

services can react to rapid weather changes. Cold weather will increase electricity

consumption and creates spikes to energy consumption.

Implementing Weather API to other services can be done quickly using OpenAPI

specification (OAS). With generated JSON file programs such as NSwagStudio can

generate clients instantly.

25

References

Confluence. 2017. Confluence homepage. Accessed on 5 December 2017. Retrieved
from https://www.atlassian.com/software/confluence

EnerKey. 2017. EnerKey Homepage. accessed on 5 December 2017. Retrieved from
https://www.enegia.com/en/enerkey/

Design Insights and Tradeoffs in InfluxDB. N.d. Influxdata documentation about De-
sign Insights and Tradeoffs in InfluxDB. Accessed on 25 October 2017. Retrieved from
https://docs.influxdata.com/influxdb/v1.3/concepts/insights_tradeoffs/

Gailey, G. Cephas, L and Dykstra, T. 2017. Microsoft documentation article about
Webjobs. Accessed on 7 December 2017. Retrieved from https://docs.mi-
crosoft.com/en-us/azure/app-service/web-sites-create-web-jobs

InfluxDB Version 1.0 Documentation. N.d. Influxdata documentation about InfluxDB.
Accessed on 26 October 2017. Retrieved from https://docs.influxdata.com/in-
fluxdb/v1.3/

Information about the free weather data service – yr no. n.d. Norwegian Meteoro-
logical Institute article about free data service. Accessed on 25 July 2017. Retrieved
from http://om.yr.no/verdata/free-weather-data/

Killeen, S and Stewart D. 2017. XUnit documentation about framework comparison.
Accessed on 10 December 2017. Retrieved from
https://xunit.github.io/docs/comparisons.html

Lambson, B. 2017. Microsoft documentation article about Entity Framework Core mi-
grations. Accessed on 12 October 2017. Retrieved from
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/

Lander, R ja Wenzel, M. Microsoft documentation article about .NET CORE. Accessed
on 20 July 2017. Retrieved from https://docs.microsoft.com/en-us/dotnet/core/in-
dex

License. N.d. License agreement on Finnish Meteorological institute homepage. Ac-
cessed on 4 December 2017. Retrieved from
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start

Manifesto for Agile Software Development. 2001. Homepage of Agile Manifesto.
Accessed on 10 December 2017. Retrieved from http://agilemanifesto.org

Martin, R. 2009. Article about Design Principles and Design Patterns. Accessed on 10
December 2017. Retrieved from https://pdfs.seman-
ticscholar.org/53d0/8de266fb80355400d10f7ea77eea971d48f9.pdf

Martin, R. 2000. Article about Design Principles and Design Patterns. Accessed on 10
December 2017. Retrieved from https://pdfs.seman-
ticscholar.org/53d0/8de266fb80355400d10f7ea77eea971d48f9.pdf

Miller, R. and Vega, D. 2017. Microsoft documentation article about Entity Frame-
work Core quick overview. Accessed on 12 October 2017. Retrieved from
https://docs.microsoft.com/en-us/ef/core/

https://www.atlassian.com/software/confluence
https://www.enegia.com/en/enerkey/
https://docs.influxdata.com/influxdb/v1.3/concepts/insights_tradeoffs/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-create-web-jobs
https://docs.microsoft.com/en-us/azure/app-service/web-sites-create-web-jobs
https://docs.influxdata.com/influxdb/v1.3/
https://docs.influxdata.com/influxdb/v1.3/
http://om.yr.no/verdata/free-weather-data/
https://xunit.github.io/docs/comparisons.html
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/
https://docs.microsoft.com/en-us/dotnet/core/index
https://docs.microsoft.com/en-us/dotnet/core/index
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start
https://pdfs.semanticscholar.org/53d0/8de266fb80355400d10f7ea77eea971d48f9.pdf
https://pdfs.semanticscholar.org/53d0/8de266fb80355400d10f7ea77eea971d48f9.pdf
https://pdfs.semanticscholar.org/53d0/8de266fb80355400d10f7ea77eea971d48f9.pdf
https://pdfs.semanticscholar.org/53d0/8de266fb80355400d10f7ea77eea971d48f9.pdf
https://docs.microsoft.com/en-us/ef/core/

26

Miller, R. and Vega, D. 2017. Microsoft documentation wiki about Roadmap. Ac-
cessed on 12 October 2017. Roadmap. Retrieved from
https://github.com/aspnet/EntityFrameworkCore/wiki/Roadmap

The repository pattern. N.d. Microsoft article about repository pattern. Accessed on
29 November 2017. Retrieved from https://msdn.microsoft.com/en-us/li-
brary/ff649690.aspx

OpenAPI Specification. 2017. Swagger.io documentation about OpenAPI Specifica-
tion. Accessed on 10 December. Retrieved from https://swagger.io/specification/

Rabeler, C. 2017. Microsoft documentation article about What is the Azure SQL Data-
base service? Accessed on 27 July 2017. Retrieved from https://docs.mi-
crosoft.com/en-us/azure/sql-database/sql-database-technical-overview

Richardson, C. 2017. Microservices.io article about Microservice architecture. Ac-
cessed on 26 October 2015. Retrieved from http://microservices.io/patterns/micro-
services.html

Schema Design. N.d. Influxdata documentation about Schema design. Accessed on 25
July 2017. Retrieved from https://docs.influxdata.com/influxdb/v1.3/con-
cepts/schema_and_data_layout/

Smith, S and Addie, S. 2016. Microsoft documentation article about Introduction to
dependency injection in ASP.NET Core. Accessed on 10 December 2017. Retrieved
from https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-in-
jection

Venners, B.2003. Artima developer article about Orthogonality and the DRY Principle.
Accessed on 10 December 2017. Retrieved from http://www.ar-
tima.com/intv/dry.html

Vêrvarsel i XML-format [Weather forecast in XML format]. 2017. Accessed on 25 July
2017. Retrieved from http://om.yr.no/verdata/xml/

Wilson, Brad. 2017. XUnit documentation about Getting started with xUnit.net. Ac-
cessed on 17 November 2017. Retrieved from https://xunit.github.io/docs/getting-
started-dotnet-core.html

Wilson, Brad. 2016. XUnit documentation about xUnit project. Accessed on 10 De-
cember 2017. Retrieved from https://xunit.github.io

What is Scrum Methodology. N.d. Article about scrum in VersionOne webpage. Ac-
cessed on 5 Dec 2017. Retrieved from https://www.versionone.com/agile-101/

Yritys [Company], N.d. Enegia homepage. Accessed on 19 July 2017. Retrieved from
http://www.enegia.com/fi/yritys/

https://github.com/aspnet/EntityFrameworkCore/wiki/Roadmap
https://msdn.microsoft.com/en-us/library/ff649690.aspx
https://msdn.microsoft.com/en-us/library/ff649690.aspx
https://swagger.io/specification/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
https://docs.influxdata.com/influxdb/v1.3/concepts/schema_and_data_layout/
https://docs.influxdata.com/influxdb/v1.3/concepts/schema_and_data_layout/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
http://www.artima.com/intv/dry.html
http://www.artima.com/intv/dry.html
http://om.yr.no/verdata/xml/
https://xunit.github.io/docs/getting-started-dotnet-core.html
https://xunit.github.io/docs/getting-started-dotnet-core.html
https://xunit.github.io/
https://www.versionone.com/agile-101/
http://www.enegia.com/fi/yritys/

27

Appendices

Appendix 1. xUnit theory test in Weather API

28

Appendix 2. XUnit weather tests fixture

