

Mesay Magicho

Internet of Things: Smart Home Device

Metropolia University of Applied Sciences

Bachelor of Engineering

Electronics

Thesis

8 March 2018

 Abstract

Author
Title

Number of Pages
Date

Mesay Magicho
Internet of Things: Smart Home Automation

33 pages + 2 appendices
21 August 2017

Degree Bachelor of Engineering

Degree Program Electronics Engineering

Professional Major

Instructors

Matti Fischer, Principal Lecturer

The purpose of this project aims to design and implement a smart home device that can be
deployed into residential and office settings to control temperature and humidity to a desired
level. At the same time this helps us to make better use of energy and improve the well-
being of the residents.

To achieve the desired results, a Texas Instruments Sensor for real time measurement and
Raspberry Pi 3 gate way, along with IMB Watson platform for Internet of Things were ap-
plied. The theoretical part will discuss and describe operations of the smart home device
elements in details.

This thesis uses open source community resources for its own specific Smart Home Device
design and can be used for further developments of similar open source projects. There are
unlimited number of applications which can be done using a wireless sensor and Raspberry
Pi. A successful and better devices can be achieved using the latest products. This project
can be helpful to understand and learn the core of Internet of Things and Smart Home Au-
tomation.

Keywords IoT, Sensortag, Raspberry pi 3, Temperature, Humidity , Node
Red, IBM Cloud

Contents

List of Abbreviations

1 Introduction 1

2 Smart Home Device Elements 2

2.1 SensorTag 2

2.1.1 Description 3

2.1.2 Operation 4

2.1.3 Sensors 5

2.2 Raspberry Pi 6

2.2.1 Setup 6

2.2.2 Remote Raspberry Pi 7

2.3 IBM Cloud 8

2.3.1 Creating IBM Cloud Account 10

3 Design of Smart Home Device 11

3.1 Overview 12

3.2 Installing required software’s 13

3.2.1 Connecting Using Putty to Raspberry Pi 3 13

3.2.2 Node Red Installation 13

3.3 Testing the Bluetooth Connection 17

3.4 Create a node red flow reading from sensortag data 19

3.5 Preparing the Application in IoT Platform to receive Sensor Data 24

3.5.1 Create Watson IoT Organization 25

3.5.2 Create Gateway Device Type 27

3.6 Connecting the Pi to IoT Platform to send sensortag data 28

4 Results 30

5 Conclusion 32

References 33

Appendices

Appendix 1. Source Code to deploy Node-Red

List of Abbreviations

BLE Bluetooth Low Energy

DevPaks Development Packages

IaaS Infrastructure as a Service

IoT Internet of Things

LED Light Emitting Diode

MEMS Micro Electro-Mechanical Systems

MCU Multipoint Control Unit

PaaS Platform as a Service

RF Radio Frequency

SD Secure Digital

SSH Secure Shell

TI Texas Instruments

USB Universal Serial Bus

VNC Virtual Network Computing

1

1 Introduction

In less than a couple of years more than 50 Billion Internet of Things (IoT) devices will

be connected to the Internet. And smart home devices will overtake smart phones by

2021 as a share of deployed connected/ IoT devices [1]. Smart home or a residence

area can be defined as a home that uses programmable electronics control and sensors

that read real time measurements and regulate heating, humidity, lighting etc. in a way

that responds to indoor climate conditions, in order to conserve energy or optimize the

well-being of its residents.

In this thesis project we go through detailed design and implementation of smart home

device to control temperature and humidity level for a desired residential or office area.

The smart home device can detect the temperature and humidity level in the desired

area and use a Bluetooth Low Energy technology to communicate with a Raspberry pi 3

as a gate way to IBM cloud which is used as IoT platform service provider.

The smart home device consists of Texas Instrument (TI) SensorTag CC2650, which

can detect and respond to the resident area climate conditions and Raspberry Pi 3, which

is used to read values from sensor using Node Red on the Raspberry Pi, using BLE

technology, and send commands to IoT platform on IBM cloud server. This customize

the values according to end user’s specific needs.

The thesis will cover theoretical background and working principles of each element of

the smart home device. Special attention is given to the implementation and working

principle of the device. Procedural instructions are provided for set up and operation of

each device elements. The later sections of the thesis presents the results with pictures,

conclusions and recommendations for future development.

2

2 Smart Home Device Elements

2.1 SensorTag

The TI Bluetooth Smart SensorTag CC2650 is a new type of smart device that packs

many different sensors into small battery-powered unit. We can use the SensorTag for

a wide variety of IoT applications. It is perfect to use the device for quick prototyping, for

example new kinds of IoT applications, various sensor-based alarms, interaction devices

that use the accelerometer/gyroscope, game controllers, smartwatch prototypes, sports

sensors and much more. For all these, mobile applications play a central role to display

information to the end user.

Figure 1. SensorTag [2]

The new SensorTag now includes 10 low-power MEMS (Micro Electro-Mechanical Sys-

tems) sensors in a tiny red package (figure 1). And it is expandable with DevPacks (De-

velopment Packages) to make it easy to add your own sensors or actuators.

3

2.1.1 Description

The Sensortag CC2650 device is a wireless Multi control unit (MCU) targeting Bluetooth,

ZigBee® and 6LoWPAN, and ZigBee RF4CE remote control applications.

The device is a member of the CC26xx family of cost-effective, ultralow power, 2.4-GHz

RF devices. Very low active RF and MCU current and low-power mode current consump-

tion provide excellent battery lifetime and allow for operation on small coin cell batteries

and in energy-harvesting applications [2].

The CC2650 device contains a 32-bit ARM Cortex-M3 processor that runs at 48 MHz as

the main processor and a rich peripheral feature set that includes a unique ultralow

power sensor controller (figure 2). This sensor controller is ideal for interfacing external

sensors and for collecting analog and digital data autonomously while the rest of the

system is in sleep mode. Thus, the CC2650 device is ideal for applications within a whole

range of products including industrial, consumer electronics, and medical.

Figure 2. Functional Diagram [2]

4

The Bluetooth Low Energy controller and the IEEE 802.15.4 MAC are embedded into

ROM and are partly running on a separate ARM Cortex-M0 processor. This architecture

improves overall system performance and power consumption and frees up flash

memory for the application [3].

2.1.2 Operation

During normal operation the sensortag will start to advertise and indicate with green LED

blinking. On start-up, the SensorTag advertises with a 100 millisecond interval indicated

by the green LED blinking at a 1 Hz rate. Advertising can be stopped/started by pressing

the power button (right). The SensorTag must be advertising for the device to be discov-

erable by a smart phone or any other Bluetooth Smart central device [4]. The central

device (e.g. Raspberry, smartphone) can only connect to a SensorTag that is advertising.

In the advertising state the central device can scan, discover and establish connection

based on user defined connection parameters. To conserve battery power, the Sen-

sorTag uses Limited Advertising and will advertise for approximately 3 minutes after

pressing the power button. When the SensorTag is not advertising or established in a

BLE connection, the on board sensors are powered down into a low power state and not

collecting sensor data.

When connection established by central device and the sensors can then be configured

to provide measurement data. To obtain the data, the corresponding sensor must first

be activated, which is done via a Characteristic Value write to appropriate service. The

most power efficient way to obtain measurements for a sensor is to

 Enable notification

 Enable Sensor

 When notification with data is obtained at the Master side, disable the sensor

(notification still on though)

5

2.1.3 Sensors

The sensortag has IoT connectivity support for the following sensors

 IR Temperature, both object and ambient temperature

 Movement, 9 axis (accelerometer, gyroscope, magnetometer)

 Humidity, both relative humidity and temperature

 Barometer, both pressure and temperature

 Optical, light intensity

Figure 3. Sensor Overview [4]

The individual sensors require varying delays to complete measurements. Recom-

mended setting is 100 ms for fast movement data updates, if only the environmental data

is of interest, the interval can be slower to increase battery life time. Selecting a sensor

measurement period that is faster than the connection interval will result in unnecessary

battery power consumption since sensor reading can only be sent at scheduled connec-

tion events. Notifications can be stopped and the sensors turned on/off.

6

2.2 Raspberry Pi

The Raspberry Pi 3 is a series of small single-board computers developed in the United

Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer

science in schools and in developing countries [5]. The original model became far more

popular than anticipated, selling outside its target market for uses such as robotics. It

does not include peripherals (such as keyboards, mice and cases). However, its powerful

programming features, the small size and price affordability makes it a perfect choice for

our smart home device design and act as a core element to communicate with sensortag

and collect data.

Figure 4. Raspberry Pi 3 [5]

2.2.1 Setup

To set up Raspberry Pi for IoT project it is essential to have an SD card of size 8GB

preinstalled with Raspbian Jessie. For a display we use HDMI/DVI monitor and any TV

would work fine. Any standard USB keyboard and mouse will work with Raspberry Pi

and the Pi will be powered by a USB Micro power supply like most standard mobile

phone chargers.

7

On a formatted SD card we download and install Raspbian Jessie which is a free oper-

ating system that makes our Raspberry Pi run on windows user. Etcher software were

used to write the images on SD card.

Etcher is a graphical SD card writing tool that works on Mac OS, Linux and Windows,

and is the easiest option for most users. Etcher also supports writing images directly

from the zip file, without any unzipping required.

2.2.2 Remote Raspberry Pi

For this IoT project it is important to control and run Raspberry Pi from another computer,

such as a PC or Mac to send and access data. There are different ways to do that, the

most preferred use specifically for convenient and technology support are Virtual Net-

work Computing (VNC) and Secure Shell (SSH).

By default, VNC Server from RealVNC gives you direct control over your Raspberry Pi,

just as though you were sitting in front of it. This is great for controlling lightweight Rasp-

bian projects, such as IoT builds. As we’ll see in the steps, Raspbian Jessie with PIXEL

includes Server by default. However, you will need to enable it yourself. From then on,

Server will be loaded every time you switch on your Raspberry Pi [6].

Figure 5. Virtual Network Computing

8

Secure Shell is handy if you want to quickly connect to your Raspberry Pi from a terminal

on another computer. It’s also ideal for lightweight distro installations that don’t have an

interface. It’s especially useful when creating Internet of Things (IoT) projects, as these

may be embedded and not require a desktop.

Figure 6. Secure Shell (SSH) using Putty

2.3 IBM Cloud

IBM offers hardware platforms for cloud computing. IBM Developer Cloud platform is

IBM’s solution for the cloud. IBM cloud is a platform as a service solution, as well as

Infrastructure as a Service. IBM cloud service extensions provide functionality that is

ready to use by web or mobile applications. The predefined services include database,

messaging, push notifications and elastic caching for web applications [7].

IBM cloud is an open standards based cloud computing platform as a service PaaS

(Platform as a Service) with infrastructure as a service (IaaS) to develop, build, test,

deploy, run and manage the application in the cloud. In IaaS (Infrastructure as a Service)

the hardware, storage and network can be managed on the cloud (figure 7).

9

Figure 7. IBM Cloud platform [7]

The PaaS model includes services that build on IaaS services. They add value to the

IaaS services by providing a platform on which the cloud users can provision their own

applications, or conduct application development activities. The user does not need to

manage the underlying cloud infrastructure (network, storage, operating systems), but

can control configuration of the provisioned platform services.

The IaaS model is the simplest for cloud service providers to provision. It can include

Processing, Storage and Network. As an IaaS user we can deploy and run our chosen

software, including operating systems and applications. We do not need to manage or

control the underlying cloud infrastructure, but we have control over the operating

systems, storage, and deployed applications.

10

2.3.1 Creating IBM Cloud Account

IBM Cloud has a free lite service and run times to build our applications, to store data

and analyze them. IBM account can be created on the website for free of cost with no

time restriction. The free account offers 256 MB of instantaneous cloud foundry runtime

memory, access to usage capped plans for selected services, such as API connect,

Watson conversion, Watson discovery and for our project Internet of Things.

After registration we can be able to connect our devices to the IBM Watson IoT platform

in IBM cloud to watch live sensor data stream into a sample dashboard. IBM cloud offer

a detailed procedure to make device types in the platform. IBM offers two approaches

for creating an IoT organization for our projects.

 Cloud IoT Boilerplate that will create a node-red application that is bound to our

new IoT organization (figure 8)

 IoT Cloud tile to create a new instance of IoT organization

We use the first approach to create our device types under IBM given organization name.

Figure 8. IBM Cloud IoT dashboard overview [8]

The platform offers us to create and add devices based on our preference. This make

IBM cloud an ideal tool for our project.

11

3 Design of Smart Home Device

The Smart home device consists of Sensortag CC2650 Bluetooth sensor, Raspberry Pi

3 and IBM cloud platform (figure 9). The sensortag used to collect real time temperature

and humidity readings from the surrounding. The collected data send to Raspberry pi

using LE Bluetooth connection. Raspberry Pi used as a gate way to send those data’s

to IBM Cloud platform. In the following procedure we see how to connect our elements

and send the sensor data to IoT platform.

Elements needed

 IBM cloud account

 Raspberry Pi 3

 TI Sensortag CC2650

Figure 9. Ingredients for Smart Home Device

IBM cloud

12

3.1 Overview

This instruction will lead us how to easily connect Sensortag to our Pi, using Bluetooth,

and send their sensor data to IoT Platform (figure 10).

Figure 10. Flow diagram for programming and communication

The instruction uses a python script to scan for, connect to, and read sensor data from

the sensortag, and collects this data into Node-RED using a daemon node (called node-

red-node-daemon) which can run a script and collect its output into a node red flow. This

flow will convert the string into a JSON object to send to IoT Platform, with the Pi con-

nected as a gateway and the data being sent from a named device through the gateway.

The configuration of the node will allow us to give the sensortag specific names to choose

(based on the tag’s unique Bluetooth address, called a uid) which are sent with the data

into IoT Platform. The script can also select which specific sensors to read on the sen-

sortag, and how quickly to read them, leaving the unused sensors powered down, con-

serving battery power. If you don’t choose to make a selection of devices or sensors, the

script defaults to automatically connecting with all active sensortag sensors it collects,

and repeatedly reads their data.

13

3.2 Installing required software’s

In this section we will install all the necessary software for the raspberry and see how to

do that.

3.2.1 Connecting Using Putty to Raspberry Pi 3

In this recipe I will connect to my Pi from my laptop using Putty for command prompt and

using a browser to access Node Red. If we are using a keyboard/monitor connected to

our Pi, we can adapt the instructions below by starting a terminal and browser on the Pi

directly.

Whenever we start working with a new Raspbian image, it’s good practice to make sure

it us updated – this can take a while but ensures more predictable results. Or we could

skip this step and come back only if we have problems later on in the recipe.

Run the following commands at the command prompt:

 sudo apt-get update /*update new version of raspbian Jessie

 sudo apt-get upgrade /*upgrade to new version

 sudo apt-get dist-upgrade

3.2.2 Node Red Installation

The node-red-node-sensortag allows connecting a single Sensortag to your Pi to con-

nect to IoT Platform. To ensure node-red installation is up to date there are two methods

to proceed with Node-RED.

The first one is, the default or current Node-RED setup, the only thing need to be done

is if npm (the package manager for JavaScript) isn’t installed then install npm to discover

packages of reusable code and assemble them in powerful new ways, using the following

commands:

14

 sudo apt-get -y install -y npm –upgrade /*upgrade the ex-

isting npm

 npm i -g npm@2.x /*install npm

Or, you can upgrade to latest node.js and Node-RED – but note this may affect any

custom nodes installed before and will get the latest usability improvements using this

update. There are plenty of warnings, but these steps and the recipe works fine. This

update also installs npm. At the command prompt:

update-nodejs-and-nodered

The most recent run through this recipe used the latest Node-RED and ensure NodeRed

has been run.

Nod-RED is already installed in Raspbian. This recipe will add a custom node, and it can

only do that if Node-RED has been run at least once because this creates a folder

~/.node-red in home folder.

Run the command:

node-red-start /*this will start the node red

When the server finishes loading, then it can test Node-RED accessing the user interface

using the browser point to the address http://<iprasberrypi>:1880

Now the Node-RED server have to stop in the terminal window by typing ctrl+C and then

type the command:

node-red-stop /*stop node red running on raspberry

After this two important nodes installation are needed on Node-RED to connect sen-

sortag. The vanilla Node-RED (primarily installed on Raspberry) installation does not

include two nodes that complete this recipe to connect the sensortag with Raspberry Pi

15

and IoT platform. The first one is node-red-bluemix-nodes which provide a node to con-

nect to IoT Platform, and the second one is node-red-node-daemon, which provide the

node to run a python script to connect sensortag.

Run the following commands:

 cd ~/.node-red /*destination file to install

 npm install node-red-bluemix-nodes /*connect to IoT cloud

 npm install node-red-node-daemon /*run python script

Then install bluez, bluepy and other dependencies. Bluez provides utilities to access

Bluetooth Low Energy (BLE) devices (such as the CC2650 Sensortag) on the pi. Bluepy

provides a python interface to bluez.

At the command prompt:

 sudo apt-get -y install bluez build-essential libglib2.0-

dev libdbus-1-dev python-dev

 sudo pip install bluepy

In some occasions pip command might fail, pip is a package management system used

to install and manage software packages written in Python. Which might be due to a

conflict between newer/older versions of the python library requests. Seems like an older

(incompatible) version of requests can get installed when a python package requires that

older version, and this breaks pip. To fix this problem, do the following commands then

retry the pip command:

 sudo apt-get remove python-pip /*remove older Python-pip

 sudo easy_install -U pip /*install new version pip

16

 sudo pip install –upgrade requests /*upgrades to the new

version

NOTE: When this recipe was created Raspbian Jessie was used and the above com-

mands include libopenobex1. Which might not be essential in later versions of Raspbian.

After that installation and upgrading it have to be reboot and reconnect to complete the

recipe. At the command prompt:

sudo reboot/*this reboot the raspberry

Copy python script to /home/pi and save. After the reboot completes, connect to Rasp-

berry pi again then download and extract the python script sensortagcollector.py and

copy it to home folder on Raspberry pi – /home/pi

Download this file directly using the following commands:

 wget

https://ibm.box.com/shared/static/pwkgxejzk92ktjn53owm1ka

6bom9o0oq.zip -O sensortagcollector.zip

 unzip sensortagcollector.zip

This folder have to be in the same folder with Node-RED flow otherwise it will not work

because the daemon node expects the file to be in home folder. The daemon node have

to be edited with the path to put the file. Probably simplest to first get everything working

with the script file in the location indicated here, then later move it and update the dae-

mon node.

17

3.3 Testing the Bluetooth Connection

The data from Sensortag is transmitted to Raspberry Pi using Low Energy Bluetooth

connection. And we need to check the connection before we create a node red flow if

something isn’t working. We find out the cause of the problem this way quickly and build

confidence that our Sensortag are working before we get in to node red. This is also a

useful test that our Sensortag battery is not flat [8].

At the command prompt, run:

 sudo hcitool lescan /*Raspberry scanning Bluetooth device

Now switch on the sensortag by pressing the power button and see the green light

flashes and we should see the ID being printed on the command window too (figure 11).

Figure 11. Bluetooth Connection between Sensortag and Raspberry pi [screen shot]

Now that our Sensortag is visible on Bluetooth, let’s use the python script sensortagcol-

lector.py from the command line to ensure that works.

Run the script with its default settings, so it will scan for BLE devices (such as the sen-

sortag) and when it finds them – any number up to 16 – will automatically connect and

start reading sensors and print results on screen. Make sensortag is off and run the

command:

18

 sudo python sensortagcollector.py /*collects sensor data

Switch on the sensortag. Its light will start flashing. Shortly, the scanning script will see

the tag and print a message to say it has been found. Then there is a short delay while

the Pi Bluetooth stack connects to the tag, starts reading sensors and printing the

readings (figure 12).

Figure 12. Sensor data on Raspberry

At this point when the Pi has connected to our tag, the green light on the sensortag stops

flashing, which can be confusing because this appears the same as the tag not being

turned on, and also once it is connected the way to turn off the sensortag has changed,

so you have to give the power button a long hold and release to make it disconnect from

the Pi, then the green LED flashes again, and to actually turn it off quickly press the

power button again briefly.

It is important to do this before the pi connects again because that will also stop the LED

flashing. The sensor readings seem to start at 0 initially then after a few readings start to

show real readings. Press control-c to stop the script. This disconnects the Pi from all

sensortag it has connected with.

19

It is possible to give this device a specific name in case there are similar operating device

in the surrounding. Write this code in the command line as follows and give a friendly

name.

 sudo python sensortagcollector.py -d uid=friendlyname

 /*name the sensortag with friendly name

3.4 Create a node red flow reading from sensortag data

Node-RED is a powerful tool for building Internet of Things (IoT) applications with a focus

on simplifying the ‘wiring together’ of code blocks to carry out tasks. It uses a visual

programming approach that allows developers to connect predefined code blocks,

known as ‘nodes’, together to perform a task. The connected nodes, usually a combina-

tion of input nodes, processing nodes and output nodes, when wired together, make up

a ‘flows’ [9].

Originally developed as an open source project at IBM in late 2013, to meet their need

to quickly connect hardware and devices to web services and other software – as a sort

of glue for the IoT – it has quickly evolved to be a general purpose IoT programming tool.

Importantly, Node-RED has rapidly developed a significant and growing user base and

an active developer community who are contributing new nodes that allow programmers

to reuse Node-RED code for a wide variety of tasks.

Although Node-RED was originally designed to work with the Internet of Things, i.e. de-

vices that interact and control the real world it become useful tool to design our smart

home device.

In this section we create a flow which shows the sensortag data in a debug node, then

in the next sections we will see how to configure our own IoT Platform application and

then connect the Node-Red flow to IoT Platform. Using putty or terminal on VNC open

Node-Red in browser. At the command prompt (figure 13):

20

 node-red-start /*connecting node red using putty

Figure 13. Node-Red browser access on Pi

Node-RED displays a message including the address of the browser access point on the

Pi. In our browser we connect to Node-Red (figure 14). For me, with the Pi on IP address

192.168.43.193.1880, Node-RED is on http:// 192.168.43.193.1880. If you are running

your browser locally on your Pi then Node-RED is on http://127.0.0.1:1880.

Figure 14. Node-Red IP address to perform node coding

21

If there is no Sensortag on advanced group of tags in Node-Red, it have to be installed

using NodeJS that has the code access for Sensortag. At the command prompt:

npm i node-red-node-sensortag/*installing sensortag

node on node red

This command will take some minutes to finish. Restart Raspberry pi when it finish. And

then start again Node-RED server using the command:

 node-red-start

To send data from sensortag to Watson IoT platform a flow code have to be built on

Node-Red using nodes. Select sensortag from node list on the left side and double click

the node to configure the sensor ID. Then select the data to be captured which are Tem-

perature and Humidity for smart home device (figure 15).

Figure 15. Screen shot editing Sensortag node to select temperature and humidity

22

The next step is to connect a switch node to filter the messages from sensortag, which

configure the node to just pass the objects messages that are in the topic as values of

temperature and humidity.

Figure 16. Edit delay node

Even if we filter the messages, sensortag will send a lot messages, to limit the number

of messages, we will use the delay node and configure to limit the number of messages

for 1 per minute (figure 16).

Before we send the message to Watson Iot, we need to format the data to mqtt server in

Cloud server to accept. This node function has this java script code just to correct the

format of the data (figure 17).

23

Figure 17. Screen shot of Node function code

The last step would be to connect the node Watson IoT on Node-Red with function node

output to send the message to IBM Cloud. A device have to be created onto Watson IoT

platform and get the credentials to configure this node. Click on Deploy button and the

raspberry pi will connect with sensortag to send data on Cloud (figure 18).

Figure 18. Screen shot of Watson IoT node to send data to cloud

24

Figure 19. Node Red flow to connect to the IoT cloud

3.5 Preparing the Application in IoT Platform to receive Sensor Data

This section will focus on creating IoT Platform application and go through on how to

create the needed gateway device type, gateway device, and the sensortag device type.

There is no need to create a sensortag device for sensortag. This will be created auto-

matically because our Pi will be acting as a gateway, and a gateway can automatically

register the devices it is acting for this case that sensortag it finds and connects to.

The IBM Watson Internet of Things Platform is a fully managed, cloud-hosted service

that makes it simple to derive value from Internet of Things (IoT) devices. When com-

bined with the IBM Cloud platform, Watson IoT Platform provides simple, but powerful

application access to IoT devices and data.

25

Gateways are a specialized class of devices in Watson IoT Platform which serve as

access points to the Watson IoT Platform for other devices. Gateway devices have ad-

ditional permission when compared to regular devices and can perform the following

functions:

 Register new devices to Watson IoT Platform

 Send and receive its own sensor data like a directly connected device,

 Send and receive data on behalf of the devices connected to it

 Run a device management agent, so that it can be managed, also manage the

devices connected to it.

3.5.1 Create Watson IoT Organization

When you create a service “Internet of Things Platform” in IBM Cloud, a new Organiza-

tion will be created for you. This Watson IoT organization is a space used for connecting

and managing devices (and Gateway devices) to the Watson IoT Platform, so that your

applications can access their live and historical data.

First we have to sign in to our IBM account and type a name for our service and click

create button as shown below (figure 20)

26

Figure 20. IBM Watson IoT platform to create organization [7]

Observe a Welcome page, click on Launch button (figure 21) to enter into the IBM Wat-

son IoT Platform organization space. The IoT organization is a space used for connecting

and managing devices to the IBM Watson IoT Platform, so that your applications can

access their live and historical data.

Figure 21. Launching your IoT Organization

27

3.5.2 Create Gateway Device Type

Each Gateway device connected to the Watson IoT Platform is associated with a device

type. Device types are intended to be groups of devices which share common charac-

teristics. So in order to add Gateway devices in Watson IoT Platform, one need to create

a device type. Following are the instructions for creating a Gateway Device Type.

In the Watson IoT Platform dashboard, click Browse tab and then Add Device button as

shown below (figure 22)

Figure 22. Creating device type

We choose device type as gateway and give it a name. You need to have a unique

device name and device id (figure 23), which will distinguish it your gateway from other

devices that you might connect to Watson IoT platform. You can leave all optional values

and attributes then following the procedure add the gateway device. To get your Gateway

connected, you need to add the credentials to your Gateway. So make a note of them.

28

Figure 23. Gateway credentials

3.6 Connecting the Pi to IoT Platform to send sensortag data

This is the final step, which connect Raspberry Pi as a gateway and send sensortag data

to IoT Platform. In the Pi, in Node-RED you will add a Watson IoT node and configure it

to connect to your IoT Platform application as a gateway, and you will specify the device

type to be used. The device name will be automatically created in IoT Platform using the

device name from the sensortagcollector script. FYI the device name is inserted into

msg.deviceId in the JSON String to object node.

In the Pi Node-RED in your browser, in the Output section of the palette, add a Watson

IoT output node (figure 24)

29

 Figure 24. Watson IoT output node

Double-click the IBM IoT Device node and change the setting to Connect as Gateway

(figure 25), Registered, and Device Type gwtype:

Figure 25. Register device type

30

4 Results

The Smart Home Device elements are now ordered in the right flow procedures and

configured the previous chapters. The sensortag reads temperature and humidity levels

and send the data to the Raspberry Pi via LE Bluetooth connection (figure 12). Those

python scripts scanned and collected data by the Raspberry using Node-Red which can

run a script and collect its output in to a node red flow (figure 19).

The flow will convert the python scripts from a unique IP address IoT platform on IBM

cloud using the Raspberry as a gateway (figure 26).

Figure 26. Connection flow of a Smart Home Device [screen shot]

We can see the devices are connected successfully!

31

Figure 27. Screen shot of devices on IBM Cloud

During last result execution on IBM cloud the cloud service client sent a later to notify

about critical issues that affect output results (figure 29). Sensor data sent to cloud and

can be seen on Node-Red that devices are connected with the cloud but doesn’t post

the readings on IoT platform dashboard. This was happening sometimes for lite free

service users. Here is previous records of Temperature and humidity(figure 28).

Figure 28. Temperature and Humidity

32

 Figure 29. IBM Cloud Issues messages

5 Conclusion

The aim of this thesis project was to read the level of temperature and humidity in a room

using Sensortag CC2650 and send the data to Raspberry Pi 3 as a gateway to IBM

Cloud. A real time measurement is sent to the cloud over a network. I demonstrate how

to set up and create a simple Smart Home Device.

This project focus on the learning process of IoT device design using sensortag, Rasp-

berry Pi and IBM cloud. The project was a success. This project follows similar previous

recipes from IBM open source projects and doesn’t cover other aspects of the smart

home device such as controlling thermostat and humidity equipment’s in the room. The

user have to do that manually.

This thesis project can further develop and can also be used for further development of

similar open source projects. However, because of the fast development nature of IoT

products the chance of using similar devices are limited.

33

References

1 David Mercer, Connected World: Smart Home Is Key To Tomorrow's Internet Of
Things. [ONLINE] Available at: https://www.strategyanalytics.com/access-ser-
vices/devices/connected-home/smart-home/ [Accessed 29 January 2018].

2 Texas Instruments Users Guide. 2016. [ONLINE] Available at:
http://www.ti.com/lit/ug/tidu862/tidu862.pdf [Accessed 12 February 2018].

3 Multistandard Wireless MCU datasheet. 2015. [ONLINE] Available at:
www.ti.com/lit/ds/symlink/cc2650.pdf

4 CC2650 SensorTag User’s Guide - TI Wiki. 2018. [ONLINE] Available at: pro-
cessors.wiki.ti.com/index.php/CC2650_SensorTag_User%27s_Guide

5 Raspberry Pi 3 wiki page. [ONLINE] Available at: : https://en.wikipe-
dia.org/wiki/Raspberry_Pi

6 VNC Connect and Raspberry Pi Real VNC. 2015. [ONLINE] Available at:
https://www.realvnc.com/docs/raspberry-pi.html

7 IBM Cloud Recipes open source. [ONLINE] Available at:
https://www.redbooks.ibm.com/redbooks/pdfs/sg248374.pdf [Accessed 16 Feb-
ruary 2018]

8 Hands on Workshop Watson IOT.pdf - File - IBM. [ONLINE] Available at:
https://www.ibm.com/.../d3b16283-e026-4229-a0ee-988f0cf1fda8 [Accessed 17
February 2018]

9 TI SensorTag and Raspberry Pi - developersWorks Recipes. 2015. [ONLINE]
Available at: https://developer.ibm.com/recipes/tutorials/ti-sensor-tag-and-rasp-
berry-pi/

10 Node-Red Users guide. [ONLINE] Available at: http://noderedguide.com/nr-lec-
ture1/ [Accessed on 27 February 2018]

Appendix 1

 1 (2)

Source Code To Deploy Node-Red flow on Raspberry

/*

*Original author: IBM

Edited: Mesay

*/

 [{“id”:”fc916843.2edb28″,”type”:”sen-

sorTag”,”z”:”ee3e8f00.10579″,”name”:”tag”,”topic”:”sen-

sorTag”,”uuid”:”a0e6f8c21684″,”temperature”:true,”humid-

ity”:true,”pressure”:true,”magnetometer”:true,”accelerome-

ter”:true,”gyroscope”:true,”keys”:true,”luxo-

meter”:false,”x”:115.5,”y”:58,”wires”:[[“546008af.f1b3a8”]]},{“i

d”:”fdb01a2b.833a68″,”type”:”de-

bug”,”z”:”ee3e8f00.10579″,”name”:””,”active”:true,”con-

sole”:”false”,”com-

plete”:”true”,”x”:660,”y”:77,”wires”:[]},{“id”:”546008af.f1b3a8″

,”type”:”switch”,”z”:”ee3e8f00.10579″,”name”:””,”prop-

erty”:”topic”,”property-

Type”:”msg”,”rules”:[{“t”:”cont”,”v”:”tempera-

ture”,”vt”:”str”}],”checkall”:”true”,”out-

puts”:1,”x”:221,”y”:146,”wires”:[[“aa8718c3.6315f8”]]},{“id”:”aa

8718c3.6315f8″,”type”:”de-

lay”,”z”:”ee3e8f00.10579″,”name”:””,”pauseType”:”rate”,”timeout”

:”5″,”timeoutUnits”:”seconds”,”rate”:”1″,”nbRateUnits”:”1″,”ra-

teUnits”:”minute”,”randomFirst”:”1″,”randomLast”:”5″,”ran-

domUnits”:”sec-

onds”,”drop”:true,”x”:354,”y”:61,”wires”:[[“d68c43b5.dce2f”]]},{

“id”:”d68c43b5.dce2f”,”type”:”func-

tion”,”z”:”ee3e8f00.10579″,”name”:””,”func”:”var temp = parse-

Appendix 1

 2 (2)

Float(msg.payload.ambient);nmsg.payload = {'d':{'tempera-

ture':temp}};nreturn msg;”,”out-

puts”:1,”noerr”:0,”x”:493,”y”:149,”wires”:[[“fdb01a2b.833a68″,”d

addaa20.7ffdd8”]]},{“id”:”daddaa20.7ffdd8″,”type”:”wiotp

out”,”z”:”ee3e8f00.10579″,”authType”:”d”,”qs”:”false”,”qsDe-

viceId”:””,”deviceKey”:”4d195373.2056ec”,”deviceType”:””,”de-

viceId”:””,”event”:”event”,”for-

mat”:”json”,”name”:””,”x”:665,”y”:197,”wires”:[]},{“id”:”4d19537

3.2056ec”,”type”:”wiotp-credentials”,”z”:””,”name”:””,”org”:”Me-

sayTag”,”devType”:”gateway”,”devId”:”546C0E530101”}]

