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Continuously changing demand patterns force Logistics Service Providers to develop 

sophisticated solutions for minimization of the order fulfilment cycle. Being one of the 

most time -intensive processes in the field of warehousing, picking has the highest impact 

on the service level. In turn, from the warehouse perspective picking is the most labour-

intensive activity and thus reasonably objective of continuous improvement. Scientific 

discussion emphasis various approaches to optimize the picking process: storage 

allocation, routing policies and batching algorithms.  

 

The aim of this thesis is to answer the question “How to minimize an order picking 

distance and improve picking efficiency through the more efficient storage allocation 

of the items?” 

  

As was revealed in the simulation existing random storage allocation has significant 

drawbacks, when it goes to the order picking distance.  Favorable storage locations are 

misused for the items with the low picking frequency. Warehouse management is 

suggested to apply wireless scanners to improve picking and minimize transaction time 

between systems.  It is recommended to implement COI-based allocation with affinity 

relation component, as an optimal solution with estimated average 90% improvement 

compared to random storage. The difference in the estimated picking distance between 

allocation policies increases with the increasing amount of the picking lines. Warehouse 

Management System should follow picking frequency aspect and affinity relation of the A-

class items. ABC stratification is based on the picking frequency. Affinity relation is very 

important when storage allocation made for the items with the same COI-index, as 

additional criteria.   In addition, availability of the future demand and strong information 

flow are considered as vital criteria during development of the storage allocation policy.  
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1 INTRODUCTION 

Continuously changing demand patterns force Logistics Service Providers (LSPs) to 

develop sophisticated solutions for the optimization of the order lead time. Being one of 

the most time -intensive processes in the order fulfilment cycle, picking has the highest 

impact on the service level. In turn, from the warehouse perspective picking is the most 

labour-intensive activity in the outbound logistics flow and thus reasonably objective of 

the continuous improvement in the minds of warehouse management, focused to 

minimize expenses and increase competitiveness.    

 

The storage allocation problem has been intensively researched in the scientific literature 

over the past fifty years. Nonetheless, the majority of the available algorithms is mostly 

not applicable when it comes to customizing the features of the Warehouse Management 

System (WMS), in order to understand and analyse demand patterns and historical order 

profiles. Typically, scientific literature provides a set of general recommendation related 

to the improvement of the picking process ignoring specific customer requirements and 

real-world demands. 

 

It is notable, that logistics and warehousing solution providers usually overlooking 

storage allocation policy as a way to minimize the order picking cycle, limiting related 

with ABC-stratification, which, however, is not able to cover the potential demand 

fluctuation and full set of order and item profiles completely. 

 

This chapter provides general information on the importance of warehousing and picking 

operation as a significant part of the order fulfilment process. It also introduces the aim 

and research question of the study, as well as methodology and limitation. List of 

acronyms used in this thesis provided in Section 1.8. 

1.1 Background 

There are various real-world situations, that have been studied to comprehend the factors 

affecting the efficiency of the order fulfilment process and mostly, reducing order cycle 
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time is an ultimate goal, resulting in improved warehouse throughput, and high cost 

saving in the materials handling operations (De Koster 2006 p. 7).  

 

According to Tompkins picking, as a part of the order fulfilment cycle, is the most labour-

intensive and costly set of activities representing approximately 55% of the total 

warehouse operational costs, as shown in Figure 1. Order picking process has direct 

influence on the order accuracy and delivery time. Due to the large number of items in 

orders, the picking capacity constraint is considered as vital (Tompkins et al. 2010 p. 86). 

 

Figure 1. Operational costs in the warehouse (Wiley 1996) 

 

Generally, the objectives of the warehouse are to reduce order fulfilment cycle, decrease 

costs and keep customer satisfaction on a high level. The warehouse is the connecting 

point between the main elements of the supply chain and a significant point in the 

informational and material flow. Nowadays warehouses are being driven by customers to 

expand distribution channels. On the other hand, due to the growing unpredictability of 

orders and higher requirements regarding SLAs, the importance of warehousing 

performance in value adding process has been increasing over the past decades 

(Goetschalckx et al. 2007 p. 18). 

 

Managing order fulfilment processes becomes more multifaceted and complicated. The 

complexity of the order management, the ongoing challenge to keep customers satisfied, 

increased demand for SLAs, and tackling growing costs are among the major challenges 

warehousing LSPs are facing currently. 
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De Koster emphasizes that, more logistic solution providers consider cost reduction and 

improvement of productivity within own warehouses, as well as pay separate attention to 

the order picking process. Related activities play a significant role for LSPs, as they are 

continuously making efforts to optimize processes in order to improve customer 

satisfaction and decrease operational costs. De Koster shares Tompkins opinion about 

order picking being the most labour-intensive and capital-intensive operation in 

warehouses (De Koster et al. 2007 p. 34-35). 

 

There are many comprehensive studies proving picking as a fundamental way to reduce 

order fulfilment costs. Scientific discussion emphasis various approaches to the optimize 

picking process: storage allocation, routing policies and batching algorithms. Storage 

allocation regulates where to keep items in order to decrease material handling costs. 

Routing and batching, on the other hand, defines the best possible batch and route to 

arrange picking process efficiently. McGinnis et al. observed that 32% and 38% of the 

order picking related studies are about storage allocation and routing policies, 

respectively (McGinnis et al. 2007 p. 15). 

With dynamic fluctuations in Customer N demand, picking of its healthcare products in 

Vantaa warehouse has become a bottleneck of the order fulfilment cycle, which is one of 

the major KPIs of service level. The aim of the picking strategy is to improve level of 

service by optimizing order fulfilment cycle. Moreover, as picking process acknowledged 

as the most labour-, time- and cost-intensive activity, suitable picking strategy, results in 

the cost reduction.  Therefore, Vantaa warehouse is actively searching ways to advance 

picking process to the new level and admits its highest priority, as the key element to 

improve efficiency and gain competitive advantage. Warehouse located in Vantaa, 

Finland and items considered in this work related to the healthcare sector, where delays 

or inaccurate picking might lead to way more serious consequences. 

 

At the beginning of September 2017 many pharmacies and customers in Finland were out 

of the essential drugs due to new ERP system by Oriola couldn’t maintain logistics 

processes, as expected.  As a result, on inappropriate picking orders were mixed and 

delayed. The situation was partially solved with the help of competitors.  Besides drastic 

consequences for the customers and company reputation, Oriola reported that it had lost 

some 4 million euros in net sales, as distribution of non-pharmaceutical products were 
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only partially possible in September, with all attention focused on the distribution of the 

most essential items (Aamulehti 2017). 

 

According to Goetschalckx, a main priority for the picking process is to increase 

service level of the order fulfilment, and minimize overall lead time based on 

available labour and/or machines and capital (Goetschalckx 1990 p. 124). There are 

various studies conducted on the efficiency of different warehouse activities to offer 

picking improvement and cost reduction. Most of these studies emphasize picking 

travel time or travel distance to retrieve a complete order, as the objective to 

improve picking process (De Koster 2006 p. 23). 

1.2 Purpose of the study 

The purpose of this study is to reduce the order processing cycle in the Vantaa warehouse 

for customer N orders by developing a practical strategy for correct storage allocation of 

the items. Based on the outcomes of this study suitable allocation strategy has been 

selected and the set of recommendations have been provided to be integrated into WMS. 

1.3 Research aims and objectives 

The aim of this thesis is to answer the question “How to minimize order picking 

distance and improve picking efficiency through better storage allocation of the 

items?”  

 

This study aims to cover following questions: 

 

(i) define main criteria to be considered while developing storage policy for Customer N 

items; 

(ii) analyse historical demand data and describe the current storage policy for Customer 

N items in Vantaa warehouse; 

(iii) compare storage policies and determine practical allocation method. 
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This subject is close to the author as he has been involved in logistics processes and 

warehousing for almost ten years. Besides the strong desire to assist Vantaa warehouse 

in cost reduction, optimization in the order fulfilment cycle and improving in customer 

satisfaction, author can gain more experience and problem-solving skills in order to 

enhance efficiency for similar processes in own company.  

1.4 Contribution 

This work contributes to both efficiency of the warehouse operations, reduction of the 

costs and order fulfilment cycle, as well as improving level of service. As contribution to 

knowledge about storage allocation, as a part of picking strategy, this work brought more 

understanding to the question of warehouse management in the scope of the order 

fulfilment process. Optimization of the order fulfilment cycle minimizes the time required 

for item transfer to upstream outbound processes and any reverse movement or delay 

increases the number of operations, as well as the total costs of cycle.  

1.5 Limitation  

In this study improvement for the order picking process is developed through a storage 

allocation strategy for items of Customer N in Vantaa warehouse. Therefore, thesis is 

limited to the planning level. Operational level of the picking process, like routing 

strategies batching algorithms and order sequencing, as well as other warehouse activities 

and order fulfilment stages, as packing, loading or transportation are out of the scope. In 

addition, as order handling in Vantaa warehouse is done manually, study is limited to a 

picker-to-parts picking system, with automated picking systems left out of the scope.  

 

As the focus of this study is on minimizing of the order fulfilment cycle through the 

storage allocation policy, possible changes in layout design of the warehouse or picking 

tools will not be considered. Since it takes long time to simulate all Customer N items, 

ABC- stratification is implemented, with simulation later concentrated on A-class items 

only.  Method for selection and the related selection processes described in Chapter 3. 
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1.6 Research methods 

The research of this work is conducted as a case study. According to Schirmer, a case 

study is a popular research method in the warehousing area, with the purpose to 

investigate specific problems within the limitation of definite conditions, circumstances, 

or processes.  Benefits of the case study method include data collection and assessment 

within the scope of the process, integration of qualitative and quantitative data in the 

evaluation process, and the potential to cover comprehensive real-life states. This way the 

process can be examined on the micro level. Insufficiency of thoroughness, difficulties 

related to data assessment and lacking potential for generalizations of results are evidently 

shortcomings of the case studies (Schmenner 1997 p. 420).  

 

On the other hand, according to Farooq, intense exposure of the case study offers grounds 

for generalization of the data for demonstrating statistical findings but has limited 

representatives and no appropriate classification. Other benefits of the case study are the 

intensity of the study and continuity of the assessment, with investigation and exploration 

of a process thoroughly and deeply based on the facts from the simulation. As potential 

drawbacks, Farooq emphasizes that case study method might have errors of the judgment, 

since it is rather a subjective method than objective and have no fixed limits. Case study 

research is also considered as more time consuming compared to other approaches of data 

collection (Farooq 2013 p. 5). 

 

Yin states the case study research as an empirical investigation that examines a 

contemporary process within its real-life scope, when the restrictions between the process 

and the scope are not evidently shown, including implementation of numerous sources 

for quantitative prove.  Others define case study research significance only as an 

investigative instrument (Yin 2009 p. 24).  

 

Case study research is a methodology which can use either a qualitative or quantitative 

approach. Qualitative research is mainly investigative study, targeted at gaining an 

understanding of fundamental explanations, views, and drivers of the process. It offers 

deeper understandings about the phenomena and supports on developing concepts or 

suggestions for potential quantitative investigation. Qualitative research is likewise 

applied to discover trends and dive deeper into the phenomena. Qualitative data collection 
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methods differ applying to unstructured or semi-structured approaches. Commonly 

approaches include focus groups, individual interviews, and participation or observations. 

The amount of samples is commonly minor, and respondents are chosen to satisfy a 

certain allocation (Racino 1999 p. 118). 

 

Quantitative research is applied to quantify and analyze the phenomena by generating 

mathematical data or data that potentially can be altered into practical statistics. It is 

applied to quantify attitudes, processes, performances, and other specific variables and 

generalize outcomes. By implementing quantifiable information to frame empirical 

evidence and reveal outlines in an investigation, data collection approaches of the 

quantitative are much more organized than data collection approaches of the qualitative 

data, including different forms of surveys, interviews, longitudinal investigations, website 

interceptors, online polls, and methodical observations (Racino 1999 p. 119). 

 

Assumptions and simulation of this thesis are based on historical data from WMS. 

Schmidt states that, generally, warehouses outbound activities are based on the enterprise 

management systems to manage the inbound, storage, relocations, and outbound of the 

items according to the customer demand. WMS keeps historical data, including specific 

characteristics of the customer items like weight and dimensions and warehouse design 

related information, like storage locations, allocation restrictions, and material handling 

tools.  

 

Historical data is significant for allocation policies and can be utilized to formulate simple 

performance indicators to predict future demand (Schmenner 1997). Specific data, 

valuable for this research, might not be available in WMS and is collected from the 

warehouse specifications and process descriptions. 

 

De Koster et al. defines simulation approach as extremely supportive in quantifying 

performances for complex processes where the analytical approach has been proven to be 

unfeasible (De Koster et al. 2007 p. 24). On the other hand, Rouwenhorst et al. concluded 

that an analytical study and a simulation study equally might not lead to a comprehensive 

solution in the real-world situation, and suggested that a combination of two approaches 

would be desirable (Rouwenhorst 2011 p. 116). 
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To answer the main research question, a suitable methodology must be selected. Figure 2 

illustrates an overview of the stages engaged in this study.  

 

 

Figure. 2 Methodology overview 

 

 

In the literature review chapter, main warehousing activities are introduced and place of 

the picking process and relationships between activities are defined, following by 

discussion about strategies for improving order picking process. Next potential of 

allocation policy to ensure required improvement is determined. Related assessment and 

comparison between allocation policies are conducted, in order to define the best possible 

practical solution to minimize travel distance of picking tours in Vantaa warehouse.  

 

In the next part assessment of the present situation is conducted, to evaluate how 

appropriate existing random allocation strategy is in keeping required level of customer 

service, and what are the main criteria for the efficient order picking process. This part is 

concentrated on qualitative evaluation, which is valuable later in the process of modelling 

assumptions and determining parameters.  Quantitively evaluation will be performed 

during simulation stage.  

 

After potential options have been discussed, next part covers practical mathematical 

models in order to evaluate and compare selected solution in the simulation. This part 

includes limitation of potential samples by implementing ABC stratification. Next, 

proposed allocation policy and existing random policy are tested empirically in the 

simulation and compared to define which solution is considered to be the most effective 

under different circumstances. Subsequently, the underlying model is an abstraction of 

the real word, the optimization results are just suggestive of the real influence on actual 

performance. Based on the results of the simulation, the closing stage of the study 

concerns conclusions and recommendations on alternative having the highest potential 

for improvement.  

 

Results and 
Conclusions  

Simulation 
and 

comparison 

Evaluation of 
the present 
situation  
 

Identifying 
practical 
models 

 

Literature review 
and solutions 
selection 
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According to the computational complexity theory, as a part combinatorial optimization 

concept, the complexity of a problem is defined as the complexity of the best algorithm 

that solves that problem. Cook et al describe discrete optimization or combinatorial 

optimization, as defining an optimal solution in a finite or countably infinite set of 

potential solutions. Optimality is defined with respect to criterion function, which value 

is to be minimized while modelling storage allocation strategy (Cook 2009 p. 6). 

 

In relation to the storage allocation, combinatorial optimization problems can be quite 

limited in use due to a large amount of possible solutions, as well as due to constraints in 

the receiving of the certain item. For example, certain items cannot be allocated to all 

possible places due to measurements or specific storage requirements related to the nature 

of the items, as well as certain items cannot be stored together. 

 

As the amount of variable solutions due to the several constraints, there is no practical 

possibility to use exact optimal solution model. ABC-stratification is used prior to the 

simulation, in order to limit the number of the item profiles, leaving less important out. 

To present optimization problem mathematically Linear Programming Problem is used 

for this study. 

 

Heuristic methods are preferred over exact methods when the problem is so large or high 

dimensional that the exact methods might take too long. In turn, metaheuristics are on a 

higher abstraction level than heuristics and provide general-purpose search methodology 

that can guide an optimization (Rainer et al. 2009). 

1.7 Structure of the study 

This thesis includes five chapters. Chapter 2 introduces warehouse activities and picking 

process, following by discussion on order picking improvement strategies. Next 

allocation policies are presented, comprehensive analysis about strengths and weaknesses 

based on the literature review is made, following by the discussion on the specific 

methods most applicable in the case study in this work.  

Chapter 3 introduces current picking process and layout of Vantaa warehouse and 

analyses historical order patterns. In this chapter assumption are made, ABC stratification 
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is performed, a mathematical model for selected methods is formulated and the simulation 

model is introduced. 

In Chapter 4, the results of the simulation are considered, and comparative analysis made, 

following by summary and a discussion on the findings. 

Chapter 5 finalizes the study with conclusions, recommendations and potential suggestion 

for future works on the related topic. 

1.8 List of acronyms 

ABC-stratification – classification of the items into three categories 

EOM/EOP- End of Manufacture/ End of Production   

ERP- Enterprise Resource Planning 

COI -Cube-Per-Order Index 

GP- Generic Programming    

KPI- Key Performance Indicator 

LPP-Linear Placement Problem 

LSP- Logistics Service Provider 

OOS- Order Oriented Slotting 

SCM – Supply Chain Management 

SLA- Service Level Agreement 

WMS-Warehouse Management System. 
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2 LITERATURE REVIEW 

As discussed in section 1.5, the objective of this research aims to reduce picking travel 

distance in order to improve total order fulfilment cycle. The importance of the order 

picking improvement has been acknowledged largely and deservedly has been taking 

place as a subject for the various researches over the past 50 years, with the attention paid 

to the different aspects throughout the time. 

 

Khodabandeh emphasizes that the importance of the order picking is valid for healthcare 

warehouses as well. As evidence, he provides a report by United Parcel Service, showing 

that picking and order fulfilment consumes 54% of the cost in the average healthcare 

distribution centre (Khodabandeh 2016 p. 12). 

 

De Koster et al., discuss several recent trends both in manufacturing and distribution, 

which have made the order-picking design and management more important and 

complex. In manufacturing, there is a move to smaller lot-sizes, point-of-use delivery, 

order, product customization, and cycle time reductions. In distribution logistics, in order 

to answer new requirements of the customers, companies tend to accept late orders while 

providing fast delivery within tight time windows. Thus, the time available for the order 

picking becomes shorter (De Koster 2007 p. 123). 

 

Gu et al. define the crucial roles of the warehouses in the supply chain performance. The 

major roles included “buffering the material flow along the supply chain to accommodate 

variability caused by factors such as product seasonality and/or batching in production 

and transportation (Gu et al. 2007 p. 5). Warehouse operation and management systems 

are discussed in section 2.1.1 

Gu et al.  describe order picking problem as one of the most challenging among the 

warehouse operation planning concerns (Gu et al. 2007 p 8). While there have been 

several investigations on the general order picking problem, little research regarding order 

picking for a healthcare warehouses was found. Reader may refer to Gu, Goetschalckx, 

and McGinnis, 2010 for detailed reviews on warehouse operation, design, and 

performance evaluation, as well as to comprehensive review of De Koster, Le-Duc, and 
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Roodbergen, 2007 on warehouse layout and picking operations. Methods for the order 

picking improvement are discussed in section 2.1.3. 

2.1 Order picking process 

Tompkins et al. describes an order picking, as the process of retrieving items from the 

storage in response to the customer request and defines picking as the most labour-

intensive and costly process containing around 55% of the total warehouse operational 

expenses as shown in Figure 3 (Tompkins et al. 2010).  

 

Figure 3. Warehouse expenses  Figure 4. Example of order picking 

 

Minimizing material handling cost or equivalently, traveling cost, traveling distance, or 

traveling time is one of the main objectives which researchers have strongly focused on 

when the goal is to improve order picking efficiency. Figure 4 represents order picking 

of multiple items in an aisles warehouse. Tompkins et al. showed that in fact, half of the 

order picker’s time is spent on traveling (Figure 5). To the same conclusion went both De 

Koster et al. and Petersen by describing travelling of the order picker is the most time-

consuming activity –usually estimated at about 50%. Therefore, typically the majority of 

the studies are dedicated to improve this vital process (Tompkins et al. 2010 p. 25). 
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Figure 5. Typical distribution of an order picker’s time (Tompkins et al. 2010) 

 

2.1.1  Warehouse operations and WMS 

De Koster et al. defines warehouse as a place where goods are received, temporary stored, 

and released according to the customer requests. As consolidation point between supply 

and consumption warehouse also provides value-added for order fulfilment and, is the 

place where packaging of goods according to the specific sales orders, customization, 

inspection and assembly are performed (De Koster et al. 2007 p. 131). Hausman et al. 

mentioned the efficiency of the order picking as a crucial factor considered at the stage 

of warehouse design. Correct storage allocation and suitable warehouse layout minimizes 

travel distance and the picking time, resulting in improvement of the total fulfilment cycle 

(Graves et al. 1976 p. 40). 

 

According to Lambert et al. warehouses contribute to a multitude of the company’s 

missions, as follow: 

• Achieving transportation economies (e.g. combine shipment, full-container load). 

• Achieving production economies (e.g. make-to-stock production policy).  

• Taking advantage of quality purchase discounts and forward buys.  

• Supporting the firm’s customer service policies.  
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• Meeting changing market conditions and uncertainties  

• Overcoming the time and space differences that exist between producers and customers.  

• Supporting the just-in-time programs of suppliers and customers.  

• Providing temporary storage of material to be disposed or recycled  

• Providing a buffer location for trans-shipments (i.e. direct delivery, cross-docking) 

(Lambert et al. 1998 p. 15). 

 

Heragu et al. defined these areas as forward and reserved areas. Items purposed to be kept 

in the warehouse for short period of time are stored in the forward area and therefore are 

located closer to inbound and outbound points to minimize traveling distance for pickers. 

On the other hand, items with less frequent demand are to be stored in the reserved area 

(Heragu et al. 2005 p. 317). Frazelle defines warehouse as an element having a critical 

influence on the service levels and operational costs of supply chain and agrees it is 

important that warehouses are designed and managed to be cost-effective and ensure 

efficiency of the picking processes (Frazelle 2002 p. 22). 

Given the importance of the picking process it has been recognized as area where 

significant performance improvement can be achieved. To define a place of the order 

picking and classify its relationship with other warehouse operations Frazelle presented a 

unifying framework in Figure 6. 

 

Figure 6. Framework for warehouse operations (Frazelle 2007) 

 

De Koster defines several order picking systems which are created to optimize the order 

fulfilment cycle (Figure 7). Three main systems are distinguished according to the order 
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picking approach: picker-to-item, item-to-picker, and automated picking.  In a picker-to-

item system, order pickers need to travel along the rack shelves to retrieve the items in 

their order lists. Same approach is used in the case warehouse of this study (De Koster 

2006 p. 37). 

 

Figure 7. Classification of order-picking systems (based on De Koster 2006) 

 

2.1.2 Warehouse layout and KPIs  

De Koster et al. have conducted a comprehensive survey on warehouse layout with the 

special attention to the order picking. During this research related warehouse activities, 

like receiving, transfer, order consolidation and packing were studied. There are specific 

areas in the warehouse which serve specific requirements (De Koster et al. 2007, p. 63). 

 

In order to measure the impact of a successful order picking strategy relevant indicators 

need to be defined. According to Cristopher lead time and fulfilment cycle are the basic 

measurements and performance indicators, but they are frequently not considered in 

relation to the warehouse throughput and cost efficiency.  Order fulfilment cycle is 

defined as the time period between the moment order received by the warehouse to the 

point when goods being delivered at the customer request (Cristopher 2005). 
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As said above picking is both the more cost-intensive warehouse activity as well as being 

considered having the largest potential for improving order fulfilment cycle. Minimizing 

of the order picking is often a good place to start the overall effort to improve warehousing 

efficiency and customer satisfaction since it can be arranged without heavy capital 

investments (Cristopher 2005). 

 

Hompel and Schmidt defined common KPIs for the order picking including the number 

of picks per time unit, the average travel distance per pick/ order, the average time per 

pick order. Cristopher mentioned that the average order picking time should be measured 

in relation to the average order size. As said above, since picker travel time is the most 

time-intensive activity with 50% share of the total order picking time, it is one of the most 

widely adopted measures for warehouse performance used in the scientific literature 

(Hompel et al. 2006). 

 

According to De Koster, order picking policies are regarded as critical to warehouse 

performance and can be influenced by both internal and external elements (De Koster et 

al. 2007 p. 154). Examples of the internal factors are system characteristics and 

organizational and operational policies. These organizational and operational policies 

include storage, batching, zoning, routing and order release mode. Chan et al. add to this 

statement that, the efficiency of picking is also highly related to the class configuration 

and the way the warehouse has been designed. External factors include marketing 

channels, customer demand pattern, the state of the economy, etc. (Chan et al. 2011 p. 

241). 

2.1.3 Picking improvement policies 

As described in the number of different works of Goetschalckx, De Koster, Jacobs, 

Frazelle, Meller and Tompkins, there are commonly three strategies used to improve 

order picking: 

●  assigning items to storage locations (tactical and operational level)  

●  order picker routing (routing) (operational level)  

●  grouping or batching all picks of the orders (batching) (operational level)  
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A related overview is presented in Figure 8. Storage allocation strategies and zoning 

strategies determine where to store the items to reduce material handling cost. Routing, 

batching and order release mode, on the other hand, determine the best sequence and route 

of the locations for storing and picking a set of items. As stated in the limitation part 

routing and batching algorithms will be out of the scope of this study (De Koster 2007 p. 

211-213). 

 

Figure 8. Order picking improvement policies (based on De Koster, 2007) 

Petersen et al. suggest the use of travel distance to compare different allocation policies. 

In his opinion distance is better than time to measure performance, since the travel time 

could be influenced by the travel method, while distance will not (Petersen et al. 1997). 

 

In order to describe the main factors affecting three main approaches for order picking 

optimization, Adil introduced wheel of order picking, as shown in Figure 9. The wheel is 

furthermore affected by physical attributes, like the warehouse design, the equipment 

used, as well as the information flows, like forecasting and warehouse management 

system. The information flow is needed in several ways to coordinate the flow of 

materials and provide the data about storage capacity, sales forecasts, and the information 

about items.  
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Figure 9. Wheel of the order picking. Factors affecting picking policies (Adil, 2008) 

 

According to Tompkins et al., there is a gap between reality and academic research, when 

it comes to the order picking policies. Not all new picking policies have been studied 

sufficiently. The literature on the influence of the picker congestion is still limited and in 

practice, a selection of the performance indicators must be made on a case-by-case basis. 

There is still a shortage of case studies that consider the optimal combination of 

warehouse design, storage assignment, order batching and routing (Tompkins et al. 2010). 

 

Rouwenhorst et al. made an extensive research on the order picking policies being 

considered already at the stage of warehouse design and came to the conclusion there is 

a lack of an academic data about warehouse layout approaches. Researchers concluded 

that in most of the cases selecting correct allocation policy in the scope of warehouse 

design is a complicated mission with many trade-offs between various targets at each 

consequent step. Many researches have introduced methodology dedicated to concrete 

real-life cases, but there has never been a consensus. This shows that a systematic 

methodology to the warehouse design process is required (Rouwenhorst et al. 2000 p. 

493). 

According to Le-Duc, previously most of the studies about the improvement of the order 

fulfilment cycle focused on the travel distance mitigation based on Pareto ABC- principle. 

In the real-world, however, due to the increasing fluctuation in the demand, allocation 

policy needed to be reviewed and adjusted over time for the reasonable utilization of 

warehouse space. In this scope demand forecast from customer integrated to warehouse 
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management system could be supportive, as well as WMS self -analysis of historical 

shipping data for specific items will be needed in the future (Le-Duc 2007 p.131-133). 

 

Having provided an overview of the warehouse activities, order picking and picking 

improvement strategies, next storage allocation policies are discussed. 

2.2 Storage location assignment as a method to improve 

picking process 

Storage allocation mainly influences the mean travel times, the occurrence of congestion, 

and the throughput capacity. Gu et al. extend the perspective, and claim that performance 

methods like cost, throughput, space utilization, and services can be used within the 

several evaluation methods. Evaluating performance, both through internal and external 

benchmarking is crucial to identify weak points in the picking process and determine how 

it might be improved (Gu et al. 2010 p. 11). 

2.2.1 Definition of the storage allocation  

De Koster et al. defines the storage allocation as, the set of rules which can be used to 

assign the incoming products to the storage locations in the storage zones. Correct storage 

allocation helps in the reduction of material handling costs and the improvement of space 

utilization (De Koster et al. 2007 p. 211). Peterson categorizes storage allocation to the 

family of assignment problems. Allocation challenges match two or more sets of factors, 

like machines, tasks, employees, materials, storage locations etc. to each other (Peterson 

1999 p. 102). 

According to Goetschalckx et al., a storage assignment policy is a set of rules which 

determine the warehouse allocation for different items finding the optimal locator to 

minimize the average travel and picking time required. Storage assignment policies 

suggest a location to store and pick up a specific item while satisfying different constraints 

placed upon the system (Goetschalckx et al. 1990 p 17-18). 
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2.2.2 History of the storage allocation  

In the first instance Graves et al. introduced an accurate classification of the potential 

storage location assignment policies within a warehouse: original problem considered an 

identification of optimal storage locations and the major factors to be accepted during this 

process, which also Sharp (1989) and Frazelle (1990) decide to categorize in dedicated 

storage, random storage, and class-based storage Graves (1963). 

 

Lynn et al. define four main criteria’s when considering allocation of the items: 

compatibility, complementarity, popularity, and space. Compatibility refers to the 

possibility to keep items close to each other without concerns about corruption or damage. 

Substances, that are determined as incompatible must be kept in nonadjacent sites. 

Complementary items are frequently ordered simultaneously in the same order and ought 

to be located close to each other. Items with the high popularity in terms of the average 

number of picks should be stored closest to the order shipping area, since these items 

demand the highest number of tours to their location. Finally, the space factor considers 

products necessitating the minimum warehouse space and that those items are stored 

closest to the packing zone (Lynn et al. 1976). Sharp concludes that popularity is the most 

frequently suggested criteria to be taken into focus while warehouse managers are 

planning appropriate allocation policy for warehouse, not to mentioned, that popular 

items can be fairly defined as compatible as well (Sharp 1990 p. 26). 

 

According to Chan et al., first researches on the topic have been mainly taken into 

consideration random and class-based storage policies. Related studies also typically 

investigated single-level rack warehouses, particularly when the outcomes are to be found 

based on a warehouse related simulation.  

 

Chan et al. have presented a general classification of the various allocation strategies. 

They propose three broad categories: 

● Random storage where all items are placed in a single class 

● Dedicated storage where each item institutes its own class 

● Class-based storage which provides an in-between distribution of items. Products 

are allocated to a class and each class has its own dedicated zone in the warehouse. 
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However, within this dedicated zone items were stored randomly, as described above in 

the study conducted by Larson (Chan 2011 p. 235). 

2.3 Storage allocation policies  

Most important allocation policies are described next. Popularity-based allocation 

suggested by Hesket, dedicated, random and class-based storage were introduced by 

Graves et al in 1976. Family grouping policy is newer and has gathered lots of attention 

in the literature during the last years.  

In the Table 2.1 related works in the field of the allocation policies are summarized. 

Storage allocation strategy Related researches 

Random Hausman et al. (1976), Malmborg (1996), Larson et al. (1997), 

Pettersen (1999), Van den Berg (1999). De Koster et al. (2007), 

Roodbergen (2007), Chan (2011) 

Dedicated Goetschalckx and Ratliff (1990), Cormier et al. (1992), March et 

al. (1997), Elsayed (2005), De Koster et al. (2007), Chan (2011) 

Class- based (ABC) Hausman et al. (1976), Frazelle (1989), Cavinato (1990), Cormier 

et al. (1992), March, et al. (1997), Mahan et al. (2003) Le-Duc et 

al. (2005), De Koster et al. (2007) Goetschalckx (2007), Chan 

(2011) 

Affinity-based Slotting, 

Family grouping  

Kallina and Lynn (1976), Rosenblatt (1989), Frazelle (1989), 

Schuur (2006), Smith et al., Heragu (2009 ), Pitzer (2010)  

Popularity-based (COI) Heskett (1963), Kallina and Lynn (1976), Bhaskaran (1996), 

Schmenner et al. (1999), Aase et al. (2004), De Koster (2007), 

Goetschalckx (2007)  

 

Table 2 1.  Studies on the allocation policies 
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Based on the literature review the main allocation policies and respective benefits and 

drawbacks are summarized in the Table 2.2: 

Allocation 

strategy 

Definition Benefits / Drawbacks 

Random assigns storage locations based 

on the first come first served 

basis, and the available space  

Benefits  

- results in a high space utilization  

- easy to implement, balanced picker traffic 

Drawbacks  

- increased travel distance over other policies 

- only functions in a WMS controlled 

environment 

- material handling cost is frequently greater  

Dedicated fixed storage location(s) per 

product 

 

Benefits  

- low-tech, easy to implement, pickers can 

memorize locations 

- typically reduces the material handling costs 

Drawbacks  

- low storage utilisation 

Class-based 

(ABC) 

Inventory is assigned a class 

based on some criteria 

(demand, value, size). Each 

class is assigned a zone of 

storage locations 

 

Benefits  

- Uses the benefits of both random and 

dedicated storage 

- less congestion if used within class 

Drawbacks  

- Periodic demand review required 

-  only reduces average tour length 

- warehouse resulting in a large amount of 

reshuffling of stock. 

Affinity-based 

Family 

grouping 

place parts, which are often 

ordered together, close to each 

other 

Benefits  

- shorter picker tours, higher throughput 

Drawbacks 

- congestion issues and algorithm parameter 

tuning 

Popularity-

based (COI) 

locations. position heavy and 

fastmoving products in 

accessible locations 

 

Benefits  

- Reduction in travel time and distance 

- easy to implement, optimal under certain conditions 

Drawbacks  

- Aisle congestion 

- Unbalanced utilization of the warehouse 

 

Table 2 2.  Allocation policies and respective benefits and drawbacks 
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The various elements can influence the measurement technique and practical value of 

implemented allocation strategy: 

● Limitation warehouse infrastructure and design (Hausman et al. 1976); 

● The harmonizing of the inbound and outbound processes (Ratliff et al. 1990); 

● Full box picking rate (Bhaskaran 1998); 

● Estimated duration of the allocation strategy (Mahan et al. 2003); 

● Ground level consumption rate, picking expenses and adjustability (March et al. 

1997); 

●  Retrieval zones (Roodbergen 2007); 

● Operational and reserved space expenses (Adil et al. 2008). 

 

March et al. inspected a warehouse design with the approach aimed at the performance 

of single facility lift truck for pallet storage and retrieval. The idea was to attain the 

effective use of ground level maximizing the locator usage, by minimizing the travel 

distance and being strong enough to adapt to potential changes in the inventory levels and 

customer demand. A class-based allocation strategy was implemented to assign the 

ground level to classes based on the warehouse layout, compulsory number of locations 

and throughput. Each class was allocated to a dedicated warehouse zone. Though, within 

this dedicated zone items were stored randomly. Random storage ensures elasticity to 

adjust potential dissimilarities in inventory levels for items allocated to the class. 

Combination of two allocation strategies improved utilization of the ground level and 

flexibility, by reducing material handling costs (March et al.1997 p 124-127). 

 

Gu defines picking frequency of the item as main criteria for allocation classification, 

where items are categorized by declining picking frequency and the classes with the 

highest demand are allocated the most easily accessible positions. On the other hand, 

Roodbergen et al. suggest the maximum warehouse space allocated by the group of items 

as criteria for a classification, where items are categorized within required warehouse 

space and groups with the lowest requirement are allocated to the most easily accessible 

positions (Roodbergen et al. 1999).   
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Finally, as combined approach, Cube-Per-Order Index has been widely presented in the 

scientific literature and is commonly considered as more efficient criteria than others. 

This classification takes into attention both the picking frequency and warehouse space 

utilization. Items are categorized by the increasing index value and the groups with the 

lowest value are placed in the most easily accessible positions (Goetschalckx et al. 2007 

p. 23). Cube-Per-Order Index is discussed in detail later in this chapter. 

2.3.1 Random storage allocation 

According to Petersen et al., the main principle of random storage is to allocate all 

incoming items randomly, by choosing from all the obtainable locations with the identical 

probability randomly. The random locator assignment strategy would only function in a 

warehouse run by an automated WMS to keep track of the locations assigned to each 

item. Otherwise, the search-time of the items during the retrieval process would be 

seriously affected. Therefore, random allocation approach was not popular before first 

fully automated WMSs were available on the market (Petersen et al. 1997 p. 418). 

Hausman et al. argue that random allocation typically results in a warehouse with the 

racks full around the shipping area and progressively emptier towards the back (Hausman 

et al. 1976 p 213). 

De Koster et al. define random allocation as a “closest open location storage” strategy in 

which the first vacant location found by an employee during the warehouse inbound 

becomes a potential candidate location for the incoming items. The most important 

advantage of random storage policy is the high warehouse space utilization, since any 

available locator in the picking zone converts can be used directly saving warehouse space 

for other same customer products or other customers (De Koster 2007). 

 

Likewise, it might be beneficial in terms of handling costs and efficiency, as time spent 

on inbound process is reduced, which can be valuable in case of continuous stream of 

incoming shipments waiting for inbound. However, the number of picking tours in the 

retrieval process is expected to rise. For this reason, random allocation will provide 

highest improvement if implemented in WMS with automated picking. In this sense 

warehouse managers should take into consideration relation between time saved on the 

inbound and additional efforts on picking process, which varies from one warehouse 
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environment and type of items to another. Sharp as well agrees that the results of random 

allocation in a low space requirement at the expense of increased travel distance (Sharp 

1990 p. 31). 

 

Peterson et al conducted a simulation study to compare static random allocation and class-

based allocation. Evidently, with the growing demand and the number of items the 

amount of savings brought by the different allocation policies might decrease. 

Additionally, it was determined that class-based allocation required substantially fewer 

traveling distance than random allocation. Though, considering work balance a random 

allocation typically covers the entire picking zone more smoothly resulting in the 

decreased rate of congestion (Peterson et al. 2004 p 140).  Simulation identified trade-

offs, for example, between the space utilization and travel time by applying for various 

allocation strategies, showing the interdependence between picking zone and an optimal 

allocation strategy. 

 

According to Van der Berg, random allocation is regularly used as performance baseline 

in the scientific literature. Nowadays a real-world operation with barcode scanners is not 

that complex, outbound staff movement is well-adjusted across the warehouse, and 

utilization of the locators is high. On the other hand, mistakes, or confusion in the picking 

of the visually comparable items are not expected, if they are not placed close to each 

other. For these reasons, according to Kolfer, large retailers such as Amazon, implement 

chaotic locator allocation in distribution centres. The main disadvantage of the random 

allocation is that it regularly results in the longer order picking tours. In case picker travel 

distances are not a bottleneck, random storage assignment is a surprisingly decent 

allocation policy (Van der Berg 2007 p. 127). 

2.3.2 Dedicated storage allocation 

According to De Koster, dedicated storage is assignment of items to a fixed, exclusive 

storage location or set of locations. A drawback of the dedicated storage is that the 

locations are reserved even for items that are not currently in stock. Furthermore, for each 

item adequate space must be reserved such that the maximum potential inventory level 

can be placed. Consequently, the space utilization is the lowest among all allocation 

strategies leading to the high warehouse rent costs for LSPs (De Koster 2007 p. 153). 



33 

 

 

A benefit of dedicated storage, especially before automated WMS, is that order pickers 

become familiar with the location of the items, which may speed up retrieval. This is 

especially important in the case with compatible items, which are often picked together. 

Using continuously same order pattern allows to develop familiar routing pattern, 

decreasing both the picking time for customer and materials handling cost for warehouse. 

Before the common implementation of warehouse management systems, this was the 

most practical technique to arrange inventory. In dedicated storage, a vacant location is 

not reserved to keep another item (Gu et al. 2010 p. 15). 

 

Neuteboom claims, that, repeatedly, in retail warehouses dedicated allocation matches the 

layout of the facility. Such storage approach might save picking and replenishment time 

for both customers and the staff in the stores since all goods are logically grouped. 

Neuteboom concludes that, dedicated allocation might be supportive in case weight of 

the items fluctuates. Heavy items must be stored on the lowest levels of the pallet and 

light items are to be kept on top. By placing goods in the order by weight and routing the 

order pickers accordingly, a decent loading sequence can be attained without extra efforts 

(Neuteboom 2001). 

 

Dedicated assignment policy might be functional in the picking zones, where a bulk area 

reserved for replenishment of the items that can be arranged, for instance, using principles 

of random allocation. In this context, the benefits of dedicated allocation still hold, with 

drawbacks being insignificant, since dedicated locator assignment is implemented only 

to a minor zone (Neuteboom 2001). 

 

Due to continuously increasing amount of various techniques and mechanisms to define 

exact dedicated locator to serve the specific customer demand patterns, minimizing the 

picking travel distance and the total order fulfilment cycle, dedicated storage is the most 

used policy in warehouses.  

2.3.3 Class-based storage allocation 

De Koster et al. describe the concept of the class-based allocation, as combination of 

random and dedicated allocation strategies. The idea behind, is to division the inventory 
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items into classes. Each class would have an allocated zone, where any space available 

within the class is randomly used by the items fitting to that class. Random and class-

based storage are also known as shared storage policies, as both allow different products 

to successively occupy the same location. In the inventory management, a traditional 

approach for composing products into classes based on popularity is Pareto’s distribution. 

Classification related to the work of Italian sociologist and economist Vilfredo Pareto 

“85% of the wealth of the world is held by 15% of the people”. In the scope of storage 

allocation, the main principle for classification is that the more frequently demanded class 

covers only about 15% of the items kept in warehouse but contributes to about 85% of 

the turnover. Every class is then allocated to a dedicated zone of the warehouse (De Koster 

et al. 2007 p. 143). 

 

Allocation policy within the zone is random. In some way classes are defined by demand 

frequency, such as the pick volume. More frequently demanded items are commonly 

defined as A-class items, and less frequently requested items as B-class items, and so on. 

Typically, the amount of classes is constrained to three, while in some situations more 

accurate classification into smaller groups could potentially provide with the additional 

benefit minimizing travel times (De Koster et al. 2007 p. 147). 

 

Hausman et al. conducted simulation study with the main effort on allocation of the whole 

pallets to aisle, in order to optimize inbound and picking. Outcomes of this simulation 

demonstrated the class-based allocation strategy being relatively better than, the 

popularity- based and random allocation. Results of the study were only perceived as pilot 

and temporary due to the fact that comparison at that time haven’t included interleaving 

provided by modern WMS (Hausman et al. 1976). Nevertheless, outcomes still held for 

the specific warehouse situation that was studied, showing that during planning phase 

available equipment for the inbound and picking processes, type of items to store and 

time requirements have vital significance and should be considered together in connection 

with potential of the existing WMS.  

 

Petersen et al. constructed a simulation study, to demonstrate that the popularity-based 

storage outperforms the class-based storage, when it goes to employed distance of the 

picking tour. The gap between the two goes in accordance with the class partition policy, 

for example, the amount of the classes, the rate of the total volume per class, and the 
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routing strategy implemented in the specific warehouse. Nevertheless, Petersen et al. 

offered to utilize the class-based approach with 2 to 4 classes in real – world 

implementation, as it is more efficient to execute than the popularity-based storage. Class-

based allocation does not involve a full compulsory list of the items ranked by the picking 

frequency and it necessitates less time to manage compared to the dedicated storage 

(Petersen et al. 1997 p. 413). 

 

Van den Berg concludes, that in case with the moderate size warehouses 6-class is the 

best possible solution.  The gain of this allocation technique is that items with higher 

demand can be placed next to the I/O and simultaneously the flexibility and low storage 

space requirements of the random storage are valid. To place the incoming shipments 

appropriately in the separated class dedicated zones, vacant locations must be offered, 

consequently demanding more space with the amount of the classes. Finally, class-based 

allocation requires more rack space compared to the random allocation (Van den Berg 

1999 p. 118).   

 

There are different opinions for distribution of the A-, B- and C-class items in the low-

level picker-to-part systems. McDowell proposes that every aisle must cover only with 

one specific class. Referring to above described configurations for the desirable location 

by Petersen et al.  the most desirable dark zones include A-class items, less dark zones 

covered with B-class items and the light zones with C-class items accordingly (McDowell 

1991 p. 95).  

 

Based on a closed simulation for the approximation of the picking-time, Le-Duc improves 

the distribution of zones for the class-based storage. According to the results of the 

experiment the across-aisle storage configuration is near to optimal. Later, Le-Duc 

extends related outcomes for other routing strategies claiming, that there is tight 

connection between storage and routing policies. Routing policies defines the best 

possible locator assignment policy, as well as warehouse dimensions, and the amount of 

the items obtained by the picking tour. However up to these days there is no fixed 

regulation to categorize a class configuration in the scientific literature (Le-Duc et al. 

2007 p. 129). 
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Adil et al. introduced an optimal technique for configuration of the storage class, 

considering zone reduction, the available warehouse space and the material handling costs 

by comparing class-based allocation and dedicated allocation. One of the main practical 

outcomes of this study was the rule for class creation.  In case only material handling 

costs are considered, the dedicated allocation runs with the minimum expenses, and in 

case classes are shaped in accordance to the cost of the reserved space, a fully random 

allocation produced the lowest cost. Nevertheless, they emphasized, that, in case material 

handling costs and reserved space costs are simulated together still a class-based 

allocation was the optimal (Adil et al 2008, p. 507).   

2.3.4 Affinity-based or family storage allocation 

Lynn et al. define two items as correlated, similar or affine if they are frequently 

demanded together, for instance in the same customer order or within the same time 

period. In warehousing affinity described as the probability that pairs of items will occur 

in the same order or batch. Once affinity data has been revealed, it is possible to use it in 

various ways to minimize the picking time through the better allocation strategy.  In many 

circumstances it might be practical to store similar items together, for instance in the same 

pallet or bin, to reduce picking time. With order picking from multiple areas, intentional 

distribution of correlated items across these areas might be beneficial in balancing the 

workload (Lynn et al. 1976). 

 

According to De Koster et al., the affinity-based allocation is the unique in considering 

the potential connection between the items. For instance, certain item can be frequently 

demanded together with another item. In this situation, it may be practical to keep these 

two items next to each other. Evidently, the grouping of the items can be aligned with 

some of the previously mentioned allocation strategies. For instance, class-based storage 

can be combined with the group related items. Nevertheless, the distribution for class 

allocation will be dictated by the number of the specific group features (De Koster et al. 

2007). Rosenblatt et al. evaluated the space requirements for the random and the affinity-

based allocation and provided empirical evidence, that the affinity-based allocation 

increases the space requirements (Rosenblatt et al. 1989 p. 168). 
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In the scientific literature, there are two types of affinity observed. The first technique is 

called the complementary-based technique, which contains two major phases. In the first 

phase, it clusters the items into groups based on a measure of the strength for simultaneous 

demand. In the second phase, it locates the items within one cluster as close to each other 

as possible. For finding the distribution of clusters, typically item type with the largest 

demand should be assigned to the location closest to the packing zone, while De Koster 

proposes to take into account also the space requirement. This is also known as Cube per 

Order Index, which is discussed in detail later in this chapter. The second type of family-

grouping technique is called the contact-based technique. This method is similar to the 

complementary method, except the use of contact frequencies to the cluster items into 

groups (De Koster, 2006 p. 45-49). 

 

Wäscher defines a contact frequency between item 1 and item 2, as the amount of times 

that an order picker retrieves either item 1 directly after item 2, or item 2 directly after 

item 1. Nevertheless, the selection of the picking method is reliant on the location of the 

item groups, showing the solid connection between item location and picking method. 

Since finding a combined best solution for both tasks is not a realistic tactic, contact-

based solution methods alternate between the two problem types (Wäscher 2004 p. 67-

69). 

 

In order to formulate the rule for the affinity of the items, Frazelle et al. present a statistical 

method that identifies pairs of items that are affine and should be stored close to each 

other. They perform a simulation study to compare random storage and correlated 

assignment and confirm that affinity-based allocation can potentially decrease the number 

of the required pickings by 30-40% (Frazelle et al. 1989 p. 25-27). 

 

The restrictions of correlated allocation are relatively challenging. It requires available 

statistics about the relationship between items which might not be offered in a warehouse 

with 15,000 various items – approximately 75 million product pairs. Another constraint 

for comes different characteristics of items such as safety issues, like flammability, 

product fragility, shape, weight, etc., which limits the choice of storage allocation policy 

(Van den Berg 1999 p. 115). 
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2.3.5 Popularity- based storage allocation  

Originally Heskett defined popularity-based policy, as distributing items over the 

warehouse storage zone corresponding to their turnover, as the only definition of 

popularity. The items with the largest sales volumes are placed at the most reachable 

locations, typically next to the packing and shipping area. Items with the low demand are 

assigned somewhere towards the back of the storage (Heskett 1964 p. 12). 

 

On the other hand, Hausman refers to popularity of items as basic determination and 

accentuate that popularity can be considered in various ways and not only limited by 

turnover rates, as the terminology is not a constant, popularity of the items is frequently 

bound with the number of storage/picking requests per item, as well as amount of the 

picks per items are also in use (Hausman et al. 1976 p. 131). 

 

According to Lynn et al. a real-world execution of the full-turnover strategies would be 

the most efficient in case it united with the dedicated allocation. The main drawback is 

that the demand fluctuates constantly over time and the variety of the popular items alter 

frequently. Every demand modification would involve a new batch of the items ordered 

and the storage would end up with big volumes of the locations to rearrange. An answer 

would be to apply for rearrangement once per period (Lynn et al. 1990). De Koster et al. 

emphasize that the loss of flexibility and accordingly the loss of warehouse efficiency is 

potentially significant when warehouse management is trying to adopt full-turnover 

storage policy (De Koster et al. 2007 p. 97). 

 

The implementation assignment strategies based on the demand frequency commonly 

involve a more ‘data intensive’ approach than random allocation, as order and inventory 

statistics must be managed in order to rank and allocate items. In various practical 

situations this data may not be offered, for instance, due to the variety of popular items 

alters too rapidly to shape reliable statistics (De Koster et al. 2007 p. 101-113). 

 

Hausman defined inventory turnover as the cost of items sold divided by the average 

inventory level. Turnover frequency is calculated as the amount picking requests per time 

period. On the other hand, frequency demonstrates the average storage time per item. 
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Once warehouse specific criteria for popularity are defined, items are ranked and 

allocated to warehouse zones in descending order, with the most desirable locations 

reserved for the most popular items (Hausman et al. 1976 p. 42). 

 

Petersen et al. suggest four different configuration that are typically implemented to 

define the “desirable” locations, called diagonal, within-aisle, across-aisle, and perimeter 

volume-based storage. As shown in Figure 10, the perfect configuration determined 

mutually by the position of the inbound and outbound point (I/O) and the related distance 

or picking tour time between locations. Dark areas are highly desirable storage locations, 

light areas are less desirable. A within-aisle configuration is potentially suitable for 

situations when rearrangement of items will cause huge materials handling costs, for 

instance for wire-guided forklifts, required to bring themselves into line before they might 

access an aisle. An across-aisle configuration might be more applicable to balance picker 

circulation across multiple aisles. Finally, the diagonal configuration is a compromise 

between the within and across aisle models (Petersen et al. 1997 p. 424). 

 

Petersen et al. discuss that this configuration should be extended to examine the total time 

to complete a picking tour by taking into consideration the picking time difference in 

warehouse location. The time to pick up an item to be contingent on the height of the 

storage location in addition to size and weight of the demanded item. Warehouse locations 

above the picker’s shoulder or below the picker’s waist require more time to retrieve. The 

area between the waist and shoulders is called the “golden zone” and naturally items with 

higher demand are placed there (Petersen et al. 1997 p. 426). 

 

Figure 10. Configurations, typically implemented to define “desirable” locations 
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Mahan et al. inspected a tactical and strategic planning to demonstrate various alternatives 

for improvement of order fulfilment cycle. On the tactical level they utilized principles 

of turnover based allocation. To define frequently demanded items, ABC stratification 

was implemented in this research. Such analysis facilitated company to keep items in the 

suitable locations and the two characteristics utilized to distinct products into groups 

were: the proportion of part numbers and the rate of inventory value. Values: quantity per 

period and the cost per unit were defined in accordance with customer demand (Mahan 

2002 p. 71). 

Having provided an overview of the main storage policies, next the oldest and generally, 

the most frequently used allocation to reduce the amount of travel Cube per Order Index 

(COI) is discussed and presented in the scope of different allocation policies. 

2.3.6 Cube per Order Index (COI)   

Originally introduced by Heskett in 1963 the Cube-per-Order Index (COI) defined as the 

ratio of the item's total space requirement to amount of picking tours required in 

accordance with customer demand. The original heuristic involved placing the items with 

the lowest COI value next to packing zone, allocating items that combined a high demand 

frequency with a low space requirement in the most desirable locations. Items were then 

allocated progressively starting from the packing zone by increasing the COI. There are 

numerous simulations considering the storage allocation in relation to the COI. This 

approach is extensively studied by Heskett et al., 1963, Francis et al 1967, Harmatuck 

1977, Bhaskaran,1988.  

 

According to De Koster, mathematical models of the COI-method emphases distributing 

of the required space for each item by its turnover, with the subsequent ranking of the 

items from the lowest to the highest COI-index. Next, following a space-filling curve, the 

highest ranked the COI items are allocated to the most desirable locations. Lynn presents 

advantages and disadvantages of the COI, and practical rules on the implementation of 

the COI-method (De Koster et al. 2007 p. 278). 

 

Hodgson investigated practical value of the COI-method in the scope of popularity- based 

storage, describing index as the relation of the item's total necessitated space to the 
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amount of picking tours compulsory to satisfy its demand during a specific period. 

Allocation algorithm involves assigning the items with the lowest COI-index next to the 

packing and shipping area (Bhaskaran 1998 p. 83). 

 

The COI-method has been proven as optimal allocation approach by numerous authors 

under different time, circumstances, available WMS and warehouse layouts. Based on 

simulation study Francis provided empirical evidence that the COI-based allocation 

decreases distance of the picking tour under certain assumptions and Frazelle configured 

the COI-method as a linear program, and examined the heuristic in relation to the linear 

program demonstrating that the settled configuration built in this simulation would not 

interrupt with the main principles of the COI-method (Frazelle 1989). Bhaskaran also 

proved evidence about advantages of the COI-method, when it goes to the assignment of 

the items to minimize travel distance during storage/retrieval and suggested to distinguish 

the COI as separate allocation policy (Bhaskaran, 1998). 

 

Lynn et al., define the real-world situation where the COI-method is the most efficient, 

and observed the critical warehouse infrastructure and layout elements, obligatory for the 

efficient utilization of this approach. Theoretical assumptions were mainly designed 

based on the original outcomes of study by Heskett. Lynn et al provide an accurate 

guidance which way the COI-method can be implemented, by determining obligation for 

the heuristic to be optimal and used a linear program as well as to show the optimality of 

the COI with application to the specific simulation case and warehouse layout (Lynn et 

al. 1976). 

 

Bhaskaran implemented the COI-method to a multiple picking zone layout and 

demonstrated that under Euclidean distance the COI-method provides with the minimum 

picking tour distance. Additionally, The COI-method had been proven reasonable in the 

simulation study with the target on minimizing material handling expenses. In the scope 

of dynamic demand fluctuation, the COI-method wasn’t constantly being able to provide 

the optimal solution (Bhaskaran 1998 p. 90). 

 

Lynn sees the great disadvantage of the COI-method in its static nature.  Order rates for 

different items repetitively fluctuate –mostly due to the seasonal demand. Consequently, 

the COI-method requires frequent reviews of the actual demand situation and timely 
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relocation of the items, causing additional operational expenses. Additionally, for 

moderate size warehouses, where order picking is performed using sequencing or 

batching, the COI-method fails flexibility in allocating items that occur in the same 

picking tour next to each other. Therefore, the probability of allocating such items 

together, while they are not used in the same sequence is very high, causing additional 

traveling. Thus, product correlation should be considered in the scope of the warehouse 

location assignment (Lynn 1976 p. 28). 

 

According to Caron et al., the major drawback of the COI-method is that it does not 

consider the affinity relationship between ordered items. This approach could be 

advanced by adding elements of affinity or class-based stratification. Algorithms and 

heuristic would be settled to provide a solution to the allocation layout problem, and the 

heuristic should include comparability aspects (Caron et al. 1998 p. 534-539).  

 

Bhaskaran conducted a simulation using the COI-method for full box picking and 

introduced models to compare dedicated allocation and random allocation using the 

closest open location to assign the items. These allocation strategies were evaluated with 

the relation to the total item space requirements, order picking cycle times and WMS 

reaction time. Random allocation only reached a 65% space usage compared with the 

100% space usage of the dedicated allocation. Nevertheless, random allocation had a 

higher rate of the available space covered (Bhaskaran 1998 p. 92). 

 

One should distinguish another valuable and frequently implemented approach - Order 

Orienting Slotting from Cube-per-Order Index, even though both methods have a lot in 

common. Order orienting slotting is presented next. 

2.3.7 Order Orienting Slotting 

Regularly, outbound team goes along with the exact route to retrieve order items, where 

the picking tour is bounded to the picking list and the routing policy configured in WMS. 

Consequently, it is of major significance to investigate the retrieving sequencing once 

allocating items to warehouse zones. The literature on Order Oriented Slotting (OOS) is 

rather scarce. Originally Frazelle tried to tackle this and suggested a heuristic approach 
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to group items into areas in accordance with the combined likelihood that pair of items 

would be repeatedly appearing in the same orders (Frazelle 1989 p. 155). 

 

Schuur et al. suggested a storage policy named Order Oriented Slotting. The idea of OOS 

assimilates the retrieving regularity between products with their unbiassed popularity to 

allocate them a warehouse locator, minimizing the overall picking tour distance for all 

the orders. The main idea of OOS is to keep products, frequently appearing together in 

customer demand orders, next to each other. OOS approach contains solving two 

subproblems simultaneously: allocation of items to storage locations and execution of the 

order picking tours for all the orders. Often singular structure of the given routing strategy 

allows formulation of the correlated OOS problematic as a Linear Programming Problem. 

For moderate size warehouses, one can solve this LLP to optimality. Accordingly, the 

value of the above-mentioned heuristics can be verified (Schuur et al. 2009). 

 

The OOS policy offers a decent solution to the allocation of items. However, the OOS 

model has a major drawback. There is almost zero functionality in case when the order 

retrieving method includes batching. OOS might only be competent when each item is 

picked in a static sequence within other items. This approach forbids the same specific 

item to occur in different picking orders. In a batching situation, items may be demanded 

in several orders with various subitems to be retrieved in tours with different travel 

distances. 

 

As stated in sections 1.7 and 1.8 in order to concentrate on the most significant items 

ABC-analysis has been implemented to narrow down the amount of samples. 

2.4 ABC-stratification 

ABC analysis was already discussed in the scope of the class-based allocation. In order 

to concentrate empirical research on the most valuable items from the picking point of 

view, ABC-analysis has been conducted.  According to Cheng ABC-analysis is an 

approach to categorize objects, actions, or processes based on the relative significance. 

This technique is regularly applied in warehouse management where it is used to 

categorize storage items into clusters in accordance with the total annual spending, or 

total stockholding expense.  
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Pareto analysis is applied to reach related ordering. Considering warehouse and picking 

specifically the primary task in the analysis is to classify principles which make a 

selective level of control for relevant items. Two thinkable criteria are the picking 

frequency of item and its value. Combining both intensive management is extra 

imperative frequently demanded items with a high unit value. On the other hand, in case 

with non-popular, low value items, the cost of the special attention might overweight the 

benefits and the modest level of control would be enough (Cheng 2010 p. 76). 

 

Frazelle defines the relevance of the items as the combination of criteria and suggested 

classification which offers warehouses to categorize items into three classes: 

• A – items with the highest relevance; 

• B – items with moderate relevance; 

• C – items with low relevance (Frazelle 2002 p. 26). 

 

Frandsen suggests using picking frequency in the below classification to accomplish 

original analysis based on the value of the item: 

 

• A-items correlated for 80 % of the picking frequency;  

• B-items correlated for 15 % of the picking frequency; 

•  C-items correlated for 5 % of the picking frequency (Cheng 2010). 

 

Since the main goal of this thesis is to decrease order fulfilment cycle by minimizing 

picking distance order frequency is relevant. However, the total amount of the items 

demanded during a specific period is not suitable for the picking frequency classification, 

as picking tours vary from in accordance with the certain features of the items. For 

example, demanded amount in 1000 pcs for item A might be requested to fulfil in one 

order and 100 pcs of item B might - 1 pcs per order, resulting in more picking times and 

distance to travel. Depending on the dimensional characteristics of the items, the amount 

retrieved within single picking tour might fluctuate significantly, for example, one storage 

locator might be sufficient to store 100 pcs of item A, while 10 pcs of larger item B might 

require 10 separate storage locators.  Consequently, it is reasonable to categorize items 



45 

 

by the number of pickings during the specific period, as this would reflect time spent on 

retrieval of each item. 

 

Evidently, there are other criteria that represent relevance to the customer, especially in 

B2B business, like delays in picking for more expensive items might lead to more 

problems for the customer and consequently to the greater amounts of complaints from 

the customer. Specifically, for picking of the pharmaceutical items nature of the items 

plays the crucial role in classification, as some drugs might be required at once in relation 

to the lifesaving event and delays for less relevant towels can be partly acceptable. 

Another useful characteristic for classification is the amount of urgent orders for specific 

items. 

 

According to Frazelle, there are following steps to be taken to implement an ABC 

analysis: 

1. Categorize the items from largest to smallest of the selected criteria; 

2. Compute percentage of each item in relation to the total volume of the selected criteria; 

3. Compute each item accumulated criteria starting with the highest value; 

4. Categorize items into classes in accordance with the Pareto’s rule (Frazelle, 2002). 

 

The goal of the ABC-analysis in this study is to define A-class items with the high picking 

frequency, with high value and relevance for the end consumer and thus, less acceptable 

for delays, as well as represented in urgent orders. Due to the relevance of these A-class 

items, it is recommended to keep all items close to the packing zone in order to reduce 

order picking distance and order picking time. In the scope of storage allocation 

implementing ABC-stratification represents class-based storage and, therefore allocation 

strategy in this thesis is the combination of different storage policies: popularity-based 

(COI) and family-based allocation (affinity relation), with the additional detailed 

allocation for relevant A-class items based on simulation (class-based). 
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3 METHODOLOGY AND PRESENT SITUATION 

This chapter focuses on the empirical part of this study. It starts with methodology 

overview. Next, case company with the focus on warehouse layout, the historical pattern 

for customer orders and importance of forecasting are introduced. Chapter 3. continues 

with the analysis of the historical shipping data and ABC-stratification, following by 

COI-index definition for the current case and ranking. Next, sampling, and mathematical 

method are presented. Finally, simulation related assumptions and constraints are 

introduced, random and the COI-based locations for A-class items assigned and order sets 

are generated. 

3.1 Introduction 

To minimize picking travel distance a methodology that combines simulation and 

optimization was developed. Individually every phase has a core objective which is 

determined as follow: 

• First Simulation concentrated on formulation of problem and generating model, 

objective function, as well as related picking constraints and parameters that are 

going to be used throughout the experiments; 

• Optimization is used to compare the existing random allocation strategy with the 

option selected based on literature review: the COI-based allocation; in details 

how, a potential storage allocation strategy influences the average distance of the 

picking tour to retrieve the full order. 

 

The emphasis of this study is to define the settings under which different allocation 

strategies diminish the overall length of picking tour. 61 order sets are generated 

randomly to be tested in the simulation. By reviewing historical order patterns, the goal 

is to demonstrate the conditions under which chosen allocation strategy might have more 

benefits than the existing one. For instance, in case similar items occur in different orders, 

an allocation strategy that assigns these items next to each other would minimize the 

average distance of the picking tour. On the other hand, in case all the items demanded 

by customer consistently without specific frequency, a random allocation strategy would 

be the optimal solution. Two allocation policies are compared: the existing random 
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allocation and the COI-based allocation. Optimal storage locations are determined based 

on the distance of the picking tour to retrieve all required items under fulfillment of the 

customer outbound order.   

 

It is assumed, that there is no shortage for simulation items throughout the picking process 

and there is a sufficient amount to satisfy all order sets of the simulation. Likewise, it is 

assumed that the item replenishment is immediate, and it occurs as soon as a storage 

location becomes empty.  

 

The difficulty of the optimization method in the scope of storage allocation goes in 

accordance with the range of potential solutions and is time-intense for large-scale 

processes. As a result, it is not practical to implement developed mathematical model 

directly for all Customer N items, and therefore to handle this concern, ABC stratification 

is conducted to concentrate research on the most significant A-class items. This way 

existing 1000-items optimization, is limited to 200- items and simulation is conducted for 

the smaller amount of samples to achieve results in a much shorter time, as well as 

obtained results might be used as the base for the larger scale heuristics later. 

 

The objective measure used in the simulation is picking tour distance. This measurement 

approach is the most regularly implemented one in the related studies and, according to 

De Koster et al., is directly correlated to the items retrieval time in the manual order 

picking systems. In addition, as stated before, travelling is the greater part of the whole 

retrieval cycle, pointing out its importance in the structure of the warehousing expenses 

(De Koster et al. 2007 p 113). 

3.2 Warehouse processes and historical data 

Simulation data for the empirical part was obtained from the review of the case company 

related orders and inventory information in WMS system. Additionally, an observation 

of the picking process was carried out at the Vantaa warehouse. For assessment of the 

simulation research data, as well as for ABC-analysis, Microsoft Excel and NetLogo 

simulation software were used. Dynamic data has been applied as the main basis for 
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retrieving order line related information. The secondary data set is restricted to a 6-month 

period from Aug 2017 to January 2018.   

 

Information obtainable from the WMS can be divided into the static data and the dynamic 

data: 

 

• Static data: available inventory, warehouse locators reserved and used, average 

inventory rate and utilized space rate, locator assignment policy; 

• Dynamic data:   the most frequently demanded items, inventory operations, 

picking orders, relocation, lines per order, orders per item, items per specific 

period, picks per location, order picking cycle, order fulfillment cycle. 

  

Additionally, the evaluation of the picking process is organized by monitoring the time 

warehouse outbound team is spending on the different stages of order picking. This has 

been made to ensure the classification of the time distribution provided in theoretical part 

with traveling being the most time intense activity generally, as well as to make sure there 

are no additional specific warehouse or customer order related features or attributes 

affecting picking process or traveling distance in particular.  There were no such features 

found during observation and simulation period with travelling, evidently, being the most 

time intense stage of the picking process in Vantaa warehouse. 

3.2.1 Material handling and picking process in Vantaa warehouse 

In its present structure, the materials handling process in Vantaa warehouse can be 

classified into four main activity groups: receiving, inbound, order picking, and outbound. 

The process flow in Figure 11 demonstrates the common warehousing procedure related 

to handling of the single order cycle. Depending on the direction all activities can be 

further divided into inbound logistics flow and outbound logistics flow.  

 

The incoming flow of the order cycle initiates with the arrival of the direct shipments 

from the factory or distribution center or reverse transportation from the customer site. 

Commonly, in accordance with the agreed logistics procedure and transportation mode, 
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the direct deliveries are unloaded either by the transportation service provider or handled 

by the inbound staff of the Vantaa warehouse. 

 

 
 

 

 

Figure 11.  Material handling process in Vantaa warehouse  

 

 

As soon as the goods have been unloaded to the inbound zone, packages are momentarily 

examined for physical damages and discrepancy; wholes, broken boxes, any possible 

inconsistency compared to customer order, arrival notice and transportation documents, 

should be reported immediately to both transportation agent and customer, as well as 

marked in related sections of the shipping documents.  

 

As a rule, internal sides of the boxes cannot be examined directly during receiving due to 

the time restriction, as well as the consistency of the items inside the packages cannot be 

verified. Potential special cases for the discrepancy of box content are handled separately 

between parties afterwards.  In case no any issues appear, and no further investigation 

required, warehouse inbound team sign and receive related shipping documents without 

additional remarks, accepting the accountability for any potential discrepancy and 

damage on the package level later. 
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The allocation part of incoming flow initiates after an inbound order note or packing list 

is transferred from customer ERP to WMS. All included goods are placed in the receiving 

zone by that time. The inbound staff, normally with an assistance of lift-truck or pump, 

transfer and locate goods to a storage position. Storage location for each item is defined 

by WMS during acceptance of the customer order notification from the customer ERP 

and marked in the inbound order note. As soon as the inbound order note has been 

completed and fully scanned with RF scanners inbound team approves new items to 

inventory in WMS and customer receives related notification in the ERP.   

 

Presently, while random storage allocation is in use, WMS distributes storage locators in 

accordance with the configured rule for incompatible items due to the pharmaceutical 

nature of the components, which must be placed in nonadjacent locations.  No 

complementarities, popularity, demand frequency, affinity issues are taken into 

consideration by WMS, neither continuous evaluation of demand patterns are 

implemented.  It is assumed, that the main practical outcome of this thesis would be to 

provide set of recommendation within the given allocation method to be integrated into 

WMS in order to take above-mentioned features into account while making the 

distribution in the future 

 

Outbound part of the outgoing flow initiates with the order picking process, when specific 

items are demanded in the ERP for the new sales order. Sales data integrated between the 

customer ERP and WMS, and the last one automatically configures delivery note and 

picking list, which is handed over to the warehouse outbound team. Outbound team 

member moves to the first storage location in the picking list, recovers the demand 

amount of items, and continue to the next location. As soon as all required items are 

picked successfully, they are transferred to the packing zone. This part covers another 

strategy of order picking improvement, called routing. Routing policy defines in which 

order picking lines are positioned. Typically picking order can be completed in the single 

picking tour, as well as this is assumed for the simplicity of the simulation study. 

 

Currently, when it goes to the picking of the customer N orders in the Vantaa warehouse, 

there is S-Shaped routing policy configured in WMS. As stated in the limitation part this 

work is focused on solving allocation problem as the method for the picking 
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improvement, and routing and batching are out of the scope. For that reason, S-Shaped 

routing, shown in Figure 12 is assumed to be fixed during the simulation period.   Under 

this strategy, outbound team member starts picking tour by entering the aisle next to the 

packing zone. Any aisle corridor having at least one item should be entered across over 

the entire length, without any backtracking. Corridors without locations mentioned in 

picking lists are passed over. Once all required items are collected, the order picker 

returns with the shortest possible way back to the packing zone. However, since there is 

no backtracking allowed, it is assumed that picker would need to finish until the end of 

the last corridor, he has accessed. 

 

Additionally, heuristics are frequently applied to define best possible routes. The 

selection of an appropriate routing strategy goes in accordance with the specific features 

of the customer orders, picking aisle design, and available inventory tools. For example, 

s-shaped is empirically proven as having best results in case the density of the picking per 

aisle is large (De Koster et al 2007 p 112). It is assumed that an optimal picking tour 

distance will result in an optimal return distance as well.  For more information regarding 

routing and batching reader may refer to De Koster et al, 2007 and Smith, 2001. 

Improvement of the picking through the different routing or batching method might be a 

potential topic for future investigation.  

 

 
 

Figure 12. S-shaped routing policy in Vantaa warehouse, with the black squares as 

picking items.  
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A frequent practice is that the same outbound team member is in charge of the whole 

outbound order outbound cycle including packing the items. In the loading zone orders 

are sorted and packed for departure. After all, items have been scanned as being picked, 

RF scanners are used to update order status in WMS and notify transportation department 

to collect packed shipment from the loading zone. After shipment is booked outbound 

team member prints out the delivery labels, transportation documents, and other 

customer-related documents and enclose on the package. 

 

As soon as these activities are completed, items are transferred to the transportation zone, 

where they are departed to the final destination. It is important to point out, although 

modification of order picking tools is out of the scope of this work, it is recommended to 

upgrade RF scanners to wireless ones, with related data being updated into the WMS and 

ERP directly after the corresponded process has been completed. This way, there is no 

need to spend time by travelling to the packing area and connecting scanner to PC to 

download customer outbound order, as well there is no need to manually upload 

successfully picked orders to WMS to update order status and trigger a booking for 

transportation. From the customer side, implementation of wireless scanners might 

require a certain amount of investment, as well as the additional arrangement to get 

separate WLAN- channel.  

 

Figure 13. The layout of Vantaa warehouse  
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As shown on the layout Figure 13, Vantaa warehouse is flat two-dimensional rectangular 

warehouse with single inbound and outbound zone placed in the front of the warehouse 

next to unloading and loading gates, with loading gates located closer to packing zone.  

The warehouse includes 15000 pick locations and thirty aisles with 500 storage locations 

per aisle and 250 locations on each side. Since Vantaa warehouse is not dedicated to 

processing only Customer N items and has cooperation with multiple customers, there 

are two aisle X and Y reserved for Customer N items in the “golden zone”, close to the 

packing area. Each aisle has the upper part and the lower part as shown in the layout with 

total 1190 storage locators available and 238 locators with five different levels, starting 

from the floor level: A, B, C, D, E, F It is assumed that ground level A locators are 

preferable to use for allocation. To present the time spent of retrieval of items from the 

higher levels, each additional level increases conditionally picking distance by three 

meters, compared to retrieval from the same place level A. Congestion and availability of 

picking tools for higher locators are not taken into consideration. For simulation 

simplicity amount of possible levels will be limited to four levels: A, B, C, D. 

 

Shipments arrive on the pallet and leave either on the pallet or without it. Storage 

locations are identical in height, width and length. Furthermore, four cross aisles are 

utilized for changing the corresponding aisles, starting from packing area until loading 

zone. The packing area, where order retrieval process begins and ends is positioned in the 

right edge of the backcross aisle. 

 

Although in real-life a storage locator is occupied with different items combined in 

batches according to the FEFO warehousing technique for picking items, for the 

simplicity of the simulation it is assumed that each locator includes similar items. This 

simplification is partly offset by the fact, that items combined in batches have normally 

strong affinity relation with the same demand popularity and therefore are frequently 

ordered together. In case of high demand for all batch items, ABC-analysis would classify 

all to the same group and considering compatibility features simulation would suggest 

storing them next to each other. On the other hand, non-popular B- and C-class items with 

less movement and demand are out of the simulation.  At the time of the simulation, 70% 

of dedicated storage locations reserved for Customer N items were utilized due to 

seasonal demand fluctuation. As stated above, in this simulation there is always enough 
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quantity of required items to fulfill customer order and picking is performed to complete 

one order at the time, as well as one picking order completed in one picking tour and 

therefore replenishment and sequencing issue are not considered in this work.  

3.2.2  Historical order data and forecast 

Based on the historical demand data, complementary items with high affinity relationship 

should be located close to each other, to minimize picking tour. However, based on the 

observation, allocating non-affinity items with comparable package size and design might 

lead to confusion, delays and picking mistakes. For that reason, it is recommended to 

mark names for each item visibly on the inventory, as well as to keep non-affinity items 

distanced from each other. Based on the observation, there are no additional allocation 

constraints based on the nonstandard weight or volume, requiring specific storage locators 

for particular items.  

 

Typically, amount of picking lines in the outbound list has crucial importance. Orders 

with the greater amount of picking lines correspond to a comparatively efficient order 

fulfillment, whereas the less lined picking is more time-intensive. This occurs due to the 

typical handling cycle per line is higher for the pickings of single items. For the period 

between August 2017 and January 2018, there were 6914 outbound order requests from 

Customer N provided, with total 23243 order lines. Table 3.1 represents the amount of 

orders for various picking lines, with the amount of picking lines 1,2 and 3 having 

significantly more demand.  

 

However, due to the reason, that retrieval process for such minor amount of picking lines 

requires relatively less traveling distance, simulation is focused on more complex 11 

variations of orders with the amount of picking lines from 4 to 14 and 1854 total order 

lines during the simulation period. Figure 14 illustrates an average proportion of total 

orders for each number of the picking lines requested from August 2017 to January 2018, 

which are picked up for the simulation and Table 3.2 represents simulation share or each 

variation of the picking lines. 
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Picking lines 

per order

Amount of 

orders

Share of 

orders

Simulation 

orders

4 485 26% 16

5 334 18% 11

6 228 12% 7

7 168 9% 5

8 153 8% 5

9 130 7% 4

10 117 6% 4

11 80 4% 3

12 58 3% 2

14 53 3% 2

13 48 3% 2

TOTAL 1854 100% 60

 

Table 3.1. The amount of the orders for various number of picking lines 

 

Forecasting is a useful tool to estimate future need and allocate potentially more vital 

items with separate SLA, closest to the packing zone. Although Customer N cannot 

provide any forecast, the historical urgency of the order for specific items will be 

considered separately as the additional attribute for more favorable storage allocation, in 

case there are related items with equal picking frequency and demand. The simulation 

covers specific items with special picking urgency and separates agreed lead time, even 

though   according to the classification of ABC-stratification, they are categorized as B-

class and C-class items with low picking demand. It is important to point out, that due to 

the demand fluctuation, the compulsory requirement for WMS system is to analyze 

dynamic demand data over the agreed period and update ABC-stratification and 

distribution principles of the allocation policy.  It is also recommended to request 

associated information from the Customer N about, for example, EOM/EOP items, in 

order to arrange related relocation. 

 

 

Figure 14.  Simulation picking lines per order  Table 3.2. Orders variations

        for the simulation 

Amount of 

orders

Lines per 

order

Amount of 

orders

Lines per 

order

Amount of 

orders

Lines per 

order

Amount of 

orders

Lines per 

order

3035 1 80 11 6 19 1 30

1127 2 58 12 5 28 1 29

751 3 53 14 5 22 1 27

485 4 48 13 4 39 1 32

334 5 29 15 3 33 1 26

228 6 24 16 3 31 1 36

168 7 16 17 3 23 1 55

153 8 13 18 3 35 1 42

130 9 11 21 3 24 1 53

117 10 7 20 2 25 1
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3.3  ABC-stratification  

As mentioned in Chapter 1, in order to simplify simulation and provide the set of 

recommendations for allocation based on the empirical results, simulation is focused only 

on the most important A-class items with high picking frequency as the criteria for 

stratification and number of order lines per period as a parameter. As Vantaa warehouse 

is 3PL LSP for Customer N, with the same agreed lead time and warehouse rent fee, 

picking frequency was selected as main criteria for stratification as being the most 

relevant. It is not appropriate to use quantity in general as items might be requested with 

different quantity per order, for example, 1000 pcs of item X can be requested in one 

order line and 20 pcs of order Y in 20 order lines. Therefore, picking of item Y requires 

20 times more traveling, than picking of item X, with total demand 50 times more than 

item Y.   

 

Items are classified into three different categories, with A-class items corresponding to 

the 80% of the picking lines; B –class items corresponding to 15% of the pickings; and 

C-class items corresponding to the remaining 5% of pickings. According to the picking 

orders for the 5-month period, from totally 942 Customer N various items stored in 

Vantaa warehouse totally 902 (95%) different items were picked for Customer N orders, 

with 783 (82%) items required at least two times, 403 (42%) items required at least 10 

times, 119 (13%) items required at least 50 times and 59 (6%) items required more than 

100 times. As presented in Table 3.3, 18024 picking lines outbounded from August 2017 

to January 2018 of total 23243 picking lines covered by 200 most frequently picked items, 

meaning that 22% of items represent 78% of the picking.  In a deeper analysis, there are 

15 items with 4450 order lines, meaning 1.5 % of the items is 20 % of the total ordered 

lines.  

Item 

class 

Amount of 

items % of items 

Amount 

of order 

lines 

% order 

lines 
A 200 19% 2089 78% 

B 413 39% 321 12% 

C 450 42% 268 10% 

  1063 100% 2678 100% 

 

Table 3.3. ABC stratification based on the picking frequency 
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The difference in order lines between the most picked item I1 and the second most popular 

item I2 is 234 picking lines and respective demand variance between I2 and the third 

popular I3 is 73 picking lines. Otherwise, distribution for the 200 most picked, A-class 

items is relatively smooth, which is shown in Figure 15.   Statistically, in fewer picking 

claim, B-class items are placed behind or above A- class items, and the least picked C -

class items placed even further or higher, with the A-class items occupying floor level.  

 

It should be pointed out, that based on the historical allocation data some of the B- and 

C-class items are reserved for A-level locations. Despite shorter picking distance for A-

level locations, retrieval of the items from higher levels of the aisles requires special tools, 

like higher picker lifts. Even though the availability of related picking tools is out if the 

scope of this work, potential shortage as well as congestion to access aisle might lead to 

delays in the picking process. With A-class items located in A-level such impact is 

minimized. 

 

 

Figure 15. Distribution of the picking lines for A-class items 

3.4 Simulation 

While simulation research for this thesis has the goal to generate practical solution by 

optimizing objective functions and compare given methods, there are some assumptions 

should be applied to keep it more controllable and to ensure generalization towards other 

studies related to the allocation policies in the healthcare sector. This section also 
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discusses the mathematical method to solve optimality problem, introduces the objective 

function, as well as describe the run of the simulation. 

3.4.1 Model Assumptions 

There are following assumptions applied in this work. Warehouse layout related 

assumptions already discussed in section 3.2: 

 

- Pallets and aisles. All items are kept, and more than one box items are transferred 

on euro-pallets. Euro-pallets are assumed to be the same size 1.2m x 0.8m, weight 

20kg, and structure and these features have no impact on the allocation or picking 

distance and time. The width of the picking aisles is assumed to be one unit. Only 

floor levels are utilized to place items, meaning that there is no additional time 

needed for handling higher levels in racks.  

 

- Packing zone and warehouse tools. There is one universal packing zone where 

all items should be delivered after retrieval and from which they will be later 

picked up by transportation department to end receiver. Items were delivered and 

retrieved using a forklift truck in required condition, as well as picker itself has 

sufficient skills to manage truck. There is no relocation, renovation or wall-to-

wall stocktaking happening at the moment of order picking. The dimensions of 

the warehouse and the position of the picking zone and aisles are static. The 

reverse zone is not considered, either movements of other pickers causing 

congestion or additional traffic or aisle access/exit delay. 

 

- Future demand and inbound locations. There is no forecast available, so 

historical order pattern is used for simulation. There are always available 

warehouse locations for new inbound.  Reserved volume and picking process are 

simple linear models and it requires around x times of the warehouse units to place 

and keep x pallets as well as it requires around x times for the picking team 

member to retrieve x items.  
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- One item- one locator. One item occupies one storage locations and quantity is 

always enough to satisfy the order. Typically, inbound batches from the factory 

are containing items to satisfy around 10 -15 outbound orders, and therefore 

situations, when picker should visit multiple storage locations to collect are rare 

and not require special attention in the scope of the simulation.  

 

- Orders assumption. Based on ABC-analysis, it is supposed that the inventory 

stores 200 different items simulation items. Utilizing these 200 items and 

historical shipping data, 60 outbound orders of different proportions and amounts 

are created. As stated above, the order scope differs between 4 and 13 items, 

created within the scope of the normal distribution matrix. Although, selection if 

the items for simulation is random there is an affection based on popularity and 

affinity of the items. Every outbound order is a solo simulation move.  Some items 

due to the security reasons cannot be stored next to each other. For the simplicity 

this constraint is out of the scope of the simulation.   

 

In case there are too many items with high picking frequency are placed next to each 

other, it might end up in higher traffic density for the specific aisle, with pickers waiting 

for access. In this situation, the WMS might choose to distribute these items over the 

aisles with the same picking distance from packing zone.  However, such items should 

not have affinity relations, i.e. used frequently to satisfy same type or orders or customer 

demand, as well as the inbound distribution of storage locators for these items, might be 

analyzed and manually adjusted in the WMS.    

3.4.2 Mathematical optimization method 

Allocation distribution in Vantaa warehouse can be presented as the Linear Placement 

Problem (LPP). According to Cheng, the LPP is a complex non-polynomial combinatorial 

problem, with all the potential solutions of positioning x items is x-factorial. Morse first 

tried to define correlation index to present interdependency between books and 

bookshelves as a part of allocation combinatorial problem.  He suggested that as soon as 

the correlation indices are defined through the heuristic algorithm, a location yi is 

allocated for next item i along a linear categorization range, showing the optimal order of 

the books (Cheng 2010).  
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Cheng later proposed the more practical solution, with the intention, to reduce the length 

of cable, linking a group of nodes. The algorithm initiates with minimal steps and steadily 

alters to more comprehensive steps. Implementing the LPP to the order picking, the goal 

is to define the most appropriate storage locations, so the traveling time and distance 

among same order items is reduced.  At each stage, the most suitable set of items to the 

closest accessible position is acknowledged and assigned to the set of the storage locations 

starting from the closest potential storage locations. The solution generation is 

accomplished when every item has been allocated. LPP might not be the valid method in 

case the expressive functions are sampled from the original situation. To investigate a 

batch of items with random size, historical order pattern data with picking frequencies 

items and distances from storage units to the packing zone are implemented as the set for 

LPP method.  

 

Genetic Programming (GP) is another mathematical approach, which recently has been 

gaining popularity, investigates allocation problem by matching objective functions as a 

substitute for solutions for this problem, like it is done in case of LPP.  By implementing 

GP corresponding area for objective functions can be optimized in simulation using 

historical data to generate proper solution competently for future allocation. (Mantel et 

al. 2009 p 311-313). GP is also more efficient when simulation contains more than 500 

items, which is however not beneficial in the case of allocation in Vantaa warehouse due 

to the simulation focused on A-class items only. 

3.4.3 COI-ranking and objective function 

As stated in Chapter 2, The COI-index is the proportion between compulsory storage 

space to keep an item and picking or demand frequency for this item. Initial practical step 

is to determine the COI-index by dividing the assigned storage space of each item by its 

picking frequency and rank COI in non-increasing order. As the compulsory storage space 

by every item is considered as equal, neither relevant for this simulation, the COI 

relationships is transformed based on pure picking or demand frequency. The picking 

frequency is the number of orders that requires a specific item. Next step is to rank items 

from the lowest to the highest COI-index. Table 3.4 illustrates the calculated the COI-
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indexes for the simulation items. Afterwards, the highest ranked COI items are assigned 

closest to the packing zone.  

 

 

Table 3.4 COI-indexes for simulation items based on the picking frequency 

 

Next applicable variables for COI-based allocation are considered, with following 

notations: 

 

P = amount of packing zones, which is limited by in assumption part and equals 1 

i = amount of items 

l = amount of inventory locators 

dpa = picking distance from packing zone p to locator a 

x ja = 1, if item j is allocated in storage locator a; otherwise 0 

f (x) = distance of the picking tour; single order completed 

 

 

Item ID COI index Item ID COI index Item ID COI index Item ID COI index Item ID COI index Item ID COI index Item ID COI index

1 646 30 159 59 101 88 68 117 52 146 42 175 34

2 419 31 150 60 98 89 68 118 51 147 42 176 34

3 346 32 149 61 97 90 68 119 50 148 41 177 34

4 311 33 148 62 96 91 66 120 49 149 41 178 34

5 287 34 147 63 95 92 66 121 47 150 40 179 33

6 277 35 146 64 95 93 65 122 47 151 40 180 33

7 277 36 144 65 93 94 64 123 47 152 40 181 33

8 273 37 138 66 92 95 64 124 47 153 40 182 33

9 264 38 134 67 92 96 63 125 47 154 39 183 33

10 263 39 134 68 91 97 63 126 47 155 39 184 32

11 245 40 133 69 86 98 63 127 46 156 38 185 32

12 223 41 132 70 85 99 62 128 46 157 38 186 32

13 209 42 129 71 84 100 61 129 46 158 38 187 32

14 206 43 128 72 83 101 61 130 46 159 38 188 32

15 204 44 122 73 82 102 60 131 46 160 38 189 31

16 196 45 121 74 80 103 59 132 46 161 38 190 31

17 196 46 121 75 78 104 58 133 45 162 38 191 31

18 195 47 119 76 78 105 58 134 44 163 37 192 31

19 194 48 119 77 77 106 57 135 44 164 37 193 31

20 192 49 117 78 77 107 57 136 44 165 37 194 31

21 186 50 116 79 77 108 55 137 43 166 37 195 31

22 177 51 112 80 76 109 55 138 43 167 36 196 31

23 174 52 111 81 74 110 55 139 43 168 36 197 31

24 173 53 111 82 73 111 55 140 43 169 35 198 31

25 164 54 110 83 73 112 54 141 43 170 35 199 31

26 164 55 109 84 72 113 54 142 43 171 35 200 29

27 163 56 108 85 70 114 54 143 43 172 35

28 161 57 107 86 70 115 53 144 43 173 35

29 160 58 101 87 68 116 52 145 42 174 34
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The assumed picking tour distance (1) between storage locator a and the packing zone p 

is determined as follows: 

(1) 𝑓(𝑎) = ∑ 𝑑𝑝𝑎
𝑃

𝑏=1
 

 

LPP mathematical model (2) for item j is determined as follows: 

(2)  𝑚𝑖𝑛 𝐷 = ∑ .𝑖
𝑗=1 ∑ .𝑙

𝑎=1  x ja fa 

 

s.t.  a = 1,2,3…..l  x ja = (0,1) 

  j = 1,2,3…..i             ∑ .𝑖
𝑗=1  x ja = 1 

            

 

Standard LPP algorithm was simplified as there is no additional packing zone, required 

spare by items is irrelevant and equals 1, the order is collected in one picking tour.  By 

calculating f (a) and renumbering storage locations and order items, as well as assigning 

new storage locations based on renumbering above LLP model is solved to optimality. 

3.4.4 Scope of the simulation. 

At the first stage of the simulation is to allocate items in the warehouse according to 

existing random allocation policy and based on the COI-distribution matrix. The goal is 

to define the settings for which comparable storage allocation policies lead to reducing in 

the overall picking distance to retrieve all outbound orders, by running simulation for 

existing random allocation and proposed the simplified COI-based model. 

 

A sample calculation for picking distance concerning the retrieval of multiple items for 

single outbound shown in Figure 16, with green zone representing the most favorable 

locations with back to back travelling distance less than 40 meters.  

 

Allocation data for existing random storage allocation policy is taken from available 

inventory lists from the six months period of observation. As stated in Chapter 2, under 

random storage policy, each item can be randomly allocated to a vacant storage location in a 

warehouse, regardless of picking frequency, affinity, or compatibility. Consequently, each 

vacant storage location has theoretically the equal likelihood of being nominated for 
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allocation by the WMS. Figure 17 demonstrates the existing storage assignment of simulation 

items with prioritizing based on the inventory and shipping data for the last six months. The 

numbers in the square box represent the items stored in the locations. 

 

 
 

Figure 16. Travel distance to the simulation storage locators, meters 

 

Based on the review of the current inventory list can be concluded, that not all items with 

high picking frequency are located close to the packing zone, as well as numerous items 

with the 2-3 picks over the last six months located on the ground level A without any 

benefit for the picking process.  
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In the following stage the minimal distances of the storage locations to packing zone 

should be defined for alternative based on COI-allocation method.  

 

 

Figure 17. Storage assignment of the simulation items based on the current random 

allocation 

 

As soon as the minimal distances are defined, the next phase is to allocate items with a 

higher COI-index or the picking frequency to a storage location next to the packing zone. 

For that reason, item 1 has obtained key storage location closest to the packing zone with 

minimal retrieval tour distance 40 meters. 
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Figure 18 represents the assignment of items according to the COI-based allocation 

method including manual adjustment for affinity items based on the principles 

compatibility described in the scope of the OOS-allocation policy, meaning that 

compatible items are allocated close to each other. Items a and b have the index of affinity 

equal if they are requested once in the same order. Affinity relationship indexes are 

distributed based on analyzing of the shipping data and customer orders.  Compatibility 

rate has been determined based on the amount of times same items are ordered together 

by analyzing the shipping data over the past 6 months. 

 

 It is assumed that the COI-based allocation would provide a more optimal solution than 

the random alternative, since it considers both picking frequency and affinity relations 

between items in the scope of storage allocation. In terms of the affinity relation items, it 

is assumed that items i and j have the affinity rate 1 in case these items are required for 

the same order. Consequently, if i and j items required for 4 simulation orders affinity 

relation for these items is 4. The greater affinity relation value for items i and j is the 

closer related items should be located to each other, or in the real-world even share the 

same storage location. Affinity relations rates calculated based on the historical order 

patterns for the last 6 months. 

 

The following step is to compute the total picking travel distance for the 61 order samples, 

which are generated randomly for this simulation. Since routing strategy is the limited in 

the assumption part outbound team member is instructed to follow S-shaped routing 

strategy, as well as picking list has storage locations listed in respective order. Under this 

strategy, the picking initiates by accessing the storage aisle closest to the packing zone.  

 

Every aisle including at least one sample is crossed over the complete length. Aisles 

without items to retrieve are not considered. As soon as the last item is order list is 

collected, the picker returns to packing zone. Randomly selected simulation sets 

presented in Appendix 1. It should be pointed out, that due to the real-world demand, and 

based on the actual order data, the amount of samples for items from 1 to 12 with the 

highest picking frequency was adjusted manually, so item 1 included in 90% of the 

samples, item 2 in 50% of the samples, and items from 3 to 12 at least in 20% of the 

samples. 
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Figure 18. Storage assignment of the simulation items based on the COI rule 
 

As simulation software NetLogo is used, which is a great choice for warehousing related 

optimality research, with huge amount of adjustable configuration features to emphasize 

essential processes and get accurate and real-world representing results. Depending on 

the first item in the picking list, picker enters to the picking isles either through the 
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corridor between upper and lower isle or starts picking by the first or last location to the 

picking isle. Simulation items and share of the picking lines are presented in Figure 19.   

 

Figure 19. Simulation items and related share of the picking lines 
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It is assumed that traveling distance for one simulation order is minimized in case picker 

enters only one corridor and exists from moving directly back to packing zone. After the 

simulation has been run for all samples, the total travel distance of random and the COI-

based allocation policy is calculated and compared. 

 

4 RESULTS AND DISCUSSION 

In this section, simulation results are presented and comparison between random storage 

allocation and the COI-based storage allocation, as well as an assessment of previously 

made assumptions is provided. As was defined in Section 3 two simulation features were 

pointed out: allocation policy and A-class items based on the highest picking frequency. 

Two allocation policies were compared in the scope of the simulation: existing random 

allocation and the COI-based allocation with the addition of the affinity relation. 

4.1 Summary of results 

The simulation was conducted for 61 order sets, consisting of A-class items, with the 

amount of the picking lines varying from 4 to 14. Accordingly, for both comparable 

allocation strategies, simulation results are presented in this section, with order items 

randomly picked using historical order patterns. However, even though the likelihood of 

occurring in the simulation order is identical for all A-class items, in order to take the 

real-world demands under consideration more intense 70% of simulation picks were 

items from 1st to 100th ranked in accordance with the piking frequency. 

 

As stated in Section 3, the COI-based storage policy allocated all simulation items on the 

both sides of the nearest aisle X: items 1-60 to level A, items 61-120 to level B, items 

121-180 to level C and rest items allocated to level D of the upper part of left side and 

lower part of right site. This way WMS could calculate optimal routing solution to start 

picking tour. In the random allocation items allocated to all 8 possible sides (aisles X, Y; 

left, right sides; upper, lower racks) and four possible levels (A, B, C, D) randomly. As 

can be seen from warehouse layout in case to minimize travelling distance random items 

should be allocated to the same corridor: both side of the lower rack of the same aisle. 
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This way picker is able to retrieve all order items by entering and exiting the same 

corridor.  

 

In order to minimize the simulation period, relatively minor amount of picking order 

samples was implemented.  In this sense affinity relation between different items might 

not be so visible. This fact would represent the random allocation as more appropriate in 

the situation when the amount of sets is minor. Though, with the increasing amount of 

the simulation samples, the affinity interaction between items becomes more visible, with 

fewer benefits from random storage, since neither affinity relation nor the popularity of 

items considered in the scope of the random allocation policy. 

 

Considering that according to the literature review the COI-based storage allocation 

policy with affinity relation component is the most item picking focused approach among 

the rest of the alternative allocations random allocation is compared to it. The aim of this 

assessment is to confirm the capacity of the COI-based allocation to find the optimal 

solution that reduces the travelling distances to retrieval required items for Customer N 

orders.  Table 4.1. presents total travelling distance for each simulation order set and 

related amount of picking lines for alternative allocation policies.  

 

According to the simulation results in sample order sets the COI-based alternative 

obtained a better solution than the random allocation, resulting in average 90% 

improvement for order picking distance. This result indicates that COI-based allocation 

is significantly better than the random alternative, as well it is essential to take into 

consideration both picking frequency and affinity relations between items in the scope of 

storage allocation. 

 

Consequently, it is concluded that the COI-based allocation with affinity relation 

component provides the more optimal solution than that could be achieved by the existing 

random allocation. Comparison for each simulation set is shown in Figure 20. 
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Table 4.1. Order picking distance for simulation sets  
 

In the scope of the average affinity relation rate is 2.5; some items like item 3 and item 5 

has affinity relation rate 6.  It was assumed that affinity relation would add favor to the 

COI-based allocation over random allocation, but due to the simulation only focuses on 

A-class items and there are enough A-level for the all items with higher affinity 

interaction, as well as the amount of simulation order sets is limited, the affection of the 

affinity is limited. For example, locating items with higher affinity relation rate to the 

neighboring locators or even to the same locations would minimize retrieval period with 

fewer times to stop during picking. However, the main attention of this thesis is on the 

traveling distance and there would be no affection on the length of the picking tour from 

such allocation.  

 
 

1 4 170 1 4 85 32 6 149 32 6 94

2 4 166 2 4 82 33 6 140 33 6 85

3 4 164 3 4 94 34 6 173 34 6 91

4 4 217 4 4 85 35 7 214 35 7 103

5 4 166 5 4 91 36 7 150 36 7 100

6 4 160 6 4 88 37 7 176 37 7 91

7 4 205 7 4 88 38 7 172 38 7 88

8 4 167 8 4 85 39 7 169 39 7 94

9 4 142 9 4 85 40 8 179 40 8 91

10 4 152 10 4 85 41 8 164 41 8 97

11 4 192 11 4 88 42 8 208 42 8 91

12 4 134 12 4 88 43 8 226 43 8 97

13 4 205 13 4 85 44 8 208 44 8 100

14 4 167 14 4 82 45 9 226 45 9 100

15 4 218 15 4 88 46 9 232 46 9 97

16 4 211 16 4 82 47 9 226 47 9 94

17 5 149 17 5 91 48 9 226 48 9 94

18 5 202 18 5 91 49 10 223 49 10 91

19 5 170 19 5 91 50 10 220 50 10 103

20 5 135 20 5 88 51 10 226 51 10 97

21 5 218 21 5 97 52 10 208 52 10 97

22 5 167 22 5 88 53 11 220 53 11 109

23 5 220 23 5 91 54 11 229 54 11 97

24 5 214 24 5 88 55 11 179 55 11 94

25 5 173 25 5 91 56 12 214 56 12 100

26 5 146 26 5 88 57 12 202 57 12 106

27 5 214 27 5 91 58 13 232 58 13 106

28 6 146 28 6 91 59 13 226 59 13 106

29 6 217 29 6 88 60 14 229 60 14 106

30 6 175 30 6 91 61 14 232 61 14 100

31 6 134 31 6 91
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Simulation
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Figure 20. Comparison of the order picking distance for the simulations samples 
 
 

Affinity aspect of the OOS-storage allocation has also practical significance, when it 

comes to the reduction of the warehouse operational costs. However, OSS-allocation has 

some additional complexity compared to the other allocation policies, applying to the 

demand popularity as a basic principle, which might be challenging to implement in a 

short period of time.  

Total order picking distance for all simulation order sets with the COI-based storage 

allocation is more than two times less than in case with the random storage allocation as 

illustrated in Figure 21. 

 

 

Figure 21. Total order picking distance for the simulation samples 
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In terms of the relation between the amount of the picking lines for the simulations order 

set and picking travelling distance, the uncertain conclusion might be that the length of 

the retrieval tours rises together with increasing amount of picking lines. This conclusion 

is confirmed by simulation results for the COI-based allocation, with distance increasing 

due to additional transportation needed to retrieve items from higher aisle levels. 

However, for random allocation this is not the case, as the even greater amount of picking 

lines might be randomly allocated to the same single corridor, with minimized travelling 

distance to perform order picking, like in the simulation order sets, number: 32, 33, 36, 

55.  With the correct allocation, the amount of the picking lines does not impact the 

picking distance.  Related distribution of the interaction between the amount of the 

picking lines and picking distance shown for both random allocation and the COI-based 

allocation in Figure 22.  

 

 
 

Figure 22. Distribution of the picking distance to the amount of the picking lines 

 

In order to gain the more comprehensive understanding of achieved results, a statistical 

investigation was completed on the simulations order sets to determine possible 

irregularities. 

 

4.2 Verification and validation of the model 

In case an approach used in the simulation is to be implemented in the future 

investigations and in general, verification and validation is an important aspect of the 

approach development procedure. The purpose of this additional investigation to 

0

50

100

150

200

250

0 5 1 0 1 5

PICKING LINES

D I S T R I B U T I O N  O F  P I C K I N G  L I N E S  
T O  T R A V E L L I N G  D I S T A N C E : C O I

0

50

100

150

200

250

0 5 1 0 1 5

PICKING LINES

D I S T R I B U T I O N  O F  D I S T A N C E  T O  
P I C K I N G  L I N E S  : R A N D O M



73 

 

determine any possible irregularities demonstrating a fault data in the calculations of the 

simulation. Validation of the simulation data in the scope of the further investigation 

related to the allocation in the healthcare warehouse might be under concern in case 

samples are not disseminated in the proper way. According to Reis it is essential to take 

into account that no simulation or mathematical method could be fully confirmed or 

validated.  At maximum researchers might get proof on the results of the simulation, since 

simulations are a simplified demonstration of the real-world situation having less 

potential constraints and therefore it’s not possible to reach a perfect representation of 

reality (Reis 2010 p. 97). 

 

To understand whether the simulation approach applied to categorize the grounds is, in 

fact, effective, the approach should be verified. Verification is determined as guarantee 

that theoretical assumptions for the potential capacity of the linear or generic program to 

solve optimization problem consistent with practical execution. At each step of the 

simulation, approach and data were verified to improve reliability, as well as to indicate 

whether there are any exceptional cases requiring the additional extension of the scope. 

All assumptions that were made during modelling were checked with one or more experts 

from logistics and supply chain management.  

 

To define whether the simulation approach represents real-world problems rationally at 

each step of the simulation design reasonability of respective results are assessed together 

with supply chain experts and representatives from Vantaa warehouse. In case some of 

the assumptions are not reasonable or practical, assumptions were corrected or replaced 

to ensure   representation of reality  

In order to verify and validate the simulation model used in this work following actions 

were implemented: 

 

• As stated above simulation was designed step by step, with wide-ranging testing 

every phase, as well as discussing parameters and result with logistics and 

warehousing experts. 

• The mathematical approach and the simulation were documented from the 

beginning making it transparent and open for discussion and correction. 
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• Debugging the approach through NetLogo, to confirm no simulation software lags 

are presented in the final form of the simulation.  

• Stress testing the simulation approach with a large amount of samples and picking 

lines. Each storage allocation policy was tested in specific conditions, like 

allocation of thousand items or picking of the order with all items. 

 

In addition to verification, the simulation responds to practical requirements and problems 

of the real-world, as follows: 

 

• Data validation: inventory records and shipping information exported from 

warehouse WMS system, used for the simulation are valid and represents real- 

world. The representatives of Vantaa warehouse provided historical data. 

• Face validation: the assumptions and constraints of the simulation are valid. All 

assumptions are discussed and confirmed by experts in the warehousing field and 

supply chain, as well as observation in Vantaa warehouse done by the author 

during multiple visits. 

• Process validation: the stages in the simulation are clear, reasonable and match 

the procedure in Vantaa warehouse.  

4.3 Discussion 

Random allocation is regularly implemented as a reference line for storage assignment 

optimization in the scientific literature. Likewise, random policy splits different processes 

more consistently across numerous warehouse zones and therefore minimizes the 

probability of congestion in case if numerous retrievals happen simultaneously. 

Warehouse management traditionally has a solid trust in random storage allocation, due 

to its capacity to manage inventory systematically, which allows outbound personal to 

handle orders more resourcefully. Though, with the development of WMS and RF tags, 

data on the item in stock and locators are permanently available, as well as the system 

can use different patterns to suggest the best possible location for the items, based on 

selectable settings. Nevertheless, the warehouse managers not willing to deviate from 

traditional approaches in storage allocation or afraid to adopt new policies, which partly 

explains why other popularity and affinity-based assignment strategies are not 
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widespread. Another reason might be in continuous adjustment of demand patterns, 

where popularity of the items could alter significantly in the short period of time.  

Adjustment to new demand frequency requires regular reviews of the recent orders, as 

well as close cooperation with customer side to update patterns timely. As the result, 

additionally, there might be a need for relocation of the items, which is extra workload 

and cost for the warehouse. 

   

However, benefits of the storage assignment policy, like the COI-based allocation, which 

takes under consideration demand frequency and affinity relation are comparatively 

greater, than the potential cost of possible relocation, due to the changed patterns of the 

customer orders.  It divides warehouse into the specific zones and allocates items to these 

zones in accordance with the order frequency. This way, regularly required items are 

located in the most favorable locations near the packing zone and items with the strong 

compatibility are located close to each other or tend to share the same location.  Generally, 

in case there significant difference in the picking frequency the COI-based storage 

reduces allocation costs and time, but the results of the simulation model developed in 

this work provide evidence, that it also reduces picking distance and improves picking 

efficiency remarkably compared to the existing random allocation.  

 

The COI-based allocation, as assumed outcomes in the lowest estimated picking distance 

for each simulation set and in total. The main reason for this is that COI based allocation 

takes into consideration both popularity of the items and affinity relation and proposes 

allocation accordingly. Another explanation is the dilapidated tendency of the calculated 

distance achieved by the COI-based storage, due to the limited amount of aisle corridors 

to visit, which is always only 1 for A-class items in the scope of the simulation. In the 

real world  situation with all 1000 items of customer N available for potential order, it is 

to be expected that in 70% of the cases  picker  would access  the corridor of  lower part 

in the  aisle X, which is located  near to the picking zone and rest of the cases picker 

would need to follow to the upper part  of the aisle X or  following aisles to retrieve items 

with low demand frequency. In any case with random allocation, the amount of corridors 

to be visited during retrieval is more likely to be higher than those in the COI-based 

allocation. Additionally, random storage allocates inefficiently items with low picking 

frequency close to the picking zone and to the ground levels, wasting unreasonably 
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favorable locations. Potentially, the shortcoming of the COI-based allocation that it 

demands more inventory space, compared with random storage, by keeping locations 

reserved for certain items, even there are no items   However, in case WMS tracks changes 

in the customer order data or requesting approximate forecast data, as well there is strong 

information support from the customer side, reserved empty locations can be reassigned 

accordingly to match the actual need.   

 

The outcomes of the simulation also evidently point out that in most of the cases, the 

difference in the estimated picking distance increases with the increasing amount of the 

picking lines. A larger amount of the picking lines leads to an advanced concentration of 

items per corridors. Since the COI-based allocation assigns all simulation items to the 

same corridor calculated travelling distance remains almost on the same level.  On the 

other hand, in case with random allocation with the increasing amount of picking lines 

distribution among the storage corridors increases, which in the long run requires the 

order picker to access most of the corridors.  In the simulation model, around half of the 

order sets 28 /61 necessitates access all four corridors when allocated by random policy, 

with 95% need to access all, for order sets with eight or more picking lines. 

 
Therefore, it is relevant for WMS system to be able to continuously analyze dynamic 

order data to reevaluate popularity and affinity over time and redistribute indexes timely. 

In addition, warehouse management in cooperation with the customer should make a 

decision, whether it is reasonable to make relocation of the items to respond to the new 

demand pattern. Another benefit of the relocation would be to combine boxes with the 

small amount of the same item to one location for more efficient space utilization. It is 

essential for the customer to be involved in the relocation process and provide additional 

forecast data to evaluate popularity and affinity relation. In case change is not radical, 

relocation time and cost might be equal or more compared to the situation, if additional 

time would have been spent for picking without relocation made. With more advanced 

cooperation between warehouse and customer in this scope, as well as with smoother 

information flow, the more progress in order fulfillment reduction, work efficiency, and 

costsaving can be achieved. 
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5 CONCLUSIONS AND RECOMMENDATIONS  

In this chapter, all the important conclusions and result discussed in the preceding 

chapters are summarized. Additionally, there is a set of suggestions provided to minimize 

picking distance and improve order fulfillment efficiency, as well as possible topics for 

future research listed. 

5.1 Conclusions 

This study transformed earlier investigation and theories into practice and completed a 

case study. The master thesis presented here has the objective to minimize order picking 

distance in healthcare warehouse, by implementing the best possible storage allocation 

strategy. This was performed by conducting a simulation investigation based on the 

historical shipping data and the sets of assumptions made according to the literature 

review, process constraints, as well as author’s own experience. The two comparable 

allocation strategies that were simulated are:  

• Random storage  

• COI-based storage with affinity relation component 

Order picking problem defined as one of the most challenging among the warehouse 

operation planning concerns. In overall, previous order picking related studies discussed 

three strategies used to improve order picking:  

● assigning items to storage locations (tactical and operational level)  

●  order picker routing (routing) (operational level)  

●  grouping or batching all picks of the orders (batching) (operational level) (Gu et 

al. 2007 p 8). 

 

Petersen et al. suggest the use of travel distance to compare different allocation policies. 

In his opinion distance is better than time to measure performance, since the travel time 

could be influenced by the travel method, while distance will not.  In general, it was 

concluded that in most of the cases solving allocation problem in the scope of warehouse 

design is complicated mission with many trade-offs between various targets at each 

consequent step. Many researches have introduced methodology dedicated to solve 
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concreate real-world problems, but there has never been a consensus (Petersen et al. 1997 

p. 390). According to Le-Duc, in the real-world however, due to increasing fluctuation in 

demand, so allocation policy needed to be reviewed and adjusted over time for reasonable 

utilization of warehouse space (Le-Duc 2007 p.131-133). 

 

Having provided an overview of the warehouse activities, order picking and picking 

improvement strategies, next the storage location assignment problem was discussed. De 

Koster et al. defines the storage location assignment problem as, the set of rules which 

can be used to assign incoming products to storage locations in storage 

departments/zones. Storage allocation helps in the reduction of material handling and the 

improvement of space utilization (De Koster et al. 2007 p. 211).  In the first instance, 

Graves et al. introduced an accurate classification of the potential storage location 

assignment policies within a warehouse: original problem considered an identification of 

optimal storage locations and the major factors to be accepted during this process. 

Random, dedicated, and class-based storage were introduced by Graves et al in 1976, 

popularity storage by Hesket in 1963.  Family or affinity grouping policy are newer and 

have garnered lots of attention in the literature during the last years.  

 

According to Petersen et al., the main principle of random storage is to allocate all 

incoming items randomly, by choosing from all the obtainable locations with identical 

probability randomly, in the fast picking area (Petersen 1997 et al. p. 418).  De Koster et 

al. defined random allocation as a “closest open location storage” strategy in which the 

first vacant location found by an employee during the warehouse inbound becomes a 

potential candidate location for the incoming items (De Koster 2007). Most of the 

researches agreed results of random allocation in a low space requirement at the expense 

of increased travel distance. In his simulation study Peterson determined that random 

allocation required substantially more traveling distance than class-based allocation. 

Simulation identified trade-offs, for example between space utilization and travel time 

(Peterson et al. 2004 p. 140). According to Van der Berg random allocation is regularly 

used as performance baseline in the scientific literature (Van der Berg 2007 p. 127). 

 

According to De Koster, dedicated storage is the assignment of the items to a fixed, 

exclusive storage location or set of locations. A drawback of dedicated storage is that a 
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location is reserved even for items that are not currently in stock. The space utilization of 

this policy is lowest among all allocation strategies leading to the high warehouse costs. 

A benefit of dedicated storage, especially before automated WMS, is that order pickers 

become familiar with the location of the items, which may speed up retrieval. This is, 

however, not the case presently with the more advanced WMS systems managing all 

inventories.  Due to continuously increasing the amount of various techniques and 

mechanisms to define the exact dedicated locator to serve specific customer demand 

patterns, minimizing the picking travel distance and the total order fulfilment cycle, 

dedicated storage is the most used policy in warehouses (Petersen et al. 1997). 

 

De Koster et al. describe the concept of class-based allocation, as a combination of 

random and dedicated allocation strategies. The idea behind is to division the inventory 

items into classes. Each class would have an allocated zone, where any space available 

within it is randomly used by the items belonging to that class. In inventory management, 

a traditional approach for composing products into classes based on popularity is Pareto’s 

distribution (De Koster et al. 2007 p. 143). 

 

In the scope of family-based allocation policy, Lynn et al. define two items as correlated, 

similar or affine if they are frequently demanded together, for instance in the same 

customer order or within the same time period. In warehousing affinity described as a 

probability that pairs of items will occur in the same order or batch. Once affinity data 

has been revealed, it is possible to use it in various ways to minimize picking time through 

better allocation strategy. Frazelle performed a simulation study to compare random 

storage and family assignment and confirm that affinity-based allocation can potentially 

decrease the number of the required pickings by 30-40%.  According to the authors own 

experience affinity relation can be combined with other popularity- or class-based 

assignment policies, resulting in the less time and distance picker spends in the retrieval 

process (Frazelle et al. 1989 p. 25-27). 

 

  

Originally Haskett defines popularity-based policy, as a distribution of items over the 

warehouse storage zone in accordance with their turnover, as the only definition of the 

item popularity. The items with the largest sales volumes are placed at the most reachable 



80 

 

locations, typically next to the packing and shipping area (Heskett 1964 p. 12). On the 

other hand, Hausman refers to popularity of items as basic determination and accentuate 

that popularity can be considered in various ways and not only limited by turnover rates. 

This is especially, the case for outsourcing warehousing, with an aim to improve order 

fulfilment efficiency having order picking frequency or volume as popularity 

measurement criteria (Hausman et al. 1976 p. 131).  According to Lynn et al. a real-world 

execution of the full-turnover strategies would be the most efficient in case it united with 

the dedicated allocation (Lynn et al. 1990). The main drawback is that the demand 

fluctuates constantly over time and the variety of the popular items alter frequently. 

Petersen et al. constructed a simulation study, to demonstrate that turnover based storage 

outperforms class-based storage, when it goes to employed distance of picking tour 

(Petersen et al. 1997 p. 424). 

 

One of the most used methods of the popularity-based allocation is Cube-per-Order Index 

(COI).   Originally introduced by Heskett in 1963, the COI defined as the ratio of the 

item's total space requirement to amount of picking tours required in accordance with 

customer demand. This approach is extensively studied by Heskett et al., 1963, Francis 

et al 1967, Harmatuck 1977, Hodgson et al. 1982, Bhaskaran, et al.,1988. Allocation 

algorithm involves assigning the items with the lowest COI-index next to the packing 

zone. According to Caron et al., the major drawback of the COI-method is that it does not 

consider the affinity relationship between ordered items. This approach could be 

advanced by adding elements of affinity or class-based stratification. Both these aspects 

were considered in the simulation of this thesis. 

 

Regularly, outbound team goes along with the exact route to retrieve order items, where 

the picking tour is bounded to the picking list and the routing policy configured in WMS. 

Many researches described this process as Order Oriented Slotting, which can be 

considered as a method of the affinity-based policy, which considers historical order 

patterns in the scope of allocation. Combination of COI-based storage assignment with 

picking frequency as criteria and affinity relation was selected as potential allocation 

method to compare with existing random allocation used in Vantaa warehouse. 
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To concentrate empirical research on the most valuable items from the picking point of 

view, ABC- stratification has been implemented. Frandsen suggests using picking 

frequency in the below classification to accomplish original analysis based on the value 

of the item. In the scope of storage allocation ABC-stratification represents class-based 

storage and, therefore allocation strategy in this thesis is the combination of different 

storage policies: popularity-based (COI) and family-based allocation (affinity relation), 

with the additional detailed allocation for relevant A-class items based on simulation. 

 

In order to minimize traveling distance for picking was developed a methodology that 

combines simulation and optimization. 61 order sets are generated randomly to be tested 

in the simulation. The optimal storage locations are determined based on the distance of 

the picking tour to retrieve all required items under fulfillment of the specific order.  The 

objective measure used in the simulation is picking tour distance. Simulation data for the 

empirical part was obtained from the review of the case company related orders and 

inventory information in WMS system and an observation of the picking process carried 

out at the warehouse located in Vantaa. 

 

Next warehouse and material handling activities described with special attention to the 

order picking process and historical order data were described. Warehouse layout was 

presented, and assumptions made to constraint simulation. The assumptions made might 

not fully characterize a real-life picking process and order patterns, but with the selected 

constraints, the simulation could be conducted the in a reasonable time.  With the review 

of the historical order pattern based on the shipping data over the past 6 months, order 

frequency was determined to complete ABC-stratification. This resulted in 200 A-class 

simulation items with representing 19% of the total Customer N items in Vantaa 

warehouse and 79% of the total picks.  Next, a mathematical optimization method - Linear 

Placement Problem was presented and comparison with Generic programming provided. 

Based on the historical shipping data, COI-indexes for the simulation items were 

distributed, variables and the objective function for the COI-based allocation presented, 

following by introducing of the simulation scope and travel distance calculation method.  

Next simulation items were assigned to storage locations based on the existing random 

allocation using historical inventory data, as well as in accordance with on COI-based 

allocation using COI-indexes. Affinity relation was determined based on historical 
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shipping data and allocation for the items with the same COI index value was manually 

adjusted to keep these close to each other. Items for the simulation order sets were 

randomly selected from 200 A-class items, with the distribution of the picking lines from 

4 to 14 made based on the historical order data.  

 

There are numerous conclusions that appeared during this thesis work to be pointed out 

in this chapter.  As was expected, in all simulation order sets the COI-based alternative 

with the affinity relation component obtained a better solution than the random allocation; 

resulting in average 90% improvement for order picking distance. This result indicates 

that the COI-based allocation is significantly better than random alternative, as well it is 

essential to take into consideration both picking frequency and affinity relations between 

items in the scope of storage allocation. Consequently, it is concluded that the COI-based 

allocation with affinity relation component provides the optimal. Total picking distance 

for all simulation order sets with the COI- based storage allocation is more than two times 

less than in case with the random storage allocation. With the increasing amount of the 

picking lines, improvement with the COI-based storage allocation becomes greater 

accordingly.  Numerous of the favorable storage locations wasted for the rarely demanded 

items.  

5.2 Recommendations 

In this section, based on the conclusions found throughout this study, set of 

recommendation is provided in order to improve picking order and minimize related 

retrieval distance. 

 

Order retrieval process is the most labor-intensive and costly among warehouse activities, 

and therefore minimizing the order fulfillment cycle is the high priority and beneficial to 

both customer and warehouse.  Order receiving, travelling, searching, and collecting are 

the key steps in the order retrieval cycle, with travelling as the most time-intensive 

component. Consequently, the main goal of this study was to find out the storage 

allocation strategy and specific constraints to be taken into account in order to minimize 

order picking distance. To achieve this goal, the study aimed to cover following questions:  
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(i) define main criteria to be considered during development of the storage 

policy for customer N items.  

 

It is recommended that WMS should follow picking frequency aspect and affinity relation 

of the main A-class items. ABC-stratification is based on the picking frequency.  To 

follow all items is complicated and unnecessary, which only may lead to a confusion and 

the higher material handling cost for relocation.  Affinity relation is very important when 

storage allocation made for the items with the same COI-index, as additional criteria. 

Another implementation of affinity would be in case with low demand items, since the 

COI-based allocation would suggest assigning the item further from packing zone and 

WMS might still consider allocating them closer to the compatible items with the high 

demand.  In order to configure WMS correctly, rules, when affinity relation can be 

applicable over the COI-index for low demand items should be further investigated and 

this is a potential topic for the future research.  In addition, availability of the future 

demand and strong information flow are considered as vital criteria during the 

development of storage allocation policy.  

 

(ii) analyze historical demand data and describe current storage policy for 

Customer N items in Vantaa warehouse.  

 

As was revealed in the simulation random storage allocation has significant drawbacks, 

when it goes to order picking distance.  Efficient utilization of the storage locations, as 

the main benefit of the random allocation is currently not relevant for Vantaa warehouse, 

as well as with the timely evaluation of demand frequency, this minor weakness of COI-

based allocation can be minimized. Based on the review of historical order data, there are 

significant differences between the items in the order frequency, like 19% of the items 

picked in 78% of the orders and therefore random allocation relatively inefficient. 

Favorable storage locations are misused to an unreasonable inventory of the items with 

low picking frequency. This leads to inevitability to consider popularity and affinity in 

the scope of storage allocation described in the research question (i). It is recommended 

to concentrate allocation of the A-class items to the lower part of the picking aisle X, 

close to packing zone. This way order can be retrieved from the single corridor and WMS 

will be able to arrange picking list based on the most efficient routing policy. In case of 
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numerous orders are picked simultaneously WMS could vary corridor access point to 

minimize connection between pickers. Warehouse management is suggested to apply 

wireless scanners for picking to minimize transaction time between systems.   

 

(iii) Compare storage allocation policies and determine practical allocation 

method. 

 

Based on results of the simulation it is recommended to implement COI-based allocation, 

which results in minimum picking distance and consequently shorter order fulfillment 

cycle. The main advantage for Vantaa warehouse is to have Customer N satisfied with 

the potential increasing amount of business for Vantaa warehouse.  Warehouse would 

have the ability to handle more orders and more customers with the same cost level.  

Customer N would benefit from improved order fulfilment cycle, fewer delays and own 

satisfied customers. 

5.3 Suggestions for future research 

 

The following recommendations for future research were identified during the thesis 

process: 

• It is suggested to consider a diverse or radial inventory configuration and compare 

performance of the COI-based allocation, to confirm if results in this study can be 

extended to other warehouse layouts; 

• Different routing policy, with the COI-based storage assignment policy as a 

constraint as the way to improve order picking can be investigated. Amount of 

order samples, simulation items and picking lines might be different; 

• Batching policy for healthcare warehouse; 

• Picking strategies, where affinity relation can be applicable over the COI-index 

for low demand items should be further investigated.; 

• Replenishment strategy for the healthcare warehouse based on the allocation; 

• Cost and process of relocation of the items with dynamically changing demand 

pattern, in case with the COI-based allocation. 
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