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Tämä on tutkimustyö, joka keskittyy tutkimaan mitä hyötyä yritykselle antaisi 

siirtyä käyttämään GCC kääntäjän sijasta Clang kääntäjää. Työ on toteutettu ensin 

vertailemalla kääntäjiä ja tutkimalla, mitkä asiat on syytä ottaa huomioon, kun 

kääntäjää ollaan vaihtamassa. Viimeiseksi, yksi yrityksen projekteista käännetään 

Clang kääntäjällä, jotta nähdään, löytääkö uusi kääntäjä projektista virheitä tai pa-

rannusehdotuksia. 

Ensimmäisessä osassa yritys ja työn tausta esitellään. 

Toisessa osassa kerrotaan käännösprosessin teoriasta ja kääntäjän toimintaperiaat-

teista. 

Kolmannessa osassa selitetään työssä käytetyt teknologiat. 

Neljännessä osassa kääntäjiä vertaillaan. 

Viides osa keskittyy siihen, mitä on syytä ottaa huomioon, kun GCC kääntäjästä 

Clangiin ollaan siirtymässä ja onko hyötyä käyttää molempia kääntäjiä rinnak-

kain. 

Kuudennessa osassa yksi yrityksen projekteista konfiguroidaan Clangille, ja tu-

lokset tästä prosessista paljastetaan. 

Viimeinen osio yhteen vetää projektin. 
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This is a research project focusing on what advantages it would give for a compa-

ny to change using Clang compiler instead of GCC. It is done by comparing the 

compilers and finding out what is the necessary things one should consider when 

changing a compiler. Lastly, one of the company’s own projects is compiled with 

Clang to find out will it find out new bugs or suggestions for improvement from 

the code. 

In the first section, the company and the purpose of the project are presented. 

In the second section, the theory of the compilation process and the principles of 

the compiler design are explained. 

The third section introduces to the technologies used in the project. 

In the fourth section comparison of the compilers are done. 

The fifth section focuses on what one should consider when migrating from GCC 

to Clang and would there be any advantages to use both compilers in parallel. 

In the sixth section one of the company’s own projects is configured for Clang 

and the results of the process are revealed.  

The last section concludes the project. 
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1 INTRODUCTION 

This study project is done for Wärtsilä Oyj on behalf of student of Vaasa Univer-

sity of Applied Sciences (VAMK). The project focuses to research what ad-

vantages it would give for the company to change using Clang compiler instead of 

GCC. It also describes what steps are needed to take in order to get the Clang 

compiler work and what kind of problems may occur during the process. 

1.1 Wärtsilä Oyj 

Wärtsilä is a Finnish corporation and one of the global leaders in the marine and 

energy markets. It is founded in 1834 in Finland. It employs approximately 

18,000 employees in more than 70 countries and over 200 locations around the 

world. Wärtsilä is listed on Nasdaq Helsinki and its net sales was 4.8 billion in 

2016. /52/ 
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2  BASICS OF THE COMPILATION PROCESS 

A computer is a sophisticated system that combines software and hardware seam-

lessly together. Hardware understands only electronic signals that are routed 

through semiconductor circuits to do some calculations and store them in a 

memory. These signals are converted into binary language used in software pro-

gramming. They are simply a set of ones and zeros. For human it would be incon-

venient to program using binary code and due to that, higher-level languages such 

as C programming language, have been created to write more complex programs. 

Therefore, compilers are needed. They are a set of tools and operating system 

components used to get the desired binary code that can be run on hardware to do 

the things a programmer wants.  

In a compilation process, a human written code is translated to machine-readable 

commands. The language processing system is a set of various tools used in com-

pilation process. It takes care of several tasks such as making code more efficient 

by optimizing it. Compiler also finds errors from code and prevents a user to run 

faulty programs. It warns about defects and mistakes a programmer may have 

written. For example, if a programmer has created a variable that is not used in the 

code, a compiler warns about it if this functionality is allowed in the compiler. 

2.1 The Main Components of the Compilation Process 

Usually, when referring to a compiler, one means the set of tools of the whole 

compilation process. In more detail, a compiler is just one piece in the entire pro-

cess of compilation. There is a picture below (Figure 1) to depict the language 

processing system. 
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Figure 1 The Language Processing System 

2.1.1 Preprocessor 

Preprocessor prepares code for the actual compiler. For instance, it takes care of 

file inclusions, language extensions and maps predefined values i.e. macros into 

the code. In the picture above can be seen that preprocessor has mapped the macro 

definition VAL for the function call as a parameter. The tasks preprocessor needs 

to take care of varies between different preprocessors. /2/      
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2.1.2 Compiler 

A compiler translates source code written in one language to target code that can 

be the same or some other language. Generally, it is used to translate high-level 

language like C to low-level symbolic machine language i.e. assembly language. 

It gets pre-processed code from a preprocessor gives its output for an assembler. 

/1, 2/ 

There are many kinds of compilers. Compilers that compile source code, which is 

run on different operating system or hardware, are called cross-compilers. Source-

to-source compilers translate between two high-level languages. A compiler that 

does not change the language of its source code is called a bootstrap compiler. 

There is also decompilers to compile from a low-level to a high-level language. 

/1, 2/ 

Some languages such as JavaScript or Python use interpreters instead of compil-

ers. While compilers read the whole source code and translate it at once, an inter-

preter reads and executes it in segments. /1, 2/ 

2.1.3 Assembler 

Assembler translates assembly language or symbolic machine code in other 

words, to machine code. Machine code is a series of sequential machine-readable 

commands in a binary form to be stored in device’s memory. /2/ 

2.1.4 Linker 

Linker finishes an executable file by including external libraries and modules con-

sisting of one or many object files translated to machine code into compiled code. 

Those object files can be linked dynamically or statically. In static linking a linker 

combines all the object files in one executable file while in dynamic linking the 

external object files are combined on runtime. Linker also determines where to 

store codes and references in a memory. The Figure 2 below depicts how the link-

er works. /2/ 



  13 

 

Figure 2 Linker 

2.1.5 Loader 

Loader calculates the size of a program allocates memory for it and loads it on the 

allocated memory. It also handles the various registers used in the program and 

links the program with the dynamically allocated libraries it needs. /2/ 

2.2 The Architecture of Compiler Design 

A compiler is divided into several phases and those phases can be split to front-

end, also known as analysis phase, and synthesis phase that refers to back-end. 

There is an intermediate code generation between the front- and the back-end. 

The phases are run in sequence and each phase get its input from an output of the 

previous phase. The way phases are implemented differs lightly between compil-

ers, but in general, the architecture consists of the following phases (Figure 3). /1, 

2/ 
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Figure 3 Compiler Design Architecture 

2.2.1 Lexical Analysis 

This is the first phase where code is read and divided into lexemes or tokens. To 

give an example, there is a variable declaration below written in C programming 

language and it is divided into tokens (Table 1). /1, 2/ 
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int value = 50; 

Table 1 Tokens 

int Keyword 

value Identifier 

= Operator 

50 Constant 

; Symbol 

 

2.2.2 Syntax Analysis 

Syntax analyzer takes a list of tokens and generates a syntax tree of them. It also 

checks the expressions made of tokens for syntax errors. However, if a variable 

above was declared to store a string type for an integer variable, syntax analyzer 

would not throw an error for that. The following declaration would pass this 

phase: /1, 2/ 

int value = “Hello World”; 

2.2.3 Semantic Analysis 

Semantic analyzer runs type checking for given expressions. It ensures that varia-

bles are declared before using them, and that a program will not accept a string or 

boolean types for an integer variable and so on. /1, 2/ 

2.2.4 Intermediate Code Generation 

Intermediate code is a language between target and source code. The benefits of 

using it are to make a compiler more generic. It allows one code to be compiled 

for many machine architectures by changing the back-end of the compiler. For the 

same reason, it makes it easier to compile multiple high-level languages by chang-

ing only the front-end. It also provides for using an interpreter by using a small 

program written in machine code instead of translating the whole code into target 

code. /1, 2/ 
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2.2.5 Machine Independent Code Optimization 

In the code optimization phase, the speed of code is improved, and it is made to 

consume less resources. It is done for instance, by deleting extra code lines and 

arranging the sequence of statements to speed up the program without changing 

the program behavior. /2/ 

2.2.6 Code Generation 

Code generator generates target code of intermediate code. Typically, it is assem-

bly language for a specific machine architecture. /1, 2/ 

2.2.7 Machine Dependent Code Optimization 

In a similar way as in the Machine Independent Code Optimization phase, ma-

chine code given is optimized to run more effectively on a target device. In this 

phase, the high-level programming language is replaced by efficient low-level 

code. /1, 2/ 

2.3 Automating the Compilation Process 

It would take a lot of time for programmers to use a compiler from command line 

and deal with all the relationships. To ease this job, there are tools to automate the 

routine of compiling source files into an executable. The most common tool is 

called GNU Make. It is a part of the larger GNU project, but the tool itself is com-

piler independent. /4/ 

GNU Make defines a language for dealing with relationships between source 

code, intermediate files and executables. It can be used also for managing alter-

nate configurations, implementing reusable libraries, and parameterizing a process 

with macros defined by user. /4/ 
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3 USED TECHNOLOGIES 

This section introduces to the main technologies used in the project. The technol-

ogies can be combined in three sections. First is the GNU toolchain that combines 

the tools needed to compile with GCC. The LLVM project includes tools needed 

to compile with Clang. In the third section, there is CMake, that is used to config-

ure larger projects. 

3.1 GNU Toolchain 

GNU Toolchain is developed to be a part of the larger GNU Project that is started 

in 1984 by Richard Stallman to provide a complete Unix-like operating system as 

free software. The toolchain is a collection of programs such as compiler, assem-

bler and linker, aiming to develop other software and operating systems. It has 

been playing a vital role developing embedded systems software, and as an exam-

ple, the Linux kernel. 
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Figure 4 GNU Toolchain 

3.1.1 GNU GCC 

GNU Compiler Collection is a toolset for pre-processing and compiling code. 

GCC also invokes GNU Binutils that generates machine code of an output of the 

compiler. /3/ 

Previously GCC was defined as GNU C Compiler as it was developed to be only 

a C compiler but changed after it has extended for other languages as well. One 

can also write his or her own frontend for GCC to use it with a language not yet 

supported. GCC is a portable compiler that can be run on almost every device 

nowadays and enables also cross-compiling that is used widely with many kinds 

of embedded devices. /3/ 

3.1.2 GNU Binutils 

GNU Binutils is set of binary tools for assembling and linking compiled code into 

an executable binary file. The main programs are GNU linker ld/gold and GNU 

assembler as, but it also comprises tools, for instance, to handle a symbol table list 

and to build libraries. /5/ 
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3.1.3 GNU Debugger 

GNU Debugger GDB is a mature debugger for programs compiled with GCC. It 

has a capability to stop a single thread at a break point. GDB also supports remote 

debugging that can be used, for instance, to run the debugger in a more powerful 

system. /6/ 

3.1.4 GNU Build System 

While GNU Make’s purpose is to automate the compilation process, GNU Build 

System consists of tools designed to automate distribution of software for many 

different platforms. Makefiles need to be different for every different platform and 

GNU Build System, also known as autotools, is to generate proper makefiles for 

them. The main components of autotools are autoconf and automake. Autoconf is 

to create a configuration for automake that generates makefiles of these files. /7/ 

3.2 LLVM 

The LLVM is an umbrella project consisting of modular compiler and toolchain 

technologies used for compilation process, similar to GNU Toolchain. The LLVM 

project is started in 2000 in University of Illinois by Professor Vikram Adve and 

first year graduate Chris Lattner. The original goal was to investigate compilation 

techniques that support both dynamic and static programming languages. The 

original acronym stood for Low-Level Virtual Machine but after the project grew 

and spread widely, the acronym was removed as it became misleading. /8/ 

LLVM differs from GCC by the way it is designed. While GCC is a complicated 

static compiler that is difficult for new developers to grasp, LLVM’s architecture 

is designed for reusable libraries with well-defined interfaces. It can be used as a 

static or a runtime compiler. /9/ 
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Figure 5 Clang/LLVM Toolchaing 

3.2.1 LLVM Core 

LLVM Core represents the intermediate code generator between source code and 

target code. In this phase, source code is translated into machine independent form 

LLVM IR (Intermediate Representation). LLVM Core libraries also includes a 

machine independent code optimizer. /8, 9/ 

3.2.2 LLVM IR 

LLVM IR is the machine independent code between source code and target code. 

It is generated by LLVM Core libraries. /8, 9/ 

3.2.3 Clang 

Clang is a modular frontend for LLVM that supports C, C++ and Objective C lan-

guages. It is claimed that it can be significantly faster in comparison to GCC. It is 

designed as a drop-in replacement for GCC. In practical it means that many of the 

same command line options can be used what was used with GCC. /8, 10/ 

Clang aims to be user friendly by providing expressive diagnostics about warn-

ings and errors. It includes a static analyzer that finds bugs from source code. /8, 

10/ 
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3.2.4 DragonEgg and llvm-gcc 

In the early stages of the LLVM project development, there was no frontend im-

plemented for it. Thus, the GCC frontend was used with the LLVM backend. 

DragonEgg is the newest tool to use GCC frontend with LLVM backend. Using it 

may facilitate the migration from GCC to LLVM in a context where Clang 

frontend cannot be used. /15/  

DragonEgg has not had a lot of attention from developers in the recent years, but 

it works with newest version of LLVM and GCC. Older versions of GCC can be 

used with llvm-gcc that is a project focusing on the same goal. Llvm-gcc is not 

supported on the newer versions of GCC though. /15, 16/ 

3.2.5 lld 

Lld is a linker for LLVM. It is claimed to be more than twice faster than GNU 

linker. /11/ 

3.2.6 LLDB 

LLDB is a debugger provided by LLVM and Clang. It supports C, C++ and Ob-

jective C languages. LLDB is claimed to use memory more effectively compared 

to GDB. LLDB supports also remote debugging but lacks the ability to stop a sin-

gle thread at a break point. /12, 39/ 

3.2.7 LLVM Link Time Optimizer 

LLVM supports Link Time Optimization (LTO) that is intermodular optimization 

executed during the link stage. /13/ 

3.3 CMake 

CMake is a set of tools to automate a distribution of a program for different plat-

forms. It is licensed with a BSD-3 open source license and works on multiple plat-

forms. Similar to GNU Build System, it generates Makefiles, but can be used also 

for testing purposes. /14/ 
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CMake is used by creating a CMakeLists.txt file that is written using cmake-

language. After that, calling cmake <path/to/CMakeLists.txt> will generate files 

needed to build the application. /14/ 
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4 COMPARISON OF THE COMPILERS 

In basic usage, both compilers work similarly and there are no big differences be-

tween them. This means that most of the same command line parameters can be 

used and the output is also similar. There are some differences though that will be 

looked more closely in this chapter. 

GNU GCC has been the standard compiler for many Unix-like operating systems, 

but later some of them such as FreeBSD and macOS have changed to use LLVM 

instead. /35, 48/ 

At the moment, future seems promising for LLVM as it is supported by Apple. 

GCC on the other hand, has a huge user population and it is easy to get help with 

it. From the graph of active developers (Figure 6) can be seen that Clang and 

LLVM (the blue lines) are getting more active authors all the time, while GCC 

(the green line) is being steady where it has been since 2004. This means that 

GCC is not going to die for a long time albeit Clang and LLVM has been more 

attractive for new developers. /31, 40/ 
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Figure 6 Active Developers of the Compiler Repositories /40/ 

4.1 Usability 

This section focuses on what languages and target architectures are supported. It 

also compares features, diagnostics and differences between licensing of the com-

pilers. 

4.1.1 Supported Languages 

Both of the compilers support a wide variety of languages. While GCC is a static 

compiler, LLVM supports also runtime compilations. However, GCC frontend 

can be used with some of the interpreted languages such as Java. /9, 17/ 

The table below (Table 2) describes the supported languages of the compilers. 

There may be some third-party libraries that support other languages as well but 

are not in the table. LLVM supports also many lesser known languages that are 

not in the table. 

Table 2 Supported languages by GCC and LLVM /9, 17, 18/ 

Language GCC LLVM 

C Y Y 

C++ Y Y 

Objective-C Y Y 

Objective-C++ Y Y 
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Fortran Y Y 

Java Y Y 

Ada (GNAT) Y Y 

Go Y Y 

Pascal Y  Y 

Mercury Y Y 

COBOL Y Y 

Ruby N Y 

Python N Y 

Haskell N Y 

D N Y 

PHP N Y 

Pure N Y 

Lua N Y 

Rust N Y 

 

4.1.2 Supported Target Architectures 

GCC supports wider variety of supported target architectures. The detailed list can 

be found from the references. LLVM supports the same basic architectures, such 

as X86, X86-64, ARM, ARM64, AARCH64, PPC64, PPC32, XCORE and many 

more. /19, 20/ 

The question what target architectures are supported becomes relevant if one is 

working with an unusual embedded architecture. In that case, GCC may be the 

only option to choose. 

4.1.3 Diagnostics 

Clang claims to be a frontend that has better diagnostics for error and warning 

messages. Whether it is true or not will become clearer in this chapter. /22, 23/ 
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Clang has colored and highlighted output diagnostics by default. GCC also sup-

ports colored output for versions 4.9 and later, but requires that -fdiagnostics-

color=[auto|never|always] flag is given. /22/ 

There are examples below to show more details about the differences. The exam-

ples are run with GCC version 7.0 (Released in May 2017) and Clang version 5.0 

(Released in September 2017). The first example is about implicit enumeration 

conversion. Clang warns of implicit enumeration conversions by default, but GCC 

does not, even if all warnings are enabled (Figure 7). 

enum SomeEnum    { Some1    = 0, Some2    = 1 };  

enum AnotherEnum { Another1 = 0, Another2 = 1 }; 

  

int main()  

{ 

  enum SomeEnum s = Another1; 

  return 0; 

} 

 

 

Figure 7 Clang warning of implicit enumeration conversion 

Another example of error messages is faulty macro definition. Both compilers 

give clear diagnostics, but Clang output also gives an advice what is needed to do 

in order to correct the mistake (Figure 8 and Figure 9). This is an advantage for 

Clang as it speeds up the work of error correction.  

#define PTR_OF(C) (C) 

  

int main()  

{ 

  char character; 

  char * p_character = PTR_OF(character);  

  return 0; 

} 
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Figure 8 GCC output of macro expansions error 

 

Figure 9 Clang output of macro expansion error 

The next example has a missing comma in a function declaration. It can be seen 

that GCC error messages shows clearly that there are too few arguments in func-

tion call foo (Figure 10). Clang, on the other hand, gives shorter and clearer out-

put, it points to correct place in the code, but the error message itself is weird 

(Figure 11).  

int foo (int a, int b) {  

    return a + b;  

} 

int bar (int a) {  

    return foo (a (4 + 1));  

} 

 

int main()  

{ 

    printf("Result: %d \n", bar(1)); 

    return 0; 

} 
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Figure 10 GCC messages of missing comma 

 

Figure 11 Clang message of missing comma 

In the next example there is a missing opening parenthesis in a function call. Both 

compilers give quite similar error messages and point to the correct place in the 

code (Figure 12 and Figure 13). In both cases the message is not very descriptive. 

int foo (int a, int b) { return a + b;  } 

int bar (int a)        { return foo a); } 

 

int main()  

{ 

    printf("Result: %d \n", bar(1)); 

    return 0; 

} 
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Figure 12 GCC error messages of missing parenthesis 

 

Figure 13 Clang error messages of missing parenthesis 

The last example has a missing typename word in front of the template function 

parameters. Clang shows the error clearly (Figure 14), while GCC error message 

is not as obvious (Figure 15). 

template <class T> void generic_function(T::type) { ; } 

struct ClassA { }; 

 

int main() 

{ 

    ClassA a; 

    generic_function<ClassA>(a); 

    return 0; 

} 

 

 

Figure 14 Clang Output of Missing Typename 

 

Figure 15 GCC Output of Missing Typename 
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Table 3 Results of Diagnostics Comparison 

Test case GCC  

 

Clang 

Implicit enumeration conversion Missing Good 

Faulty macro definition Ok Good 

Missing comma in a function declaration Good Ok 

Missing opening parenthesis Ok Ok 

Missing typename Ok Good 

 

According to the Table 3, Clang has slightly better diagnostics in these test suites. 

In most cases, there are no big differences after all. 

4.1.4 Features 

GCC is much older and larger project so naturally it has some features that are not 

yet supported by Clang. Some of them are listed below. These are not in the C 

standard but extensions in GCC. /21/  

- Clang does not support nested functions.  

- Variable-length arrays in structures are not supported.  

- Clang does not accept some constructs GCC accepts where a constant ex-

pression is required. Those are called fold-expressions.  

- Clang does not support variable types _Decimal32 for floating point and 

_Fract for fixed-point. /21/ 

4.1.5 Licensing 

Both compilers are published with a license that is free of charge for users. There 

are some differences though. GCC is licensed with a GPL license which is, ac-

cording to Free Software Foundation, a free software license that preserves the 
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justice of software users, and it should not be confused with an open source li-

cense. GPL requires that every change made to code needs to be revealed public 

as well. LLVM, in turn, is licensed with a BSD open source license. It allows us-

ers to modify it as they want and do not require the modifications to be revealed 

for others. For most people it does not make a difference which license is used, 

but for some it may be the decisive question. /8, 37/ 

“In the free software movement, we campaign for the freedom of the users of 

computing. The values of free software are fundamentally different from the val-

ues of open source, which make "better code" the ultimate goal. The Clang and 

LLVM developers reach different conclusions from ours because they do not 

share our values and goals.  They object to the measures we have taken to defend 

freedom because they see the inconvenience of them and do not recognize (or 

don't care about) the need for them. I would guess they describe their work as 

"open source" and do not talk about freedom. They have been supported by Ap-

ple, the company which hates our freedom so much that its app store for the i-

things requires all apps to be non-free. The existence of LLVM is a terrible set-

back for our community precisely because it is not copylefted and can be used as 

the basis for non-free compilers. So that all contribution to LLVM directly helps 

proprietary software as much as it helps us.” -Richard Stallman, the original de-

veloper of GCC and the launcher of the GNU project. /37/ 

The GPL license is better for free software developers who value the ideology 

over productivity. But for a company doing software development, the restrictions 

of the license may be obstructing in some cases. For example, in the case the 

company’s developers would want to create some enhancements or extensions 

into GCC, it is too time consuming to release the new version of GCC for the free 

software community. In these cases, the LLVM licensing would be a better op-

tion. 

4.2 Compilation Time 

In this section, compilation times are compared. There are tables below (Figure 16 

and Figure 17) to depict the average proportional compilation time. The values are 
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not seconds, but a percentage value of the difference between compile times of the 

compilers. Calculations are done by taking proportional values of compilation 

times of every test in a test suite. The average proportional value is then calculat-

ed by adding up the values and dividing the sum with the number of tests in a test 

suite. 

 

Figure 16 Proportional Compilation Time GCC v6.1 vs Clang v3.9 /27/ 

The first test suite compares Clang version 3.9 and GCC version 6.1. It can be 

seen from Figure 16 above, that in this test Clang is significantly faster in compar-

ison to GCC. /27/ 
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Figure 17 Proportional Compilation Time GCC v7.0 vs Clang v4.0 /28/ 

The next test suite compares GCC version 7 and Clang version 4.0. According to 

the Figure 17, the difference between compilation time of the compilers has de-

creased, but Clang version 4 is still clearly faster. /28/ 

It seems that Clang compiles the code a bit faster while newer versions of GCC 

are catching up the difference. There are test suites in which GCC outperforms 

Clang, but Clang is faster in the average. /27, 28/ 

4.3 Performance of Produced Program 

The comparison of performance is done by calculating average proportional value 

of tests in various test suites. There are tables below (Figure 18, Figure 19 and 

Figure 20) to depict the average proportional performance of different versions of 

the compilers. The tests are run on Linux platform with the optimization flag -O3. 

More details of them can be found from the references. The tables are built by 

emphasizing every test with an integer value 100 and multiplied by the propor-

tional percentage value. The values given in the tables are then summed up to-

gether and divided by the number of tests.  
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Figure 18 Compiler Performance GCC v6.1 vs Clang v3.9 /27/ 

The first test suite compares GCC version 6.1 and Clang version 3.9 (Figure 18). 

The suite consists of 19 tests. Clang got 12 wins over GCC. The performance was 

very even. /27/ 

 

Figure 19 Compiler Performance GCC v7.0 vs Clang v4.0 /28/ 

The next test suite consists of 27 tests. It compares GCC version 7.0 and Clang 

version 4.0 (Figure 19). Both compilers took 13 wins and there was one draw. 

Though, Clang got 4 % better performance than GCC. /28/ 
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Figure 20 Compiler Performance GCC v8.0 vs Clang v6.0 /29/ 

In the last test suite (Figure 20), GCC version 8 took 11 wins over Clang version 

6, which took 5 wins. Clang produced much better performance in one of the tests 

and that is why the average proportional performance is a little bit higher with 

Clang. /29/ 

The results of performance tests show that both compilers have their own pros and 

cons. Before GCC version 8, Clang has produced better performance, but the dif-

ference has equalized between the newest versions of the compilers (Figure 21 

and Figure 22). The comparison of the newest versions of the compilers shows, 

that most of the times GCC is performing better. On the other hand, Clang has 

better total performance value, because in those cases where it won, it did it sov-

ereignly. It could be assumed, that the further the development of the compilers 

go, the less there will be difference between them. One reason for this is the fact 

that the compiler developers can learn from each other’s as the code is open 

source in both sides. /27, 28, 29/ 
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Figure 21 Wins Proportional to Total Value of Test Cases /27, 28, 29/ 

 

Figure 22 Total Compiler Performance /27, 28, 29/ 

4.4 Optimizations 

Both compilers have the same optimization levels -O0, -O1, -O2 and -O3. Opti-

mization level zero (0) is the default. It reduces compilation time and makes de-

bugging produce the expected results. Level three (3) takes all of the optimiza-

tions in use and thus increases a compilation time, but also improves performance. 

Other levels are between the two. There are also some special optimizations. -Os 
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optimizes for size, -Ofast is pretty much the same as -O3, and -Og optimizes for 

debugging experience. Clang has optimization flag -Oz, that is close to -Os, which 

optimizes for size, but reduces the code size even further. Clang has also optimi-

zation flags that are higher than -O3, but currently they are equivalent to -O3. /32, 

33/ 

4.5 Memory usage 

The competition which compiler use memory more effectively is tight. In the fol-

lowing test suite, there is eight different projects, and the proportional size of bi-

naries are compared. Details about the case can be found from the references. The 

results of the test are shown in the graphs below (Figure 23 and Figure 24). Both 

compilers took four wins of total eight, but Clang beats GCC in total comparison. 

The test suite is run using GCC version 7.1 and Clang version 4.0. The projects 

are built with GCC using optimization flag -Os, and with Clang optimization flags 

-Os and -Oz. /34/ 

It can be seen from the Figure 23, that without one exception, the sizes of the bi-

naries are close together. In the one exception case, Clang produced significantly 

better results and that causes the total comparison to be better as well (Figure 24). 

/34/ 
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Figure 23 Comparing Size of Binaries /34/ 

From the total results in Figure 24 can be seen, that there is no significant differ-

ence between the outputs whether Clang -Oz or -Os flag is used. 
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Figure 24 Binary size comparison, total results 

 

4.6 Runtime Error Detection 

Runtime error detection mechanism, more generally known as a sanitizer, is a 

method to find failures in code during runtime that cannot be detected in the com-

pilation phase. This feature becomes very handy, when testing code for errors. 

There are many kinds of sanitizers, for example AddressSanitizer, ThreadSanitiz-

er, MemorySanitizer, UndefinedBehaviorSanitizer, DataFlowSanitizer and 

LeakSanitizer. By default, sanitizers are not enabled, but they can be enabled by 

giving a -fsanitize=sanitizer flag for a compiler. /24, 25/ 

To give an example, an example program is given, where a value of a variable is 

overrun.  

int main()   

{ 

    int x = 1; 

    while(x > 0) { 

        x++; 

    } 

    return 0; 

} 
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The above program will finish after the value of x is less than zero. It should not 

really happen though, as the value is only incremented, not decremented. When 

the value exceeds its maximum and is incremented one more time, it will run over 

and become negative. Compiler is not able to warn about this situation, but the 

runtime error detection is. In some cases, overflowing a variable is a deliberate 

act, but this example is only to show what the runtime error detection is able to 

do. 

After the above code is compiled with an appropriate sanitizer flag -

fsanitize=undefined and run, the program detected an undefined behavior and 

gave an error of it (Figure 25). It worked with both compilers.  

 

Figure 25 Output of clang compiled code 

Another example is about memory allocation that is not freed before program 

ends. The code below is compiled with -fsanitize=address flag. 

int main(int argc, char** argv)  

{ 

   char * buffer = malloc(1024); 

   return 0; 

} 

 

The program gave an error of leaking memory with both compilers while the ad-

dress sanitizer was enabled (Figure 26). The error message is not very descriptive 

though. It may be difficult to find the exact place of the memory leak from code. 
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Figure 26 AddressSanitizer program output 

4.6.1 Differences between GCC and Clang Sanitizers 

Address-, Thread- and MemorySanitizers are originally developed as a part of the 

Clang project by Google but are later adopted for GCC as well. The basic usage of 

sanitizers works well with both compilers but there some differences. For in-

stance, Clang supports wider range of AddressSanitizer features, as it can be seen 

from the Table 4 below. More information about the differences between the sani-

tizers can be found from the resources. /41, 26/ 

Table 4 Differences between GCC and LLVM AddressSanitizer Features /41/ 

AddressSanitizer  

Feature 

GCC v7.1 LLVM v5.0 

Std containers overflow detection Yes Yes 

Dynamic allocation overflow detection Compiler sup-

port missing 

Yes 

Using private aliases for globals Yes Optional, not 

safe 

ODR violation detection Yes Yes 

Symbol size changing for global variables No Yes 

Adaptive global redzone sizes No Yes 

KASan support Yes Limited 
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ASan_experiments support No Yes 

Invalid pointer pairs detection No Yes 

Default runtime library linkage Dynamic Static 

Use explicit list of exported symbols No Yes 

Asan_symbolize script No Yes 

Support ASan blacklist file No Yes 

Support sanitizer coverage Limited Yes 

Support old Linux kernels (< 3.0) Yes No 

Support no_sanitize attribute No Yes 

Instrument function call arguments whose ad-

dress is taken 

No Yes 

Support dead stripping of globals on Linux No Yes 

 

4.7 Fuzz Testing 

The basic idea of fuzz testing, or fuzzing, is to run code with massive amount of 

random inputs trying to find vulnerabilities of the code. Fuzzing is done by creat-

ing a testbench for code, pairing it with a fuzzing engine that generates random 

inputs, and launching it to run on a server. After the code has being tested for 

hours, days or weeks, it can be seen from the testbench, which inputs have caused 

an error to occur. 

LLVM includes a library for fuzz testing called libFuzzer. It is used by writing a 

testbench for the code and adding fuzzer sanitizer for the compilation call.  

clang -g -O1 -fsanitize=fuzzer thecode.c 
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With GCC the fuzz testing can be done by external tools such as American Fuzzy 

Lop. In similar way, first a testbench is created for the project. Then the project is 

configured for American Fuzzy Lop, and the external tool is invoked. 

LLVM way of fuzzing is easier in comparison to GCC. 
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5 CONSIDERATIONS OF MIGRATION TO CLANG 

This section focuses on how the migration from Clang to GCC can be done and 

what one should consider when switching between the compilers. 

Many Linux distributions have already Clang built-in as an alternative to GCC 

and Microsoft supports it in Visual Studio, so the compatibility should not be an 

issue anymore. /46/ 

5.1 Using GCC Frontend with LLVM Backend 

GCC frontend for LLVM backend can be used with the DragonEgg tool. Even 

though it has not been developed much in the recent years, it works with the new-

est versions of GCC and LLVM. Using the DragonEgg may be useful in the case 

that Clang frontend is not wanted to be used for some reason. /15/ 

5.2 Switching to Clang/LLVM 

Clang is developed to be a drop-in replacement for GCC, so it is easy to change to 

use it. In the small example project below (Figure 27), only thing needed to do is 

to change command g++ to clang++ and the options do not need to be changed.  

 

Figure 27 Switching between gcc and clang.  

5.2.1 Using CMake  

If a project is configured with CMake, it makes it easier to switch between com-

pilers. The compiler is chosen by setting CMAKE_C_COMPILER and 

CMAKE_CXX_COMPILER variables in a configuration file. In addition, all the 

compiler parameters set in the configuration file need to be checked that they are 

supported by the compiler going to be used. 

After configuring the project, cmake will generate Makefiles for the compilation 

process (Figure 28).  
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Figure 28 Calling cmake 

5.2.2 Differences on Binutils 

There are some differences between LLVM and GNU binutils and that may be 

one concern when changing larger projects from GCC to Clang. LLVM provides 

alternatives for most of the GNU binutils, but the usage is not always the same. 

The most important differences are the usage of strip and objcopy tools from 

GNU binutils. Strip discards symbols from object files and objcopy copies con-

tents from one object file to another. Strip tool is missing from LLVM, but similar 

tool is included in the linker llvm-ld and is used by adding a –strip-all or –strip-

debug flag. LLVM has its own version of objcopy but it lacks for example –only-

keep-debug flag that is used to strip a file while keeping the debugging section 

intact.  /42, 43, 44/ 

In some cases, it may be reasonable to use some of the tools from GNU toolchain, 

for example objcopy, strip and objdump but change the others. This was done 

when compiled the company’s own project using Clang (6.2 Creating a new 

Clang Based Toolchain). Objdump is to display information about one or more 

object files. /42/ 

5.3 Using Both Compilers in Parallel 

It is a good practice to use both compilers in parallel to build a project. It will help 

finding errors more effectively. As a downside, it requires some extra work to 

maintain configurations for both compilers.  
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6 MIGRATING WÄRTSILÄ’S SOFTWARE TO CLANG 

In this section, the process to migrate Wärtsilä’s own software to be built with 

Clang instead of GCC is described.   

The software being migrated is developed on Linux based operating system. The 

GCC version currently in use is 4.8.2. It is released in October 2013. /50/ 

In this project, Clang and LLVM were compiled from source to configure them 

properly. The build files took a great slice of the memory of the development en-

vironment. Due to that, first the size of the development environment was ex-

panded for it to be large enough for a new toolchain and both compilers.  

After installing the new compiler, a new Clang based toolchain was created. It 

was done by first copying the existing GNU based toolchain and modifying it to 

use Clang instead of GCC.  

Finally, the software was configured to use the new toolchain. 

6.1 Building the Compiler 

In order to set non-default configurations for Clang, it needs to be built from 

source. Configurations are needed for instance, to use libc++ library, which is 

developed for Clang, instead of GNU’s libstdc++. Libc++ includes Clang sup-

port for libraries c++11 and c++14. In addition, by building the compiler from 

source, it makes it easier to use external tools from GNU toolchain. /47/ 

Step-by-step introduction to download, configure and build Clang from source is 

described below. 

First, external binutils for LLVM are downloaded. 

sudo mkdir /opt/llvm; cd /opt/llvm 
sudo git clone --depth 1 git://sourceware.org/git/binutils-
gdb.git binutils_src; 
sudo mkdir binutils_build; cd binutils_build 
sudo ../binutils_src/configure --disable-werror   
sudo make all-ld 
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Next, source code for Clang and LLVM are downloaded. 

cd /opt/llvm 
sudo git clone https://git.llvm.org/git/llvm.git/ llvm_src 
cd /opt/llvm_src/tools 
sudo git clone https://git.llvm.org/git/clang.git/ 
cd ../projects 
sudo git clone https://git.llvm.org/git/compiler-rt.git/ 
sudo git clone http://llvm.org/git/lldb 
sudo git clone https://git.llvm.org/git/libcxx.git/ 
sudo git clone https://git.llvm.org/git/libcxxabi.git/ 
 
 
After that, the dependencies for the project are installed and the build process is 

configured. This build is for 32-bit compiler because the target architecture is 32-

bit. Another way is to build 64-bit version but giving a -m32 flag for the compiler. 

In some cases, the build process can fail if not enough swap memory is allocated. 

This is why the allocation and swapping are done below.  

sudo apt-get install libelf-dev 
sudo apt-get install swig 
sudo apt-get install python-dev 
sudo apt-get install libtinfo-dev:i386 
sudo apt-get install libffi-dev:i386 
sudo apt-get install libelf-dev:i386 
 
sudo fallocate -l 10g /mnt/10GB.swap 
sudo chmod 600 /mnt/10GB.swap 
sudo mkswap /mnt/10GB.swap 
sudo swapon /mnt/10GB.swap 
 
mkdir /opt/llvm/llvm_build; cd /opt/llvm/llvm_build 
sudo cmake -G "Unix Makefiles" \ 
-DLLVM_ENABLE_PROJECTS="libcxx;libcxxabi;compiler-
rt;lldb;clang" \ 
-DLLVM_EXTERNAL_LIBCXX_SOURCE_DIR:PATH="/opt/llvm/llvm_src/ 
projects/libcxx" \ 
-DLLVM_EXTERNAL_LIBCXXABI_SOURCE_DIR=/opt/llvm/llvm_src/ 
projects/libcxxabi \ 
-DLLVM_EXTERNAL_COMPILER-RT_SOURCE_DIR=/opt/llvm/llvm_src/ 
projects/compiler-rt \ 
-DLLVM_EXTERNAL_LLDB_SOURCE_DIR=/opt/llvm/llvm_src/ 
projects/lldb \ 
-DLLVM_EXTERNAL_CLANG_SOURCE_DIR=/opt/llvm/llvm_src/ 
tools/clang \ 
-DLLVM_BINUTILS_INCDIR=/opt/llvm/binutils_src/include \ 
-DLLVM_ENABLE_LTO=ON \ 
-DLLVM_TARGETS_TO_BUILD="X86" \ 
-DLLVM_BUILD_32_BITS=ON \ 
-DLLVM_USE_SANITIZER="Address;Undefined" \ 
-DLLVM_INSTALL_BINUTILS_SYMLINKS=ON \ 
/opt/llvm/llvm_src/ 
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The flags used to configure the project are described below. /51/ 

-G"Unix Makefiles" — For generating make-compatible paral-
lel makefiles 
 
CMAKE_INSTALL_PREFIX=directory — Specify for directory the 
full pathname of where you want the LLVM tools and librar-
ies to be installed (default /usr/local) 
 
CMAKE_BUILD_TYPE=type — Valid options for type are Debug, 
Release, RelWithDebInfo, and MinSizeRel. Default is Debug. 
 
LLVM_ENABLE_ASSERTIONS=On — Compile with assertion checks 
enabled (default is Yes for Debug builds, No for all other 
build types). 
 
LLVM_ENABLE_PROJECTS="project1;project2" 
— Semicolon-separated list of projects to build, or all for 
building all (clang, libcxx, libcxxabi, lldb, compiler-rt, 
lld, polly) projects. 
 
LLVM_EXTERNAL_PROJECTS - Semicolon-separated list of addi-
tional external projects to build as part of llvm. 
 
LLVM_EXTERNAL_{CLANG,LLD,POLLY}_SOURCE_DIR=/PATH  
— These variables specify the path to the source directory 
for the external LLVM projects Clang, lld, and Polly, re-
spectively, relative to the top-level source directory. 
 
LLVM_ENABLE_LTO - Add -flto or -flto= flags to the compile 
and link command lines. On or Off. Defaults to Off. 
 
LLVM_USE_SANITIZER="Adress,Undefined..." — Define the sani-
tizer used to build LLVM binaries and tests. Possible val-
ues are Address, Memory, MemoryWithOrigins, Undefined, 
Thread, and Address;Undefined. Defaults to empty string.  
 
LLVM_BUILD_32_BITS — Build 32-bit executables and libraries 
on 64-bit systems.  
 
LLVM_BINUTILS_INCDIR=/path/to/binutils/include — The cor-
rect include path will contain the file plugin-api.h. (To 
use GOLD plugin) 
 
LLVM_INSTALL_BINUTILS_SYMLINKS - Install symlinks from the 
binutils tool names to the corresponding LLVM tools. For 
example, ar will be symlinked to llvm-ar. 
 
 
After the project is successfully configured, it is built and tested. 

cd /opt/llvm/llvm_build 
sudo make –j8 
sudo make cxx 
sudo make check 
sudo make install 
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Finally, when all the phases above are executed without errors, the compiler is 

ready to use.  

6.2 Creating a new Clang Based Toolchain 

In this project, the toolchain was created by copying and modifying the existing 

one that is configured for GCC. The new toolchain used objcopy, objdump and 

strip tools from the GNU toolchain, but other tools from the LLVM project (5.2.2 

Differences on Binutils). 

GCC libraries and include files was removed from the new toolchain and they 

were replaced with corresponding Clang and LLVM files. It was important to re-

move the GCC files that they would not conflict with the similar include and li-

brary files from the LLVM project.  

6.3 Configuring the Wärtsilä’s Software 

There was some changes needed to perform in order to configure the software for 

the new Clang based toolchain. In this section, the most important changes are 

revealed. 

The compilation uses ccache to speed up recompilation. Ccache caches previous 

compilations and prevents same compilation from being run again. The software 

uses ccache compiler wrappers to detect which compiler is in use. The wrappers 

are simply pass-through shell scripts that invoke the actual ccache tool. In the de-

velopment environment, there are ccache wrappers for gcc and g++ compilers in 

path /usr/bin, and similar tools are created for clang and clang++ into the same 

path. /49/ 

The project is configured using CMake. Following changes need to be made in the 

CMake configuration files. The paths for tools in the new toolchain and the librar-

ies and include files are given. Also the new compiler wrappers are taken into use. 
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set(COMPILER_WRAPPER_CLANG /usr/bin/ccache-clang) 
set(COMPILER_WRAPPER_CLANGPP /usr/bin/ccache-clang++) 
 
################################### 
# Paths to Clang/LLVM 
################################### 
set(LLVM_EXT_BINUTILS_PATH 
"/opt/llvm/binutils_build/binutils") 
set(LLVM_PATH "/opt/llvm/llvm_build/bin") 
set(LLVM_LIB_PATH "/opt/llvm/llvm_build/lib") 
set(LLVM_INCLUDE_PATH "/opt/llvm/llvm_build/include") 
set(CLANG_INCLUDE_PATH 
"/opt/llvm/llvm_build/lib/clang/7.0.0/include")  
set(CLANG_LIB_PATH 
"/opt/llvm/llvm_build/lib/clang/7.0.0/lib/linux") 
 
################################### 
# Clang/LLVM Includes 
################################### 
include_directories("${LLVM_INCLUDE_PATH}/llvm/Support") 
include_directories("${LLVM_INCLUDE_PATH}/llvm/Config") 
include_directories("${LLVM_INCLUDE_PATH}/c++/v1") 
in-
clude_directories("${LLVM_INCLUDE_PATH}/c++/v1/experimental
") 
include_directories("${LLVM_INCLUDE_PATH}/c++/v1/ext") 
include_directories("${CLANG_INCLUDE_PATH}") 
include_directories("${CLANG_INCLUDE_PATH}/sanitizer") 
include_directories("${CLANG_INCLUDE_PATH}/cuda_wrappers") 
include_directories("${CLANG_INCLUDE_PATH}/xray") 
 
################################### 
# Clang/LLVM Libraries 
################################### 
link_directories("${W_LLVM_LIB_PATH} ${W_CLANG_LIB_PATH}") 
 
 
List of the CMake parameters and corresponding tools from GCC and LLVM 

toolchains are shown in the Table 5. 

Table 5 CMake Parameters and Corresponding Tools from Toochains 

CMake Parameter GCC Tool LLVM Tool 

CMAKE_C_COMPILER ccache_gcc gcc ccache_clang clang 

CMAKE_CXX_COMPILER ccache_g++ g++ ccache_clang++ 

clang++ 

CMAKE_AR ar (GNU) llvm-ar 
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CMAKE_STRIP strip (GNU) strip (GNU) 

CMAKE_OBJCOPY objcopy (GNU) objcopy (GNU) 

CMAKE_OBJDUMP objdump (GNU) objdump (GNU) 

CMAKE_NM nm (GNU) llvm-nm 

CMAKE_SIZE size (GNU) llvm-size 

CMAKE_READELF readelf (GNU) llvm-readelf 

CMAKE_LINKER ld-linux.so (GNU) libLLVMLinker.a 

 

All the errors that occur during compilation process need to be resolved, but par-

ticular warnings can be omitted to get the compilation done. In the process, one 

error of nested function was fixed by moving the inner function out of another 

function and giving it more parameters. Another error was about redefined con-

stant. The constant was removed from another place and the library file which in-

cluded the first declaration was included the first place. Below is a list of the 

warnings that was omitted in the process. 

-Wno-unused-command-line-argument  

-Wno-implicit-function-declaration  

-Wno-builtin-requires-header  

-Wno-tautological-compare  

-Wno-enum-conversion  

-Wno-tautological-constant-out-of-range-compare  

-Wno-duplicate-decl-specifier  

-Wno-static-local-in-inline  

-Wno-reserved-user-defined-literal  

-Wno-varargs  

-Wno-gnu-designator  

-Wno-parentheses-equality  
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-Wno-mismatched-tags  

-Wno-sometimes-uninitialized  

-Wno-constant-conversion  

-Wno-shift-sign-overflow  

-Wno-undefined-inline  

-Wno-unused-private-field  

-Wno-logical-not-parentheses  

-Wno-overloaded-virtual  

-Wno-return-type  

-Wno-unused-const-variable  

-Wno-format  

-Wno-comment  

6.4 Results of the Compilation Process 

There were some problems on the compilation process, that occurred more likely 

because of conflicts between GCC and LLVM include files. One thing that may 

have caused them was that the toolchain was only modified to support Clang in-

stead of creating it similarly as the old toolchain was created. In the future, this is 

the first thing that needs to be done to get it work properly. Some other problems 

occurred when libstdc++ was used but that was fixed by using libc++ library (6.1 

Building the Compiler). 

One notice is that the GCC version currently used is starting to be old (released in 

2013). It could be updated to get the new features and enhancements of GCC in 

use. 

Quite many warnings occurred when the project was compiled using Clang. Of 

course, some of them occurred because GCC supports some functionalities that 

are not yet supported by Clang. Clang found for instance, redefined constants, 

functions without return type, implicit function declarations and variables that are 

sometimes, but not always, uninitialized (6.3 Configuring the Wärtsilä’s Soft-

ware). All of them are risk for bugs to occur.  
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The comparison tests of compilation time and performance for the software could 

not be run in this project. However, the more important thing is how well a com-

piler finds bugs and how are the error and warning messages displayed. It could 

be expected, that by finding potential bugs earlier and faster, the productivity of 

software development is increased measurably. 

Using two compilers requires some extra work to configure project to support 

both of them. Also it means that not all of the functionalities of GCC can be used, 

but there are not so many of them after all. Despite these facts, it may be worth 

the effort, as it has been seen, that using two compilers is a good way to prevent 

bugs from occurring.  
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7 CONCLUSION 

To answer a question, which compiler is better, it highly depends on the case. It 

depends on the architecture, requirements, structure and the way a project is cod-

ed, i.e. which pointer types are used and so on. Both compilers have their own 

pros and cons. Owing to these facts, it would be good practice to have both com-

pilers in use to find out which one is better for each particular case. Also using 

both compilers can be a good way to prevent bugs from occurring. This is because 

it has been seen during the project, that Clang could find some warnings that GCC 

did not notice. Also Clang supports some features of sanitizers that are not yet 

working with GCC.  

The work needed to migrate from GCC to Clang is proportional to the size of the 

project and complexity of configurations. With smaller projects the amount of 

work is minimal, but for instance in the Wärtsilä case, there is need for some re-

design of the configurations of the compilation process to support both compilers 

comprehensively. After the work is done, switching between compilers is fast and 

easy. 

In the comparison phase can be seen that Clang won GCC in almost every test 

suite. One thing to mention for the benefit of GCC is that it worked well without 

any compatibility problems, while with Clang there was some of them. It is also 

much easier to find help with problems using GCC than it is currently with Clang. 

This is due to the wide user population that GCC has. 

“Even though LLVM is usually compared to GCC and introduced to be a better 

alternative for it, it does not try or plan to obsolete GCC. They are two different 

projects focusing on different goals, even though there is some overlapping be-

tween them.”  

-Chris Lattner, the original developer of LLVM and Clang /38/  
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