

Naveed Anwar

Architecting Scalable Web Application with
Scalable Cloud Platform

Helsinki Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

28 February 2018

PREFACE

Allah Almighty, the lord of majesty and honor; first of all, I would like to thank you for
giving me the courage and strength to undertake this Master of Engineering program
and accomplish this thesis project. I am thankful to my mother Mrs. Naziran Begum, for
her definite support and motivation that I can complete this work in parallel to full-time
employment. Her best wishes, prayers, sincere advise and time management guide-
lines were really helpful throughout my academic and professional career. It was a
challenging and time-consuming task for me requiring considerable time and attention.
In such challenging situations, I thought about my father, Malik Mohammad Anwar
(late) to get inspiration from his personality that “everything is possible with your full in-
volvement and dedication”. I would like to thank him for such captivated and self-moti-
vational theories and practices.

My special gratitude goes to my beloved wife Mrs. Shabana Naveed for her encourage-
ment to complete this work, providing the peaceful environment for studies and under-
standing the importance of my work. Without her moral support, I couldn’t have com-
pleted this work as well as several other projects related to my professional career. I
would like to thanks to my two wonderful princesses; Hamnah Naveed, Marifah M.
Naveed, and my little prince Mohammad Zakaria for their comprehensive understand-
ing and not demanding too much time during my studies. My brothers and sisters
(NTSISUS) living far away and praying for my success, I would like to acknowledge
their encouragement and motivation as well.

My sincere thanks also go to my thesis supervisor and examiner Ville Jääskeläinen for
his precious guidance from the selection of study options to accomplish this thesis
work. His prompt and valuable insights have always been very helpful throughout this
research work.

Last but not least, I would like to thanks to my senior colleague and department man-
ager, Christer Magnusson for his moral support during my studies. He always appreci-
ates my educational activities and believes that academic updates introduce new ideas
and solution that makes difference in the services we offer.

Stockholm, 28 February 2018
Naveed Anwar

 Abstract

Author(s)
Title

Number of Pages
Date

Naveed Anwar
Architecting Scalable Web Application with Scalable Cloud Platform

92 pages + 2 appendices
28 February 2018

Degree Master of Engineering

Degree Programme Information Technology

Specialisation option Networking and Services

Instructor(s) Ville Jääskeläinen, Head of Master's program in IT

World Wide Web (WWW) has achieved a significant role in information sharing, communi-
cation and service delivery. Online identity and existence have become an essential part of
the success of the enterprises and web-based applications are growing constantly, causing
rapid growth in the web traffic. This rapid growth is dynamic in nature and often unpredictable
in terms of resource demands, seamless response time and service delivery. The classic
approach of traditional infrastructure provisioning involves service interruption and capital
expenditure to purchase new servers or upgrade the existing system infrastructure. This is
why solution architects are focusing on the innovation of new systems to ensure operational
continuity of unpredictable system by means of scalable system design and considering
“cloud services” for building the scalable web applications.

Flexibility, availability, and scalability are some of the attributes of cloud platform that intro-
duces concepts, best practices, tools and techniques to design, implement and operate a
cloud platform to scale web applications dynamically. Servers can be provisioned automat-
ically when required (increase in the resource demand) and destroyed when there is no need
(decline in the resource demand) with highly virtualized and scalable cloud platform.

Among several cloud service providers, Amazon is one of the famous cloud service provid-
ers that offer a wide range of computing services in a virtualized environment. This study
concerns the design and implementation of a scalable web application using Amazon Web
Services (AWS) cloud platform. This study provides a granular understanding of how servers
in the cloud are scaled when stressed out using benchmarking tools and the whole process
remain transparent to the application consumer. The performed experiments, results, and
analysis presented in this report shows that proposed (scalable) cloud architecture is profi-
cient to manage application demand and saving overall infrastructure investment.

Keywords Cloud Computing, Scalable Cloud Platform, Web Application
Scalability, Cloud Load Balancer, Virtualization, JMeter

Table of Contents

Preface

Abstract

List of Figures

List of Tables

List of Abbreviations

1 Introduction 1

1.1 Overview 1

1.2 Problem Statement 2

1.3 Methodology 3

1.4 Project Scope 4

1.5 Structure of this Thesis 4

2 The Legacy System 6

2.1 Overview of the Legacy System 6

2.2 Scalability Analysis with Experimental Workload 9

3 Cloud Computing 11

3.1 Defining Cloud Computing 11

3.2 Essential Characteristics of the Cloud Computing 12

3.3 Cloud Classifications and Service Models 14

3.4 Cloud Service Usage and Deployment Models 19

3.5 Virtualization of Compute Resources 23

3.6 Types of Virtualization 24

3.7 Scalability 26

3.8 Little’s Law 27

3.9 Scalability Layers 28

3.10 Scalability Design Process 29

3.11 Scaling Approaches 31

4 Scalable Cloud Architecture for a Web Application 32

4.1 Scalable Web Application Reference Architecture 32

4.2 Load Balancing Tier 33

4.3 Application Tier 35

4.4 Database Tier 36

4.5 DNS Server and User Requests 37

4.6 Monitoring and Alerts 38

4.7 Management Node 40

5 Implementation 42

5.1 Motivation for Using Amazon Web Services 42

5.2 Create an Amazon Account 43

5.3 Create Virtual Server using Amazon Elastic Cloud Compute (EC2) 45

5.4 Install and Configure Apache Web Server (LAMP Stack) 52

5.5 Install and Configure WordPress Application with Amazon Linux 54

5.6 Create an Image from Linux EC2 Instance 56

5.7 Create Auto Scaling Group and Launch Configuration 58

5.8 Create Elastic Load Balancer 63

5.9 Performance Measurement Tool (JMeter) 67

5.10 Response Time Assertion 69

5.11 Creating Performance Test Plan in JMeter 70

5.12 JMeter Concurrency Level and Best Practices 74

6 Results and Analysis 76

6.1 Experiment Environment 76

6.2 Experiment Workload and Data Collection 77

6.3 Results 82

6.4 Scalability Analysis 85

7 Discussions and Conclusions 89

7.1 Conclusion 89

7.2 Future Work 91

References

Appendices

Appendix 1. Preparing Experimental Environment with JMeter

Appendix 2. Troubleshooting DNS Name Change Problem

List of Figures

Figure 1. Summary Report (Legacy System) .. 10

Figure 2. Cloud Classifications, Everything as a Service [4, Fig. 1.7]. 14

Figure 3. Scope and Control of Cloud Service Model [11]. .. 15

Figure 4. IaaS, Scope and Control [13], [14]. .. 16

Figure 5. PaaS, Scope and Control [16]. ... 17

Figure 6. SaaS and FaaS, Scope and Control [20]. .. 18

Figure 7. Public Cloud [22, Fig. 4.17]. ... 19

Figure 8. Private Cloud [22, Fig. 4.19]. .. 20

Figure 9. Community Cloud [22, Fig. 4.18]. ... 21

Figure 10. Hybrid Cloud [22, Fig. 4.20]. .. 22

Figure 11. A Basic Virtual Machine Monitor / Hypervisor [26, Fig 1.1] 23

Figure 12. Hardware Abstraction [26, Fig. 2.6] .. 24

Figure 13. Scalability Layers [34, Fig 1.1] ... 28

Figure 14. Scalability Design Process [34, Fig 1.11] ... 29

Figure 15. Scalable Web Application Reference Architecture 32

Figure 16. Connection Rate Curve of the Load Balancer [43, Fig 22-8]. 34

Figure 17. Server Response Time [43, Fig 22-10]. .. 35

Figure 18. CloudWatch Monitoring (CPU Utilization) ... 39

Figure 19. CloudWatch Basic and Detailed Monitoring ... 40

Figure 20. Create AWS Account [73] .. 44

Figure 21. AWS Account Registration Page .. 44

Figure 22. AWS Services Dashboard (Partial Screenshot) ... 45

Figure 23. EC2 Dashboard (Partial Screenshot) ... 46

Figure 24. Configure Instance Details ... 46

Figure 25. Review Instance Launch .. 47

Figure 26. Select an Existing Key Pair or Create a New Key Pair 48

Figure 27. Creating a New Key Pair .. 48

Figure 28. EC2 Instance Launch Status .. 49

Figure 29. EC2 Dashboard Instance Information .. 49

Figure 30. SSH Client Selection .. 50

Figure 31. Connecting to EC2 Instance directly from web browser 51

Figure 32. Linux AMI Login with Ec2-User .. 52

Figure 33. Creating an Amazon Machine Image ... 56

Figure 34. Creating an Amazon Machine Image (Properties) 57

Figure 35. Available Amazon Machine Images (AMIs) .. 58

Figure 36. Amazon EC2 Auto-Scaling Mechanism [64, Fig 11.7] 59

Figure 37. Automatic Recovery of EC2 Instance [64, Fig 11.2] 60

Figure 38. Welcome to Auto Scaling ... 61

Figure 39. Create Auto Scaling Group and Launch Configuration 61

Figure 40. Configure Auto Scaling Group Details .. 62

Figure 41. VPC, Region, Availability Zone [64, Fig 11.6] ... 62

Figure 42. AWS Load Balancing ... 64

Figure 43. Load Balancer Types ... 64

Figure 44. Configure Health Check ... 65

Figure 45. Associate Load Balancer to Auto Scaling Group .. 67

Figure 46. The Anatomy of a JMeter Test [59]. ... 68

Figure 47. Response Time Assertion .. 69

Figure 48. High Load Simulation with JMeter .. 70

Figure 49. Add Thread Group ... 71

Figure 50. Thread Group Properties ... 72

Figure 51. Executing JMeter Test ... 73

Figure 52. Experiment Environment of the Legacy System ... 76

Figure 53. Experiment Environment of the Scalable Cloud Platform 77

Figure 54. Ramp-Up Period Representation ... 79

Figure 55. Experiment Results in Tree Format in JMeter .. 80

Figure 56. Experiment Results in Table Format in JMeter ... 81

Figure 57. JMeter Summary Report .. 81

Figure 58. Defining Minimum and Maximum Number of EC2 Instances 86

Figure 59. Auto Scaling Activity History .. 87

Figure 60. Connection Draining Configuration .. 87

Figure 61. Download Apache JMeter .. Appendix 1

Figure 62. Java SE Development Kit Demos and Samples Downloads Appendix 1

Figure 63. Advance System Properties (Microsoft Windows) Appendix 1

List of Tables

Table 1. Hardware and Software Specifications of Current System 6

Table 2. Capacity Analysis of the Current Infrastructure Components. 8

Table 3. Software and Hardware Specifications of the Management Node 40

Table 4. Installing LAMP Stack (Terminal Commands) ... 53

Table 5. Installing WordPress Application (Terminal Commands) 54

Table 6. Summary of the Experiment Workloads. ... 78

Table 7. Experiment Results of Legacy System .. 83

Table 8. Experiment Results of the Scalable Cloud Platform 84

Table 9. Scalability Analysis of the Cloud Platform ... 85

Table 10. Scale Out Time of EC2 Instances ... 88

List of Abbreviations

AMI Amazon Machine Image

AWS Amazon Web Services

CCs Concurrent Connections

CMS Content Management System

CSV Comma-Separated Values

CPU Central Processing Unit

CSP Cloud Service Provider

DB Data Base

DBMS Database Management System

DNS Domain Name Server

DoS Denial of Service

EC2 Elastic Compute Cloud

EIP Elastic Internet Protocol

ELB Elastic Load Balancing

ERP Enterprise Resource Planning

ESX/ESXi Elastic Sky X / Elastic Sky X Integrated (VMWare Hypervisor)

FaaS Framework as a Service

FTP File Transfer Protocol

GB Giga Bit

GUI Graphical User Interface

HaaS Hardware as a Service

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

IDE Integrated Development Environment

I /O Input / Output

IP Internet Protocol

IP v4 Internet Protocol Version 4

IP v6 Internet Protocol Version 6

IT Information Technology

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

JMS Java Message Service

JDBC Java Database Connectivity

LAMP Linux, Apache, MySQL, PHP

LAN Local Area Network

LB Load Balancer

MB Megabit

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform as a Service

PC Personal Computer

RAM Read Only Memory

RPC Remote Procedure Call

S3 Simple Storage Service (Amazon Cloud Storage)

SaaS Software as a Service

SAN Storage Area Network

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSD Solid State Drive

SSH Secure Shell

TCP Transmission Control Protocol

TPS Transactions Per Second

UTC Coordinated Universal Time (UTC)

URL Uniform Resource Locator

UX User Experience

vCore Virtual Core

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

VPS Virtual Private Server

WWW World Wide Web

XML Extensible Markup Language

1

1 Introduction

This chapter provides the study background, aims, and objectives of this project goal, a

description of the problem statement and the research question.

1.1 Overview

Information Technology (IT) has reinforced the concept of information processing more

efficiently and effectively over the Internet with the evolution of cloud computing. Cloud

computing uses Internet technologies to deliver a wide range of computing services of-

fered by several Cloud Service Providers (CSPs). Engineering and scientific applica-

tions, big data analysis, data mining, gaming, finance, social media and many other com-

puting activities that require scalable infrastructure can benefit from cloud computing.

Cloud computing provides a platform to deploy scalable applications, that can be provi-

sioned with the increase in the demand or with intensive resource utilization. Business

needs are changing rapidly and often are dynamic in nature. That’s why high availability

and responsiveness of web applications are some of the core aspects of designing mod-

ern web applications. Cloud computing services are not limited to the web-based appli-

cations but cover the full range of computing activities, e.g. data and storage solutions,

the dedicated virtual private server (VPS) are few to mention. The scalable cloud platform

is capable to allocate resources in a timely manner at the time of high demand (scale in)

and terminating the allocated resources when there is deterioration in the demand (scale

out). All the technical details remain transparent from the end user. The users of cloud

service are mainly concerned if the cloud services meet their needs and want to maintain

budget by paying for the consumed resources. Scalable cloud platform helps customers

and service owners to reduce the cost of computing, and at the same time provides an

immense capacity of computing resources when required.

The classic approach was to launch a standard web application according to existing

business needs and then follow the application maintenance and testing life cycle. These

phases require modifications, emission of errors and even sometimes re-design every-

thing to meet the new challenges e.g. user demands, high workloads, and responsive-

ness. Now business entails its online platform to be scalable in order to sustain the un-

predictable growth in terms of resource utilization and the number of concurrent requests

2

to a particular web application. With an optimized scalable cloud architecture, computing

resources and cloud infrastructure can accommodate all of the application’s lifecycle

phases. This approach provides a consistent context to shape an application from its

concept into development, production to maintenance and gradually to the end of life. As

a result, scalability in modern day web applications is more relevant now than ever and

has achieved attention by solution architects, IT professionals and researchers. Tech-

niques like fault tolerance, cloud computing, distributed computing, load balancing, and

virtualization help not only in scalability; they are also very effective in achieving high

availability.

1.2 Problem Statement

The legacy approach to cope with the unpredictability is to over-provision the resources

to manage the web traffic load. With this approach, the web application under consider-

ation managed to sustain availability in case of a heavy load of web traffic. This approach

does not effectively utilize the available resources with the decline in demand, and un-

used resources remain in the idle state. Due to the presence of unutilized resources, the

overall solution was not a cost efficient and not a recommended approach for infrastruc-

ture provisioning. Also, a system downtime was involved when a particular hardware

component required an upgrade or a malfunctioning component needed a replacement.

During system downtime, the target web application remains unavailable causing loss of

revenue because no user requests were facilitated during the maintenance process.

This legacy approach was not a desirable approach to manage the system load under

high resource utilization. In contrast, a scalable cloud architecture provides a perfect

platform to deploy scalable applications, that can be provisioned with an increase in the

demand and decommission them when consumed resources are no longer required.

With dynamic provisioning, customers pay only for the consumed resources for the pe-

riod of time the specified resources were in use. Due to the dynamic resource provision-

ing, no computing resource remains in an idle state when there is a decline in demand

(by decommissioning the allocated resources).

The ability of a system to handle higher (often unpredictable) workload without compro-

mising its specified performance is referred to as scalability. The main objective of this

thesis is to study how to design a scalable cloud platform to implement and test a scala-

ble web application. The goal is also to examine how to scale up the resources since for

a cloud-based application accessed by an unpredictable number of users may result in

3

a very high resource demand. Similarly, how to revoke the allocated resources which are

no longer required is an essential part of the solution. This helps to reduce the overall

cost by removing the additional resources and paying only for the consumed resources.

Research Problem

This research identifies the scalability issues in the legacy infrastructure model and eval-

uates the proposed scalable cloud-based architecture using Amazon Web Services

(AWS). This platform was designed to meet the performance of a modern rapidly evolv-

ing web-based application. Especially it tries to answer the following research question:

“Is it possible to architect a scalable web application using a cloud platform to dynami-

cally manage the increased workload by provisioning the required resources and termi-

nate the assigned resources when there is a decline in the resource demand?”

This study demonstrates on how to both scale in and scale out for a cloud-based appli-

cation used by a random number of users. Infrastructure provisioning problems in non-

scalable systems i.e. over-provisioning the compute resources, service interruption and

over budgeting can be overcome with dynamic scaling and a cloud load balancer.

1.3 Methodology

Different research strategies and methods have been developed to support the research-

ers in creating and presenting their findings in a well-structured manner. These research

strategies and methods are useful for empirical study as well as in design science while

exploring problems of a practical nature and defining requirements and investigation

artifacts. This study uses multiple methods (also known as pragmatic studies) to solve

the research problem. The pragmatic approach provides opportunity to combine and mix

different data collection methods to analyse the data, and multiple perspectives to inter-

pret the results. Following steps were involved to solve the design problem:

 Define the problem.

 Gather required information.

4

 Generate multiple potential solutions.

 Selection of the solution.

 Implement the solution.

 Analyze the solution.

At the initial stage of this project, typical quantitative research methods were investigated

but rejected later on because quantitative methods focus on very specific procedures

and are not suitable for the purpose of this project goal. For instance, quantitative re-

search methods are mainly used to employ mathematical and statistical models, theo-

ries, and hypothesis. That’s why a pragmatic approach was followed because of the op-

portunity to apply and combine any of the available approaches, methods, techniques,

and procedures.

1.4 Project Scope

The proposed (scalable) solution in this report was implemented and evaluated using

cloud platform; Amazon Web Services (AWS). The security of the cloud infrastructure

components such as virtual servers, networking components, and multi-tenancy issues

is not included in this report. Similarly, backup and disaster recovery mechanism adopted

by the AWS is not included in this report.

The major focus of this study was to design and implement a scalable web application

using cloud platform to dynamically scale in with an increase in the resource demand

and scale out when there is a decline in the resource demand.

1.5 Structure of this Thesis

The thesis has been divided into 7 sections. Chapter 1 introduces the problem, objective

and scope of this project. Chapter 2 provides information about the existing system (leg-

acy) and analyses of the current system to identify the scalability problems in the existing

system. Chapter 3 provides a theoretical background of the topic i.e. general information

to understand the cloud computing, the role of the virtualization in the cloud computing

and scalability patterns. Chapter 4 describes the proposed architecture for the scalable

application and details about the design and participating components. Based on the

presented architecture, Chapter 5 defines the implementation of the proposed solution

5

with the cloud platform. This chapter also provides the required steps that were per-

formed in order to deploy the scalable web application using the cloud platform. Chapter

6 provides the information about the experiment workloads, results of the experiments

and scalability analysis. Chapter 7 concludes this thesis and presents the conclusion of

this thesis based on the experimental findings, and highlights the areas where further

research may be conducted.

Additional information regarding how to download and setup the JMeter (performance

measurement tool) is available in Appendix 1. Commands used to repair the broken in-

stallation of WordPress application are listed in Appendix 2.

6

2 The Legacy System

This chapter provides the introduction to the legacy (non-scalable) system, it’s software

and hardware specifications and an experiment environment which was used to find the

key weaknesses and scalability related issues.

2.1 Overview of the Legacy System

The legacy system described in this chapter is based on a laboratory setup. This envi-

ronment was comprised on one dedicated machine that was used to present the existing

legacy model of infrastructure provisioning. Apache web server was configured to host

WordPress web application running on LAMP stack (Linux, Apache, MySQL, PHP). The

same machine was hosting MySQL database and performing functions of a web and

database server. The software and hardware specifications of this environment are listed

in Table 1.

Table 1. Hardware and Software Specifications of Current System

Hardware Specifications Software Specifications

Processor (CPU) 1 vCPU Operating System Linux Server

Memory (RAM) 1 GB System Type X64 (64 bit)

Hard Disk 8 GB (SSD) Web Application WordPress

Table 1 summarizes the hardware capacity and software configuration of the legacy sys-

tem. This machine was configured with a legacy infrastructure model and the system is

not aware how to handle the heavy load and an unpredictable number of user requests.

Also, with the growth in the business, there is no pre-defined mechanism that can be

used to scale the existing system to meet the business requirements. One of the busi-

ness requirement is to facilitate a user request within 3 seconds regardless of the load

of the system.

Service and maintenance related tasks require a system termination or power down in

most cases which results in service interruption because the server is offline during a

maintenance. Examples of such tasks include; replacing a malfunctioning component,

upgrading system memory (RAM), installation of hard disks with increased capacity or

7

replacing currently installed hard (sequential) drives with fast Solid State Drive (SSD).

The current system was also subject to experience downtime as a reboot often required

when there was any major software update applied; either an application software or an

operating system upgrade.

Demand Analysis of the Laboratory Setup

The purpose of this analysis was to understand how the load on the web application

affects to system usage, average peak time of application utilization, CPU, network load,

RAM consumption and other infrastructure components. The number of estimated users

accessing the application under analysis was not aware in advance. The increase in

demand takes place infrequently, such as with new product launch, promotions or annual

sales. However, the current demand can lead to a high sudden load, and this analysis

helped to understand the application behaviour if it can cope with this sudden load.

The system under test tends to decrease in performance with the fluctuation in the high

resource utilization. This system uses the legacy approach of infrastructure provisioning

and wasn’t capable to automatically scale the resources with increase in the resource

demand.

Capacity Analysis of the Laboratory Setup

Capacity analysis of the laboratory setup was conducted in order to estimate the capacity

of the laboratory setup. Since the expected demand is dynamic in nature, it was im-

portant to estimate the current capacity for the X number of users at a given time while

maintaining the business requirement of 2 seconds as service level agreement (SLA).

This means that user requests should be facilitated in 2 seconds, failure doing this results

breach in business SLA. Table 2 given below provides threshold values for the laboratory

setup that can help to understand if the provisioned resources are over or underutilized.

8

Table 2. Capacity Analysis of the Current Infrastructure Components.

Resource Performance parameter Evaluation Criteria

CPU

High utilization

Determine if the CPU utilization is 75 % or above for

a certain time frame alongside a number of requests

to be processed. The value of CPU cores needs to

be adjusted to cope with high CPU load.

Memory

High page rate

In Linux systems, the physical memory is divided

into pages and these pages are allocated to different

processes. State of these pages determines the high

page rate i.e.; free (unused) or busy (allocated to

process).

Swap space

Even a system is equipped with an adequate

amount of physical memory, Linux kernel uses the

swap space to move the memory pages which are

not used frequently. The system will be slow if not

enough RAM is available and the kernel is forced to

continuously shuffle memory pages to swap and

back to RAM.

Consider to increase in the memory capacity if swap

is used 70% or above.

Storage Low space A system is considered to have low disk space if the

operating system files span over 70 % of the entire

hard disk.

Analysis of the system capacity was conducted to find the potential bottlenecks in the

existing system as well as to provide an estimation of the expected load the current sys-

tem can handle while maintaining its performance.

9

2.2 Scalability Analysis with Experimental Workload

To understand the scalability related issues, the legacy web application architecture was

analysed by conducting several performance evaluation experiments using benchmark-

ing tool. These experiments were effective in the collection of the infrastructure usage

statistics. Following sections provides a description of these experiments.

Defining Experiment Metrics

Among several performances related parameters, this study was focused on the system

throughput, response time and resource utilization (CPU, RAM, Network). Throughput

represents the number of successful requests that a web server was capable to manage.

Response time, also known as execution time or assertion time; represent the time

spend to facilitate a web request. All these experiments were conducted with 2 seconds

as criteria of success for the response time. If the request was fulfilled within 2 seconds,

it was considered as a successful request, otherwise marked as false.

Workload Generation

Performance of the web server was examined by generating heavy load with perfor-

mance measurement tool called JMeter (described in chapter 5). Existing legacy system

was evaluated by simulating concurrent user requests to the web server. Multiple threads

represent concurrent connections where each thread executes test plan independently

of the other threads in a test plan. Chapter 5, section 5.11 “Creating Performance Test

Plan in JMeter” provides details about the elements of the JMeter test plan.

Following workloads were used in these experiments:

 1 – 25

 1 – 50

 1 – 100

 1 – 1,000

 1 – 2,000

10

Above mentioned workloads served as an input to measure the system throughput and

response time of the legacy system. The legacy system in the test environment continue

to decline in the performance and resulted in breach of the 3 seconds SLA. Following

figure shows the Summary Report for the legacy system for the 2,000 users that was

generated with JMeter.

Figure 1. Summary Report (Legacy System)

As presented in the Figure 1, the legacy system produced 96.65 % of error when pro-

cessing the 2,000 users. This caused the service interruption (web applications was un-

available) because the legacy system wasn’t capable to scale the resources to manage

the resource demand.

Chapter 6 provides the detailed description of the tests, number of simulated users, and

analysis of the results after applying the same workload on the web application hosted

in the scalable cloud platform.

11

3 Cloud Computing

This chapter provides the theoretical background of the cloud computing including, defi-

nition, characteristics, different computing and deployment models and virtualization of

computing resources. Description of scalability and its attributes are also presented in

this chapter to get basic insights on the scalability.

3.1 Defining Cloud Computing

Cloud Computing has emerged as a vital service in the computing industry. Modern busi-

ness needs are changing dynamically and considering cloud computing as a credible fit

to fulfill their needs while maintaining the budget. Due to flexibility and a wide range of

services offered by cloud computing, many of the existing applications are likely to move

to the cloud solutions. With cloud computing, computational resources are not physically

present at the consumer location, rather accessed over the Internet from the client com-

puter. Cloud service provider takes responsibility for the uptime, service availability,

backup, and disaster recovery procedures, and upgrade and maintenance related tasks.

Scalable cloud platform helps customers and service owners to reduce the cost of com-

puting, and at the same time have an immense capacity of computing resources when

required. Previously occupied resources can be automatically terminate when there is a

decline in the resource demand [1].

According to Amazon; one of the pioneers of the cloud service providers defines the

cloud computing in simplest form as an on-demand delivery of compute resources

through cloud platform over the internet and paying only for the consumed resources [2].

From the past few years, cloud computing services have been frequently adopted by

single users for a private usage, and small and large enterprises for professional usage.

This widespread usage of the cloud computing technology has resulted in several defi-

nitions depending upon their business needs, but the central idea is the same. Among

several definitions, National Institute of Standards and Technology (NIST) defines cloud

computing as:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three service models,
and four deployment models [3].

12

Rosenberg and A. Mateos use the following approach to describe the cloud computing:

Computing services offered by a third party, available for use when needed, that
can be scaled dynamically in response to changing needs. Cloud computing rep-
resents a departure from the norm of developing, operating and managing IT sys-
tems. From the economic perspective, not only does adoption of cloud computing
has the potential of providing enormous economic benefit, but it also provides
much greater flexibility and agility [4].

The cloud platform uses virtualization technology to make efficient use of the hardware

components and is capable to allocate resources in a timely manner at the time of high

demand. With this approach, the user of a cloud service pays only what is actually con-

sumed. All the technical details regarding infrastructure provisioning remain transparent

to the end user [5]. The users of cloud service are mainly interested in the services and

solutions provided by the cloud service providers and are not concerned on how the

service is actually maintained. They are also not concerned about the technical details

such as number of servers, power supplies, and security of the datacentres. However,

users are concerned about the security and availability of the cloud services.

3.2 Essential Characteristics of the Cloud Computing

Following section summaries, the essential characteristics of the cloud computing.

These characteristics are the principles of the cloud computing, also known as pillars of

cloud computing.

On-Demand Self-Service

With on-demand self-service, a cloud service consumer is capable to customize the com-

puting resources themselves directly from the web browser, usually by interacting with

some type of “Admin Console” or “Dashboard”. Users are capable to perform these task

without an interaction of the cloud service providers.

Network Access

Computing resources are accessible and available to any subscribing user of the cloud

service over the public network; such as the Internet. Users can access the resources

13

regardless of the client device they are using, for example; workstations, tablets, and

mobile phones. The quality of the network connection may limit the usage of the cloud

services. High speed Internet connection with low delays are essential for many applica-

tions.

Resource Pooling

Cloud computing makes possible to utilize the available resources dynamically that can

be allocated to several users and re-assign according to the consumer demand. This

model is called multi-tenant model. Multi-tenancy is a result of trying to achieve an eco-

nomic gain in cloud computing by utilizing virtualization and allowing resource sharing

dynamically [6]. These computing resources can include storage, processing, memory,

and network bandwidth. Generally, the user of cloud service has no information where

and how these resources are maintained by service provider’s datacentres. In some

cases, users need to know the location of datacentres for legal reasons. With resource

pooling, physical resources are shared among cloud users with a fine layer of abstraction

that users remain unconcerned if the service and resources are being shared with others

[7], [8]. The cloud service providers (CSP) are responsible for the resource pooling.

Rapid Elasticity

Rapid elasticity refers to the scalable feature of the cloud platform. In order to exploit the

elasticity of a cloud infrastructure, the applications need to be able to scale in (adding

additional resources) and scale out (removing those resources which are no longer re-

quired). The elasticity of cloud platform is considered as one of the most important char-

acteristics of the cloud computing [9].

Measured Service

The main idea of the measured services is the economy of the scale and refers to pay

only for the consumed resources or per-usage business model. This pricing model and

elasticity of the compute resources provides proficient use of the capital and agility [10].

To maintain the transparency of what is consumed, different cloud service providers are

offering tools to maintain billing alarms to limit the resource consumption.

14

3.3 Cloud Classifications and Service Models

Cloud computing can be classified in different ways depending on the type of service

they offer and technical implementation. Generally, cloud services are denoted as “X as

a Service”, where X can represent as either Hardware, Infrastructure, Platform, Frame-

work, Application and sometimes Datacentres. Important aspects and key characteristics

of different kinds of cloud offerings are highlighted in Figure 2.

Figure 2. Cloud Classifications, Everything as a Service [4, Fig. 1.7].

In Figure 2, cloud services are classified based on the type of resource and service of-

fered to the cloud service users. Level of flexibility and complexity varies at different

layers. This is usually represented by scope the and control model of cloud layers and is

shown in Figure 3.

15

Figure 3. Scope and Control of Cloud Service Model [11].

Scope and control refer to the different levels of scope and control to the producer and

consumer for each deployment model. A brief introduction to each service models of the

cloud computing is described in the following sections.

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS), or sometimes called Hardware as a Service (HaaS);

is a form of a cloud computing which provides on-demand physical and virtual computing

resources e.g. storage, network, firewall, and load balancers. To provide virtual compu-

ting resources, IaaS uses some form of hypervisor, such as Xen, KVM, VMware

ESX/ESXi, Hyper-V.

A user of IaaS is operating at the lowest level of features available and with the least

amount of pre-packaged functionality. An IaaS provider supplies virtual machine images

of different operating system variations. These images can be tailored by the developer

to run any custom or packaged application. These applications run natively on the se-

lected OS (Operating System) and can be saved for a particular purpose [4]. The user

can use instances of these virtual machine images whenever needed by starting the

particular instance. The use of these images is typically metered and charged in hour-

long increments. Storage and bandwidth are also consumable commodities in an IaaS

environment, with storage typically charged per gigabyte per month and bandwidth

16

charged for both inbound and outbound traffic [12]. Figure 4 represents the scope and

control of IaaS model and is depicted below:

Figure 4. IaaS, Scope and Control [13], [14].

As shown in Figure 4, the provider maintains total control over the physical hardware

and administrative control over the hypervisor layer. A consumer may make requests to

the cloud (including the hypervisor layer) to create and manage new VMs (Virtual Ma-

chines) but these requests are privileged only if they conform to the provider's policies

over resource assignment. Through the hypervisor, the provider will typically provide in-

terfaces to networking features (such as virtual network switches) that consumers may

use to configure custom virtual networks within the provider's infrastructure. A user of a

cloud service maintains full control over the guest virtual machine’s operating system

and same is applied to the software running on the guest operating system [15].

Platform as a Service

Platform as a Service (PaaS) is a class of cloud computing services which allows users

to develop, run, and manage applications without taking care of the underlying infrastruc-

ture. With PaaS, users can simply focus on building their applications, which is a great

help to developers. PaaS provides access to the deployed applications and sometimes

hosting configurations of the cloud environment but users of this service do not control

the physical resources and operating system neither hypervisor.

Figure 5 represents the scope and control structure of the PaaS model and is shown

below:

17

Figure 5. PaaS, Scope and Control [16].

Figure 5 illustrates how control and management responsibilities are shared in PaaS.

The centre depicts a traditional software stack comprising layers for the hardware, oper-

ating system, middleware, and application. The provider operates and controls the low-

est layers such as operating system and hardware. The provider also controls networking

infrastructure such as LANs and routers between datacentres. The provider allows con-

sumer access to middleware through programming and utility interfaces. These inter-

faces provide the execution environment where consumer applications run and provide

access to certain resources such as CPU cycles, memory, persistent storage, data

stores, databases, and network connections. The provider determines the circumstances

under which consumer application code gets activated, and monitors the activities of

consumer programs for billing and other management purposes [17].

Software as a Service (SaaS) and Framework as a Service (FaaS)

SaaS refers to services and applications that are available on an on-demand basis. Per-

haps the most commonly used cloud service for general purpose is SaaS, which repre-

sents the availability of provider’s applications to cloud users. The user can access these

services from client devices via web browsers over the Internet [18]. In SaaS, the con-

sumer has no control over the cloud infrastructure components as these resources are

controlled by the cloud service providers. The consumers only have limited control of

user-specific application configurations [19], as represented by Figure 6.

18

Figure 6. SaaS and FaaS, Scope and Control [20].

Figure 6 illustrates how control and management responsibilities are shared. In SaaS,

the cloud provider controls most of the software stack. A provider is responsible for de-

ploying, configuring, updating, and managing the operation of the application so it pro-

vides expected service levels to consumers. A provider's responsibilities include also

enforcing acceptable usage policies, billing, and problem resolution to mention few. To

meet these obligations a provider must exercise final authority over the application. Mid-

dleware components may provide database services, user authentication services, iden-

tity management, account management, and much more [21]. In general, however, a

cloud consumer needs and possesses no direct access to the middleware layer. Simi-

larly, consumers require and generally possess no direct access to the operating system

layer or the hardware layer.

FaaS is an environment adjunct to a SaaS offering and allows developers to extend the

pre-built functionality of the SaaS applications as represented in Figure 2. Force.com is

an example of a FaaS that extends the Salesforce.com SaaS offering. FaaS offerings

are useful specifically for augmenting and enhancing the capabilities of the base SaaS

system. [4].

19

3.4 Cloud Service Usage and Deployment Models

There are four fundamental deployment models of the cloud computing: Public Cloud,

Private Cloud, Community Cloud and Hybrid Cloud. These service and deployment mod-

els refer to sharing, scalability, security, and cost of the resources within the cloud. Cloud

deployment models distinguish cloud environment by ownership, access level and the

number of cloud service users [22]. The following sections provide a brief introduction of

each mode.

Public Cloud

A public cloud is owned by the cloud service provider (also known as a hosting provider).

The cloud service provider provides cloud resources for an organization and users in an

organization interacts and access the resources over the Internet. The cloud vendor may

share its resources with multiple organizations, or with the public. Figures 7 shows an

illustration of the public cloud.

Figure 7. Public Cloud [22, Fig. 4.17].

20

As shown in Figure 7, several organizations are represented as cloud consumers while

accessing the cloud solutions hosted by different cloud service providers.

Private Cloud

A private cloud operates only within one organization on a private network and is a highly

secure form of the cloud computing model. It provides cloud functionality to external cus-

tomers or specific internal departments, such as accounting or human resource depart-

ment. By creating a private cloud, an organization provides a pool of resources for the

infrastructure and the applications are shared with each end user as a tenant with the

respective resources that they need. A typical representation of a private cloud is pre-

sented in Figure 8.

Figure 8. Private Cloud [22, Fig. 4.19].

As shown in Figure 8, the organization is comprised of the on-premises environment and

a cloud user consumes the same organization’s cloud resources by means of an internal

private network. When considering a private cloud implementation, an organization

should evaluate carefully whether building its own private cloud is the right strategy. De-

pending on various factors, such as cost, availability of in-house skills, compliance, and

the Service Level Agreement (SLA), it may be better to outsource the hosting of the

infrastructure [23].

21

Community Cloud

A community cloud is quite similar to the public cloud but distinguished by its access to

the specified community rather than to the public. The community cloud may be jointly

owned by one or few organizations with legitimate need of shared concerns [24]. Figure

9 represents a graphical representation of a community cloud model.

Figure 9. Community Cloud [22, Fig. 4.18].

In above figure, a community of cloud consumers is accessing the IT resources offered

from a community cloud.

Hybrid Cloud

A hybrid cloud is a combination of private and public deployment models. In a hybrid

cloud, specific resources are run or used in a public cloud, and others are run or used in

a private cloud [25]. A hybrid cloud offers benefits from both private and public cloud

22

models. This may be a preferable strategy for an organization with an interest to control

and manage some of workloads locally but also still want to leverage some of the benefits

of cost, efficiency, and scale available from a public cloud model. Figure 10 represents

a typical structure of a hybrid cloud environment.

Figure 10. Hybrid Cloud [22, Fig. 4.20].

As shown in Figure 10, an organization is consuming IT resources from both public and

private clouds.

23

3.5 Virtualization of Compute Resources

Virtualization is one of the revolutionary, widely accepted technology and one of the most

significant pillars of the cloud computing and is defined as:

Virtualization in computing often refers to the abstraction of some physical compo-
nent into a logical object. By virtualizing an object, you can obtain some greater
measure of utility from the resource the object provides. For example, Virtual LANs
(local area networks), or VLANs, provide greater network performance and im-
proved manageability by being separated from the physical hardware. Likewise,
storage area networks (SANs) provide greater flexibility, improved availability, and
more efficient use of storage resources by abstracting the physical devices into
logical objects that can be quickly and easily manipulated [26].

It was 1974 when Gerald J. Popek and Robert P. Goldberg first introduced the framework

that provides information regarding the virtualization requirements, attributes and a Vir-

tual Machine Monitor (VMM), also known as hypervisor [27]. A hypervisor is a core soft-

ware that provides virtualization environment for virtual machines (VMs) to operate [26].

A basic concept of a VMM is illustrated in Figure 11 below.

Figure 11. A Basic Virtual Machine Monitor / Hypervisor [26, Fig 1.1]

Figure 11 illustrates that hypervisor or virtual machine monitor (VMM) is running on the

top of the physical layer, while each virtual machines (VMs) are running on the top of a

hypervisor. This also clarifies that guest OS is communicating with the hypervisor, not to

the physical hardware. This is the excellence of a hypervisor to hide all the hardware

configuration details from the user to give an idea that VM is running independently.

Figure 12 represents the concept of the hardware abstraction.

24

Figure 12. Hardware Abstraction [26, Fig. 2.6]

Figure 12 shows that a hypervisor resides between the hardware and virtual machines

and provides a way for VM to communicate with and exchange computing resources.

Requests generated by guest VMs are served by the hypervisor in a timely manner and

with an adequate resource allocation.

3.6 Types of Virtualization

Virtualization can be offered at different hardware layers such as CPU (Central Pro-

cessing Unit), Disk, Memory, File systems, etc. This means there will be different types

of business and user needs that will be facilitated by a particular cloud service [28]. This

includes the technical setup carried out and maintained by a cloud service provider. Fun-

damental types of virtualization include the following:

 Platform Virtualization.

 Network Virtualization.

 Storage Virtualization.

A typical cloud user is not concerned about products and technologies, rather about ser-

vicing and consuming resources based on SLA. Actually, users require little or some-

times no knowledge of the details of how a particular cloud service is implemented, hard-

ware specifications, architecture, number of CPU’s, and so on. What makes it important

25

for a cloud user is to understand what the service is and how to use this service via

management portal or a self-service portal. Following section briefly explains these fun-

damental types of the virtualization.

Platform Virtualization

This type of the virtualization deals with the abstraction of the computer resources. The

main idea of this technology is to communicate and interact with virtual machine monitor

or hypervisor instead of the operating system itself. With this approach, physical re-

sources can be used to from multiple virtual machines (VMs) that can independently run

on the physical server. Each individual virtual machine or instances, performs the com-

pute tasks independently and providing such an illusion to the user that the resources

weren’t being shared by anyone, hence abstracting those details from the user. Maxi-

mum utilization of physical resources save power and energy are few of the attributes

that platform virtualization offers.

Network Virtualization

The main principle of the network virtualization is the same as of platform virtualization,

the ability to run several isolated networks where each network can perform tasks trans-

parently from other networks. It is quite common for VMs to have a specific network that

they can use to communicate and share resources while maintaining isolation from the

other VMs by means of virtual networks. Depending upon the selected hypervisor, there

may be different approaches and options for the network virtualization.

Storage Virtualization

Storage virtualization is the ability to use and mix multiple storage devices regardless of

physical hardware and logical volume structure and abstracting all the underlying details

from the user. This technology allows storage administrators to divide and distribute the

storage in a well-structured manner. With heterogeneous storage devices, business-crit-

ical applications and valuable information that requires fast processing can be hosted on

significantly fast and efficient storage medium, such as solid-state disks (SSDs). For

other types of data where speed and performance is not a primary concern, a storage

administrator can utilize relatively slow disks (low in price). Another feature powered by

storage virtualization is the availability of file-based access to data no matter where the

actual data is actually stored. Consumes usually remain unaware about the fact that

where the files are actually stored, how the storage has been configured and the types

of disk involved (rotational disks or SSDs) [29], [30].

26

3.7 Scalability

The effective allocation and management of the compute resources to ensure enough

resources are available for an application is called scalability. According to B. Wilder,

scalability is defined as:

The scalability of an application is a measure of the number of users it can effec-
tively support at the same time. The point at which an application cannot handle
additional users effectively is the limit of its scalability. Scalability reaches its limit
when a critical hardware resource runs out, though scalability can sometimes be
extended by providing additional hardware resources. The hardware resources
needed by an application usually include CPU, memory, disk (capacity and
throughput), and network bandwidth [31].

The underlying concept of scalability is concerned with the capability of a system to cope

with an increased load while maintaining the overall system performance. Scalability el-

ements include the following:

 Application and its Ecosystem.

 Increased Workload.

 Efficiency

Application scalability involves various components including hardware and software and

is evaluated at different levels. For a web application, its primary workload is handling

HTTP requests for a certain time period. The requested workload should be adaptable if

the allocated resources are according to the normal workload, meaning the system per-

formance is not compromised when processing the web requests. Usually, the web traffic

is dynamic in nature and sometimes the number of expected web requests are not known

in advance and the system is subject to failure in terms of request processing. The effi-

ciency of a web application, therefore, includes the throughput, Service Level Agreement

(SLA), number of executed transactions per seconds (TPS) and response time.

In terms of application scalability, general description of the scalability refers to the con-

current application users and a desired response time. A number of the concurrent users

generates the activity and demands resources to be available with an acceptable re-

sponse time. Response time refers to the time it takes between request generation and

request fulfillment.

27

3.8 Little’s Law

Little’s theorem [32] is related to the capacity planning of the system and provides a

foundation for scalable systems. This theorem is well known in queuing theory due to its

theoretical and practical importance [33].

S. K. Shivakumar describes the little’s theorem in terms of scalability and defined as:

For a system to be stable, the number of input requests should be equal to the
product of the request arrival rate and the request handling time [34].

Formal notation of the Little’s Law [34] is as follows:

 L= λ x W

L=Average number of requests in a stable system.

λ=Average request arrival rate.

W=Average time to service the request.

Scalability primarily deals with the optimization of the average time to service the request

(W) using infrastructure and software components. To understand the above equation,

consider an example scenario with following assumptions:

 Number of concurrent requests in 1 second= 100.

 Time spend on each request= 0.5 second.

Now the average number of request the system may handle can be determined as:

 100 x 0.5 =50 requests.

This shows that to increase the number of requests that can be facilitated concurrently,

optimization in the request servicing time is required, represented by W in above equa-

tion. In today’s dynamic and rapidly growing era, the need for scalable web applications

is required more than ever. Scalable systems also determine how the business can man-

age the future growth. For example, an online business web application starts respond-

ing slowly because the system is not designed to cope with the unexpected spike in web

traffic. Similarly, an online business may drop potential business deals due to poor user

experience during the sale season because of the immense increase in web traffic.

28

3.9 Scalability Layers

Understanding the layers involved in establishing end-to-end scalability is the first step

in the understanding the scalability. Figure 13 depicts the scalability request processing

chain based on a sequence and a contribution order. This includes a request generation

from user’s web browser to organization’s infrastructure such as security appliances,

application load balancer, and other network components. System software or operating

system receives the user request and routes it to the requested web server to deliver the

request to the appropriate web application.

Figure 13. Scalability Layers [34, Fig 1.1]

The above diagram represents the abstraction from underlying computing components

such as shared networks, security infrastructure, database management system (DBMS)

and Enterprise Resource Planning (ERP) systems. In Figure 13, Enterprise infrastructure

and integrations represent this abstraction. Understanding the scalability layers helps to

recognize scalability challenges and potentials issues in a system under consideration.

In the context of enterprise web application, control of some scalability layers are outside

the scope of an enterprise, such as the Internet layer, depicted in Figure 13. However,

some layers offer high control and opportunity to fine tune the scalability, e.g. enterprise

application layer, assuming other layers are equal, comprising on the internet and client

infrastructure. Though the above diagram is used to represent the scalability layers, the

same analysis is applied for other quality attributes including the availability of a web

application [34].

29

3.10 Scalability Design Process

Depending upon the business requirements and nature of the web application, scalability

needs to be considered at various levels. For example, a business SLA (Service Level

Agreement) includes that a particular web application should have a response time of X

seconds (for example 2 seconds), and capable to manage Y number of TPS (Transac-

tions Per Second). Commonly used scalability design steps are depicted in Figure 14.

Figure 14. Scalability Design Process [34, Fig 1.11]

As depicted in Figure 14, the fundamental stages in scalability design process can be

carried out at various scalability layers in designing components. These stages are ap-

plicable at the time of infrastructure planning and while designing software modules.

Scalability metrics represents variables to be monitored over a defined time frame. As

stated earlier, depending on the business and user requirements, scalability attributes of

the proposed system may vary. Therefore, it’s very important to understand the key per-

formance indicators (KPIs) about the system under consideration [35].

Following are few examples of the KPIs:

 Maximum number of TPS (Transactions Per Second).

 A total number of concurrent logins at a given time.

 Expected response time to facilitate user request.

 Task completion time.

 User traffic per availability zone (geographic region).

30

These statistics help to design a scalable system very close to the actual requirements.

These scalability measures provide an insight into how to design a scalable system es-

pecially for the dynamic application usage and growth in the business.

Infrastructure planning is another critical factor and deals with capacity and sizing of the

components. Following points needs to be considered to achieve optimal performance:

 Analysis of the current demand.

 Analysis of the current capacity.

 Planning for the future capacity.

After collecting the information about the current and future demand and workload on a

particular system, next stage should be the estimation of the current capacity to deter-

mine if it meets the demand. Evaluation of the provisioned resources is also required to

understand if resources are over or underutilized by establishing the threshold and

benchmark values. Several hardware and software vendors nowadays provide infor-

mation about the minimum requirements and recommended configurations. This infor-

mation can also help when planning the infrastructure capacity and estimate the opti-

mized capacity. Even with capacity planning and provisioning the estimated hardware

resources, still, one needs to evaluate the web application with some benchmarking

tools. Reason for this is that typically all factors that cannot be determined accurately

enough during the capacity planning phase.

In terms of high availability and performance, it is recommended to implement load shar-

ing mechanism that will help to distribute the load to make efficient use of hardware.

Load balancing can have several forms depending upon the nature of the application

and allowed budget. Scalability monitoring governance refers to the quality measures

that are conducted to manage error handling in the system. Well-defined rules and mon-

itoring alarms are used to notify the service provider in case there is an error in the infra-

structure or if an application is unavailable due to some reasons. Monitoring alerts can

further be categorized into specific components, such as CPU utilization, network load,

memory monitoring, database, and app monitoring.

31

3.11 Scaling Approaches

The applied scalability methodology used to provide additional hardware resources de-

fines the following two scalability approaches, provided application can utilize those

newly assigned resources effectively.

 Vertically Scale Up.

 Horizontally Scale Out.

The following section provides a brief introduction of those scalability approach.

Vertically Scale Up

This scalability approach is also known as vertical scaling or scaling up. The underlying

concept of this approach is to improve the application capacity by additional hardware

resources within the same box. The box is also known as compute node or a virtual

machine (VM) running the application logic. The operations performed in vertical scaling

include increasing system memory, an additional number of CPU cores and other similar

activities. Due to its low risk, this approach has been used as a most common way to

provide additional resources and maintaining the budget with modest hardware improve-

ments. Even with the availability of the hardware resources, it is not guaranteed that if

the application can gain the advantage of these hardware resources. A downtime is also

expected in this approach because hardware changes often require the system to be

shut down which cause service interruption.

Horizontally Scale Out

This scalability approach is also known as scaling out or horizontal scaling. It is based

with the increasing application capacity by adding more data nodes, such as new virtual

machine instances. In most of the cases, the newly provisioned nodes provide the exact

capacity as was with the existing node. When comparing with vertical scaling, the archi-

tectural challenges and level of complexity involved tend to be more apparent in horizon-

tal scaling because the scope is shifted from individual node to several nodes. Horizon-

tal scaling tends to be more complex than vertical scaling, and has a more fundamental

influence on application architecture [31].

32

4 Scalable Cloud Architecture for a Web Application

This chapter presents the proposed scalable architecture for a web-based application

configured to run and deploy with the scalable cloud platform. Following sections

describe the different tiers and components involved in this reference architecture. At-

tributes of the management workstation, also known as management node are also men-

tioned briefly to understand the purpose of the management node.

4.1 Scalable Web Application Reference Architecture

This section describes the overall design for the web-based application that was intended

to implement using the scalable cloud platform. WordPress, an online content manage-

ment system [37] was selected as an example web application to host on cloud platform

running on Apache Web Server [38]. Figure 15 illustrates this reference architecture

model and associated tiers.

Figure 15. Scalable Web Application Reference Architecture

33

The architecture presented in Figure 15 looks similar to the traditional three-tier applica-

tion model architecture [39] with some enhancements. Following sections of this chapter

explores the tiers involved in this reference architecture while chapter 5 covers the actual

implementation with Amazon Web Services cloud platform.

4.2 Load Balancing Tier

The first tier depicted in the scalable web application reference model (Figure 15) is the

load balancing tier. The concept and the implementation of the load balancer implemen-

tation is not a new practice. Load balancing has been used in several systems with dif-

ferent types and needs of the load to be balanced. Generic examples include client-

server load balancing, network infrastructure like routers to distribute the load across

multiple paths that are directed to the same destination [40]. The purpose of the load

balancing tier in the scalable cloud platform is to distribute the application load among

server array that participates in the particular load balancer. With load balancer imple-

mentation, problems like single node failure can be reduced and results in application

availability and responsiveness [41]. When using scalable cloud platforms, such as Am-

azon Web Services [42], application servers can easily have an association to cloud load

balancer and can increase/decrease the number of required servers depending upon the

resource demand. User requests for the web applications received by the load balancer

and forwarding user requests to the member servers are one of the important tasks of

load balancers. Assuming an application server started to malfunction, user requests

should be forwarded to another node in the load balancing tier. Load balancers together

with scaling policies help maintain web application highly available without impacting on

the overall performance.

Traffic Pattern and Load Balancer

In terms of receiving and establishing Concurrent Connections (CCs), the Central Pro-

cessing Unit (CPU) is actively involved to facilitate the huge amount of the web requests.

The performance of a load balancer is related to the compute capacity of the target load

balancer, as shown in Figure 16.

34

Figure 16. Connection Rate Curve of the Load Balancer [43, Fig 22-8].

As depicted in Figure 16, with the increases in the new connections, the number of the

connections a load balancer can manage increases, resulting in the high CPU utilization.

This also indicates that a load balancer has reached its capacity with the flattened curve.

Response time is another crucial pattern when considering the performance of a load

balancer and web application. Response time is usually measured in milliseconds and

is referred as:

The elapsed time between the end of an application layer request (the user
presses the Enter key) and the end of the response (the data is displayed in the
user’s screen) [43].

Response time also helps to estimate the capacity of a system with measurable methods

to determine if the requested content is available to the client. Also, it measures the

amount of time (in milliseconds) the users have to wait to receive the contents.

Figure 17. Illustrates the server response time.

35

Figure 17. Server Response Time [43, Fig 22-10].

The response time is not a direct metric to evaluate the load balancer and because it's

typically used to measure the performance of a web server. However, a web server traffic

is distributed and regulated with a load balancer, causing response time to act as an

indirect performance indicator for the load balancer [44].

4.3 Application Tier

The second tier in the scalable web application reference architecture is the application

tier, comprising of the application servers and associated server array, as shown in Fig-

ure 15. Web Application Servers 1 to N; represents the virtual machines, called EC2

(Elastic Cloud Compute) instances in terms of Amazon Web Services (AWS) [46]. The

minimum number of application servers recommended in this reference architecture is

two EC2 instances running in different availability zones. AWS compute resources are

hosted in different geographical locations that constitute a region and availability zones.

A region is a separate geographical area, and each region has multiple isolated locations

that are known as availability zones [47]. In Figure 15, the availability zones are repre-

sented by “Availability Zone-1” and “Availability Zone-2”. Both availability zones are lo-

cated in the same “Region”. Ireland region is one of the AWS regions in Europe [48] that

was selected for the implementation and experiments.

36

Apache web server was used to host the WordPress web application running on AWS

EC2 instances. The multiple application servers shown in Figure 15 are actually a clone

of the virtual machine that provides exactly the same configuration as if it was the original

virtual machine. These EC2 instances were deployed in different availability zones in

order to make web application highly available. If all servers are located in one availability

zone and there is service interruption in that particular zone, all the resources will be out-

of-service. Having resources in multiple zones helps to reduce this risk in service inter-

ruption. The size of the server array expands with additional servers with an increase in

the resource demands (scale in) and decreases when there is a decline in the current

demand (scale out).

With AWS, the minimum and a maximum number of EC2 instances can be defined as

part of the scaling policies. The minimum size of the available instances can be increased

any time by cloud administrators to meet the business needs and application demands.

The maximum size defines the limit of the server array and scaling policies should con-

tinue to provision the EC2 instances until the maximum limit has been reached. As soon

as the scaling policies determine the decline in the current demand, assigned resources

are released until the number of EC2 instances reaches to the minimum instances de-

fined. This helps to maintains the budget as a cloud user is billed only for the consumed

resources over a certain period of time.

4.4 Database Tier

The database is the third tier in the scalable web application architecture illustrated in

Figure 15 and one of the critical component in the infrastructure planning and design.

Database tier plays a significant role and in today’s era of information age, there is very

rare chance for a web application to run without a database. In terms of heavy load on a

web server, the number of database connections that a database management system

allows to facilitate user requests determines the performance of a database management

system (DBMS). For the purpose of this study, MySQL database was selected due to

following significant characteristics [50]:

 Speed

 Ease of Use.

37

 Structured Query Language (SQL) Support.

 Connectivity and Security.

 Low Cost and High Availability.

Figure 15 illustrates the recommended best practice for the web application database

when deployed in the cloud platform. Although the cloud service provider is responsible

for the uptime and ensuring that hardware is running flawlessly, still the best practice is

to deploy the MySQL database in master/slave model. This approach guarantees the

application availability if the master database becomes unavailable. As discussed in the

application tier, recommended practice is to deploy them in multiple availability zones

that span across the region. Database redundancy is quite important as a database is

the location that stores the data about each transaction as well as metadata. Depending

on the nature of the application, a database may be more disk write intensive while some

databases may tend to more read oriented. This is why it is important to design the da-

tabase tier as multiple instances to reduce the potential data loss that results in service

unavailability.

4.5 DNS Server and User Requests

A user interacts the cloud service with a web browser that sends a request to the web

server [51]. A typical user identifies a resource on the internet with its distinguished

name, for example; www.MyUserFriendlyDomainName.Com. Each distinguished iden-

tity has been assigned with a unique address, called Internet Protocol (IP) address. An

IP address constitutes a network and hostname segments and in terms of networking,

user requests are routed over the Internet based on this unique IP address. An IP v4

(version 4) is still the widely used IP addressing scheme though there exists IP v6 as

well. An IP v4 packet consists of 32-bit addressing scheme and the standard format is;

nn: nn: nn: nn [52]. This format of IP address is difficult to remember and write when

accessing web applications. To eliminate this problem, Domain Name System (DNS) is

used that leverage the user-friendly name and maps the IP address of the respective

domain name. However, when a user interacts with a web browser and sends a query

to a web server, an actual resource on the Internet must be located with the IP address

and browsers need to forward the request to the correct IP address. DNS performs this

transformation of the user-friendly domain name to IP address and performs domain

name resolution.

38

By default, Amazon Web Services (AWS) provides a generic domain name based on

instance types and configurations. This web address is a user-friendly but still long string

to remember, for example, EC2-52-50-7-237.eu-west-1.compute.amazonaws.com. It is

possible to obtain a static IP addresses from AWS that can be mapped to a domain

name. This static IP address is called elastic IP address (EIP) in AWS terminology and

designed for the dynamic cloud computing. An elastic IP address is IP v4 IP address

which can be accessed from the Internet and associated with one particular AWS ac-

count [53]. Amazon cloud computing provides one static IP v4 address at free of charge.

Additional IP addresses are subject to an additional cost but applied only for the con-

sumed time duration [54].

This study was conducted with the public DNS name generated by the load balancer and

was similar to the “http://demo-lb1-244513860.eu-west-1.elb.amazonaws.com”. In the

scalable reference architecture (Figure 15) client’s requests are directed to load balanc-

ing tier, not to the web server itself. It was due to the fact that load balancer should

distribute the received requests to the application tier and servers that form the server

array.

4.6 Monitoring and Alerts

Monitoring of the cloud infrastructure is another important design aspect that requires

attention and proper implementation. Cloud service providers are responsible for the

continious monitoring of their cloud infrastructure. The consumer of the cloud computing,

however, requires to maintain monitoring system that sends warning and alerts as soon

a breach of the critical resource(s) has been observed. Amazon elastic cloud compute

(EC2) uses monitoring service called Amazon CloudWatch. With Amazon CloudWatch,

compute resources and applications can be monitored. This service helped to collect

logs files, monitor and track the metrics, send automatic alarms (e-mail notifications) and

perform an action depending on the change in AWS resources [55]. AWS CloudWatch

service provides following features and benefits:

 Monitor Amazon EC2 Instances.

 Monitor AWS Load Balancers, Databases.

 Monitor Custom Metrics.

 Monitor and Store Logs.

39

 Alarms Configurations (E-Mail Notifications).

 Plot Graphs and Statistics for Analysis.

 Monitor and React to Resource Changes.

For a scalable web application, it was necessary to configure the monitoring for the com-

pute resources and scalability metrics that checks the system health periodically and

perform the required action(s) as defined in the policies. For example, if CPU utilization

was X % for Y seconds; CloudWatch were configured to consider it as a breach of the

desired threshold and mark it as unhealthy. Additionally, certain actions can be per-

formed automatically such as provisioning a new instance of the virtual machine to miti-

gate the load or replace it with the unhealthy instance.

Figure 18 shows an example of CloudWatch Monitoring details with a default time inter-

val of 5 minutes.

Figure 18. CloudWatch Monitoring (CPU Utilization)

The CloudWatch service is enabled by default for the EC2 instances in basic mode with

a default time interval of 5 minutes. This default setting can be modified by selecting

“Enable Detailed Monitoring” as shown in Figure 19 and configuring the desired metrics

with custom intervals.

40

Figure 19. CloudWatch Basic and Detailed Monitoring

Enabling detailed monitoring will incur additional service charges for the EC2 resource

monitoring. As depicted in Figure 19, Monitoring tab provides the information about the

EC2 instances as well as the option to configure the monitoring alarms to send custom

notifications [56].

4.7 Management Node

A management node is a client device in a local environment (on-premises), also known

as technician machine. It is used to perform administrative tasks e.g. cloud infrastructure

management, performance monitoring, and compliance auditing. This machine is used

to interact with the cloud platform, configuring virtual machines, applying scalability poli-

cies, test the performance of the web application and scalability metrics. Hardware and

software specifications of management node are listed in the below Table 3.

Table 3. Software and Hardware Specifications of the Management Node

Software and Hardware Specifications of the Management Node (On-Premises)

Hardware Specifications System Software Application Software

Processor
(CPU)

Intel Core i3
Operating System

Windows 10 Pro Microsoft
Office

2016

Memory
(RAM)

4 GB
System Type

X64-based PC Java 8 U152

Hard Disk 500 GB OS Build 14393.693 JMeter 3.3

Table 3 summarizes the software and hardware specifications of the management node.

The same machine was used to conduct the experiments to evaluate the performance

of the web server by generating heavy load.

41

Performance testing was crucial in order to determine if the web application under test

satisfies high load requirements. It was also used to analyze the overall server perfor-

mance under heavy load. Stress testing determines the responsiveness, throughput, re-

liability, and scalability of a system under a given workload. Results of a testing deter-

mine the quality of a system and serves as input to implement workload strategies [57].

Apache JMeter is one of the tools designed for this kind of purposes. Apache JMeter is

a free, open source, and cross-platform desktop application from the Apache Software

Foundation [58]. Some of the features of the Apache JMeter are [59]:

 Performance tests of different server types, including web (HTTP and
HTTPS), SOAP, database, LDAP, JMS, mail, and native commands or
shell scripts.

 Complete portability across various operating systems.

 Full-featured Test IDE that allows fast test plan recording, building, and
debugging.

 Dashboard report for detailed analysis of application performance indexes
and key transactions.

 In-built integration with real-time reporting and analysis tools, such as
Graphite, InfluxDB, and Grafana, to name a few.

 Complete dynamic HTML reports.

 Graphical User Interface (GUI).

 HTTP proxy recording server.

 Caching and offline analysis/replaying of test results.

 A live view of results as testing is being conducted.

Apache JMeter is a Java-based application that requires Java Standard Edition (SE)

Development Kit 8 [60] as a prerequisite. At the time of writing this report, Apache JMeter

3.3 was the latest version available, although Java 9 was the latest version but it was not

supported yet with JMeter 3.3 [61]. Appendix 1 (Preparing Experiment Environment with

JMeter) provides information on how to download, install, configure and execute JMeter

as well as required dependencies.

42

5 Implementation

This chapter covers the implementation of the proposed scalable web application archi-

tecture (described in chapter 4). This provides detailed information for all the stages in-

volved with possible screenshots, step-by-step procedures, and references to the prod-

uct documentation for further details. Among different cloud service providers, Amazon

Web Services (AWS) was selected as a scalable cloud platform for this implementation

and experiments. This chapter begins with a motivation statement for using AWS and

characteristics that makes AWS distinctive for the cloud administrators and other tech-

nology specialists.

5.1 Motivation for Using Amazon Web Services

Amazon Web Services (AWS) is a scalable public cloud platform with a wide range of

services and solutions. Following are few quotes that define the AWS and list its essential

characteristics and competitive advantages.

Amazon Web Services (AWS) is actually a huge array of services that can affect
consumers, Small to Medium-Sized Business (SMB), and enterprises. Using AWS,
you can do everything from backing up your personal hard drive to creating a full-
fledged IT department in the cloud [62].

Amazon Web Services (AWS) is a public cloud provider. It provides infrastructure
and platform services at a pay-per-use rate. This means you get on-demand ac-
cess to resources that you used to have to buy outright. You can get access to
enterprise-grade services while only paying for what you need, usually down to the
hour [63].

Amazon Web Services or AWS is a comprehensive public cloud computing plat-
form that offers a variety of web-based products and services on an on-demand
and pay-per-use basis. AWS was earlier a part of the e-commerce giant Ama-
zon.com, and it wasn't until 2006 that AWS became a separate entity of its own.
Today, AWS operates globally with data centers located in USA, Europe, Brazil,
Singapore, Japan, China, and Australia. AWS provides a variety of mechanisms,
using which the end users can connect to and leverage its services, the most com-
mon form of interaction being the web-based dashboard also called as AWS Man-
agement Console [56].

A wide range of AWS services can be utilized to host a scalable web application (scope

of this study), enterprise applications, data mining and big data solutions. Due to the

distinctive characteristics of AWS, services are being used by government agencies,

medical institutes, scientific and engineering organizations. A user can access the AWS

cloud resources from client machine and web interface such as a web browser.

43

The term web service means services can be controlled via a web interface. The
web interface can be used by machines or by humans via a graphical user inter-
face. The most prominent services are EC2, which offers virtual servers, and S3,
which offers storage capacity [64].

The end user is not required to purchase additional software tools to access the AWS

web interface or Management Console. Clients using desktop and mobile operating sys-

tems can interact with standard web browsers across multiple platforms. This means

clients using Microsoft Windows Operating System [65], Open Source Operating Sys-

tems such as Linux [66] and Ubuntu [67], and Apple Macintosh clients using macOS [68]

can easily interact with the AWS web services.

For education and training purposes, AWS Educate has introduced student package to

give an opportunity to evaluate the AWS cloud platform with an academic user account

[69]. Depending on the scope and nature of the project, educational institutes, educators,

and students can apply for AWS Educate account to access and master the AWS cloud

platform almost for free [70]. GitHub is a development platform used to host and review

the code and mage projects. Sharing of the code has been made easy by the GitHub.

GitHub Education also offers varied services for students via Student Developer Pack

[71]. This student developer pack from GitHub [72] includes offerings from partners, and

AWS is one of them. Together with GitHub Education, AWS Educate offering provide

value-added service for students, for example, bonus and additional credits.

5.2 Create an Amazon Account

The first step was to create an Amazon account (if not done already). This study was

based on the AWS Free Tier [73]. This free tier allows new users to consume some

compute resources for free within the certain time frame, usually, 12 months [74], and

some resources are free forever [75], [76]. Figure 20 illustrates the look and feel of the

AWS account registration.

44

Figure 20. Create AWS Account [73]

As depicted in Figure 20, AWS account registration can be initiated by clicking on the

“Create Free Account” button. Once clicked, a user registration form is presented looks

shown in the Figure 21.

Figure 21. AWS Account Registration Page

On the user information page, some basic information and a brief description of the free

tier is available as highlighted in Figure 21. If academic or student account (institutional

45

email address) is used, AWS requires to provide the credit card information to verify the

user identity. Even with a private user email address, the user will not be charged until

the consumed resources exceed the free tier limits.

5.3 Create Virtual Server using Amazon Elastic Cloud Compute (EC2)

Once the sign-up process has been completed, the next step is to launch configure the

EC2 instances. Following procedure describes how to create and run and access an

EC2 instance.

1. Access the AWS console at http://console.aws.amazon.com.

2. Sign-in with the credentials specified as part of AWS sign-up procedure.

AWS Services dashboard is shown in Figure 22.

 Figure 22. AWS Services Dashboard (Partial Screenshot)

http://console.aws.amazon.com/

46

3. Click on the EC2 under Compute category. This opens the EC2 dashboard as

shown in Figure 23.

 Figure 23. EC2 Dashboard (Partial Screenshot)

Depending upon the usage, the resource listing may vary from what is shown in

Figure 23. In this case, there were no running instances at the moment.

4. Click “Launch Instance” on the EC2 dashboard to create a new virtual machine

(EC2 instance). Following steps needs to be carried out to create an Amazon

EC2 Linux instance.

 Step 1: Choose an Amazon Machine Image AMI  Amazon Linux AMI

 Step 2: Choose an Instance Type  T2 Micro (free tier eligible)

 Step 3: Configure Instance Details  Accept default settings

 Figure 24. Configure Instance Details

47

Select Enable to “Auto-assign Public IP” and Click Next: Add Storage. De-

fault settings were adequate enough to proceed to the next step as de-

picted in Figure 24. “Auto-assign Public IP” can be selected as “Enable”.

Click Next to proceed to next step.

 Step 4: Add Storage  Accept Default

Default size was 8 GB SSD disk, which was sufficient for this study goals.

 Step 5: Add Tag  Optional Tag

 Step 6: Configure Security Group  Existing Security Group (Default)

Here choose “Select an existing security group” to select the “default”
security group and then click review and launch.

 Step 7: Review Instance Launch  Launch

 Figure 25. Review Instance Launch

This screen provides the instance details that were going to be created. If

everything is set correctly, click on the “Launch” to bring this instance up

and running, as shown in Figure 25.

5. Key Pair Selection / Creation

A key pair is required to connect to the EC2 instances. Select a key pair (if already

exists) or create a new one, as shown in Figure 26.

48

 Figure 26. Select an Existing Key Pair or Create a New Key Pair

As depicted in Figure 26, either the existing key pair can be selected (browse to

the location where the key pair file is saved) or create a new key pair.

6. Assuming there is no existing key pair, create a new key pair and download it on

the management node, as illustrated in Figure 27 shown below:

 Figure 27. Creating a New Key Pair

49

Give it a suitable key pair name while selecting “Create a new key pair” and click

on the “Download Key Pair” button, as depicted in Figure 27.

7. Click on the “Launch Instances” button.

 Figure 28. EC2 Instance Launch Status

Figure 28 shows the status of the launch instance in green color. Additionally, launch

status provides an option to view the launch logs.

Clicking on the instance status brings the EC2 dashboard and shows any available

instances (see Figure 29).

 Figure 29. EC2 Dashboard Instance Information

Figure 29 illustrates the Instance ID, information about the availability zone, instance

type (T2 Micro), health checks and the public DNS name generated automatically.

At this stage, the EC2 virtual server has been created and is ready for the configuration.

For more information and details about the Amazon EC2 instance, Amazon product doc-

umentation for EC2 provides a good source for further reading [77].

Connecting to EC2 Instance

To perform actions such as installing updates, packages, and web server configuration;

one needs to connect to EC2 instance from the client device. Depending upon the oper-

ating system of the management node or the client device the built-in SSH client can be

used on Linux Unix systems. However, on Microsoft Windows Operating Systems, a third

party SSH client called “putty” was required to perform the SSH operations [78]. Another

50

option was to install and enable Java in web browser [79], [80] and connect to EC2 in-

stance using a web browser such as Microsoft Internet Explorer [81].

In this study a web browser (Microsoft’s Internet Explorer) was used to connect to EC2

instances. Java was installed on the management node running on Windows 10 operat-

ing system (described in Chapter 4, section 4.7).

Following steps were required in order to connect to the newly created virtual machine

and start the actual configuration.

1. Select Instance node from the EC2 dashboard.

2. Select the desired instance and click on “Connect”.

3. Two options were presented, first was the “standalone SSH client” and second

was the “Java SSH Client directly from browser” (which requires Java), as shown

in Figure 30.

 Figure 30. SSH Client Selection

Figure 30 shows the available SSH options to connect to the virtual machine (EC2

Instance).

51

4. Select Java SSH client from a web browser and provide a path of the key pair

and select Launch SSH Client. Figure 31 shows this process.

 Figure 31. Connecting to EC2 Instance directly from web browser

As depicted in Figure 31, after selecting target instance, connecting to an EC2

instance requires a username (ec2-user), key name (AwsExperiments.pem), and

private key path (C: \AmazonAWS_Experiments\AwsExperiments.pem). Option-

ally, the path to the key location can be saved in browser cache to allow the web

browser to remember this path for future connections.

5. If the key name and key location are valid, the connection should be established

between the client device and a virtual machine running on a cloud platform. After

successful connection, ec2-user (the default username) should be logged in, as

shown in Figure 32.

52

 Figure 32. Linux AMI Login with Ec2-User

By default, the Linux AMI (Amazon Machine Image) sign-in with ec2-user. This can

be confirmed by with Linux terminal command “whoami”, which should return the

currently logged-in user, as illustrated in Figure 32.

5.4 Install and Configure Apache Web Server (LAMP Stack)

Once the connection to the EC2 instance has been established using a web browser

(Internet Explorer), Apache web server configuration can be started from the command

line. PHP, MySQL and other required components for the web server is called LAMP

stack when running on Linux operating system. The procedure mentioned in this imple-

mentation was derived from the AWS documentation [78] and based on the Amazon

Linux instance. Apart from the installation itself, it was also required for the security group

to allow access to certain ports such as SSH (port 22), HTTP (port 80), and HTTPS (port

443). Following Table 4 summaries the command lines with a brief description required

to install LAMP stack on Amazon Linux virtual machine [78].

53

Table 4. Installing LAMP Stack (Terminal Commands)

No.

Linux Terminal Commands with description (LAMP Installation)

1 sudo yum update -y

This command checks and install updates (if any).

2 sudo yum install -y httpd24 php70 mysql56-server php70-mysqlnd

This command installs multiple software packages and all related dependencies at the

same time.

3 sudo service httpd start

This command starts the Apache web server service.

4 sudo chkconfig httpd on

Some services do not start automatically when system boots or restarts, above

command, ensure that Apache web server service initializes at the system startup.

5 chkconfig --list httpd

This command verifies if the service was actually running or not.

Note: At this stage, the installation of the Apache web server can be tested by typing the public
DNS name or the IP address in a web browser. Resulting page should be Apache default home
page because no contents have replicated yet in the /var/www/html. The Amazon Linux Apache
document root is /var/www/html; which, by default is owned by the root. This can be viewed by
typing: ls -l /var/www.

6 sudo usermod -a -G apache ec2-user

This adds the user account ec2-user to the apache group.

7 exit

You have to log out or exit to pick up the new group specified earlier.

8 groups

This command verifies if the apache group membership and output should look like: ec2-

user wheel apache

9 sudo chown -R ec2-user:apache /var/www

Change the group ownership of /var/www and contents to the apache group.

10 sudo chmod 2775 /var/www

find /var/www -type d -exec sudo chmod 2775 {} \;

Add group write permissions, change the directory permissions of /var/www and its sub-

directories.

11 find /var/www -type f -exec sudo chmod 0664 {} \;

This command was used to add group writes permissions, recursively change the file

permissions of /var/www and its subdirectories.

12 sudo service mysqld start

Like Apache web server, MySQL service can start with above example.

13 sudo mysql_secure_installation

54

Here we can secure the MySQL installation, when prompted, type the desired password

to set for the MySQL installation.

14 sudo chkconfig mysqld on

This command ensures that MySQL service should start on every boot.

At this stage, Apache web server has been installed together with MySQL database and

PHP scripting language. The above command lines also include required configuration

for the ec2-user account.

5.5 Install and Configure WordPress Application with Amazon Linux

At this point, the prerequisites for the web application have been installed (LAMP stack)

and configured the security group have been configured to allow traffic on port 80 and

443 (HTTP and HTTPS) and the SSH access have been enabled on port 22. Now it’s

time to install and configure the web application, WordPress; an online content manage-

ment system [37]. Table 5 summaries the command-lines that were used to install the

WordPress application in this implementation. These command lines were extracted

from the AWS tutorial that describes WordPress blog hosting on Amazon Linux instance

[79].

Table 5. Installing WordPress Application (Terminal Commands)

No.

WordPress Application Installation (Terminal Commands)

1 wget https://wordpress.org/latest.tar.gz

This command was used to download the WordPress.

2 tar -xzf latest.tar.gz

This command extracts and unzips the installation package, called WordPress.

3 sudo service mysqld start

This command was used to start the MySQL server.

4 mysql -u root -p

Log in to the MySQL server as the root user. Enter your MySQL root password when
prompted. This must be the same password as specified during MySQL installation.

5 CREATE USER 'wordpress-user'@'localhost' IDENTIFIED BY 'MyP@ssW0rd';

Above command should create a user and password for your MySQL database.

6 CREATE DATABASE `wordpress-db`;

wordpress-db was the name of the database in above example.

7 GRANT ALL PRIVILEGES ON ̀ wordpress-db`.* TO "wordpress-user"@"localhost";

Grant full privileges for the database to the WordPress user that was created earlier.

8 FLUSH PRIVILEGES;

Flush the MySQL privileges to pick up all of your changes.

55

9 Exit

Exit the MySQL client.

10 cd wordpress/
cp wp-config-sample.php wp-config.php

Copy the wp-config-sample.php file to a file called wp-config.php.

11 nano wp-config.php
define ('DB_NAME', 'wordpress-db');
define ('DB_USER', 'wordpress-user');
define ('DB_PASSWORD', 'YourPassword');
cd ..

In the editor, find the line that defines DB_NAME, DB_USER, DB_PASSWORD, once
done save the file and exit the text editor. Change the directory with cd .. to reach to the
root listing.

12 cp -r wordpress/* /var/www/html/

Copy the contents of the wordpress installation directory (but not the directory itself) if
the intention was to run wordpress to at your document root.

13 sudo nano /etc/httpd/conf/httpd.conf

In text editor, find the section that starts with <Directory "/var/www/html">.
Find the text >>>AllowOverride None and change with AllowOverride All
WordPress permalinks need to use Apache .htaccess files to work properly, but this was
not enabled by default on Amazon Linux. Use above procedure to allow all #overrides in
the Apache document root.

14 sudo chown -R apache /var/www

 Change the file ownership of /var/www and its contents to the apache user.

15 sudo chgrp -R apache /var/www

Change the group ownership of /var/www and its contents to the apache group.

16 sudo chmod 2775 /var/www
find /var/www -type d -exec sudo chmod 2775 {} \;

Change the directory permissions of /var/www and its subdirectories to add group write
permissions and to set the group ID on future subdirectories.

17 find /var/www -type f -exec sudo chmod 0664 {} \;

Recursively change the file permissions of /var/www and its subdirectories to add group
writes permissions.

18 sudo service httpd restart

Restart the Apache web server to pick up the new group and permissions.

19 sudo chkconfig httpd on
sudo chkconfig mysqld on

Use the chkconfig command to ensure that the httpd and mysqld services start at every
system boot.

20 Enter the public DNS name of your instance in a web browser. WordPress installation
screen will pop up, with options to specify site title, user name, and password.

Now the WordPress web application has been installed and functional. Further adjust-

ments and customizations e.g. change the theme, installing updates can be performed

via admin control panel. Amazon documentation provides details regarding configuring

the newly created blog, increase the capacity and how to change the domain name [80].

56

Troubleshooting DNS Name Change Problem

EC2 instances receive public DNS name by default and the WordPress installation was

automatically configured using the public DNS name. When the instance has been pow-

ered off or restarted, previously assigned public DNS changes randomly. After that the

public address that was originally configured was not more available and configurations

still pointed to the old URL [81]. One solution is to assign an elastic IP, static IP for EC2

instance, otherwise one needs to repair the WordPress with wp-cli. Wp-cli is a command

line tool from the WordPress and used to repair the WordPress installation problem due

to change in the DNS name [82]. Appendix 2, Troubleshooting DNS Name Change Prob-

lem provides the commands required to repair the WordPress installation.

5.6 Create an Image from Linux EC2 Instance

Now the Linux virtual machine has been configured to run the web application, hosted

on the cloud platform. Once all the required software has been installed and configura-

tions have been completed, an image of this virtual machine can be captured. This pro-

cedure is known as AMI (Amazon Machine Image) on Amazon terminologies. Whenever

there would be a need for additional resources, this AMI can be launched containing all

required software ready to use [83]. Following steps needs to be carried out to create an

image of EC2 instance [84].

1. Login to AWS management console (if not logged-in already).

2. Select EC2 services and access the EC2 dashboard.

3. Click on Instances from the side navigation tree menu.

4. Details of the available EC2 instance should appear in the main pane.

5. Select the desired instance and click on the: Actions  Image  Create Image.

 Figure 33. Creating an Amazon Machine Image

57

Figure 33 illustrates the options to create an image of EC2 instance.

6. Create Image dialog box appears now and looks similar to the figure given below.

Give a suitable name and description and click on “Create Image”.

 Figure 34. Creating an Amazon Machine Image (Properties)

Figure 34, shows the properties of the Create Image wizard, here name and de-

scription of the image can be specified. Hardware customization would also pos-

sible, such as the size of the hard disk. In this implementation, the default 8 GB

was selected to create the image.

7. Image creation request is acknowledged and a confirmation dialog will pop up.

8. Newly created AMI now available for use and listed under Images  AMIs.

Figure 34 depicts a partial screenshot of the EC2 dashboard, showing available

AMIs.

58

 Figure 35. Available Amazon Machine Images (AMIs)

Figure 35 shown the newly created Amazon Machine Image, this is the copy of the

virtual machine that was configured with the Apache web server to host WordPress

web application. Date of creation and current status are available in Figure 35.

5.7 Create Auto Scaling Group and Launch Configuration

Auto-scaling is one of the distinctive features of Amazon cloud platform available as part

of EC2 service. Auto-scaling ensures that specified number of EC2 instances are always

available. As soon as there is a breach at software or hardware level is detected, a new

instance is automatically launched and it becomes available dynamically. Auto-scaling

constitutes on following two elements:

 Launch Configuration: A launch configuration contains the necessary
information required to launch a virtual machine. A typical launch
configuration includes the size of the virtual server and Amazon Machine
Image (AMI) to launch.

 Auto-Scaling Group: An auto-scaling group is used to configure EC2
service representing the number of virtual machines to be started with a
particular launch configuration. Resource monitoring and subnet where to
launch the new instance is also determined by the auto-scaling group.

The following figure depicts a high-level view of how auto-scaling service to ensures that

specified number(s) of the health EC2 instances ae available for the service.

59

Figure 36. Amazon EC2 Auto-Scaling Mechanism [64, Fig 11.7]

Figure 36 shows the auto-scaling feature to ensure at least a single instance (at mini-

mum) should always be available to serve the user requests. With a properly configured

auto-scaling and launch configuration, EC2 auto-scaling service can provision and de-

commission the EC2 instances. New instances can be launched dynamically, either with

an increase in resource demand or if an existing virtual server started to malfunction.

Figure 37 shows an example scenario where a new instance is launched due to hard-

ware failure in the currently running instance.

60

Figure 37. Automatic Recovery of EC2 Instance [64, Fig 11.2]

Figure 37 depicts the process of launching a new virtual server. This event was triggered

by an alert generated by CloudWatch that records the unhealthy threshold. Depending

on the scalability metrics and CloudWatch alarms, one or multiple instances of virtual

machines (AMIs) can be launched with the auto-scaling service.

Following steps were required to complete this implementation of the auto-scaling.

1. Login to AWS management console (if not logged-in already).

2. Select EC2 services and access the EC2 dashboard.

3. From side navigation menu, select Auto Scaling.

The welcome screen should look something similar to the following figure.

61

 Figure 38. Welcome to Auto Scaling

Figure 38 shows the welcome screen of auto-scaling and provides the option to

“Create Auto Scaling Group”.

4. Click on “Create Auto Scaling Group”. If no existing launch configuration is found,

“Create Auto Scaling Group” begins with the “Create Launch Configuration as the

first step.

 Figure 39. Create Auto Scaling Group and Launch Configuration

As illustrated in Figure 39, auto-scaling service demands a launch configuration

(step 1) before an auto-scaling group can be created (step 2).

5. Click on “Create Launch Configuration” and follow on-screen instructions.

62

6. After completing the launch configuration wizard, click on the “Create Auto Scal-

ing Group”.

 Figure 40. Configure Auto Scaling Group Details

Figure 40 illustrates the details of the auto scaling group. Select the default VPC

and all available subnets, this procedure makes an application highly available

across multiple availability zones, as illustrated in Figure 40.

The group size, also known as desired capacity, can be configured and it deter-

mines the number of the instance(s) that this auto scaling group should have at

any time. This implementation uses two instances to start with, however, this can

span to multiple instances across the availability zone to ensure high availability.

The concept of availability zone and region can be illustrated with the following

figure.

 Figure 41. VPC, Region, Availability Zone [64, Fig 11.6]

63

As illustrated in Figure 41, a VPC (Virtual Private Cloud) is bound to a region.

Subnets are linked to availability zones which should always be within a VPC.

Configuring multiple subnets in distinguished availability zones is the recom-

mended approach for highly available and scalable applications.

7. Next click on the “Configure Scaling Policies”. There should be two options avail-

able:

(i) Keep this group at its initial size.

(ii) Use scaling policies to adjust the capacity of this group.

Select “Use scaling policies to adjust the capacity of this group” and define the

minimum and maximum size of the group.

This implementation consists of 3 (minimum) and 9 (maximum), however, this

can be changed according to business needs and current demands.

8. Follow the on-screen instructions and complete all the steps until review screen

appears.

9. Review all the configurations and proceed further to create the auto scaling

group.

5.8 Create Elastic Load Balancer

After configuring the auto scaling launch configuration and auto-scaling group, next step

is to create an elastic load balancer. Amazon defines the elastic load balancer as:

A load balancer accepts incoming traffic from clients and routes requests to its
registered targets (such as EC2 instances) in one or more Availability Zones. The
load balancer also monitors the health of its registered targets and ensures that it
routes traffic only to healthy targets. When the load balancer detects an unhealthy
target, it stops routing traffic to that target and then resumes routing traffic to that
target when it detects that the target is healthy again [85].

There are three types of elastic load balancers supported by Amazon Web Services.

These three types are:

 Application Load Balancer.

 Network Load Balancer.

 Classic Load Balancer.

64

This implementation uses the classic load balancer provided by AWS. J. Nadon defines

load balancer and highlights the difference between the elastic load balancer and classic

load balancer as:

Elastic Load Balancers are endpoint devices that handle web traffic and can bal-
ance that traffic between multiple EC2 virtual server instances. In 2016, AWS in-
troduced a new type of load balancer with enhanced features and benefits called
an Application Load Balancer. At this point, AWS started referring to the Elas-
tic Load Balancer offering as a Classic Load Balancer [86].

Following steps were required to create a classic load balancer and register this load

balancer to the auto scaling group.

1. Login to AWS management console (if not logged-in already).

2. Select EC2 services and access the EC2 dashboard.

3. From side navigation menu, select Load Balancing  Load Balancer

This should look similar to the Figure 42, given below:

 Figure 42. AWS Load Balancing

4. Click “Create Load Balancer”, and resulting screen look similar to the Figure 43,

depicted below.

 Figure 43. Load Balancer Types

65

Figure 43 illustrates the types of a load balancer that Amazon cloud platform pro-

vides. This implementation uses the classic load balancer.

5. Follow the on-screen instruction to complete the creation of a load balancer.

6. Define Load Balancer

 Give Load Balancer a suitable name.

 Select the VPC group under “Create LB Inside”, this should allow access

to port 80 from everywhere.

 Select “Enable advanced VPC configuration” and select the available

subnets.

7. Assign Security Groups

A security group can be a default group or one created by the user with neces-

sary configurations, but it should be the same throughout the implementation.

This example uses a security group that allows access to port 80 from every-

where and port 22 only to Administrator’s IP.

8. Configure Security Settings

No changes are required, accept the default settings and proceed further.

9. Configure Health Check

This is one of the very critical stage and it requires ping protocol and port and

path for the application under consideration. This implementation uses HTTP as

a ping protocol, port 80 and ping path “/” which specifies the root of the web ap-

plication as shown in Figure 44.

 Figure 44. Configure Health Check

66

Figure 44 illustrates the options required to configure health checks. Following

advanced options are required to be configured according to the application

needs and are listed below:

 Response Timeout = Time to wait when receiving a response from the

health check.

 Interval = Amount of time between health checks (5 secs - 300 sec).

 Unhealthy Threshold = Number of consecutive health check failures be-

fore declaring an EC2 instance unhealthy.

 Healthy Threshold =Number of consecutive health check successes be-

fore declaring an EC2 instance healthy.

10. Add EC2 Instances

At this stage, the instances that would be part of load balancer can be selected,

but this can be done later on as well. For this implementation, the EC2 instance

was added after configuring the auto scaling policies. Following two properties of

the “Availability Zone Distribution” needs some introduction and described as:

 Enable Cross-Zone Load Balancing = Cross-Zone Load Balancing dis-

tributes traffic evenly across all the back-end instances in all Availability

Zones.

 Enable Connection Draining = The number of seconds to allow existing

traffic to continue flowing for the X number of seconds provided by admin-

istrator. When Connection Draining is enabled, Auto Scaling will wait for

outstanding requests to complete before terminating instances [87].

11. Add Tag

An optional step, if some special tags need to be associated with the EC2 in-

stances.

12. Review

Summary of load balancer is now presented for review. Click on “Create” if eve-

rything is correctly set, otherwise click on “previous” button to make any adjust-

ment.

13. Associate Load Balancer to Auto Scaling Group

Auto Scaling Group  Details  Edit

14. Select this newly created Load Balancer and save settings, as shown in Figure

45, given below.

67

 Figure 45. Associate Load Balancer to Auto Scaling Group

Figure 45 describes how to associate a load balancer with the auto scaling group.

Click on “Save” to actually commit the required modifications.

5.9 Performance Measurement Tool (JMeter)

Amazon Cloud Platform was used for the actual implementation and local environment

was used to conduct the experiments. Apache JMeter was installed on the local machine

(on premise), known as a management node or a technician machine as described in

section 4.7. JMeter is a Java-based tool for performance measurement and benchmark-

ing of the web servers. A JMeter test plan consists of a number of elements that consti-

tute a test plan in JMeter. Figure 46 describes the anatomy of a JMeter test [59, Anatomy

of a JMeter test].

68

Figure 46. The Anatomy of a JMeter Test [59].

As depicted in Figure 46, there are several components that help to generate data to a

test plan (thread group, timer, assertions) and these built-in components helped to ex-

tract and save responses (listeners). A test plan is the core element of a JMeter script

that acts as a placeholder for the other vital components such as threads, configuration

elements, timers, pre-processors, postprocessors, assertions, and listeners.

To generate heavy workloads, thread groups are used which represents the number of

users (threads in JMeter terminology) that JMeter uses for the execution of a test plan

and how long it will take to initialize each user request (Ramp-Up Period). Regardless of

the number of threads (users), each thread executes a test plan independently from other

threads. Samplers are built-in components that send requests to the server and record

the response. JMeter is equipped with following samplers:

 HTTP request.

 JDBC request.

 LDAP request.

 SOAP/XML-RPC request.

 Web service (SOAP) request.

 FTP request.

69

Listeners are very useful because they help to gather results from a running test and can

save these results in a CSV or XML file for further analysis. There is no restriction in the

order of precedence for the listeners. They can be added anywhere in a test plan but

important to know is that they will collect data only from those elements that are below

their level.

5.10 Response Time Assertion

Assertions are one of the most significant components that are frequently used to verify

the expected performance of the application by calculating the response time received

from the target server. For instance, duration assertion tests if the response was received

within a specified time frame (milliseconds). Results of response assertion can either be

“success” (if the response is within the time frame) or “fail” (if the response in not within

the time frame). For example, take an example of 300 milliseconds as a test case criteria

and send requests to JMeter. If response time is within 3 seconds, the test is passed

otherwise it will return fail. Figure 47 depicts this concept.

 Figure 47. Response Time Assertion

Figure 47 illustrates the concept of the duration assertion, also known as response time

assertion. Exploring all JMeter elements and test plan components in detail is out of the

scope of this project. For more information on JMeter elements and test composition,

[59] provides useful information on this topic and official product documentation is also

a good source of information [88].

70

5.11 Creating Performance Test Plan in JMeter

To compare the performance of the proposed system with the legacy setup, several ex-

periments were conducted. As stated before, JMeter was used to benchmark the web

application. JMeter tests were used to generate heavy load by simulation concurrent

user requests. Figure 48 shows the setup of heavy load simulation with JMeter.

Figure 48. High Load Simulation with JMeter

As depicted in Figure 48, JMeter simulates user requests and tracks the HTTP re-

sponses for the WordPress web allocation.

Following steps were required to create a performance test plan in JMeter.

Add Thread Group

1. Start JMeter in GUI Mode

2. Select Test Plan

3. Add Thread Group: Right click on the Test Plan  Add  Thread (Users) 

Thread Group, as shown in below figure.

71

 Figure 49. Add Thread Group

Figure 49 illustrates the graphical representation of the JMeter Thread Group.

4. Enter the Thread Properties according to desired testing criteria, as shown in the

following figure.

72

 Figure 50. Thread Group Properties

A number of Threads (users), Ramp-Up Period and Loop count are the properties

of Thread (which represents users), as shown in Figure 50 and described as:

 Number of Threads: 100 (Number of users connects to target website: 100)

 Ramp-Up Period: 50 (delay before starting new user)

 Loop Count: 2 (Number of time to execute testing)

Adding JMeter Elements

1. HTTP Request Default

Right-click on the Thread Group and selecting:

Add  Config Element  HTTP Request Defaults.

2. In the HTTP Request Defaults control panel, enter the Website name under test.

3. HTTP Request

Right-click on Thread Group and select:

Add  Sampler  HTTP Request.

73

4. Add Graph Results

Right-click Test Plan, Add  Listener  Graph Results

Right-click Test Plan, Add  Listener  View Results in Table

Right-click Test Plan, Add  Listener  View Results in Tree

Right-click Test Plan, Add  Listener  Response Time Graph

Right-click Test Plan, Add  Listener  Summary Report

Add Duration Assertion

1. Right-clicking on the Thread Group and select:

Add  Assertion  Duration Assertion

2. This should bring up Duration Assertion details pane.

3. Enter the time in milliseconds in the Duration Assertion field.

Execute Test

JMeter test can be executed by clicking on the Play button or keyboard shortcut key

combination (Ctrl + R), as depicted in the Figure 52 below.

 Figure 51. Executing JMeter Test

Figure 52 shows the available options to execute a JMeter test from the graphical user

interface (GUI).

74

Test results started to populate the result area providing an opportunity to view the re-

sults in real time. However, due to huge resource consumption with the graphical user

interface, a recommended approach to execute the test is to use command line mode of

the JMeter [59].

5.12 JMeter Concurrency Level and Best Practices

A thread group controls the threads (users) that will be created by JMeter to simulate

simultaneous users. Each thread represents one user using the application under test.

If there are two or more Thread Groups in the same Test Plan, each Thread Group will

execute completely independently from each other. Multiple Thread Groups within the

same Test Plan simulate groups of concurrent, individual connections to the target web

server [90].

According to the JMeter user manual and best practices, the hardware capabilities and

Test Plan design will both impact the number of threads that can run effectively with

JMeter.

JMeter has an option to delay thread creation until the thread starts sampling, i.e.
after any thread group delay and the ramp-up time for the thread itself. This allows
for a very large total number of threads, provided that not too many are active
concurrently [91].

Ramp-Up Period defines how long it will take JMeter to get all threads running.

For example, if there are 100 threads and a ramp-up period of 50 seconds, then each

successive thread will be delayed by 0.5 second (50 / 100). In 50 seconds, all threads

would be up and running. If Ramp-Up Period is configured to 0, JMeter will start running

immediately without any delays. If there are more than one user, having Ramp-Up Period

to 0 will cause all users to start running immediately and simultaneously. Starting all

threads at once may cause the application to crash due to instance and rapid load. This

is why, Ramp-Up Period of 0 is not considered a good approach specially when testing

with large number of users (threads). Ramp-Up Period also should not be too high as it

makes the throughput indicator void. The best policy is to make the Ramp-Up Period

long enough to avoid large workload as the test begins, but short enough to allow the

last one to start running before finishing the first one. Also, for the larger workloads, if

Ramp-Up Period is 0, the web application may consider the JMeter requests as denial-

of-service attack (DoS attack) because all users are started at once. DoS attack is a

75

process to make a server overloaded by sending tremendous amount of user requests

with intentions to make a network resource unavailable to its intended users. For testing

purposes, Ramp-Up Period can be configured same as the number of Threads, this will

result in 1 second delay (Ramp-Up Period / Threads) before facilitating next thread and

can be adjusted according to the specific needs [90].

Throughput is one of the important performance indicator when evaluating the applica-

tion performance. It signifies number of transactions or requests that can be made in a

given period of time. It is a useful measurement to check the load capacity of the server.

Though one should not purely depend on the throughput metrics and it needs to viewed

in conjunction with latency and response times [92].

76

6 Results and Analysis

This chapter describes what was found using the performance evaluation tool (JMeter)

as described in the Implementation chapter, section 5.11. Several experiments were

conducted to collect the desired data on both the legacy system and the (proposed)

highly scalable system. Following sections describe experiment workflows, analyzed

data and compiled results as well as the description of the experimental environment.

6.1 Experiment Environment

Amazon Cloud Platform was used for the actual implementation (chapter 5) and local

environment was used to conduct the tests by simulating workloads. This local environ-

ment is represented by the management node also known as technician machine (de-

scribed in section 4.7) and was used to conduct the experiments with JMeter (described

in 5.9). The same management node was also used to create the performance test plans

in JMeter (section 5.11) and save the experiment results in CSV file format. Following

figure depicts the experimental environment of the legacy system.

Figure 52. Experiment Environment of the Legacy System

As shown in Figure 52, JMeter is installed and configured on the management node that

was used to perform the experiments to test the performance of the legacy system by

applying different workloads. The legacy system comprises on a single machine and

running Apache Web Server to host WordPress web application.

Next stage was to conduct the same experiments with the scalable cloud platform. Figure

53 illustrates the experimental environment for the scalable cloud platform.

77

Figure 53. Experiment Environment of the Scalable Cloud Platform

As depicted in Figure 53, the web application is running on cloud platform and elastic

cloud load balancer, auto scaling policies and monitoring services are configured for the

multiple virtual machine instances. As with the legacy system, the management node

was used to perform the experiments as well as save the results. Details of the applied

workflow is available in the following section.

6.2 Experiment Workload and Data Collection

To evaluate the performance of the proposed system, different experiments were con-

ducted by simulating heavy workloads against the web server. The same workloads were

applied to the existing (legacy) system that was used to identify the scalability problems

in the legacy system (described in chapter 2). Table 6 provides a summary of the exper-

iment workloads.

78

Table 6. Summary of the Experiment Workloads.

Summary of the Experiment Workloads

Total Simulated Users 25 50 100 500 1,000 2,000

Number of Threads (Users) 25 50 100 500 1,000 2,000

Ramp-Up Period (Seconds) 0 0 0 0 100 500

Loop Count 1 1 1 1 1 1

Duration Assertion (Milliseconds) 3000 3000 3000 3000 3000 3000

Table 6 presents the experiment workloads that were applied to the legacy system (and

the proposed (scalable) system. Following elements constitute the experiment work-

loads:

Number of Threads = The number of concurrent users accessing the web application.

Loop Count = Number of time to execute the test.

Duration Assertion = Represents time in milliseconds to set the criteria if the response

was received within the acceptable time frame (as described in section 5.10, Response

Time Assertion).

Ramp-Up Period = Ramp-Up Period represents the time in seconds that tell JMeter to

delay before facilitating next user. The following figure represents the idea of the ramp-

up time.

79

Figure 54. Ramp-Up Period Representation

Figure 54, depicts the idea of Ramp-Up Period. Ramp-Up Period tells JMeter to wait for

X seconds before creating a new user request. For instance, the first entry in the exper-

iment workload represents 0 as Ramp-Up Period and the number of threads (users) are

25. This tells JMeter to delay 0 second before starting new user (0 / 25 =0), meaning all

Threads will initialize simultaneously.

If the Ramp-Up Period is 0, JMeter will initialize all users at once (concurrently) without

any delays. As described in section 5.12, having 0 Ramp-Up Period for the large number

of users is not considered a good practice because it may cause the application to crash

by starting all users as once. This is the reason that non-zero Ramp-Up Period is con-

figured for the 1,000 and 2,000 users (100 and 500 respectively). When processing 1,000

Threads, JMeter waits for the 0.10 seconds before starting the new Threads (100 /

1,000). The last workload is to generate 2,000 users and in this case JMeter waits for

the 0.25 seconds before starting new threads (500 / 2,000). With these workloads mmul-

tiple thread within the same Test Plan simulate groups of concurrent, individual connec-

tions to the web application. Concurrency is still available even a non-zero Ramp-Up

Period is defined because JMeter waits to start the new thread (according to time spec-

ified by Ramp-Up Period) while previously started thread is still under progress. For

2,000 users, JMeter starts the first thread and wait for the 0.25 seconds (500 / 2,000) to

start the second thread while the previously started thread is still running. It is also prac-

tical to have large number of web requests but not necessarily that all uses should re-

quest the resources exactly the same time (there will be delays in milliseconds).

80

The number of time the test is repeated is specified by the Loop Count (Threads x Loop

Count). If a Loop Count is configured to 2 and the Threads are 25, then JMeter will sim-

ulate the 50 user request (25 x 2 = 50). The applied workloads in this implementation is

configured to repeat only once as represented by 1 in Table 6.

Data Collection with JMeter

JMeter can represent results in table, tree and graph formats. When using JMeter in

graphical mode (GUI), live results can observe as well. Figure 55 shows an example of

a JMeter test illustrating the success and failure of the response time criteria.

Figure 55. Experiment Results in Tree Format in JMeter

Figure 55 depicts the HTTP requests results based on the assertion time. If the HTTP

request was facilitated within the defined criteria then results were marked as successful,

otherwise as fail. Green and red colors were used to distinguish between the success

and failures of the HTTP requests. Similarly, Figure 56 depicts the JMeter output in the

table format.

81

Figure 56. Experiment Results in Table Format in JMeter

In Figure 56 JMeter presents results in table format and marked the “Status” in green

and red colours to represent the success and failure of the HTTP requests with details

about the sample number, start time and thread name. JMeter also provides the “Sum-

mary Report” of the experiments that includes throughput, error, and standard deviation

as shown in the Figure 57.

Figure 57. JMeter Summary Report

82

Figure 57 shows “Summary Report” generated by JMeter. JMeter provides options to

save these results for future analysis by writing the results in CSV-format (Comma Sep-

arated Values) and plotting graphs of the experiment results. The user can select the

location where the CSV file should be saved. Similarly, JMeter can plot graphs from the

test results with a customized time interval.

6.3 Results

This section describes and analyzes the findings based on different experiments. Word-

Press web application was deployed on the Amazon cloud platform. Performance com-

parison of the proposed solution with the traditional (legacy) infrastructure was made

based on these experimental results.

The ability of a web server to handle the heavy load was represented by throughput. As

mentioned in section 5.12, throughput represents the transactions or requests that can

be made in a given period of time. It is important to note that one should not purely

depend on the throughput metrics and it needs to viewed in conjunction with latency and

response times. Response time and business SLA of 3 seconds was represented by

Assertion Time in JMeter. JMeter calculates the error rate and present total percentage

of the error in Summary Report together with the Throughput (as shown in Figure 57).

This means that high throughput and reduced percentage of the error indicates the high

performance of the system. Similarly, if a system shows high throughput but high error

rate as well, this identifies decline in the system performance because it took too long to

process the user requests.

Table 7 represents the results of the performance of the web application running on the

legacy system (non-scalable) with experiment workloads as mentioned in section 6.2.

83

Table 7. Experiment Results of Legacy System

Table 7 represents the experimental results of the performance of the web server hosted

on a single computer (i.e. legacy implementation).

The legacy system continued to decline in the performance with the increase in the ap-

plied workload. The applied workload for the first 25 users resulted in an overall error

rate of 40%, representing those requests that were failed to respond in a timely manner

(3000 milliseconds). The web server performance continued to decline as 74.30% of the

accumulated error was recorded when simulated 1,000 users. Eventually, the web server

almost stopped responding when applied workload of 2,000 users as represented by

96.65% error rate and Throughput of 9.6, as shown in Table 7. The legacy system was

subject to decline in the performance with the increase in the workloads, causing the

unavailability of the web application and service termination.

After collecting the results from the legacy system, the same workloads were applied to

the proposed solution (scalable) hosted on cloud platform adhering to the scalability met-

rics and Elastic Load Balancer (ELB). This load balancer dynamically distributed the load

on registered EC2 instances (virtual machines) and configured the new virtual ma-

chine(s) according to the auto-scaling policies (as described in chapter 5). Results of the

Experiment Results of Legacy System (Non-Scalable)

Total Simulated Users

(Threads)

Assertion Time

(Milliseconds)

Throughput

(Per second)

Error

(%)

1 – 25 3000 5.0 40.00

1 – 50 3000 6.8 74.00

1 – 100 3000 14.3 86.00

1 – 500 3000 17.1 97.00

1 – 1,000 3000 9.8 74.30

1 – 2,000 3000 9.6 96.65

84

experiments after deploying the web application with the scalable cloud platform are pre-

sented in Table 8.

Table 8. Experiment Results of the Scalable Cloud Platform

Table 8 represents the results of the experiments after deploying the web application

using the scalable cloud platform.

Compared to the results of the cloud implementation, as represented in Table 8, signifi-

cantly better results were observed as the error rate for the first 25 users was 0.0 % (for

legacy system it was 40.0 %). For the 50 users, an error of 32.0 % was logged, repre-

senting those request that failed the SLA of 3000 milliseconds (as presented in Table 8).

This minor error did not cause the web application to decline in the performance and was

considered as an neglectable error when comparing to the legacy system (Table 7),

where 74.0 % of the accumulated error was logged for the 50 users. For the 500 users

with Ramp-Up Period of 0, the scalable system produced the error rate of 92.80 % which

is too high as well. However, this can be controlled by increasing the number of EC2

instances to produce the lower error rate. This implementation used 3 instances as “min-

imum” that can be increased by a cloud administrator to meet the business needs.

The scalable system resulted in an error of 0.0 % when processing the 1,000 user re-

quest with a Ramp-Up Period of 100. While the legacy system was subject to 74.30 %

of the error. Similarly, the scalable system showed 0.0 % error for the 2,000 users (with

Experiment Results of the Scalable Cloud Platform

Total Simulated Users

(Threads)

Assertion Time

(Milliseconds)

Throughput

(Per second)

Error

(%)

1 – 25 3000 10.2 0.00

1 – 50 3000 11.6 32.00

1 – 100 3000 16.9 59.00

1 – 500 3000 4.6 92.80

1 – 1,000 3000 10.0 0.00

1 – 2,000 3000 4.0 0.00

85

Ramp-Up Period of 500) while the legacy system produced 96.65 % of error when pro-

cessing the same workload.

6.4 Scalability Analysis

With auto-scaling policies and a scaling group, it was possible to limit the number of the

nodes to be provisioned (EC2 Instances) by defining the minimum and maximum in the

auto-scaling configuration. The resources defined as “minimum” were present all the time

while the additional resources continued to become available as soon as the increase in

the current demand was discovered. This increase in the current demand was simulated

by generating heavy workloads (described in section 6.2). This process continues until

the “maximum” number of the resources to be provisioned has been reached.

This implementation was comprising of the 3 (minimum) and 9 (maximum) number of the

EC2 instances as described in section 5.7. Table 9 presents the number of the EC2

instances that were participating to manage the increased workload.

Table 9. Scalability Analysis of the Cloud Platform

An auto-scaling event was triggered when a scalability metric reached the threshold limit

for a specific time period as defined in the scaling policy.

For the first 1,000 users, only 3 virtual machines (EC2 instances) were servicing the

requests (the minimum number of instances the Auto Scaling group should have at any

Scalability Analysis of the Cloud Platform

Total Simulated Users

(Threads)

Virtual Machines

(EC2 Instances)

Assertion Time

(Milliseconds)

Throughput

(Per second)

Error

(%)

1 – 25 3 3000 10.2 0.00

1 – 50 3 3000 11.6 32.00

1 – 100 3 3000 16.9 59.00

1 – 500 3 3000 4.6 92.80

1 – 1,000 3 3000 10.0 0.00

1 – 2,000 9 3000 4.0 0.00

86

time). However, for the increased workload (2,000), the number of EC2 instances in-

creased to 6 and continued to increase until a limit of the maximum number of EC2

Instances reached as represented in Table 9. This shows that no more virtual machines

were provisioned because the maximum limit of the EC2 instances that a scaling policy

can provision had been reached. However, the size of the scaling group can be in-

creased (or decreased) whenever required to adopt the new requirements.

Figure 58. Defining Minimum and Maximum Number of EC2 Instances

Figure 58 represents the configuration of the minimum and maximum number of EC2

Instances. This implementation uses all available availability zones (eu-west-1b, eu-

west-1c, eu-west-1a) to make application highly available.

These newly created EC2 instances were scaled out automatically i.e. decommissioned

with the decline in the resource demand. Before retiring a particular EC2 instance, auto-

scaling service checks and waits until all open connections have been closed. Figure 59

represents a partial screenshot of the Auto Scaling Activity History.

87

Figure 59. Auto Scaling Activity History

As depicted in Figure 59, termination of two instances is in progress while one is marked

as “Waiting for the ELB connection draining”. Connection Draining allows existing re-

quests to complete before the load balancer shifts traffic away from a deregistered or

unhealthy back-end instance. This value of the Connection Draining is configurable and

can be adjusted any time by selecting the appropriate load balancer as shown in below

figure.

Figure 60. Connection Draining Configuration

Figure 60 represents the Connection Draining configuration which defines the number of

seconds to allow existing traffic to continue flowing for the X number of seconds provided

by administrator.

88

Table 10 shows the time in seconds to terminate the EC2 instances when there was a

decline in the resource demand.

Table 10. Scale Out Time of EC2 Instances

Scale Out Time (EC2 instances)

Termination Start Time
(UTC + 1)

Termination End Time
(UTC + 1)

Cause of Termination
(Description)

08:32:10 08:33:50 A monitor alarm ReducedResourceUti-
lization in state ALARM triggered policy
ReducedResourceUtilization changing
the desired capacity from 9 to 6.
An instance was taken out of service in
response to a difference between de-
sired and actual capacity, shrinking the
capacity from 6 to 3.

08:32:10 08:33:29 A monitor alarm ReducedResourceUti-
lization in state ALARM triggered policy
ReducedResourceUtilization changing
the desired capacity from 9 to 6.
An instance was taken out of service in
response to a difference between de-
sired and actual capacity, shrinking the
capacity from 6 to 3.

08:32:10 08:33:58 A monitor alarm ReducedResourceUti-
lization in state ALARM triggered policy
ReducedResourceUtilization changing
the desired capacity from 9 to 6.

08:33:09 08:34:32 A monitor alarm ReducedResourceUti-
lization in state ALARM triggered policy
ReducedResourceUtilization changing
the desired capacity from 6 to 3.
An instance was taken out of service in
response to a difference between de-
sired and actual capacity, shrinking the
capacity from 6 to 3.

08:33:09 08:34:28 A monitor alarm ReducedResourceUti-
lization in state ALARM triggered policy
ReducedResourceUtilization changing
the desired capacity from 6 to 3.
An instance was taken out of service in
response to a difference between de-
sired and actual capacity, shrinking the
capacity from 6 to 3.

 08:33:09 08:34:49 A monitor alarm ReducedResourceUti-
lization in state ALARM triggered policy

89

With auto-scaling policies, the previously provisioned resources (EC2 Instances) were

terminated dynamically with the decline in the resource demand, as presented in Table

10. With dynamic scaling, the proposed solution tends to be cost-effective as the user of

the cloud platform is charged only for the consumed resources for a certain amount of

the time. Also, the increase or decrease in the resource demand was executed without

the intervention of the cloud administrator.

7 Discussions and Conclusions

A number of experiments were performed to evaluate the performance of the proposed

cloud-based solution (scalable) and comparing the results with the legacy infrastructure

provisioning approach. The same workloads were applied to both systems by simulating

concurrent user requests (as described in section 6.2). The results presented in chapter

6 showed that the legacy system was not capable to manage the heavy load and the

performance declined rapidly with increasing total number of simulated users. Eventu-

ally, the system almost stopped responding and a decrease in the system throughput

was observed. This behavior reduced the quality of the user experience because the

resources users were requesting were not responding (service unavailable). When com-

paring to the cloud platform, significantly improved results were observed when the same

web application was deployed using the cloud platform; consisting on the virtual machine

instances, a cloud load balancer, and auto-scaling policies.

7.1 Conclusion

The main objective of this research project was to design, implement and evaluate a

scalable cloud architecture to host a web application (WordPress). This study also ex-

amined the scenarios of scaling up (to provision more resources) and scaling down (ter-

minating the unwanted resources). Experiments were conducted to solve the research

problem, answer the research question, and evaluate the proposed solution. Required

ReducedResourceUtilization changing
the desired capacity from 6 to 3.
An instance was taken out of service in
response to a difference between de-
sired and actual capacity, shrinking the
capacity from 6 to 3.

90

data were collected with JMeter; a platform-independent, open source, and very com-

monly used performance measurement tool.

Comparison of Table 7 and Table 8 (chapter 6) showed that overall performance of the

web application can be improved with the scalable cloud platform without a decline in

the performance and maintaining the budget by paying only for the consumed resources.

With the traditional approach of infrastructure provisioning, an existing system may be

upgraded to some extent both in terms of hardware and software to increase the capacity

of the system. Eventually, there comes a point when no more upgrades are possible. For

instance, the legacy system had two memory slots which were already in use and it was

impossible to improve the system performance. It is also important to note that the sys-

tem must be powered off during maintenance which results in service interruption as

well.

For dynamic nature of web applications, there may be seasonal high workloads, i.e. the

application is highly demanded only a few occasions during a year. This causes the re-

sources of the legacy system to be underutilized and remains in the idle state until an

increase in demand is taking place. This approach results in an overall expensive system

due to over-provisioning and underutilization of the compute resources.

The expected results were achieved with the proposed solution using scalable cloud

platform. The implemented scaling policies comprises on the number of the virtual ma-

chines that should be available at a given time. It was possible to define the maximum

number of the virtual machine instances to be initialized dynamically with the increase in

the current demand. Similarly, a mechanism to terminate these additional resources was

defined with the decline in the current demand. With these features the overall cost can

be reduced as cloud service provider only charge for the consumed resources. This an-

swers the research question that using a cloud platform, a web application can handle

high workload dynamically by allocating additional resources and decommissioning

these resources when no longer required. To provide user experience with good quality,

connection draining was defined (section 5.8) that waits for the current transactions to

complete before retiring the resources which were currently servicing the user request.

Connection draining defines the number of seconds to allow existing traffic to continue

flowing the number of seconds provided by administrator.

91

The proposed solution is generic in nature that may be used in any enterprise aiming to

build IT infrastructure in the cloud and make their web services more reliable. This ap-

plies to the dynamic nature of web traffic or when the company is going to start a new

business where the expected number of users or web traffic is not known in ad-

vance. The proposed solution presented in this thesis was implemented with EC2 in-

stance type T2 Micro, eligible to use as free for 12 months under free tier membership.

The results may vary if another instance type would be used to replicate this implemen-

tation. Similarly, the results would be different if scaling metrics are changed. For in-

stance, this implementation used a duration assertion (response time) as success criteria

of 2 seconds (2000 milliseconds). Amazon cloud services are paid services; however, it

was possible to perform these experiments under the student license offered by AWS

Educate and Student Developer Pack from GitHub Education. This educational package

was worthy enough to perform this implementation and experiments. To use this pro-

posed solution in a production environment, it may require a paid subscription or subject

to incur charges after the expiration of the free tier. Open source software was used

during experiments and testing, which were free under GNU General Public License. Le-

gal and governmental issues were not discussed in this project as this study did not

specifically involve a particular business or an organization. When implemented in a

production environment, it may require exposing the company information to the legal

and national authorities due to local cyber laws and the nature of the business.

7.2 Future Work

Further research may be carried out to broaden the performance of a web application for

unknown users with an additional caching tier in the reference architecture for the scal-

able web application. The existing solution was implemented with auto-scaling service

and a cloud load balancer via AWS console web page. Additional exploration can be

performed to automate this implementation with scripting languages and AWS command

line tools. Information security is another major area of consideration that deals with the

security architecture of the web application. With the increase in the online traffic, there

is an increase in the information security risks as well. Financial institutes, consumer

banks, e-commerce business are focusing on the security and privacy of the information.

The proposed solution can be studied from the information security perspectives to de-

sign highly scalable and secure web applications.

92

Besides expending the research area, a comparison of the multiple cloud service provid-

ers may be performed as well. For example, the same implementation can be evaluated

with Microsoft Azure cloud platform and compare the performance of web server running

on multiple cloud platforms to perform a cost analysis.

References

[1] D. Rountree, I. Castrillo and I. Books24x7, The Basics of Cloud Computing: Un-

derstanding the Fundamentals of Cloud Computing in Theory and Practice.

2014;2012; 2013.

[2] "What is Cloud Computing? - Amazon Web Services", Amazon Web Services,

Inc., 2017. [Online]. Available: https://aws.amazon.com/what-is-cloud-compu-

ting/. [Accessed: 20- Dec- 2017].

[3] P. Mell and T. Grance, The NIST Definition of Cloud Computing, National Insti-

tute of Standards and Technology (NIST), Gaithersburg, MD, 800–145, 2011.

[4] Rosenberg and A. Mateos, The cloud at your service. Greenwich, Conn.: Man-

ning, 2011.

[5] D. C. Marinescu et al, "An approach for scaling cloud resource management,"

Cluster Computing, vol. 20, (1), pp. 909-924, 2017.

[6] R. Mietzner et al, "Combining different multi-tenancy patterns in service-oriented

applications," 2009 IEEE International Enterprise Distributed Object Computing

Conference, 2009. DOI: 10.1109/EDOC.2009.13.

[7] B. Tang, R. Sandhu and Q. Li, "Multi‐tenancy authorization models for collabo-

rative cloud services," Concurrency and Computation: Practice and Experi-

ence, vol. 27, (11), pp. 2851-2868, 2015.

[8] J. Zhu et al, "Towards bandwidth guarantee in multi-tenancy cloud computing

networks," 2012 20th IEEE International Conference on Network Protocols

(ICNP), 2012. DOI: 10.1109/ICNP.2012.6459986.

[9] S. Heinzl and C. Metz, "Toward a cloud-ready dynamic load balancer based on

the apache web server," 2013 Workshops on Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises, 2013. DOI: 10.1109/WETICE.2013.63.

[10] T. Baars et al Heusden, "Chargeback for cloud services", Future Generation

Computer Systems, vol. 41, pp. 91-103, 2014.

[11] Introduction to Cloud Computing: IEEEx: CloudIntro.x, “Part 2: Dynamic Interac-

tions and Computing Architectures,” May 14, 2016. [Online]. Available:

https://courses.edx.org/courses/course-v1:IEEEx+CloudIntro.x+2T2016/course/

[Accessed: Dec. 25, 2017].

[12] “The Cloud at Your Service - Documents", Docslide.net, 2017. [Online]. Availa-

ble: https://docslide.net/documents/the-cloud-at-your-service.html. [Accessed:

25- Dec- 2017].

[13] "My i:MOOC", Imooc.co.kr, 2017. [Online]. Available: http://www.imooc.co.kr/lo-

cal/main/study_common_micro.php?id=2325§ion=7040&module=23508.

[Accessed: 25- Dec- 2017].

[14] "Figure 15: IaaS Provider/", yumpu.com, 2017. [Online]. Available:

https://www.yumpu.com/en/document/view/14248355/cloud-computing-synop-

sis-and-recommendations/51. [Accessed: 25- Dec- 2017].

[15] A. Molnar, M. Drongelen, P. Subramanian, V. Harsh, R. Messier and R. Sam-

mut, "NIST Cloud Computing Synopsis and Recommendations | Cloud Compu-

ting | Platform As A Service", Scribd, 2017. [Online]. Available:

https://www.scribd.com/document/95221991/NIST-Cloud-Computing-Synopsis-

and-Recommendations. [Accessed: 25- Dec- 2017].

[16] Introduction to Cloud Computing: IEEEx: CloudIntro.x, “Part 2: Dynamic Interac-

tions and Computing Architectures PaaS Dynamics and Software Stack Con-

trol,” May 14, 2016. [Online]. Available: https://courses.edx.org/courses/course-

v1:IEEEx+CloudIntro.x+2T2016/course/ [Accessed: Dec. 25, 2017].

[17] A. Pokahr and L. Braubach, "Elastic component‐based applications in PaaS

clouds, “Concurrency and Computation: Practice and Experience, vol.

28, (4), pp. 1368-1384, 2016.

[18] "Chapter 14: Cloud Computing Security Essentials and ... - NIST Web

Site", Ws680.nist.gov, 2017. [Online]. Available: http://ws680.nist.gov/publica-

tion/get_pdf.cfm?pub_id=919233. [Accessed: 25- Dec- 2017].

[19] "01-2-Service_and_Deployment_Infrastructure_and_Con-

sumer_View", Ki.fpv.ukf.sk, 2017. [Online]. Available:

http://www.ki.fpv.ukf.sk/~mdrlik/cloud/01-2-Service_and_Deployment_Infra-

structure_and_Consumer_View.txt. [Accessed: 25- Dec- 2017].

[20] Introduction to Cloud Computing: IEEEx: CloudIntro.x, “Part 2: Dynamic Interac-

tions and Computing Architectures SaaS Interaction Dynamics and Software

Stack Control,” May 14, 2016. [Online]. Available:

https://courses.edx.org/courses/course-v1:IEEEx+CloudIntro.x+2T2016/course/

[Accessed: Dec. 25, 2017].

[21] K. Tam and R. Sehgal, "A cloud computing framework for on-demand forecast-

ing services," in 2014. DOI: 10.1007/978-3-319-11167-4_35.

https://courses.edx.org/courses/course-v1:IEEEx+CloudIntro.x+2T2016/course/#block-v1:IEEEx+CloudIntro.x+2T2016+type@chapter+block@033a181e6aab4a4ab3fa4f5fd3019cc6
https://courses.edx.org/courses/course-v1:IEEEx+CloudIntro.x+2T2016/course/#block-v1:IEEEx+CloudIntro.x+2T2016+type@chapter+block@033a181e6aab4a4ab3fa4f5fd3019cc6
https://courses.edx.org/courses/course-v1:IEEEx+CloudIntro.x+2T2016/course/#block-v1:IEEEx+CloudIntro.x+2T2016+type@sequential+block@5dd914512a404385b0a36de2d33e9907
https://courses.edx.org/courses/course-v1:IEEEx+CloudIntro.x+2T2016/course/#block-v1:IEEEx+CloudIntro.x+2T2016+type@sequential+block@5dd914512a404385b0a36de2d33e9907

[22] T. Erl, R. Puttini and Z. Mahmood, Cloud Computing: Concepts, Technology &

Architecture. (1st ed.) 2013.

[23] B. Schultz, "PUBLIC VS. PRIVATE CLOUDS WHY NOT BOTH?" Network

World, vol. 28, (7), pp. 20, 2011.

[24] K. Jamsa, Cloud computing. Burlington: Jones & Bartlett Learning, 2013.

[25] M. v. d. Berg, Managing Microsoft Hybrid Clouds. (1st ed.) 2015.

[26] Portnoy and I. Books24x7, Virtualization Essentials. (1. Aufl. ed.) 2012.

[27] G. Popek and R. Goldberg, "Formal requirements for virtualizable third genera-

tion architectures", Communications of the ACM, vol. 17, no. 7, pp. 412-421,

1974.

[28] R. Dittner and D. Rule Jr, Best Damn Server Virtualization Book Period. (1st

ed.) 2011.

[29] D. Kusnetzky, Virtualization: A Manager's Guide. (1st ed.) 2011.

[30] Z. H. Shah, Windows Server 2012 Hyper-V: Deploying the Hyper-V Enterprise

Server Virtualization Platform. (1st ed.) 2013.

[31] B. Wilder, Cloud architecture patterns. Sebastopol, Calif.: O'Reilly, (1st ed.)

2012.

[32] J. R. Hauser and G. L. Urban, From Little's Law to Marketing Science: Essays

in Honor of John D.C. Little. 2016.

[33] John D. C. Little, "Little's Law as Viewed on Its 50th Anniversary," Operations

Research, vol. 59, (3), pp. 536-549, 2011.

[34] S. K. Shivakumar, Architecting high performing, scalable and available enter-

prise web applications, 1st ed. Waltham, MA: Elsevier, 2015.

[35] Amazon CloudWatch User Guide. Amazon Web Services, 2017. [Online]. Avail-

able:https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-

ug.pdf#CW_Support_For_AWS. [Accessed: 12- Nov- 2017]. pp. 104-111

[36] M. Handa and S. Sharma, "Cloud Computing: A study of cloud architecture and

its patterns," International Journal of Engineering Research and Applica-

tions, vol. 5, (5), pp. 11-16, 2015.

[37] "WordPress.com: Create a website or blog", WordPress.com, 2017. [Online].

Available: https://wordpress.com. [Accessed: 12- Nov- 2017].

[38] The Apache Software Foundation. (2017). Welcome! - The Apache HTTP

Server Project. [online] Available at: https://httpd.apache.org/ [Accessed 3 Nov.

2017].

[39] J. M. Gallaugher and S. C. Ramanathan, "Choosing a Client/Server Architec-

ture: A Comparison of Two-and Three-Tier Systems," Information Systems

Management, vol. 13, (2), pp. 7-13, 1996.

[40] C. Kopparapu, Load balancing servers, firewalls, and caches. New York: Wiley,

2002.

[41] M. Syme and P. Goldie, Optimizing Network Performance with Content Switch-

ing: Server, Firewall, and Cache Load Balancing. (First ed.) 2003;2004.

[42] Amazon Web Services, Inc. (2017). Amazon Web Services (AWS) - Cloud

Computing Services. [online] Available at: https://aws.amazon.com/ [Accessed

3 Nov. 2017].

[43] M. Arregoces et al, Data Center Fundamentals: Understand Data Center Net-

work Design and Infrastructure Architecture, Including Load Balancing, SSL,

and Security. 2004.

[44] P. Killelea, Web Performance Tuning. China: 2002.

[45] Amazon Web Services, Inc. (2017). Elastic Compute Cloud (EC2) – Cloud
Server & Hosting – AWS. [online] Available at: https://aws.amazon.com/ec2/
[Accessed 3 Nov. 2017].

[46] Amazon Web Services, Inc. (2017). Amazon Web Services (AWS) - Cloud
Computing Services. [online] Available at: https://aws.amazon.com/ [Accessed
3 Nov. 2017].

[47] "Regions and Availability Zones - Amazon Relational Database Ser-

vice", Docs.aws.amazon.com, 2018. [Online]. Available: https://docs.aws.ama-

zon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabil-

ityZones.html. [Accessed: 07- Jan- 2018].

[48] "AWS Regions and Endpoints - Amazon Web Services", Docs.aws.ama-

zon.com, 2018. [Online]. Available: https://docs.aws.amazon.com/general/lat-

est/gr/rande.html. [Accessed: 07- Jan- 2018].

[49] S. Naik, Concepts of Database Management System. (1st ed.) 2013.

[50] P. DuBois, MySQL. Upper Saddle River, NJ: Addison-Wesley, 2013.

[51] L. Sikos and I. Books24x7, Web Standards: Mastering HTML5, CSS3, and

XML. (1st ed.) 2011; 2012. DOI: 10.1007/978-1-4302-4042-6.

[52] E. Kralicek, The Accidental Sys Admin Handbook: A Primer for Early Level IT

Professionals. 2016.

[53] "Elastic IP Addresses - Amazon Elastic Compute Cloud", Docs.aws.ama-

zon.com, 2018. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/lat-

est/UserGuide/elastic-ip-addresses-eip.html. [Accessed: 07- Jan- 2018].

[54] "EC2 Instance Pricing – Amazon Web Services (AWS)", Amazon Web Services,

Inc., 2018. [Online]. Available: https://aws.amazon.com/ec2/pricing/on-de-

mand/#Elastic_IP_Addresses. [Accessed: 11- Jan- 2018].

[55] "Amazon CloudWatch - Cloud & Network Monitoring Services", Amazon Web

Services, Inc., 2018. [Online]. Available: https://aws.amazon.com/cloudwatch/.

[Accessed: 12- Jan- 2018].

[56] Y. Wadia, AWS Administration – the Definitive Guide. (1st ed.) 2016.

[57] V. Garousi, "A Genetic Algorithm-Based Stress Test Requirements Generator
Tool and Its Empirical Evaluation", IEEE Transactions on Software Engineering,
vol. 36, no. 6, pp. 778-797, Nov. 2010.

[58] "Apache JMeter - Apache JMeter™", Jmeter.apache.org, 2018. [Online]. Availa-

ble: http://jmeter.apache.org. [Accessed: 04- Nov- 2017].

[59] B. Erinle, Performance Testing with JMeter 3 - Third Edition. Packt Publishing,
2017.

[60] “Java SE Development Kit 8 - Downloads", Oracle.com, 2018. [Online]. Availa-

ble: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html. [Accessed: 05- Nov- 2017].

[61] "Apache JMeter - Download Apache JMeter", Jmeter.apache.org, 2018.

[Online]. Available: http://jmeter.apache.org/download_jmeter.cgi. [Accessed:

04- Nov- 2017].

[62] J. P. Mueller, AWS for Admins for Dummies. (2;1; ed.) 2016.

[63] R. Udell and L. Chan, AWS Administration Cookbook (1). (1st ed.) 2017.

[64] M. Wittig and A. Wittig, Amazon Web Services in Action. (1st ed.). Manning

Publications, 2015.

[65] "Windows | Official Site for Microsoft Windows 10 Home, S & Pro OS, laptops,

PCs, tablets & more", Microsoft.com, 2018. [Online]. Available: https://www.mi-

crosoft.com/en-us/windows/. [Accessed: 12- Jan- 2018].

[66] "What is Linux?", Linux.com | The source for Linux information, 2018. [Online].

Available: https://www.linux.com/what-is-linux. [Accessed: 12- Jan- 2018].

[67] "Ubuntu PC operating system | Ubuntu", Ubuntu.com, 2018. [Online]. Available:

https://www.ubuntu.com/desktop. [Accessed: 12- Jan- 2018].

[68] "macOS - What is macOS", Apple, 2018. [Online]. Available: https://www.ap-

ple.com/macos/what-is/. [Accessed: 12- Jan- 2018].

[69] "AWS Educate", Amazon Web Services, Inc., 2017. [Online]. Available:

https://aws.amazon.com/education/awseducate/. [Accessed: 10- Nov- 2017].

[70] "Apply for AWS Educate", Amazon Web Services, Inc., 2017. [Online]. Availa-

ble: https://aws.amazon.com/education/awseducate/apply/. [Accessed: 10- Nov-

2017].

[71] "GitHub Student Developer Pack", GitHub Education, 2017. [Online]. Available:

https://education.github.com/pack. [Accessed: 10- Nov- 2017].

[72] "Build software better, together", GitHub, 2018. [Online]. Available:

https://github.com/. [Accessed: 12- Jan- 2018].

[73] "AWS Free Tier", Amazon Web Services, Inc., 2017. [Online]. Available:

https://aws.amazon.com/free/. [Accessed: 12- Nov- 2017].

[74] "Free Tier Limits - AWS Billing and Cost Management", Docs.aws.amazon.com,

2017. [Online]. Available: https://docs.aws.amazon.com/awsaccountbilling/lat-

est/aboutv2/free-tier-limits.html. [Accessed: 12- Nov- 2017].

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-

tier.html

[75] “Using the Free Tier - AWS Billing and Cost Management", Docs.aws.ama-

zon.com, 2017. [Online]. Available: https://docs.aws.amazon.com/awsac-

countbilling/latest/aboutv2/billing-free-tier.html. [Accessed: 12- Nov- 2017].

[76] "Learn What to Do When Your Free Tier Period is Expiring", Amazon Web Ser-

vices, Inc., 2017. [Online]. Available: https://aws.amazon.com/premiumsup-

port/knowledge-center/free-tier-expiring/. [Accessed: 12- Nov- 2017].

[77] "Getting Started with Amazon EC2 Linux Instances - Amazon Elastic Compute

Cloud", Docs.aws.amazon.com, 2017. [Online]. Available: http://docs.aws.ama-

zon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-get-started-

overview. [Accessed: 12- Nov- 2017].

[78] "Tutorial: Installing a LAMP Web Server on Amazon Linux - Amazon Elastic

Compute Cloud", Docs.aws.amazon.com, 2017. [Online]. Available:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-LAMP.html. [Ac-

cessed: 12- Nov- 2017].

[79] "Tutorial: Hosting a WordPress Blog with Amazon Linux - Amazon Elastic Com-

pute Cloud", Docs.aws.amazon.com, 2017. [Online]. Available:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hosting-word-

press.html. [Accessed: 12- Nov- 2017].

[80] "Tutorial: Hosting a WordPress Blog with Amazon Linux - Amazon Elastic Com-

pute Cloud", Docs.aws.amazon.com, 2017. [Online]. Available:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hosting-word-

press.html#wordpress-next-steps. [Accessed: 12- Nov- 2017].

[81] "Changing The Site URL « WordPress Codex", Codex.wordpress.org, 2017.

[Online]. Available: https://codex.wordpress.org/Changing_The_Site_URL. [Ac-

cessed: 12- Nov- 2017].

[82] "Tutorial: Hosting a WordPress Blog with Amazon Linux - Amazon Elastic Com-

pute Cloud", Docs.aws.amazon.com, 2017. [Online]. Available:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/hosting-word-

press.html#wordpress-troubleshooting. [Accessed: 12- Nov- 2017].

[83] "Amazon Machine Images (AMI) - Amazon Elastic Compute

Cloud", Docs.aws.amazon.com, 2017. [Online]. Available: http://docs.aws.ama-

zon.com/AWSEC2/latest/UserGuide/AMIs.html#ami-using. [Accessed: 12- Nov-

2017].

[84] "Amazon Machine Images (AMI) - Amazon Elastic Compute Cloud”,

Docs.aws.amazon.com, 2017. [Online]. Available: http://docs.aws.ama-

zon.com/AWSEC2/latest/UserGuide/AMIs.html#creating-an-ami. [Accessed: 12-

Nov- 2017].

[85] "How Elastic Load Balancing Works - Elastic Load Balancing", Docs.aws.ama-

zon.com, 2018. [Online]. Available: https://docs.aws.amazon.com/elasticload-

balancing/latest/userguide/how-elastic-load-balancing-works.html. [Accessed:

14- Jan- 2018].

[86] J. Nadon, Website Hosting and Migration with Amazon Web Services. Berkeley,

CA: Apress, 2017.

[87] "Tutorial: Create a Classic Load Balancer - Elastic Load Balanc-

ing", Docs.aws.amazon.com, 2017. [Online]. Available: http://docs.aws.ama-

zon.com/elasticloadbalancing/latest/classic/elb-getting-started.html#create-load-

balancer. [Accessed: 13- Nov- 2017].

[88] Software Foundation. (2017). Apache JMeter - User's Manual. [online] Available

at: http://jmeter.apache.org/usermanual/index.html [Accessed 7 Nov. 2017].

[89] "The GNU General Public License v3.0- GNU Project - Free Software Founda-

tion", Gnu.org, 2017. [Online]. Available: https://www.gnu.org/licenses/gpl-

3.0.en.html. [Accessed: 16-Sep-2017].

[90] E. H. Halili and I. Books24x7, Apache JMeter: A Practical Beginner's Guide to

Automated Testing and Performance Measurement for Your Websites. 2008.

[91] "Apache JMeter - User's Manual: Best Practices", Jmeter.apache.org, 2018.

[Online]. Available: http://jmeter.apache.org/usermanual/best-practices.html.

[Accessed: 17- Feb- 2018].

[92] E. H. Halili and E. Halili, apache Jmeter. (1st ed.) 2008.

Appendix 1

1 (4)

Preparing Experiment Environment with JMeter

This appendix provides information on how to download, install, configure and execute

JMeter as well as required dependencies.

Prerequisite for Installing JMeter

At the time of writing this report, Apache JMeter 3.3 was the latest version available.

Java 8 is required to run the JMeter 3.3, although Java 9 was the latest version available

but wasn’t supported yet, figure A shows the partial screenshot of the product download

page (http://jmeter.apache.org/download_jmeter.cgi)

Figure 61. Download Apache JMeter

Figure 53 depicts the partial screenshot of the product download page. On this download

page, the Java 8 requirement is also highlighted.

Appendix 1

2 (4)

Installing Java 8

Follow these steps to download and install the Java Standard Edition (SE) Development

Kit 8.

1. Go to the following link [5].

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html

2. Download the Java JDK compatible to the operating system (Microsoft Win-

dows, Linux, macOS, Solaris).

Figure 54shows the available installation binaries for the Java SE Development

Kit 8u152.

 Figure 62. Java SE Development Kit Demos and Samples Downloads

3. Accept the license agreement and select the installation setup.

4. Double click on setup and follow on-screen instructions.

Configuring Java_Home (Microsoft Windows)

Follow these steps to configure the Java_Home on Microsoft Windows 10.

1. Go to Control Panel.

2. Click on System.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Appendix 1

3 (4)

3. Click on Advanced System settings.

4. Select Advanced tab clicks Environment Variables (as shown in below figure).

 Figure 63. Advance System Properties (Microsoft Windows)

5. In System variables, add a new Java_Home variable and point it to the JDK in-

stalled folder.

Configuring Java_Home (Apple macOS)

Follow these steps to configure the Java_Home on Apple’s desktop operating system

(macOS).

1. Open a terminal window.

2. Check/query the currently set Java_Home with following terminal command:

echo $JAVA_HOME

Appendix 1

4 (4)

3. If Java_Home was not configured already, nothing will be returned from the

above command, which is the default behavior in macOS. This can be solved

with the following terminal command:

echo "export JAVA_HOME=`/usr/libexec/java_home`" >> ~/.profile . ~/.pro-

file

4. This will cause JAVA_HOME to be set on start-up (rather than just the current

session) and immediately add it.

Execution Modes of JMeter

Depending upon the operating system, JMeter can be invoked via a windows batch file

(.bat) on Microsoft Windows operating system. Similarly, for Linux / Unix based systems,

shell script (.sh) is used to launch the JMeter.

Following are the three modes the JMeter can be executed:

i. GUI Mode

ii. Command Line Mode

iii. Server Mode

A performance test plan can be created using the GUI mode, while the execution may

be using the command line mode (recommended) as well as direct from the GUI.

Appendix 2

1 (1)

Troubleshooting DNS Name Change Problem

Following steps were involved to repair the public DNS name problem that results in

broken WordPress installation.

No.

Repairing Public DNS Name Change Problem (Terminal Commands)

1 curl -O https://raw.githubusercontent.com/wp-cli/builds/gh-pages/phar/wp-cli.phar

Above command is used to download the wp-cli.

2 curl localhost | grep wp-content

Find the URL of the OLD site, can use curl to find it with the above command.

3 php wp-cli.phar search-replace 'old_site_url' 'new_site_url' --path=/path/to/word-

press/installation --skip-columns=guid

Path is WordPress installation directory, (usually /var/www/html or /var/www/html/blog).

Use search-replace replace the old reference with the new public DNS name. Following

is an example of this procedure.

php wp-cli.phar search-replace ec2-34-241-85-53.eu-west-1.compute.amazonaws.com

ec2-34-250-114-30.eu-west-1.compute.amazonaws.com --path=/var/www/html --skip-

columns=guid

After performing this procedure, the WordPress installation should be functional because

the broken URL (uniform resource locator) has been updated.

The above figure shows the replacement of the public DNS name for the EC2 Instance.

