OPC UA -ARKKITEHTUURIN TOTEUTUS JA TESTAUS TEOLLISUUSAUTOMAATIOSSA
Tomi Peltokangas & Janne Känsäkoski

OPC UA -ARKKITEHTUURIN TOTEUTUS JA TESTAUS TEOLLISUUSAUTOMAATIOSSA

Centria-ammattikorkeakoulu 2017
SISÄLLYS

1. JOHDANTO ... 5

2. TEOLLINEN INTERNET 4.0 .. 6
 2.1 Visio .. 6
 2.2 Tulevaisuuden älytehtaan haasteet Industry 4.0 aikana ... 6

3. MIKÄ ON OPC UA? .. 8
 3.1 OPC UA -protokollan edut ... 8
 3.2 OPC UA -arkkitehtuuri .. 9
 3.3 Mitä uutta OPC UA mahdollistaa teollisuudessa .. 9
 3.4 OPC UA:n tulevaisuus ... 10
 3.5 Mitä OPC UA mahdollistaa eri toimijoille? .. 11
 3.5.1 Operaattori ... 11
 3.5.2 Laitetoimittaja ... 12
 3.5.3 Järjestelmäsuunnittelia .. 12
 3.5.4 Ohjelmistotalo ... 12

4. TYÖKALUJA JA TUOTTEITA ... 13
 4.1 Kaupallisia ja ilmaisia tuotteita ... 13
 4.2 Kaupallisia kehitystyökaluja .. 14
 4.3 Avoimen lähdekoodin kehitystyökaluja ... 14

5. OPC UA -SOVELLUSTEN TESTAUS ÄLLI-HANKKEESSA ... 15
 5.1 OPC UA -protokollan ensimmäinen testi ... 15
 5.2 RFID/NFC-lähitunnistus prosessista ... 16
 5.3 Prosessin monitorointi mobiili-clientilla .. 16
 5.4 Palvelimelle luku ja kirjoitus mobiili-clientilla ... 17
 5.5 Modbus OPC UA -muunnin ... 18
 5.6 Logiikka ja OPC UA .. 19

6. JOHTOPÄÄTÖKSET ... 22

LÄHTEET

KUVALÄHTEET
LYHENTEET

CPS Cyber-Physical Systems
DA Data Access
DCOM Distributed Component Object Mode
ERP Enterprise Resource Planning
HDA Historian DA
HTTPS Hypertext Transfer Protocol Secure
ICT Information and Communication Technologies
IIC Industrial Internet Consortium
IO Input/Output
IoT Internet of Things
MES Manufacturing Execution Systems
OLE Object Linking and Embedding
OPC OLE for Process Control
SAP Systeme, Anwendungen und Produkte in der Datenverarbeitung Aktiengesellschaft
SDK Software Development Kit
SOAP Simple Object Access protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TSN Time-Sensitive Networking
UA Unified Architecture
WAN Wide Area Network
1. JOHDANTO

Tutkimusta tehtiin ensisijaisesti alueen teollisuudelle ja laajemmassa mittakaavassa kaikille niille teollisille toimijoille, joita kiinnostaa tieto siitä, miten laitteet ja järjestelmät keskusteluvat tulevaisudessa keskenään teollisissa ympäristöissä. Tämän menetelmän oletetaan olevan mm. rohbottien tuleva kommunikaatiokielin.

Tavoitteena oli synnyttää ja levittää uutta tietoa OPC UA:n hyödyntämisen potentialista osana teollisuusautomaatiojärjestelmien, -laitteiden ja niiden rajapintojen tietoturvallista ja yhdenmukaisuutta painottavalla kommunikaatiolla. Tämän tavoitteessa mahdollistaisi jatkossa esimerkiksi vielä toisistaan erillään olevien toiminnanohjausjärjestelmien (ERP/SAP) liittämisen tuotannonohjausjärjestelmiin.

Julkaisulla tähdätin siihen, että tutkimushankkeessa syntynyttä uutta tietoa saadaan levitettyä julkaistiin, sekä teollisessa yhteistyöverkostossa, että laajemmin, ja tämä saadaan nostettua tietoisuutta Centrian aihealueen huippuosaamisesta ja profiloitumisesta automaation, teollisen internetin ja OPC UA:n asiantuntijana.
2. TEOLLINEN INTERNET 4.0

Teollinen internet tarkoittaa sulautettujen ja älykkäiden laitteiden ja järjestelmien, saatavan tiedon analytiikan sekä työn tehokasta yhdistämistä suoraan liiketoiminnassa hyödynnettäväksi. Se mahdollistaa täysin uudenlaisia liiketoimintamalleja ja kilpailukykyisiä palveluja asiankastarpeisiin. (Tekes)

Esimerkkinä olkoon teollisuusautomaatio, joka mahdollistaa työntekijöiden keskittymisen toimistoon. Työtehtävät, jotka vaativat paljon rutiinia sekä intensiteettia, muuttuvat hyvin paljon koneiden hoitaessa työn ja prosessoinnin. (Tieto)

2.1 Visio

2.2 Tulevaisuuden älytehtaan haasteet Industry 4.0 aikana

Teollisuus 4.0 -vision onnistuneeseen toteuttamiseen vaaditaan huomattavia panostuksia, koska vaatimukset muuttuvat jatkuvasti. Kompleksisuuden vähentämisessä avaintekijöiksi nousevat modulaariset ratkaisut, laaja-alainen standardointi ja digitalisaatio. Nämä vaatimukset eivät ole uusia, eivätkä ylitsepääsemättömiä, mutta ne ovat jatkuvan kehityksen tulosta.

Tämä evoluutio on pitkäaikaisen prosessin tulosta, joka alkoi jo kauan sitten. Ratkaisut moniin näistä edellä mainituista haasteista ovat jo olemassa. Ne ovat Industry 4.0:n kivijalka. (AutomationWorld)
3. MIKÄ ON OPC UA?

OPC UA on alustariippumaton, tietoturvallinen, mutta avoin ja luotettava tiedonsiirtomekanismi datan liikuttamiseen palvelimien ja asiakasohjelmien välillä.

Se on ensimmäinen teknologia, joka on rakennettu erityisesti toimimaan "ei kenenkään mallalla", jossa datan pitää kyetä läpäiseämään palomuureja ja muita tietoturva-rajapintoja. OPC UA on suunniteltu tietokantojen, analytiikka-työkalujen, ERP-systeemien ja muiden tietojärjestelmien ympäristöihin, joissa kenttäalaitteet, sensorit, kytkimet ja valvontajärjestelmien laitteet kommunikoivat, tuottavat mitataudataja ja ohjaavat prosesseja.

OPC UA hyödyntää skaalautuvuutta, useita tietoturvamalleja, useita tiedonsiirtokerroksia ja älykästä informaatiomallia tuottakseen pienimmän mahdollisen ohjaus- ja tietomääryän avoimeen ja vapaiseen vuorovaikutukseen monipuolisten palvelimien kanssa. Se kykenee kommunikoimaan aina yksinkertaisesta tilatiedosta massiivisiin määräihin kompleksista tehdastason tietoa. (RTA)

3.1 OPC UA -protokollan edut

OPC UA -protokollan avulla saavutetaan muutamia huomattavia tuottoja tiedonsiirrossa tehdas-ympäristössä. Näitä ominaisuuksia ovat seuraavat:

Skaalautuvuus – OPC UA on skaalautuva ja alustariippumaton. Se tukee laitteita aina yksinkertaisesta sensorista pilvipalvelimiin. OPC UA käyttää laiteprofiteja, jotka mahdollistavat jopa pienten sulautettujen laitealustojen käytön palvelimin OPC UA -järjestelmässä.

Dynaaminen osoiteavaruus – OPC UA -osoiteavaruus on organisoitu ja konseptoitu objektien ympärille. Objektit ovat itsenäisiä kokonaisuuksia, jotka muodostuvat muttuista ja metodesta, ja tuottavat standardimuotoisen tavan siirtää tietoa palvelimin (server) ja asiakkaiden (client) välillä.

Yhteinen liikennöinti ja enkoodaus – OPC UA käyttää standardiliiennöstöintiä ja enkoodausta varmistaen, että liitettyävyyys on helposti toteutettavissa sekä sulautetuissa ympäristöissä että yritysympäristöissä.

Tietoturva – OPC UA muodostaa hienostuneen tietoturvamallin, joka varmistetaan asiakkaiden, käyttäjien ja palvelimien autentikoinnilla. Sillä varmistetaan myös näiden välisen kommunikoinnin yhtäpitävyys.

Internet-yhteensopivuus ja kyvykkyys – OPC UA on täysin kykeävä siirtävä dataa Internetissä.

Robustiset palvelut – OPC UA tarjoaa täydentävän palvelualustan tapahtumille ja hälytyksille sekä tiedon lukemiseen, kirjoittamiseen ja välittämiseen.

Sertifioitu yhteensopivuus – OPC UA käyttää sertifikaatteja eli sertifioi profiilit siten, että yhteys asiakkaan ja palvelun välillä tietyllä profiillilla voidaan aina varmistaa.
Älykäs tieto(data)malli – OPC UA -profilit ovat enemmän kuin vain objektimalli. OPC UA on suunniteltu siten, että siihen voidaan liittää objekteja ja todellinen tieto voidaan jakaa asiakkaiden ja palvelinten välillä.

Integrointi standardien toimialakohtaisiin tietomalleihin – OPC Foundation työskentelee useiden eri alojen kanssa määritellään heidän tarpeitaan ja tukeakseen niitä OPC UA -tietomallien sisällä. (RTA)

3.2 OPC UA -arkkitehtuuri

OPC UA (Unified Architecture) on uuden sukupolven OPC-ratkaisu, joka
• korvaa DCOM-kommunikaation binääri TCP/IP:lla, HTTPS:lla ja SOAP:lla
• mahdollistaa OPC:n hyödyntämisen kaikilla käyttöjärjestelmillä ja kielillä
• mahdollistaa OPC:n käytön laitteissa (sulautettu ohjelmisto)
• mahdollistaa WAN (Secure Internet/Intranet/Extranet) -yhteydet
• parantaa tietoturvan hallintaa
• yhdistää kaikki aiemmat protokollat yhteiseksi datamalliksi
• hyväksyttiin IEC-standardiksi 62541 vuonna 2011

Kuva 2. OPC UA -arkkitehtuuri (mukaillen Prosys)

3.3 Mitä uutta OPC UA mahdollistaa teollisuudessa

OPC UA mahdollistaa uusia toiminnallisuksia, käyttötapoj ja sovelluksia. Se lisää tuottavuutta, parantaa laatua ja pientää kulua tuottamalla enemmän dataa, ja sitä kautta hyödyllistää tietoa tuotantoon, muun muassa kunnossapitoon ja IT-järjestelmiin, jotka tarvitsevat ja saavat käyttöönsä tätä uutta tietoa juuri silloin, kun sitä tarvitaan.

OPC UA on luotettava, turvallinen ja helppo tapa mallintaa objekteja, ja tehdä niistä helposti saatavia tehdasympäristössä, mahdollistaa soveltamisen läpi koko yrityksen laite- ja järjestelmäkannan.

OPC UA-palvelin tarjoaa kehittyneitä palveluja asiakkaan käyttöön. OPC UA-palvelin antaa malleja dataan, informaation, prosessien ja järjestelmien objekteina. Näitä objekteja palvelin sitten esittelee asiakkaille tavoilla, jotka ovat hyödyllisiä asiakkaan sovelluksiin.

Objektien tieto ei välttämättä rajoitu yhteen fyysisen noodiin eli solmuun. Objetteihin voi viittata muissa objekteissa tai datamuuttujen tietotyypeissä, joita esiintyy solmuissa muualle aliverkossa tai muualla arkkitehtuurissa tai jopa muualla internetissä. (RTA)

3.4 OPC UA:n tulevaisuus

Yritykset, kuten ABB, Bosch Rexroth, B&R, CISCO, General Electric, KUKA, National Instruments (NI), Parker Hannifin, Schneider Electric, SEW-EURODRIVE ja TTTech ajavat OPC UA:n käyttöä Time-Sensitive Networking (TSN) yleisenä rajapintana teollisten sovellusten ja pilven väläin. Ajatuksena on luoda avoimet standardit, jolloin eri laitevalmistajien laitteet toimisivat keskenään sujuvasti. (All-electronics.de)
Teollisuuden automaatoratkaisuja on perinteisesti eriytetty ja erotettu toisistaan erilaisill-la yhteen sopimattomilla standardeilla, joita käytetään laitteiden väliseen viestintään. Tämä on rajoittanut innovaatioita ja uusien ratkaisujen integrointia, sillä asiakkaat eivät pysty optimoimaan automaatoratkaisuaan täyteen arvoonsa. Tätä varten ABB, Bosch Rexroth, B & R, CISCO, General Electric, KUKA, NI, Parker Hannifin, Schneider Electric, SEW-EURODRIVE ja TTTech ovat käynnistäneet avoimen teknisen yhteistyön Industrial Internet Consortiumin (IIC, OPC-säätiö) kanssa. Tämä yritysryhmä pyrkii avoimeen, yhtenäistettyyn, standardeihin perustuvaan ja yhteensopivaan IIoT-ratkaisuun, jolla voidaan määrittää deterministinen ja reaalial-kainen peer-to-peer -yhteys teollisuusvalvojien ja pilven välillä.

3.5 Mitä OPC UA mahdollistaa eri toimijoille?

Riippumatta toimijan roolista, OPC UA mahdollistaa yhtenäiset toimintamallit ja rajapinnat. Yhteenopivuus eri laitteiden ja systeemien välillä avaa suuremmat markkinat.

3.5.1 Operaattori

Työskenneltiin prosessiteollisuudessa, valmistus-, koneohjaus- tai sähkötuotannon parissa, älykkäiden verkkojen parissa tai liikenteen hallinnassa, kaikkei tuotantolaitoksen laitteet, automaatiomääräyksistä ja ohjelmistot, kuten varainhoito, MES ja ERP, voidaan integroida käyttäen vain yhtä turvallista ja alustasta riippumatonta standardia. OPC UA:lla voi myös rakentaa inter-
net- ja pilvipohjaisia järjestelmiä. Kytkemällä etälaitteet, I/O -palvelimet ja tietokannat voidaan tehdä diagnooseja ja raportteja. (Prosys)

3.5.2 Laitetoimittaja

Laitetoimittaja voi tehdä tuotteista yhteensopivia muiden valmistajien kanssa, jolloin asiakkaat voivat rakentaa kokonaisjärjestelmiä entistä vapaammin. Standardoitu ja turvallinen tekniikka tekee integroinnista luotettavampaa ja leikkaa kustannuksia. Teollinen Internet ja esineiden internet (IoT) ovat vahvoja trendejä, joihin OPC UA tarjoaa hyvän tiedonsiirtoprotokollan, kun kehitetään omia tuotteita ja järjestelmiä. (Prosys)

3.5.3 Järjestelmäsuunnittelu

Kun yhdistellään järjestelmiä eri toimittajien ja toimijoiden välillä, voidaan tarjota kokonaisratkaisuja asiakkaille, jotka haluavat käyttää standardoitua, luotettavaa, turvallista, skaalautuvaa ja alustasta riippumatonta tekniikkaa. Lisäksi jatkuvan kehityksen takaa yli 400-jäseninen kansainvälinen OPC Foundation. Projektin toteuttaminen taloudellisesti aikatauluilla tehokkaasti mahdollistuu OPC UA:n kestävän ohjelmistokehityksen avulla. (Prosys)

3.5.4 Ohjelmistotalo

Yksi tärkeimmistä ominaisuuksista onnistuneessa ohjelmistokehityspäätössä on se, miten integraatio muihin järjestelmiin toteutetaan. HMI, SCADA, MES ja ERP, seuranta, laadunvalvonta ja raportointi, sekä lukuisien muiden ohjelmistojen käyttöoveliuksiin OPC UA tarjoaa uuden tavan ratkaista integraation haasteet tuottavalla tavalla. Kun kehitetään omaa ohjelmistoa, halutaan samalla palvelaa mahdollisimman monia asiakkaita ja varmistaa korkea laatu. Kaikki tämä on mahdollista saavuttaa tarjoamalla OPC UA standardiliitäntänä omissa tuotteissa. (Prosys)
4. TYÖKALUJA JA TUOTTEITA

Tuotteita ja työkaluja löytyy jo useita. Niitä esitellään alla olevilla kappaleissa.

4.1 Kaupallisia ja ilmaisia tuotteita

Taulukko 1 sisältää listauksen muutamasta yleisestä kaupallisesta tuotteesta. Yleensä asiakaspään ohjelmistot ovat ilmaisia ja palveluohjelmistot ovat maksullisia.

Taulukko 1. Kaupallisia tuotteita

<table>
<thead>
<tr>
<th>Tuote</th>
<th>Kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosys OPC UA Modbus Server</td>
<td>Protokollamuunnin OPC UA ja Mod-BUS TCP sekä Modbus RTU over TCP välillä</td>
</tr>
<tr>
<td>Prosys OPC UA Historian</td>
<td>Kerää tietokantaan määritellyt OPC UA -datapisteiden tiedot</td>
</tr>
<tr>
<td>UaGateWay</td>
<td>Yhdistää vanhan järjestelmän OPC-dataan OPC UA -palvelimeen.</td>
</tr>
</tbody>
</table>

Ilmallisilla tuotteilla pääsee hyvin tutustumaan OPC UA -ympäristöön ja sen tarjoamiin palveluihin. Taulukossa 2 on esitelty muutamia suosittuja ja hyvin toimivia ohjelmistoja eri käyttöjärjestelmiille.

Taulukko 2. Ilmaisia tuotteita

<table>
<thead>
<tr>
<th>Tuote</th>
<th>Kuvaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosys OPC UA Simulation Server</td>
<td>Tällä tuotteella voi kokeilla asiakasohjelmiston toimivuutta ja tutustua OPC UA -palveluun.</td>
</tr>
<tr>
<td>Prosys OPC UA Client</td>
<td>Graafinen asiakaspään ohjelmisto. Tukee mm. DA, HDA, alarms & conditions.</td>
</tr>
<tr>
<td>Prosys OPC UA Client for Android</td>
<td>Asiakaspään ohjelmisto Android-käyttöjärjestelmälle. Tukee mm. DA, HDA, methods, events & monitoring.</td>
</tr>
<tr>
<td>UaExpert</td>
<td>Asiakaspään ohjelmisto Windows- ja Linux-käyttöjärjestelmille.</td>
</tr>
</tbody>
</table>
4.2 Kaupallisia kehitystyökaluja

Taulukko 3. Kaupallisia kehitystyökaluja

<table>
<thead>
<tr>
<th>Toimittaja</th>
<th>Ohjelmointikieli/alusta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosys</td>
<td>Java SDK</td>
</tr>
<tr>
<td>Unified automation</td>
<td>C++ / ansi C / .Net SDK</td>
</tr>
<tr>
<td>Matrikon</td>
<td>Embedded SDK</td>
</tr>
<tr>
<td>Softing industrial</td>
<td>C++</td>
</tr>
<tr>
<td>National instruments</td>
<td>LabVIEW SDK</td>
</tr>
</tbody>
</table>

4.3 Avoimen lähdekoodin kehitystyökaluja

Avoimeen lähdekoodiin perustuvia OPC UA -kehitystyökaluja on useita eritasoisia, niitä on listattu taulukossa 4.

Taulukko 4. Avoimeen lähdekoodin perustavia kehitystyökaluja

<table>
<thead>
<tr>
<th>Projekti</th>
<th>Tuetut ohjelmointikielet</th>
</tr>
</thead>
<tbody>
<tr>
<td>freeopcua</td>
<td>C++ ja python</td>
</tr>
<tr>
<td>uaf</td>
<td>C++ ja python</td>
</tr>
<tr>
<td>OpenOpcUa</td>
<td>C/C++</td>
</tr>
<tr>
<td>NodeOPCUA</td>
<td>Node.js</td>
</tr>
<tr>
<td>node-opcua</td>
<td>Node.js</td>
</tr>
</tbody>
</table>
5. OPC UA -SOVELLUSTEN TESTAUS ÄLLI-HANKKEESSA

5.1 OPC UA -protokollan ensimmäinen testi

Kuva 4. Miniprosessi (Peltokangas)
Kuva 5. Miniprosessin periaatekuva (Peltokangas)

5.2 RFID/NFC-lähitunnistus prosessista

Kuva 6. Mobiili RFID/NFC-lähitunnistuksen demolaitteisto (Peltokangas)

5.3 Prosessin monitorointi mobiili-clientilla

OPC UA Android -sovellus (client) tunnistaa halutun kohteen RFID/NFC-lähitunnistuksen avulla ja lukkee sitä vastaavan mittausarvon prosessipalvelimelta OPC UA -kommunikaatiota hyödyn- täen.
5.4 Palvelimelle luku ja kirjoitus mobiili-clientilla

OPC UA Android-sovellus (client) kyselee prosessipalvelimelta historiamittaustietoa ja kirjoittaa uuden säätöarvon palvelimelle OPC UA -kommunikaatiota hyödyntäen.

Kuva 7. OPC UA Android-sovellus (Rinne)

Kuva 8. Android-sovellus (client) historia datan luenta (Valkama)
5.5 Modbus OPC UA -muunnin

Tarkoituksena oli yhdistää tietoturvan kannalta avoin ModBus-protokolla uuteen tietoturvalli-
seen OPC UA -protokollaan. Tässä ModBus-laitte kommunikoi Raspberry Pi:ssa olevan Modbus
slave serverin kanssa, katso kuva 9.

Modbus OPC UA -lukijan pääperiaatteet on esitetty alla olevassa kuvassa. OPC UA -clientin
sisäänrakennettu ohjelma noutaa Modbus-rekisteriavaruudesta halutut arvot ja päivittää ne
OPC UA -palvelimelle.

Kuva 10. Pääperiaatteet, kuinka ModBus arvo päivittyy OPC UA serverille (Peltokangas)

Modbus OPC UA -kirjoittajan pääperiaatteet on esitetty alla olevassa kuvassa. Kun OPC UA
-palvelimelle tulee uutta dataa, tiedot muunnetaan Modbusille sopivaksi määrittystietojen mu-
kaan.
5.6 Logiikka ja OPC UA

Tämän harjoituksen tarkoitus oli yhdistää Siemens S7 1500 logiikka ja turvallinen etähallinta open source -ohjelmakirjastoilla.

Kuva 11. Pääperiaate, kuinka uusi arvo kirjoitetaan OPC UA:ltä ModBus -rekisteriin (Peltokangas)

Kuva 12. Siemens S7 1500:n liitetty OPC UA ohjelmisto (Peltokangas)

Kuvassa 13 on esitetty käyttöliittymä, jonka kautta pystyy asettamaan Siemens S7-1500:n IO pisteitä ja sisäisiä muuttujia seurattavaksi.

Myös tärkeimmät tapahtumat jäävät tapahtumalogiin, josta voi seurata yhteystapahtumia ja informaatiota ohjelmiston sisäisistä virheistä.
Kuva 13. I/O-pisteiden määrittely ja loki-ikkunat (Peltola)

Kuva 14. Konfigurointieditorii ja sillä generoitu esimerkki trendikuvaaja (Peltola)
OPC UA:n asiakasohjelman kautta näkyy halutut Siemens S7-1500:n IO:t ja sisäisen muistin arvot lähes reaaliaikaisena, kuva 15.

Kuva 15. Siemens PLC:n muistiavaruusnäkymä OPC UA:n kautta (Prosys OPC UA Client)
6. JOHTOPÄÄTÖKSET

Kokeilujen tulokset ovat lupaavia. Varsinkin eri valmistajien laitteiden välinen kommunikointi oli helppo toteuttaa yhdistämällä laitteita toisiin järjestelmiin ja integroimalla järjestelmiä toisiinsa.

Valittavissa on runsaasti kaupallisia ja avoimen lähdekoodin tuotteita ja ohjelmointialustoja. Nämä kehitetään edelleen eli uusia syntyy jatkuvasti lisää.

Pilvipalvelut (Teollinen internet) alkovat tukea yhä paremmin OPC UA:ta, esimerkiksi Siemen-sin uudessa MindSphere-alustasta OPC UA -tuki jo löytyy.

Isot toimijat ovat perustaneet yhteistyökonsortioita, kuten OPC UA TSN, joka on selkeä merkki siitä, mihin suuntaan alan ja yleiselläkin tasolla teollisen internetin kehityspolku kulkee. Sen sijaan että rakennetaan omia kustomoituja protokollia, tulevaisuuden kehityspolun avaajana osataan nähdä verkostoitumisen ja yhteisten rajapintojen tuomat uudet liiketoimintamahdollisuudet.

Omien kokemuksiemme mukaan OPC UA kiinnostaa kovasti monia tahoja, mutta asiana se on edelleen uusi. Vaatii vielä hieman aikaa ja konkreettisia referenssejä, että toimittajat voittavat tilaajien luottamuksen. Tästä johtuen monien osalta jäädään mieluummin vielä kartoitusten tasolle ja odottelaa edelleen valmiimpia ratkaisuja omiin tarpeisiin.
LÄHTEET

KUVALÄHTEET

[9] Peltokangas, Tomi, Centria AMK, 2017

[10] Peltokangas, Tomi, Centria AMK, 2017

[12] Peltokangas, Tomi, Centria AMK, 2017

[13] Peltola, Ville, Centria AMK, 2017

[14] Peltola, Ville, Centria AMK, 2017

OPC UA – arkkitehtuurin odotetaan olevan tärkeä osa teollinen internet 4.0 tulevaisuuden kehitystä, jonka yhtenä haasteena ja toisaalta mahdollistajana nähdään tarve eri toimittajien laitteiden ja järjestelmien väliseen sujuvaan kommunikaatioon.

Tässä esitelly ja standardoitu Unified Automation - yhteisön kehittämä OPC UA -arkkitehtuuri mahdollistaa nyt ensimmäistä kertaa eri toimittajien kehitämien laitteiden ja järjestelmien sujuvan kommunikoinnin yhteisesti sovitulla periaatteilla eli yhteisillä rajapinnoilla ja kielellä.

Tämä julkaisu esittelee Centria tutkimus ja kehityksen (centria.fi/tki) toteuttaman Älykäs automaatio ja teollinen internet -tutkimushankkeen tuloksia OPC UA -arkkitehtuurin toteuttamisesta, soveltamisesta ja testaamisesta erilaisilla laitealustoilla teollisuusautomaatiojärjestelmissä.