APTT som metod för utvärdering av effekten av Dabigatran

Ralf Sjösten

Examensarbete inom social- och hälsovård, Vasa
Utbildningen Bioanalytiker (YH)
Vasa / 2017
Abstrakt

OPINNÄYTETYÖ

Tekijä: Sjösten Ralf
Koulutus ja paikkakunta: Bioanalytiikka, Vaasa
Suuntautumisvaihtoehto/Syventävät opinnot:
Ohjaaja(t): Margareta Antus, Jukka Salminen

Nimike: APTT tutkimuksena Dabigatraniin vaikutuksen arvosteluun

Päivämäärä 21.10.2017 Sivumäärä 44

Tiivistelmä

Kieli: Ruotsi Avainsanat: NOAC; koagulaatio; seuranta
During a long period of time the climate amongst prophylactic treatment against thromboembolism has been dominated by stability. Stability through the use of warfarin, a well proven agent with extensive documentation, but also through standardized monitoring since the use of the INR was adopted by the WHO in 1983. Despite the many obvious benefits with the use of warfarin, concerns remain to date. Concerns regarding interactions with a long list of substances which requires a continuous follow up. Keeping this in mind it is easy to understand the development of alternative anti-thrombotic drugs. NOACs or DOACs represent the next generation of these types of drugs. With fewer interactions and high predictability NOACs do not generally require regular monitoring. Questions remain however, when it comes to means of testing and interpretation as well as reversing the anticoagulative effect, should the need for emergency surgery occur. This thesis discusses the current situation and peek into the development of warfarin and the efforts of producing a standardized test for measuring the effect. A practical micro-study is conducted to evaluate whether the APTT-method in Vasa city hospital detects increasing concentrations of dabigatran, one of the first NOACs to be approved of use in clinical practice. The study points in the direction of plausibility, with a due caution when interpreting the results.
Innehållsförteckning

1 Inledning ... 1
2 Syfte och frågeställningar .. 2
3 Hemostasen .. 2
 3.1 Plasmakoagulation .. 4
 3.1.1 Koagulationsprocessen .. 4
 3.1.2 Faktorerna .. 6
 3.2 Antikoagulation .. 10
 3.2.1 Fibrinolys ... 10
 3.2.2 Fibrinolytiska läkemedel .. 10
4 Trombos och emboli .. 11
5 Profylax mot trombos och emboli .. 12
 5.1 Antikoagulativa läkemedel .. 12
 5.1.1 K-vitinhämmare ... 14
 5.1.2 Trombocythämmare .. 14
 5.1.3 ADP-blockerare ... 15
 5.1.4 Heparingruppen .. 15
 5.1.5 Nya orala antikoagulantia .. 16
6 Laboratorieundersökningar ... 22
 6.1 Preanalytik ... 22
 6.1.1 Interna preanalytiska faktorer ... 22
 6.1.2 Externa preanalytiska faktorer ... 23
 6.2 Det analytiska skedet .. 23
 6.3 Postanalytik .. 24
 6.4 Tromboplastintid .. 25
 Tromboplastintid som international normalized ratio. ... 27
 6.5 Aktiverad partiel tromboplastintid .. 28
7 Metoder för examensarbetet ... 28
8 Undersökningens genomförande .. 30
 8.1 Metodprinciper för undersökningar ... 30
 8.2 Utförande ... 33
 8.3 Redovisning och tolkning av resultat .. 34
9 Kritisk granskning .. 38
10 Diskussion .. 39
11 Källor ... 41
1 Inledning

Ett av de vanligaste antikoagulativa läkemedlen i Finland i dag är warfarin. Warfarin hämmar syntesen av det för koagulationen så viktiga k-vitaminet och dess verkan är väl dokumenterad. Warfarin påverkar koagulationen på ett individuellt sätt och behöver därför uppföljning av verkan genom regelbundna blodprov. Val av diet kan inverka, varför det är av vikt att patienten får adekvat information. (Ellonen, Mustajoki 2015).

2 Syfte och frågeställningar

Syftet med detta arbete är sekundärt att diskutera den rådande situationen då det kommer till användningen av de mera oprövade nya orala antikoagulativa medicinerna. Trots flera år i användning har dessa ämnen fortfarande en del frågetecken som rör risker i användning, få och mycket dyrbare alternativ till att upphäva effekten och slutligen hur den faktiska antikoagulativa verkan skall mätas på ett konsekvent och pålitligt sätt hos den behandlade patienten. Det primära syftet med arbetet är därför att undersöka huruvida en vanlig mätmetod, APTT, (kort för aktiverad partiell tromboplastintid, benämns i fortsättningen med förkortningen), klarar av att indikera halter av Dabigatran, en trombinhämmare som tillhör kategorin nya orala antikoagulativa.

Arbetet strävar även till att belysa de för koagulationen viktigaste mekanismerna och förklara händelseförloppet vid händelse av kärlskada. För att ge en bättre förståelse för varifrån vi kommit och var vi är på väg i utvecklingen av profilaktisk trombosbehandling och testningen av denna behandlas även utvecklingen ur ett historiskt perspektiv. Historikens syfte är att ge en förklaring till behovet bakom och uppkomsten av ett standardiserat test med hänsyn till variationer i olika tillverkars reagens, utvecklingen av INR, eller international normalized ratio. Genom att förstå hur detta utspelades är det samtidigt lättare att omfatta varför den nurådande situationen är något problematisk. Fokus ligger dock specifikt på orala antikoagulativa och behandlar inte destu mera ämnen som administreras parenteralt eller på andra sätt än just peroralt.

Frågeställning i arbetet: Kan man se en förlängning av APT-tiden med ökande koncentrationer av dabigatran?

3 Hemostasen

Hemostasen kan beskrivas som kroppens sätt att hantera läckage från blodkärl. Utan hemostas kan konsekvensen av redan obetydliga trauman bli förblödning. Under normala betingelser stoppas blödning från blodkärlen omgående genom att blodet stelnar och bildar en plugg. Kärlkontraktionen underlättar denna reaktion. För att balans skall råda har kroppen även inbyggda mekanismer som hämmar koagulationsbildningen för att motverka okontrollerad koagulation med trombutveckling som följd. (Hedner 2006, s. 410). Organismens hemostassystem ser till att blodet hålls flytande under cirkulationen i

Primär hemostas

Trombocyter

Tabell 1. Referensintervall för trombocyter är enligt huslab B-Trom:

<table>
<thead>
<tr>
<th>Ålderskategori</th>
<th>Intervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>vuxna</td>
<td>150-360 x 109/L</td>
</tr>
<tr>
<td>Barn 0-6 dygn</td>
<td>140-290 x 109/L</td>
</tr>
<tr>
<td>Barn 7-20 dygn</td>
<td>150-340 x 109/L</td>
</tr>
<tr>
<td>Barn 21-29 dygn</td>
<td>180-390 x 109/L</td>
</tr>
<tr>
<td>Barn 1mån-16år</td>
<td>200-450 x 109/L</td>
</tr>
</tbody>
</table>

(Ohjekirja, Huslab)

Trombocyter har två typer av granula, α-granula och β-granula. Det förstnämnda innehåller bland annat ämnen som fibrinogen, faktor V och faktor VIII. Den andra typen, eller β-granula, är täta granula som utsöndrar bland annat ADP (adenosine diphosphate) och kalcium. (Palta 2014).
Trombocyterna har en viktig roll i koagulationsreaktionen. Deras huvuduppgift är att föra koagulationssystemet till platsen för kärlskada och bilda en trombocytplugg. Adhesionsreceptorer medierar adhesion till kärlväggen och deltar i aktivering av trombocyter. (Lassila 2015, ss. 32-33).

3.1 Plasmakoagulation

Plasmakoagulationen utgörs under normala omständigheter av olika reaktioner som så småningom leder till att trombin bildas från protrombin. Trombinet besitter egenskaper som gör att det spelar en viktig roll i koagulationen. Till dess prokoagulativa uppgifter hör aktivering av faktorerna XI, XIII, kofaktorer V och VIII och fibrinbildning. Förutom detta aktiverar trombinet protein C- system som bidrar till att motverka plasmakoagulationen. (Astermark 2012, s. 287).

3.1.1 Koagulationsprocessen

3.1.2 Faktorerna

Faktor III, mera känd som vävnadsfaktor, tissue factor, eller vävnadstrombokinas, hittas i de flesta vävnaderna i kroppen. I hjärna och lungor är koncentrationen speciellt riklig. Även

Faktor VII, även kallad Prokonvertin, produceras i levern och för att fungera med full koagulationsaktivitet analogt till protrombin behövs K-vitamin (Nyman, 1997, s. 345) Den yttre vägens aktivering av plasmakoagulationen initiera då FVII binder vävnadstromboplastin. Eftersom vävnadstromboplastin, eller tissue factor (TF), inte cirkulerar i blodet är det först vid en skada på kärlväggen som FVII exponeras till sin kofaktor TF. Detta komplex aktiverar snabbt FX som i sin tur aktiverar protrombin till trombin. (Astermark 2012, s. 287).

Faktor X, Stuart-Prower-faktor, syntetiseras i levern och processen är K-vitaminberoende. Aktivering av faktor X sker genom närvaro av faktor IX, kalcium, fosfolipid och faktor VIII. En annan aktiveringsväg är genom vävnadstromboplastin (TF) - faktor VII komplex i närvaro av kalcium. Två peptider klyvs från den tunga kedjan då faktor X aktiveras och därefter omvandlar protrombin till trombin.

Faktor XI, eller plasmatromboplastin-antecedent (PTA), är en produkt av syntes i levern. I motsats till många andra faktorer kräver denna inte närvaro av vitamin K för aktivitet. Faktorns funktion i plasmakoagulaneten är att i närvaro av kalcium aktivera faktor X, efter att själv aktiverats till fungerande proteas av faktor XII.

Faktor XII kallas ibland för Hageman-faktor. Man känner igen två aktiveringsvägar för det overksamma FXII till ett aktivt proteas. Genom konformationsförändring då kontakt med basalmembran eller kollagen leder till aktivering utan att molekylvikt eller polypeptidkedjor ändras. Den andra vägen är om aktiverande ämne är kallikrein eller plasmin, varvid en proteolytisk spjäckning av FXII sker. FXIIa aktiverar i sin tur XI i koagulationskaskaden. Förutom denna funktion kan Faktor XIIa även aktivera prekallikrein som tillsammans med högmolekylärt kininogen loppar tillbaka och aktiverar mera Faktor XII. Denna trio förbinder även koagulationen till inflammation genom kininproduktionen, aktiverar komplementsystem samt det fibrinolytiska systemet. (Nyman 1997, s. 346; Schmaier 2008).

Faktor XIII karaktäriseras som en fibrinstabiliserande faktor och fyller en viktig funktion i koagulationsförloppet. Detta eftersom fibrin i sin ofärdiga form, fibrinogen som aktiverats av trombin, inte är starkt nog att motstå plasminets upplösande verkan. Faktor XIII cirkulerar i blodet som ett tetrameriskt komplext bestående av två A- och två B-enheter. I det slutliga steget av plasmakoagulationen blir FXIII aktiverat i en flerstegsprocess som involverar dissocierandet av de båda hämmande B-enheterna, begränsad proteolys hos A-enheterna på grund av trombinets katalysatorande effekt och morfologiska förändringar hos A-enheterna, drivna av kalciumjoner. Det aktiva enzymet (FXIIIa) fungerar som ett transglutaminas och
faciliterar bindningar mellan fibrinmonomerer och binder antiplasmin till fibrin. Detta leder till att koaglet blir starkare och motstår bättre upplösning. (Nyman 1997, s347; Tacke 2006, s173)

3.2 Antikoagulation

3.2.1 fibrinolys

3.2.2 Fibrinolytiska läkemedel.

Flera fibrinolytiska läkemedel är vanliga i kliniskt bruk. Det främsta användningsområdet är att vid akut hjärtinfarkt eller stroke öppna de tilltäppta artärerna. Då det kommer till venös trombos eller lungemboli, även allvarlig sådan, är användning av fibrinolytiskaämnen inte

4 Trombos och emboli

5 Profylax mot trombos och emboli

5.1 Antikoagulativa läkemedel

Under kommande kapitel behandlas en rad olika läkemedel och även neutralisering av dessa. För att lättare kunna följa ger tabell 2. en översikt.

<table>
<thead>
<tr>
<th>Neutraliserande ämnen</th>
<th>vitamin K</th>
<th>protamin</th>
<th>idarucizumab</th>
<th>andexanet alfa*</th>
<th>Ciparantag*</th>
<th>irreversibel verkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antikoagulativa ämnen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetylsalicylsyra</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>warfarin</td>
<td>ja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>heparin</td>
<td>-</td>
<td>ja</td>
<td>-</td>
<td>-</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>LMWH, lågmolekylärt heparin</td>
<td>-</td>
<td>-</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>dabigatran</td>
<td>-</td>
<td>-</td>
<td>ja</td>
<td>-</td>
<td>ja</td>
<td>-</td>
</tr>
<tr>
<td>apixaban</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ja</td>
<td>ja</td>
<td>-</td>
</tr>
<tr>
<td>rivaroxaban</td>
<td>-</td>
<td>-</td>
<td>ja</td>
<td>ja</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>edoxaban</td>
<td>-</td>
<td>-</td>
<td>ja</td>
<td>ja</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* Inte ännu godkända

För att förstå hur de olika antikoagulativa ämnena verkar är det av stor vikt att det finns en uppfattning över hur plasmakoagulationen framskrider efter aktivering. I figur 1. illustreras vilka mekanismer eller faktorer som motverkas av respektive typ av ämne.
Coumarin eller som det oftast kallas i Finland, warfarin, påverkar flera faktorer med det gemensamma draget att de är k-vitaminberoende för att fungera (Mustonen & Lepäntalo 2015, s. 573). Det lågmolekylära heparinet blockera aktiv faktor X och i viss mån trombin (Lockner 1997, s. 398). Dabigatran blockar specifikt trombin, medan direkta faktor Xa hämmare, hämmar specifikt aktiv faktor X (Drugs.com u.å.). I figur 1. visas var i koagulationsreaktionen de olika läkemedlen verkar. De olika grupperna behandlas skillt för sig i de kommande kapitlet. Även om tyngdpunkten i arbetet i stort ligger på de orala antikoagulativa warfarin och NOAC, följer även en redogörelse för övriga grupper.
5.1.1 K-vitaminhämmare

5.1.2 Trombocythämmare

5.1.3 ADP-blockerare

5.1.4 Heparingruppen

Man skiljer mellan ofraktionerat (UFH, unfractioned heparine) och lågmolekylärt (LMWH, low molecular weight heparine) heparin. Molekyldjorna i det ofraktionerade heparinet är längre än i det lågmolekylära heparinet. Den mest framträdande egenskapen hos heparin är dess förmåga att effektivera antitrombinets förmåga att blockera trombin och aktiv faktor X. Lågmolekylärt heparin skiljer sig i en rad aspekter från det mera traditionella ofraktionerade. Även om det lågmolekylära har ökat i populäritet finns det fortfarande områden där det ofraktionerade är att föredra. Till exempel vid hjärt och kärlkirurgi. Detta på grund av den relativt korta verkningstiden och det faktum att effekten är reversibel med hjälp av protamin. Patienter som är blödningsbenägna eller lider av njurinsufficiens behandlas oftast även de med ofraktionerat heparin. (Mustonen&Lepäntalo, 2015, ss. 577-578).

Det ofraktionerade heparinet övervakas oftast med hjälp av APTT, medan det lågmolekylära i likhet med de nya orala antikoagulativa inte anses behöva regelbunden testning. I undantagsfall kan laboratorietest ändå vara motiverade. Sådana fall kan röra sig om
graviditeter, grav övervikt, njurinsufficiens, eller ökad blödningsrisk. Som undersökningsmetod används i sådana fall AntiFXa, på grund av det lågmolekylära heparinets övervägande benägenhet att blockera just aktiv faktor X. Eftersom LMWH även i någon mån besitter trombinblockerande egenskaper ger inte testet hela bilden av koagulationsförmågan hos en person utan blir mera riktgivande. (Mustonen & Lepäntalo, 2015, ss. 577-578).

5.1.5 Nya orala antikoagulantia

Till gruppen nya orala antikoagulativa hör läkemedel med verksamma substanser som dabigatran, rivaroxaban, apixaban och edoxaban. Dabigatran skiljer sig från de övriga genom att det är en trombinhämmer, medan de övriga hämmar faktor Xa. (1177 Vårdguiden 2016). Till listan över godkända orala hämmare av faktor Xa kan sedan juni 2017 läggas till Betrixaban som säljs under det kommersiella namnet Bevyxxa (Drugs.com).

Bland fördelarna som tillskrivs nya orala antikoagulativa läkemedel, eller som de ofta förkortas internationellt, NOAC (non vitamin K oral anticoagulants) eller DOAC (direct oral anticoagulant), är att de till skillnad från vitamin-K antagonist inte är lika känsliga för interaktion med andra läkemedel, detsamma gäller intag av födoämnen. Vidare kräver NOAC i regel inte regelbundna laboratorietester på grund av sin förutsågbara farmakodynamik och farmakokinetik. (Brown et. al. 2016).

I omfattande kliniska tester där de första godkända läkemedlen, dabigatran, apixaban, rivaroxaban och edoxaban testades genomgående visade de sig vara åtminstone lika effektiva som warfarin då det rörde sig om att förebygga stroke och systemisk embolism hos patienter med förmaksflimmer. De förknippades med lägre frekvens av hemorrhagisk stroke och lägre eller liknande frekvens av större eller kliniskt relevanta mindre blödningar, samt avsevärt färre fall av intrakraniala blödningar, i jämförelse mot warfarin. Vid behandling mot venös tromboembolism, har NOAC visat sig lika potent som traditionella metoder med behandling med intravenös enoxaparin eller heparin följt av warfarin eller liknande. (Brown et. al. 2016).
Läkemedelskonsumtion redovisat i apotekens inköpspris

Tabell 3. Försäljningsstatistik över de antikoagulativa läkemedlen

<table>
<thead>
<tr>
<th>ATC CODE</th>
<th>SUBGROUP OR CHEMICAL SUBSTANCE</th>
<th>2016 WHOLE SALE PRICE/1000 €</th>
<th>2015 WHOLE SALE PRICE/1000 €</th>
<th>2014 WHOLE SALE PRICE/1000 €</th>
<th>2013 WHOLE SALE PRICE/1000 €</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2016 HOSPITAL %</td>
<td>2015 HOSPITAL %</td>
<td>2014 HOSPITAL %</td>
<td>2013 HOSPITAL %</td>
</tr>
<tr>
<td>B</td>
<td>BLOOD AND BLOOD FORMING ORGANS</td>
<td>195 895</td>
<td>34</td>
<td>177 373</td>
<td>37</td>
</tr>
<tr>
<td>B01</td>
<td>ANTITHROMBOTIC AGENTS</td>
<td>77 885</td>
<td>24</td>
<td>64 969</td>
<td>28</td>
</tr>
<tr>
<td>B01A</td>
<td>ANTITHROMBOTIC AGENTS</td>
<td>77 885</td>
<td>24</td>
<td>64 969</td>
<td>28</td>
</tr>
<tr>
<td>B01AA</td>
<td>Vitamin K antagonists</td>
<td>3 676</td>
<td>2</td>
<td>3 520</td>
<td>3</td>
</tr>
<tr>
<td>B01AB</td>
<td>Heparin group</td>
<td>24 794</td>
<td>43</td>
<td>24 229</td>
<td>45</td>
</tr>
<tr>
<td>B01AC</td>
<td>Platelet aggregation inhibitors excl. heparin</td>
<td>17 828</td>
<td>7</td>
<td>18 594</td>
<td>7</td>
</tr>
<tr>
<td>B01AD</td>
<td>Enzymes</td>
<td>4 585</td>
<td>100</td>
<td>4 716</td>
<td>100</td>
</tr>
<tr>
<td>B01AE</td>
<td>Direct thrombin inhibitors</td>
<td>7 639</td>
<td>9</td>
<td>5 157</td>
<td>13</td>
</tr>
<tr>
<td>B01AF</td>
<td>Direct factor Xa inhibitors</td>
<td>18 495</td>
<td>4</td>
<td>8 312</td>
<td>5</td>
</tr>
<tr>
<td>B01AX</td>
<td>Other antithrombotic agents</td>
<td>867</td>
<td>82</td>
<td>441</td>
<td>72</td>
</tr>
<tr>
<td>B02</td>
<td>ANTIHEMORRHAGICIS</td>
<td>57 586</td>
<td>29</td>
<td>54 705</td>
<td>34</td>
</tr>
<tr>
<td>B03</td>
<td>ANTIANEMIC PREPARATIONS</td>
<td>24 906</td>
<td>20</td>
<td>24 172</td>
<td>19</td>
</tr>
<tr>
<td>B05</td>
<td>BLOOD SUBSTITUTES AND PERFUSION SOLUTIONS</td>
<td>31 333</td>
<td>79</td>
<td>29 798</td>
<td>80</td>
</tr>
<tr>
<td>B06</td>
<td>OTHER HEMATOLOGICAL AGENTS</td>
<td>4 186</td>
<td>28</td>
<td>3 729</td>
<td>27</td>
</tr>
</tbody>
</table>

Tabella 3. Tabell 3. Statistik over de antikoagulativa läkemedlen

Hur fördelas då konsumtionen av orala antikoagulativa läkemedel efter intåget av NOAC-medicinerna? Det kunde ju tänkas att användningen av warfarinet reducerats avsevärt, men så verkar inte fallet vara. I tabell 2. kan med all önskvärd tydlighet konstateras att warfarinet håller sin position väl. Från säkerhets- och utvecklingscentret för läkemedelsområdets (Fimea) statistik över läkemedelsdistribution i Finland framgår det att doser per 1000 invånare och dag minskade visserligen försäljningen av warfarin från 17,04 år 2014 till 16,04 2016. Detta samtidigt som den totala användningen av direkta faktor Xa hämmare ökade från 0,76 år 2014 till 3,94 år 2016. Av denna ökning stod rivaroxaban för största delen, eller 2,75 och apixaban för 1,19. Dabigatran ökade under samma tidsperiod från 0,73 till 1,52. Det är möjligt att försiktighet och ett visst mått av misstänksamhet råder mot de fortfarande relativt nya NOAC-medicinerna. (Fimea 2017).

Det går dock inte att undgå en annan väsentlig detalj i sammanhanget, nämligen merkostnaden som det innebär att välja NOAC framför det beprövade warfarinet. Ur tabellen i figur 2. framgår klart att det är fråga om en väsentlig prisskillnad då totala försäljningen av NOAC år 2016 landade på 19.362.000 euro i jämförelse med warfarinets totala försäljning om 3.676.000 euro. Då skall man komma ihåg att warfarinkonsumtionen vida överstiger den av NOAC. (Fimea 2017).
Direkta perorala trombinhämmare, dabigatran

Dabigatranetexilat är en direkt, peroral trombinhämmare vars indikationer är ganska långt liknande som för de direkta, perorala, faktor Xa hämmande antikoagulativa medicinerna. Direkt syftar i dessa fall på att de utan omvägar påverkar en specifik faktor, till skillnad från warfarinet som verkar genom att hämma k-vitaminsyntesen, vilket i förlängningen hämmer flera koagulationsfaktorer. Till indikationerna för dabigatran hör ventrombos och lungemboli, embolism förknippad med förmaksflimmer och efter knä- och höftleds-kirurgi som profylax mot ventrombos. (Mustonen & Lepäntalo 2015, s. 582).

Dabigatran avlägsnas från kroppen med urinen upp till 80 % och försämrad njurfunktion kan därför leda till att ämnet ackumuleras i kroppen och vid grav njurinsufficiens skall det helt undvikas. Tidigare försök till trombinhämmare har lidit av en besvärlig bieffekt, nämligen toxiska effekter på levern. Liknande effekter har inte noterats med dabigatran. Fördelarna med läkemedlet är en stor terapeutisk bredd, läkemedlet verkar snabbt och verkan avtar också snabbt och kräver ingen regelbunden monitorering. Kontraindikation för dabigatran är graviditet och amnning, patient med konstigjord klaff och kraftiga njurskador. Övriga nackdelar är att dabigatran är relativt dyrt och i jämförelse med warfarin existerar ganska lite information över funktion och risker. (Mustonen & Lepäntalo 2015, s. 582).

Den farmakokinetiska profilen av dabigatran kännetecknas av en snabb hydrolysering av etexilatet till den aktiva formen dabigatran efter oral administration. Effekterna av ämnet startar omedelbart och högsta nivå i plasma såväl som maximal antikoagulation uppnås inom 2-3 timmar efter administration. Studier gjorda på patienter under höftledsoperationer och vid preventiv behandling mot stroke vid förmaksflimmer har pekat på tydlig korrelation mellan nivå av dabigatran i blodplasma och nivå av antikoagulation. (Ryn et. al. 2010, s. 1117).

Direkta perorala faktor Xa-hämmare

Rivaroxaban

Rivaroxaban är en direkt hämmare av såväl fri som protrombinaskomplexbundet faktor Xa. Rivaroxaban ges vanligtvis en gång i dygnet. Under de tre första veckorna vid behandling för venös trombos och lungemboli kan dosen vara två gånger i dygnet. Användningsområden för Rivaroxaban är förutom vid ventrombos och lungemboli, även vid embolism förknippad med förmaksflimmer, efterbehandling vid akut hjärtinfarkt och efter

Apixaban

Edoxaban

Edoxaban säljs under det kommersiella namnet Savaysa. Det blev i USA godkänt av FDA (Food and Drug Administration) år 2015. Det är i likhet med ovan nämnda rivaroxaban och apixaban en oral, direkt, hämmare av FXa. Dosering sker en gång dagligen. (Drugs.com).

Neutralisering av nya oralra antikoagulativa

Det är just på denna punkt som de nya oralra antikoagulativa medicinerna har sin kanske största brist. Under många omständigheter som innebär blödning i någon form blir tillvägagångssättet helt enkelt att avbryta administrering av NOAC åtföljt av ett väntande på avklingande effekt. Men med tiden har även detta problem närmat sig sin lösning. Ett ämne som skall klara av att neutralisera dabigatran är idarucizumab. Mot direkta hämmare av FXa är andexanet alfa det ämne som anses vara närmast ett godkännande för användning. Idarucizumab har dock inte varit godkänt under någon längre tid och med tiden kommer
säkert dess användning och fortsatt forskning runt ämnet leda till flera svar. Frågor som när det är tryggt att upprepa administrering, kombinera idarucizumab med protrombin och hur snart efter neutralisering man kan återuppta behandling med dabigatran behöver ännu mera forskning för att kunna svaras på ett adekvat sätt. (Huisman & Fanikos 2016, ss. 89–96).

Idarucizumab

Även om Idarucizumab till sin struktur liknar den hos trombinet har dabigatran-hämmaren ingen prokoagulativ verkan. I första fasens studier uppdagade idarucizumab mycket stabila koagulationsparametrar över ett bredt spektrum av doser. Testerna visade även att ämnet var säkert och ett effektivt sätt att neutralisera den antikoagulativa verkan av dabigatran. Man fann att de bästa metoderna för att utvärdera verkan av dabigatran och neutraliseringsmed idarucizumab var diluted thrombin time, dTT och Ecarin clotting time (ECT). Förhöjningar i dT-tid och EC-tid framkallade av dabigatran, återgick till det normala efter administrering av idarucizumab. Återgången upprätthölls under 72 timmar för doser större än 2g. Idarucizumab resulterade även i koncentrationen av obundet dabigatran i plasman reducerades till lägre detektionsgränser. (Hu et. al. 2016).

I en stor undersökning som kallades RE-REVERSE framkom det att idarucizumab omedelbart neutraliserade effekten av dabigatran, men i en del patienter hände det att koncentrationen av fritt, obundet dabigatran, ökade efter 12 eller 24 timmar, åtföljt av förlängda dTT- och ECT-tider. Detta fenomen tros bero på den mängd dabigatran som återvänder till blodkärlen från omkringliggande vävnader. Fenomenet understryker behovet
av godkända och tillgängliga test för att kunna utvärdera effekten av dabigatran. Det kan vara skäl att överväga ytterligare dos av idarucizumab vid händelse av återkommande blödning av klinisk relevans i kombination med förlängda koagulationsparametrar. På samma sätt kan det bli aktuellt att överväga tilläggsdos vid upprepade akutingrepp. Frågetecken kvarstår dock då det gäller åtgärder av denna typ. (Huisman & Fanikos 2016, ss. 89–S96)

Som alltid är det en ekonomisk avvägning mot nyttan då nya ämnen och behandlingsmetoder övervägs, så även i detta fall. Enligt en rapport publicerad av Fimea, kort efter att idarucizumab i december 2015 blev godkänt, hävdar man att estimeringen över en behandling med idarucizumab skulle kosta i närheten av 2500 euro. Med ett minskat behov av andra blodprodukter vid en sådan behandling skulle den faktiska kostnaden landa någonstans mellan 1000 – 1700 i jämförelse med behandling utan substansen. Med ett uppskattat behov av cirka 100 patienter i året i Finland skulle det betyda en kostnad på mellan 100,000 – 170,000 euro. (Fimea 2017).

Ciraparantag

Ett annat ämne under utveckling för neutralisering av antikoagulativ verkan är ciraparantag (PER977, Perosphere, Danbury, CT, USA). ciraparantag är en liten syntetisk, katjonisk molekyl, som binder direkta faktorXa antagonister, direkta trombininhibiter och ofraktionerat, lågmolekylärt heparin (LMWH) genom icke kovalenta vätebindningar och laddningsbaserade interaktioner. Det har publicerats lite data över verkningsmekanismerna hos ciraparantag. I de studier som offentliggjorts krävde edoxaban de minsta doserna för full neutralisering. Studier utförda på humant blod, ex vivo, pekade på en dosberoende verkan mot rivaroxaban och apixaban. Uppskattningen gjordes genom att mäta anti-Xa aktivitet. Det observerades ingen prokoagulativ verkan av ciraparantag under dessa studier. (Hu et. al. 2016).

Andexanet alfa

Andexanet alfa är en inaktiverad och rekombinant form av FXa. Det är utvecklat som ett universellt motmedel mot faktor Xa hämmare. Andexanet alfa (PRT06445) är utvecklat av Portola Pharmaceuticals, San Francisco, CA, USA. Förutom till specifika FXa hämmare binder andexanet alfa även till lågmolekylärvtikshepariner (LMWH) och fondaparinuxaktiverat antitrombin III, vilka fungerar indirekt som FXa inhibitorer. Andexanet alfa fungerar genom att agera falsk FXa och med hög affinitet binda till hämmare av denna

6 Laboratorieundersökningar

Kapitlet behandlar preanalytiska, analytiska och postanalytiska aspekter. Utöver detta redogörs för några koagulationsundersökningar inklusive en kort historik.

6.1 Preanalytik

Rent allmänt har de kliniska laboratorieanalyserna blivit en alltmer väsentlig del av vården. De är idag en naturlig del av beslutsprocessen då det rör diagnosticering, bekräftande av teorier, behandling och uppföljning. Läkare har med tiden fått tillgång till en ständigt ökande repertoar av analyser och metoderna har blivit allt mera sofistikerade. I många fall har även analysprocessen blivit snabbare och tillhandahåller svar efter allt kortare tider. Baksidan av denna bredd av möjligheter till olika laboratorietest är att risken för feltolkningar och felaktigt användande. Inte sällan söker läkare efter definitiva svar ur analyserna, vilket inte kanske alltid är fallet. Man kanske förväntar sig att närvaro av sjukdomssymtom automatiskt skall ge abnorma värden, eller att ett normalt provsvar betyder att den sjukdom man försöker bekräfta inte finns hos patienten. Det är nödvändigt att ta i beaktande den komplexa natur som laboratorieprocessen utgör. Svaren skall närmast ses som riktgivande eftersom man aldrig kan garantera 100% att inga variabler i kedjan har påverkat detta i en eller annan riktning. Förutom närvaro eller avsaknad av sjukdom påverkas svaret även av fysiologiska faktorer och direkta problem i anknytning till analysen. Läkaren som skall försöka sig på en tolkning har inte kontroll över dessa. (Annesley 1994, s. 77).

6.1.1 Interna preanalytiska faktorer

Bland de olika faktorerna som berör den preanalytiska biten hör olika intraindividuella faktorer eller interna faktorer som nivå av normal diures, dag till dag och säsongsbetonade variationer i koncentration av uppmätta komponenter i biologiska vätskor. Effekter av kön, även om dessa inte alltid är signifikanta ur ett kliniskt perspektiv. Till exempel har vuxna kvinnor lägre halter av hemoglobin och ferritin i blod, samt lägre halter av järn i serum, detta

6.1.2 Externa preanalytiska faktorer

6.2 Det analytiska skedet

Då det gäller analysen av antikoagulativa läkemedel gäller detta med svårtolkade analysresultat i allra högsta grad. Problemet är att warfarinet är väl beprövat men de nyare orala trombinhämman och faktor Xa-hämmarna har inte funnits under så lång tid att

I en större norsk undersökning konstaterar man att det behövs mera kunskap om hur man skall följa upp patienter med behandling med NOAC, hurudana tester man skall använda och hur man skall tolka svaren från dessa. Nya artiklar om utvärdering av antikoagulationsgrad och laboratorieanalyser skrivas kontinuerligt, ett stort problem kvarstår dock, det är inte riktigt klarlagt vid vilka nivåer risken för komplikationer ökar. (Kristoffersen et. al. 2013, s. 23).

Att mäta koncentrationen av läkemedel i blodplasmat med metoder som vätskekromatografi (LC) och masspektrometri (MS) är helt möjligt, men metoderna har sina begränsningar. Ett idealttest skulle uppvisa en hög grad av överensstämmande med läkemedelsnivåer uppmätta med LC-MS, det vore känsligt för ett brett spektrum av koncentrationer och tillräckligt känsligt för att mäta den lägsta, kliniskt relevanta nivån. Ur en praktisk synvinkel borde analysen i fråga vara tillgänglig dygnet runt alla dagar i veckan och med en kort processtid för att svara mot akuta behov av mätning. (Cuker 2016, ss. 241-247).

6.3 Postanalytik

Även om alla moment i kedjan fram till skedet efter analysen, det postanalytiska skedet, har fungerat bra kan det fortfarande ske incidenter som påverkar vårdgången och i slutändan har effekter för patienten. Man skulle kunna uttrycka det som att allt arbete som blivit gjort fram till dess att ett analysresultat erhållits är bortkastat om resultatet inte når beställaren, den läkare som ordinerat testet, i tid. Det vill säga, det är viktigt att rapportering av resultat fungerar och att detta sker utan dröjsmål så att behandling kan ta vid så fort som möjligt. Destu mera kritiskt sjukdomstillstånd det handlar ju viktigare är det att omgående hitta den rätta planen för behandling. Det är därför viktigt med utbildad personal i laboratoriet, vilket ökar chanserna för att upptäcka och reagera på abnormaliteter i provsvar. (Annesley 1994, s. 88; Fischbach 2000, ss. 24-31).
Det är i sammanhanget viktigt att informationsgången håller och avvikelser blir noterade och dokumenterade på ett sådant sätt att även den tolkande läkaren har en chans att särskilja mellan avvikelser som beror på problem eller incidenter i de tidigare analytiska skedena, tex., hemolys i blodprov, eller om det handlar om hos patienten kliniskt relevanta avvikelser. För att tolkande läkare skall ha en lättare uppgift bör analyssvar inklusive avvikelser och relevant information förmedlas enligt standardiserade metoder. (Annesley 1994, s. 88; Fischbach 2000, ss. 24-31).

Etiska aspekter bör beaktas så att inga personer som inte behöver ta del av informationen i laboratoriesvaren avsiktligt eller av misstag gör så. Rutiner runt sekretess bör hålla sådan standard att det inte skall vara möjligt för personer utanför vårdkedjan att läsa konfidentiella patientuppgifter. (Annesley 1994, s. 88; Fischbach 2000, ss. 24-31).

6.4 Tromboplastintid

PT och behovet av INR, en återblick

En International kommitté för trombos och hemostas / standardisering (international committee on thrombosis and haemostasis / international committee for standardization in haematology), studerade olika möjligheter till en lösning på variationerna, ett standardiserat tillvägagångssätt som kunde utjämnna skillnaderna i reagens och metodik. Genombrottsrapporten som proklamerade INR (international normalized ratio) förslaget kom från Dr Tom Kirkwood. (Poller 2004, ss. 849–860).

TT, eller tromboplastintid, på engelska PT, eller prothrombine time, har ofta blivit kallat Quicks Protrombintid, efter Quick som först beskrev metoden. TT eller PT utvecklades som namnet förtäler till att mäta protrombin, eller faktor II. Det uppdagades emellertid snart att testet även var känsligt för avvikelser hos faktorerna VII, X, V, II och fibrinogen. TT mäter aktiviteten hos koagulationens så kallade yttre (extrinsic pathway) och gemensamma (common) väg. Indelning av koagulationskaskaden på detta sätt är emellertid ganska förlegat och har svag validitet in vivo, men tjänar fortfarande sitt syfte då det kommer till tolkning av laboratorieundersökningar. Tromboplastintid är ett enstegstest som baserar sig på tiden
det tar för ett koagel att bildas efter tillsats av vävnadstromboplastin, (tissue factor), fosfolipider och kalciwm till centrifugerat blodplasma. Termen "tromboplastin" användes ursprungligen för att beskriva ett ämne i plasma som konverterade protrombin till trombin. (Practical-Haemostasis.com).

Tromboplastintid som international normalized ratio.

I dagens läge (2017) ligger det terapeutiska intervall mellan 2.0-3.0 för profylaktisk behandling mot ventrombos och systemisk embolism. Hos patienter med mekanisk klaff ligger målområdet något högre, 2.5-3.5. En frisk person utan antikoagulativ behandling landar på ett INR-värde om ca 0.7-1.2. Viktigt att notera i sammanhanget är att INR används oftast vid uppföljning av behandling med warfarin. (Ohjekirja, Huslab 2017).

6.5 Aktiverad partiell tromboplastintid

Aktiverad partiell tromboplastintid brukar vanligtvis förkortas APTT. Metoden mäter faktorer (XII, XI, IX, VIII, X, V, II, I) och deras samverkan. Metoden är den främsta när det kommer till att mäta effekten av infusion av ofraktionerat heparin. APTT är i regel inte sensitivt för det lågmolekylära heparinet (LMWH), men en förlängd APTT tid i samband med detta kan tyda på kumulativ verkan, närmast i samband med njurinsufficiens. (Leinonen, Ohjekirja, Huslab)

7 Metoder för examensarbetet

Ett experiment kan definieras som en empirisk undersökning under kontrollerade förhållanden, utformad för att utreda egenskaper av, eller förhållandet mellan specifika

Rent praktiskt var just dessa experiment en mätning av viskositetsökning i provmaterialet.
8 Undersökningens genomförande

8.1 Metodprinciper för undersökningar

Metodprinciper för dabigatranundersökning

Metodprinciper för APT-tid

Apparatur och reagenser.

8.2 Utförande

Utförande av dabigatranundersökning

Utförande av undersökningen APT-tid

Plasma från patientprov i natriumcitratrör, 2,7 ml, avskiljdes och pipetterades i ett gemensamt 6 ml rör. Plasman blandades omsorgsfullt. Med denna plasmapool som bas pipetterades proverna till mikrorör enligt följande:

1. 500 µl plasma + nollprov utan dabigatran (owren buffert)
2. 500 µl plasma + 100 µl dabigatran standard, 49 ng/ml
3. 500 µl plasma + 100 µl dabigatran standard, 99 ng/ml
4. 500 µl plasma + 100 µl dabigatran standard, 171 ng/ml
5. 500 µl plasma + 100 µl dabigatran standard, 257 ng/ml

Förfarandet då det gäller den maskinella analysen var samma som i den första undersökningen, (se utförande, dabigatran).
8.3 Redovisning och tolkning av resultat

Resultat från dabigatranmätning

Tabell 4.

<table>
<thead>
<tr>
<th>Prov nr.</th>
<th>APT-tid i sekunder</th>
<th>dabigatran ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>42,42</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>20,2</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>20,09</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>38</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>43</td>
<td>84,9</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>23</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>47</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>29</td>
<td>-</td>
</tr>
</tbody>
</table>
Resultat från APTT- mätning:

1. 500 µl plasma + nollprov utan dabigatran (owren buffert): 33,9 sekunder
2. 500 µl plasma + 100 µl dabigatran standard, 49 ng/ml: 35,0 sekunder
3. 500 µl plasma + 100 µl dabigatran standard, 99 ng/ml: 38,4 sekunder
4. 500 µl plasma + 100 µl dabigatran standard, 171 ng/ml: 42,3 sekunder
5. 500 µl plasma + 100 µl dabigatran standard, 257 ng/ml: 44,0 sekunder

Mätningen visade en linjär förlängning av APTT-tiden från nollprovet mot den högsta koncentrationen, se figur 4. Noterbart är att koncentrationen av dabigatran är alltså före utspädning med plasma från den samlade plasmapoolen.

![Figur 4. Mätning av standarder.](image-url)
Liknande resultat har gjorts i andra studier. I en tysk studie från 2010 konstaterar man att en förlängning i APTT-tid sker i en ökning av dabigatran plasmakoncentration. Kurvan över koncentrationsrespons planar dock ut vid högre koncentrationer (från och med 200ng/ml och uppåt). Man fann även att mätningen av APTT kunde variera beroende på typen av koagulometer och reagens. Det utfördes därför jämförande undersökningar med olika reagenser och koagulometrar mellan ett stort antal lokala laboratorier och ett referenslaboratorie. Tillvägagångssättet var liknande som det i ministudien på Vasa centralsjukhus, nämligen med samlad plasma till en pool och tillsatt dabigatran. Reservationer rörande APTTs lämplighet för exaktare mätning av antikoagulativ verkan görs dock. Det anses att mycket höga APTT värden bör förankras med andra tester som ECT (ecarin clotting time) och dilute TT (Hemoclot). Trots dessa reservationer anser man i studien att APTT kan vara ett användbart verktyg vid bestämning av koagulativ verkan, om än med ett mått av försiktighet vid tolkning av förändringar i APTT vid behandling. (Ryn et. al. 2010, ss. 1117-1118).

I en artikel publicerad i Journal of thrombosis and thrombolysis lyfter man fram motsvarande slutsatser. Uppfattningen av en linjäritet i förhållandet mellan ökad mängd dabigatran och ökad APTT-tid upp till koncentrationer av 200-300ng/ml och efter det en planande kurva. Det pekas i all synnerhet på skillnader i olika APTT metoder. Slutsatsen av en jämförelse mellan nio olika aPTT metoder blev att plasma med tillsatt dabigatran i en mängd av 120ng/ml resulterade i tider från 26,0 till 91,9 sekunder. Det minst känsliga reagenset krävde en koncentration av dabigatran på uppskattningsvis 400ng/ml för att åstadkomma en fördubbling av APTT-tiden från baslinjen. (Cuker 2016, s. 241-247).

I en norsk studie av färskare datum talar resultatet för att de vanligaste APTT metoderna I användning kommer att visa ökade värden och värden över referensgränsen vid terapeutiska doser av Dabigatran. Ett förslag till kvalitativ utvärdering av APTT vid behandling med dabigatran ingår i publikationen, se tabell 5. (Kristoffersen et al. 2013, ss. 18-19).
Karen S. Brown et al. hävdar i en artikel publicerad så sent som 2016 i Critical Care, att APTT kan användas som metod för att uppskatta den antikoagulativa effekten av dabigatran och är en godtagbar test för att undersöka närvaron av den direkta trombinhämmaren. Emellertid anses även här att variationer är att förväntas och några riktlinjer vad det gäller den kliniska betydelsen av resultaten existerar inte och mera känsliga metoder för att bestämma specifika nivåer av antikoagulation inkluderar TT, diluted TT, samt ECT (Ecarin clotting time). (Brown et. al. 2016).

9 Kritisk granskning

När det gäller resultatets tillförlitlighet kan man fundera på validitet och reliabilitet. Validiteten, eller svaret på huruvida arbetet och den mikrostudie som genomfördes svarar på frågeställningen den aspirerar på att besvara, torde vara relativt bra eftersom antalet variabler begränsades genom att använda industriella standarder med hög grad av kvalitetskontroll och dokumentation. Analysen svarar väl på frågan om mätmetoden kan upptäcka ökade dabigatrankoncentrationer eftersom tillsatsen av ämnet låg helt inom egen kontroll och inga andra ämnen blev tillsatta till det poolade plasmaet. Tillvägagångssättet med plasmapool
utesluter naturligtvis inte möjligheten för eventuellt störande ämnen eller brus, men garanterar att sådana eventuella ämnen fördelas jämnt i alla prover och ger en jämförbar bas.

Reliabiliteten eller huruvida analysen skulle ge samma värde vid en upprepad analys torde även den ligga på en godtagbar nivå. Detta under förutsättning att analysinstrumentet i likhet med detta fall är kalibrerat, kontroller för reagenser körda och plasmaproverna undersökta för avvikelser. Eftersom samma standarder går att använda igen och metoden är standardiserad borde det vara möjligt att uppnå liknande värden. En brist i studien är självfallet det ringa antal prov som blev analyserade. Vid en upprepad studie skulle nog angreppssättet bli att redan från börja gå in för basplasma med tillsats av standarder och göra upprepade serier för att erhålla en större datamängd. Vidare borde analysen omfatta även högre koncentrationer för att undersöka om mätningar med Vasas APT-tid motsvarar andra publicerade resultat som pekar mot svårigheter vid just högre koncentrationer.

10 Diskussion

Det har gjorts försök med olika tillvägagångssätt för att lösa problemet. Ett av de intressantare är en studie som publiserats i Journal of Thrombosis and Haemostasis, 2016, i vilken man arbetat under hypotesen med utspädning av tromboplastinet till dPT (diluted prothrombin time) och dFiix-PT test för att erhålla bättre känslighet för de nyare antikoagulativa i jämförelse med traditionellt tromboplastin i PT. (Letterte 2016, s. 1043).

förutom just FII och FX före aktivering av koagulationsreaktionen och mätning av koagulationstid. (Onundarson & Gudmundsdottir 2017, s. 24).

Antagligen krävs ytterligare studier runt denna metod, men resultatet visar ändå att det kunde vara möjligt att utveckla ett test som skulle vara lämpligt att utvärdera det tillstånd av koagulativa/antikoagulativa krafter, som råder i en människas blod vid tidpunkten av provtagning och detta oberoende av medicin i användning. Återstår att se om detta realiseras i praktiken.
11 Källor

Biomedicinskanalytiker, 2015. [Online]
https://biomedicinskanalytiker.org/2015/07/16/appt/ [hämtat: 08.03.2017].

https://ccforum.biomedcentral.com [hämtat: 11.06.2017].

Drugs.com, 2017. *Faktor Xa inhibitors*. [online]

http://www.terveyskirjasto.fi/terveysportti/tkkoti [hämtat: 08.03.2017].

Fimea, *Use of idarucizumab as a specific antidote to dabigatran seems reasonable*. [Online]

Mauritzson E., u.å. Preanalytikutbildning. [online] https://vardgivare.skane.se/vardriktlinjer/laboratoriemedicin/[hämtat: 07.08.2017].

Perry D. J., Todd T., 2013. Practical-Haemostasis. [online]

Figurer och tabeller

Figur 3. Resultat, dabigatranmätning.

Figur 4. Resultat, APTT på standarder.

Tabell 2. Översikt över antikoagulativa och neutraliserande ämnen

Tabell 4. Resultat, dabigatranmätning.