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Tämän opinnäytetyön tavoitteena on tarjota sekä teoreettinen että ohjelmistollinen ratkaisu
tulostuskaluston värinkulutuksen seurantaan. Erityisesti se pyrkii löytämään keinot tun-
nistaa ja yksilöidä laitteet, jotka kuluttavat liiallisesti väriä verrattuna kaluston valtaosaan.
Esimerkkijoukko, jonka pohjalta tuloksia arvioidaan, koostuu Sharp-tuotemerkillä valmis-
tetuista värimonitoimilaitteista, mutta samat periaatteet ovat helposti sovellettavissa kaikkiin
riittävän yksityiskohtaista käyttöraportointia tarjoaviin laitteisiin.

Kehitetyt menetelmät pohjautuvat alkeellisiin koneoppimisen strategioihin sekä yksinker-
taiseen kaksimuuttujaiseen tilastolliseen analyysiin, ja ne on toteutettu Python- ja Octave-
ohjelmointikieliä käyttäen. Pythonia käytetään datan eristämiseen sekä käyttäjälle esittämis-
een, Octavea numeeriseen analyysiin sekä algoritmin kehittämiseen.

Tulokset koostuvat kaluston visuaalisesta analyysista sekä moniparametrisesta ennusteal-
goritmista, niin sanotusta hypoteesista. Kyseiset parametrit opitaan koneellisesti pros-
essin aikana. Ratkaisu on parhaiten sovellettavissa kalustoon, johon ei kohdistu yhtäkki-
siä suuria muutoksia, mutta se voidaan laajentaa koskemaan myös muunlaisia tilanteita.
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ABBREVIATIONS AND GLOSSARY

Anomalous sample An MFP with comparatively excessive toner usage

Bias term A zero-condition term of the hypothesis

BW Black and white

CDF Cumulative distribution function

CMYK Cyan, Magenta, Yellow and Key (black)

Cost function A function for evaluating prediction errors

Decision boundary The boundary separating samples with different classes

Feature A statistical characteristic present in all of the samples

Gradient descent An optimisation algorithm for finding the minimums

Greyscale Halftoned BW to produce shades of grey

Label A label assigned to a sample after classification

Hypothesis The algorithm predicting the anomality of the sample

Learning rate The rate of change in gradient descent

Logistic regression A regression model with a binary-valued output

MFP Multi-functional printer

PCC Python Copy Counter, an MFP monitoring program

PDF Probability density function

Sample A combined statistical reading of a single device

UI User interface
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1 INTRODUCTION

The business of providing copiers and MFP devices (incorporating scanner, printer
and copier functionality) and related services is often referred to as office technol-
ogy. The common operating model is for the customer to lease the device itself
and then agree on a service contract with the dealer. Typically such a contract
states that in exchange for printer toner and maintenance services the customer
is charged a per-page cost for the number of printed pages during a billing cycle.

The cost of a single page (measured in the A4 size in Finland) is different for
pages in color and in black and white (or greyscale). This is because BW printing
employs fewer resources than printing in color. The colors are typically of the
CMYK1 variety, and whereas a BW page is printed with only one toner (K), a
color page uses all of them (K for pure black, CMY for producing other colors).
Other cost-differentiating factors also exist, but the details have no relevance for
this study.

A standard usage of a single color is 5 % per page [4]. That is, if all of the specific
toner on a standard page were to be printed on a uniform region, then 5 % of
the page would be covered. Hence, the page-specific costs are usually defined
using this standard coverage and a considerable deviance from this standard use
results in the device operating on loss. It is therefore a common practice to include
a clause in the contract which makes it possible to place additional charges for
usage exceeding the standard, even though these clauses are rarely applied.

However, regardless of contractual minutiae the objective of this thesis was to
develop a method for both detecting devices using excessive amounts of toner
and analyzing how common this excessive usage actually is. The techniques
to achieve this objective were basic mathematical analysis coupled with the use
of mathematically suited programming languages. The work will proceed from
describing the initial setting to prototyping and finally implementing the solution,
and will involve using an existing database of devices and their statistics. The
primary focus of this thesis is on the application of a regression model called
logistic regression, which is a method for binary classification of samples; that
is, given two sets, to which does the current sample belong.

1There are other varieties such as the CMYKW model for the additional white color, but this is
rarely used in office printing
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It should also be noted that in descriptions relating to the operation of the devices
and the business external references are not included. Instead, these parts of this
thesis rely on the author’s personal expertise stemming from five years of working
in the field, in several technical roles such as maintenance and repair, pre-sales
and as a technical specialist. Additionally, only superficial information of printing
technology is needed, which works more as a background than as an essential
element of the actual engineering work in this thesis. The method devised here
is applicable even though the technicalities or the cost formation differ from the
stated.

Why the effort?

The reader might be inclined to wonder why make the effort to analyze the data
in order to make a classification of excessive toner use. That is, why implement
a mathematically encumbered model instead of just manually defining a limit of
acceptable use. For this there is no clear-cut answer.

The essential thought behind this thesis, however, is that careful analysis provides
the benefit of knowing just how the customer and device base is distributed in
relation to toner usage, and helps avoid detecting the bulk of the customer base
as excessive users. That is, even if a customer uses more toner than allowed as
per the service contract, we do not want to consider this as excessive if it is within
”normal” limits. The handling of a customer relation is always a delicate matter,
and an accusation of not keeping within the contractual limits is always bound to
generate some bad will. We want to focus our attention to the group of devices
inducing the largest losses.

2 BACKGROUND INFORMATION

An office technology dealer Oy Perkko operates mainly in the area of Southern
Finland. For a large part of their history, the brand name Sharp has been the
primary MFP product of the company. The dominant procedure in which Sharp
devices report their statistics, such as the number of printed pages, is automat-
ically sending timed status messages via email. Traditionally these messages
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have been handled manually, with hired personnel entering relevant fields of in-
formation in the emails into the ERP system of the company. This is error-prone
and tedious work as there are hundreds of devices reporting monthly. To solve
this problem a system titled Python Copy Counter, or PCC, has been previously
implemented by the author. This system uses the Python programming language
and the Django framework to automatically extract data from arriving status mes-
sages, which is then inserted into an SQLite3 database. The gathered informa-
tion is presented to the user in a dynamic web service exposed on the company
intranet.

Picture 1: The PCC UI2 in Finnish

In Picture 1 a fraction of the device fleet is visible. The information in the columns
from left to right is the date of reporting (PVM), the serial number of the device
(Sarjanumero), the model of the device (Malli), the total count of BW pages (MV)
and the total count of color pages (Väri).

The statistics of a singular device can be more closely examined by clicking the
serial number. This takes the user to a device-specific view in which the infor-
mation from the monthly reports is presented in a tabular fashion. In addition to
the previous, toner usage information is also presented whenever possible (if the
device in question is of an adequately recent model).

Older Sharp devices report the toner usage in intervals (Picture 2), whereas the
current generation of devices reports continuous change (Picture 3).

2Dynamic tables by Datatables, https://datatables.net/
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Picture 2: Toner levels as intervals.

Picture 3: Continuous toner level changes.

The percentage signs in Pictures 2 and 3 display the levels of toner remaing for
each color, and the hashtag (#) marked values display the total number of inserted
cartridges. The situation is further complicated by the fact that different groups
of devices use different types of cartridges and different types of cartridges have
different kinds of yields. This has to be accounted for when analyzing the general
situation.

3 DATA EXTRACTION

The PCC database is used as an example when retrieving and extracting data.
However, this specific database is in no way a requirement in the process. Any
form of storage allowing read access will do, be it an SQL database or a (humon-
gous) CSV file. In addition, the algorithms can be applied to MFPs other than
Sharp if the toner level and print count handling is adjusted accordingly.

The PCC database holds different tables for devices and status messages. Each
status message is linked to a specific device with a foreign key named device id.
In addition to other information, the table for status messages (pcc total) contains
the following fields (all counted from the time of deployment):

• total bw, total number of printed BW pages
• total col, total number of printed color pages
• k level, the approximate level of toner k remaining in the cartridge
• c level, m level, y level
• k installed, the number of installed K cartridges
• c installed, m installed, y installed
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We now proceed to extract relevant data from the database. The extraction pro-
gram, fully listed in Appendix 1, is also written in Python but separated from other
functionality of PCC. As this phase is required only when the final parameters
are re-learned, it is both possible and preferable to execute it under supervised
circumstances. Therefore, the Django convention for retrieving entries from the
tables is omitted, and a standard SQL query is relied on instead.

1 SELECT ser ia l number , model , to ta l bw , t o t a l c o l ,
2 k l e v e l , c l e v e l , m level , y l e v e l ,
3 k i n s t a l l e d , c i n s t a l l e d , m ins ta l l ed , y i n s t a l l e d
4 FROM p c c t o t a l INNER JOIN pcc device
5 ON p c c t o t a l . dev i ce id = pcc device . i d WHERE c i n s t a l l e d > −1
6 ORDER BY pcc device . ser ia l number , p c c t o t a l . da te sent

Listing 1: SQL query for retrieving data from the PCC database

In Listing 1 we query the database for serial numbers and models and for all re-
ported total counts, toner levels and installed cartridges. We impose one require-
ment in the WHERE clause, namely that of the number of installed cartridges
actually included in the report. For both old devices and BW printers the number
of installed CMY cartridges is represented as a value of -1, and we exclude the
devices from the data to be analyzed.

For the yields of different cartridge types to be accurately accounted for, we de-
fine yield groups in the form of a Python dictionary. For example, the models MX-
2310U and MX-2314N use the cartridge type MX23, which has different yields for
K and CMY cartridges. Therefore, we first define how many standard 5 % pages
can approximately be printed with a use of 1 % of total toner in the cartridge.

1 BK23 = 180 # one c a r t r i d g e of MX23GTBA ( black ) g ives approx . 18000 pages
2 COL23 = 100

Listing 2: Defining yields for 1 % of toner of the type MX23

This is shown in Listing 2. We then assign these as list values for the key that
represents proper device models (Listing 3).

1 y i e l d s = {
2 ’MX−2310U ’ : [ BK23 , COL23 ] ,
3 ’MX−2314N ’ : [ BK23 , COL23 ] ,

Listing 3: A dictionary relating a model with a cartridge type
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We also define a function in Listing 4 for parsing toner levels stored in the database
fields.

1 def l e v e l s t o i n t s ( s t a t l i n e ) :
2 s t a t l i n e = l i s t ( s t a t l i n e )
3

4 # keep t rack t h a t the i n i t i a l l e v e l s were i n t e r v a l s or cont inuous
5 s t a t l i n e . append ( [ ’ i n t e r v a l ’ i f ’− ’ i n s t a t l i n e [ I K l ] e lse ’ cont inuous ’ ] )
6

7 f o r i i n l e v e l i n d e x :
8 # o lde r machines r e p o r t toner l e v e l s i n i n t e r v a l s 75−100%, 50−75% etc
9 # we take the lower l i m i t and add h a l f ( rounded down) to approximate

10 i f ’− ’ i n s t a t l i n e [ i ] :
11 s t a t l i n e [ i ] = i n t ( s t a t l i n e [ i ] [ 0 : s t a t l i n e [ i ] . index ( ’− ’ ) ] ) +12
12 s t a t l i n e . append ( ’ i n t e r v a l ’ )
13 else :
14 s t a t l i n e [ i ] = i n t ( s t a t l i n e [ i ] . s t r i p ( ’%’ ) )
15

16 r e t u r n s t a t l i n e

Listing 4: Function for parsing toner level strings

The actual work is completed next. We loop to obtain one record at a time. For
each device (differentiated by the serial number), we are actually only interested
in two records, the first and the last. In the interim we execute certain checks
to see if the values show proper change. When we encounter the first record of
the device, some values are initialized as shown in Listing 5 (shown for K, others
omitted for brevity).

1 # the i n i t i a l numbers o f p r i n t e d pages
2 b w f i r s t = new entry [ I BW ]
3 c o l f i r s t = new entry [ I COL ]
4

5 # i n i t i a l % l e v e l s o f toners
6 k l e v e l f i r s t = new entry [ I K l ]
7 . . .
8 # i n i t i a l number o f i n s t a l l e d c a r t r i d g e s
9 k c t r g f i r s t = new entry [ I Kc ]

10 . . .

Listing 5: Setting the initial values of the device (truncated for CMY)

Values in the list new entry have already been parsed with the function in Listing
4. After reaching the final record for the device currently inspected, the first and
the last record (named previous entry) are used to compute the differences in
Listing 6.
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1 # p rev ious en t r y i s the l a s t en t r y f o r the device now analyzed
2

3 # change i n the number o f p r i n t e d pages
4 bw = prev ious en t r y [ I BW ] − b w f i r s t
5 co l = p rev ious en t r y [ I COL ] − c o l f i r s t
6

7 # change i n the i n s t a l l e d number o f c a r t r i d g e s
8 k c r t g = p rev ious en t r y [ I Kc ] − k c t r g f i r s t
9 . . .

10 # change i n toner l e v e l s
11 k l e v e l = k l e v e l f i r s t + 100 ∗ k c r t g − p rev ious en t r y [ I K l ]
12 . . .

Listing 6: Computing the change for the device (truncated for CMY)

After this we are ready to set the final values for the device. In Listing 7 the at-
tempt is made to determine the standard yield for each toner consumed during
the lifetime of the device. In other words, the program computes how many stan-
dard pages should have been approximately printed with the total toner usage of
that particular color. These values are inserted into a list as a dictionary, which is
then exported as a csv file, which will be used in the following section to learn the
parameters of the logistic regression model.

1 t r y :
2 b k y i e l d = y i e l d s [ p rev ious en t r y [ I MOD ] ] [ 0 ]
3 c o l y i e l d = y i e l d s [ p rev ious en t r y [ I MOD ] ] [ 1 ]
4

5 # consumed toner i n standard pages (5 % coverage )
6 s td k = k l e v e l ∗ b k y i e l d
7 s td c = c l e v e l ∗ c o l y i e l d
8 std m = m leve l ∗ c o l y i e l d
9 s td y = y l e v e l ∗ c o l y i e l d

10

11 # a d i c t l a t e r exported i n t o a csv f i l e
12 s t a t d i c t = {
13 ’bw ’ : s t r (bw) ,
14 ’ co l ’ : s t r ( co l ) ,
15 ’ s t d k ’ : s t r ( s td k ) ,
16 ’ s t d c ’ : s t r ( s td c ) ,
17 ’ std m ’ : s t r ( std m ) ,
18 ’ s t d y ’ : s t r ( s td y ) ,
19 }
20

21 d e v i c e s t a t s . append ( s t a t d i c t )
22 except KeyError :
23 # no y i e l d def ined f o r the ( too o ld ) model , drop i t
24 pass

Listing 7: Setting the final values of the device
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4 INITIAL ANALYSIS OF THE DATA

For the logistic regression model to work, labeled data is needed. That is, we
need to know which samples are considered anomalous (excessive in toner us-
age) and which ones are not. This is currently not the situation. Therefore, the
individual samples must be labeled as normal or anomalous, preferably with an
adequate level of cohesion, as random labeling is as good as no labeling at all.
The analysis of the data is executed in the (largely Matlab compatible[2]) GNU
Octave environment extended with the statistics package[7].

4.1 Visual analysis

First, the data gathered in the previous section is read from a csv file and for each
sample an average use of C, M and Y toners is computed. By averaging CMY
use we make the data easier to visualize. It is also more worthwile for the dealer
to focus on the average use instead of searching for large uses of singular color.

1 % read data csv => mat r i x M
2 M = csvread ( ’ s t a t s . csv ’ ) ;
3

4 % mat r i x A f o r the i n i t i a l i nspec t i on o f the data
5 A = zeros ( s ize (M, 1 ) , 2 ) ;
6 f o r i = 1 : s ize (M, 1 ) ,
7 % average use of CMY toners
8 cmy std avg = mean(M( i , 4 : 6 ) , 2 ) ;
9

10 % r a t i o o f standard pages (5% coverage ) to a c t u a l l y p r i n t e d pages
11 k s t d t o r e a l = M( i , 3 ) / (M( i , 1 ) + M( i , 2 ) ) ;
12 c m y s t d t o r e a l = cmy std avg / M( i , 2 ) ;
13

14 % r a t i o o f a c t u a l l y p r i n t e d pages to standard pages
15 k r e a l t o s t d = (M( i , 1 ) + M( i , 2 ) ) / M( i , 3 ) ;
16 c m y r e a l t o s t d = M( i , 2 ) / cmy std avg ;

Listing 8: Insterting the data into a matrix

As shown in Listing 8, line 11, the ratio of standard pages to real pages is then
calculated for color K. We take the estimated number of standard greyscale pages
and divide it by the sum of actually printed greyscale and color pages (as color
pages, too, can use toner K). The end result is essentially how many pages should
have been possible to print in relation to how many pages were actually printed.
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We conduct the same for the average color use (for color pages only, as CMY is
not used in greyscale). On lines 15-16 we compute the inverses.

In order to visually analyze the data on a 2D graph, the following decisions are
made:

• the origin of the graph represents the ratio 1:1, i.e. the point at which actual
toner usage meets the standard
• an actual usage less than the standard has a negative signum

With these guidelines in mind, the larger of both ratios is chosen and adjusted by
±1. The result is that the ”ideal” (1:1) usage is shifted to the origin and multiplied
by 100 to obtain the percentages.

1 % pick wichever i s la rge r , and ad jus t so t h a t std>r e a l equals moderate toner use
2 % ( mark negat ive ) and rea l>std equals excessive toner use ( mark p o s i t i v e ) , a lso the
3 % r a t i o 1 equals to standard so s h i f t to zero (+/− 1)
4 i f k s t d t o r e a l > k r e a l t o s t d ,
5 k = k s t d t o r e a l − 1;
6 else ,
7 k = −k r e a l t o s t d + 1;
8 end ;
9

10 i f c m y s t d t o r e a l > cmy rea l to s td ,
11 cmy = c m y s t d t o r e a l − 1;
12 else ,
13 cmy = −c m y r e a l t o s t d + 1;
14 end ;
15

16 % f i n a l l y conver t to percentages
17 A( i , 1 ) = round ( k ∗100) ;
18 A( i , 2 ) = round (cmy∗100) ;
19 end ;

Listing 9: Organizing the data around the origin

The end result is an m-by-2 matrix A, m representing the sample set size (the
number of devices in the set). The first column of A represents percentages for
color K, the second for the averaged colors CMY. A, when plotted, visualizes the
toner use in relation to the standard, as shown in Figure 1. The columns of A are
named as the features of the data set.

In order to better understand the distributions the histograms are also plotted.
In Figure 2 it can be seen that for both colors K and CMY the distribution is
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roughly Gaussian, albeit slightly skewed to the left on the CMY side. In the current
case this rough resemblance is however enough, as admittedly labeling data this
way will always be somewhat arbitrary. In case either of the histograms would
demonstrate considerably non-Gaussian characteristics, we would have to try
additional manipulation, such as squaring of the samples [6].

Figure 1: Toner usage of each device on a K/CMY chart

Figure 2: Histograms of toner use
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4.2 Multivariate Gaussian distribution

We recall some central statistical concepts. First, the mean or the expected value
of a discretely distributed random variable x is defined as

µ = Ex = ΣP (x = xi) · xi (1)

where P (x = xi) is the probability of x at xi. However, our data set now fully
defines P , as we have m samples and the probability of each sample is 1

m
. It

follows that if we consider each of our samples to be a 2-element vector

a(i) =

[
a

(i)
1

a
(i)
2

]
, a(i) ∈ A (2)

then for each a(i)
j , i ∈ {1, 2, ...,m} the expected value becomes the average

µj =
1

m

m∑
i=1

a
(i)
j (3)

or, when computed simultaneously for both features in Octave

1 mu A = mean(A , 1 ) ;

Listing 10: Calculating the expected value

with matrix A having been defined in Listing 9.

The second parameter we compute is the covariance matrix Σ (not to be confused
with the process of summing). For a vector-valued variable x ∈ Rn the covariance
matrix is an n-by-n matrix with each element (j, k) given by

Σjk = cov(xj, xk) = E[xjxk]− E[xj]E[xk] = E[(xj − µj)(xk − µk)] (4)
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where xi, xj ∈ x. When (4) is expanded for the complete sample set we obtain

Σ =
1

m

m∑
i=1

cov(a
(i)
j , a

(i)
k ) (5)

which is easily translated for Octave in Listing 11.

1 Sigma A = (A.−mu A ) ’ ∗ (A.−mu A) . / s i ze (A , 1 ) ;

Listing 11: Computing the covariance matrix

The covariance matrix is only valid if it is both symmetric, Σ = ΣT , and positive
definite, xTΣx > 0, ∀x ∈ Rn. In Listing 12 we ensure that these assumptions hold
and abort if either of them is invalid.

1 % check f o r symmetry
2 i f Sigma A != Sigma A ’ ,
3 p r i n t f ( ” Covariance mat r i x i s not symmetric ! Abor t ing . . . \ n ” ) ;
4 q u i t ;
5 end ;
6

7 % check f o r p o s i t i v e de f i n i t eness , compute eigenvalues
8 [ eig1 , eig2 ] = e ig ( Sigma A ) ;
9 i f e ig1 < 0 | | eig2 < 0 ,

10 p r i n t f ( ” Covariance mat r i x i s not p o s i t i v e d e f i n i t e ! Abor t ing . . . \ n ” ) ;
11 q u i t ;
12 end ;

Listing 12: Verifying the validity of the covariance matrix

With Σ and µ we now define the probability density function f for any random
sample x ∈ R2 [1]:

f(x;µ,Σ) =
1√

(2π)2|Σ|
e−

1
2

(x−µ)T Σ−1(x−µ) (6)

and if everything is in order, for the cumulative distribution function we have

1√
(2π)2|Σ|

∫ ∞
−∞

∫ ∞
−∞

e−
1
2

(x−µ)T Σ−1(x−µ)dx1 dx2 = 1 (7)



19

as the basic principle of probability dictates. We use the function mvncdf[8] of the
Octave statistics package to verify this in Listing 13. Of course, we are computing
the actual value in a finitely accurate system, so we inspect the value visually and
abort if we consider the value to be too low.

1 % check to see i f the cdf i s reasonably c lose to 1
2 [ p , e ] = mvncdf ( [ I n f I n f ] , [− I n f − I n f ] , mu A , Sigma A ) ;
3 p r i n t f ( ” \nCumulative d i s t r i b u t i o n f u n c t i o n (− I n f , I n f ) : %f , est imated e r r o r %f \n\n ” , p , e ) ;

Listing 13: Computing the cdf

In the test set the cdf ≈ 0.9995, which we consider sufficient.

To visualize the PDF, we plot the surface graph in Figure 3.

Figure 3: The surface graph of the pdf from side/above

Finally, in Listing 14 we initialize a new matrix C with columns from A and an
additional column holding the value of the PDF at each sample. Furthermore,
we create a temporary matrix D which holds the rows of C sorted by the column
holding the PDF value, and select n samples with the lowest value for the PDF.
The choice of n is somewhat arbitrary and will ultimately depend on the choice
of how harsh we want the algorithm to be with the sample set. Here, we have
chosen the treshold at 30 % of the device count. The value of the PDF at sample
number n will become the threshold value ε, which will determine if the sample
is anomalous (excessive usage) or not. While the portion of 30 % of the whole
sample set might seem high, it is worthwhile to know that we will make other
adjustments later on.
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1 % compute the pdf f o r each sample
2 C = [A ( : , 1 ) A ( : , 2 ) mvnpdf (A, mu A , Sigma A ) ] ;
3

4 % f i g u r e out the th resho ld value eps i l on f o r the pdf ;
5 % below t h i s a sample i s i n i t i a l l y considered anomalous
6 % pick eps i l on so t h a t about 30 % of samples get tagged
7 % (we set o ther a d d i t i o n a l requirements l a t e r ! )
8 D = sor t rows (C, 3 ) ;
9 n = round ( s ize (D, 1 ) ∗ 0 . 3 ) ;

10 eps i l on = D( n , 3 ) ;
11 c l ea r D;

Listing 14: Computing the threshold value

We also determine that every device in the lower-left quadrant of Figure 1 is non-
anomalous, as there would be little reason for the algorithm to pick devices which
use toner less than the standard amount (see Appendix 1).

Figure 4: Labeled data

We have now labeled the data. As Figure 4 indicates, this alone is not enough for
our sample set to be properly classified.
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5 LOGISTIC REGRESSION

Logistic regression is a statistical model (in particular a special case of the re-
gression model) ”where binary response variable is related to a set of explana-
tory variables, which can be discrete and/or continuous” [9]. That is, it is a type
of statistical regression in which the output can take one of two values. Other
namings do exist, but due to the prevalence of the term ”logistic regression” in
the discipline of machine learning, we too will keep to the same convention. Our
modelling is based on the sigmoid (or logistic) function [3]

f(z) =
1

1 + e−z
(8)

which, when plotted, behaves as shown in Figure 5 (limz→∞ f(z) = 1).

Figure 5: The sigmoid function

The basic principle is to use the sigmoid function to classify samples based on
some characteristic z, typically using z = 0 as the differentiating boundary. If
f(z) ≥ 0.5, then we classify the sample as 1 (anomalous / excessive), otherwise
as 0 (normal).

Another important concept related to the model is that of the hypothesis [5],
hθ(x), used for predicting whether a sample is anomalous or not. In the hy-
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pothesis the sample x ∈ Rn (with n features) is subjected to a parameter set
θ ∈ Rn+1, with the first element θ0 being a zero condition, the so-called bias
term. To make x compatible with θ we append unity as the first element of x,
resulting as xB = [1 x1 ... xn]T (B for accounted bias). The resulting hypothesis is
of the form

hθ(xB) =
1

1 + e−θ
T xB

(9)

which is a composite of θTxB and the sigmoid function. The implementation of
the hypothesis is straightforward in Octave, as shown in Listing 15 (we assume
the parameter X has already been modified for bias).

1 % hypothes is f o r l o g i s t i c regress ion
2 f u n c t i o n H = hypothes is ( Theta , X) ,
3 Z = X∗Theta ’ ;
4 O = ones ( s ize (Z , 1 ) , 1 ) ;
5 H = O . / (O + exp(−Z ) ) ;
6 end ;

Listing 15: The hypothesis

This alone is not enough as we do not yet know the actual parameter θ. Instead,
we have to learn it. The detailed logic, based on the principle of maximum likeli-
hood estimation, can be found in [5]. Here, we simply implement the process.

We first define the cost function

J(θ) =
1

2m

m∑
i=1

(
hθ(x(i) − y(i)

)2
(10)

used to compute the cumulative squared error between the predicted and the
actual labels. The parameter θ is then set to some initial value, typically to that of
a zero vector, θ = 0 ∈ Rn+1. We next iterate over the process known as gradient
descent to determine θ for which the error cost for false predictions is as low as
possible.
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Gradient descent is defined as

θj := θj − α
∂

∂θj
J = θj − α

m∑
i=1

(
hθ(x(i))− y(i)

)
x

(i)
j (11)

for all j simultaneously. That is, we use the same θ for all j before updating and
repeating the process. The parameter α is known as the learning rate, which
dictates the change of θ in relation to the derivative of the cost J . An α too large
will mean that gradient descent will not be able to converge near the minimal
error; too small, and the process will require an excessive number of iterations to
converge.

The parameter y contains the labels for all the samples x. As a result the term(
hθ(x(i))− y(i)

)
x

(i)
j of (11) will be the higher, the further away the hypothesis hθ(x)

is from the actual labels. The closer the hypothesis is to the actual label, the
smaller the difference and hence the effect of x(i)

j .

The code for gradient descent is shown in Listing 16.

1 % grad ien t descent f o r l ea rn i ng values o f Theta
2 f u n c t i o n the ta = grad ien t descen t ( t h e t a i n i t i a l , X , Y, alpha ) ,
3 l rounds = 4000; % s u i t a b l e f o r the t e s t data i n the t ime of w r i t i n g
4 p r i n t f ( ” \nLearning (%d i t e r a t i o n s ) : ” , l rounds ) ;
5 t he ta = zeros ( s ize ( t h e t a i n i t i a l ) ) ;
6 f o r k=1:4000 ,
7 i f ( rem ( k ,100)==0) ,
8 p r i n t f ( ” %d . . . ” , k ) ;
9 end ;

10

11 theta temp = the ta ;
12 f o r j = 1 :3 ,
13 summation = 0;
14 f o r i = 1 : s ize (Y, 1 ) ,
15 summation += ( ( hypothes is ( theta temp , X( i , : ) ) − Y( i ) )∗X( i , j ) ) ;
16 end ;
17 t he ta ( j ) = the ta ( j ) − alpha .∗ summation ;
18 end ;
19 % uncomment the f o l l o w i n g i f need to see i f / how the ta i s converging
20 % p r i n t f (”%d :\ t \ t %.5 f \ t %.5 f \ t \ t %.5 f \n ” , k , the ta ( 1 , 1 ) , t he ta ( 1 , 2 ) , the ta ( 1 , 3 ) ) ;
21 end ;
22 p r i n t f ( ”Done .\n ” ) ;
23 end ;

Listing 16: Gradient descent
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It should be mentioned that as vectors and matrices are first-class citizens in
Octave, a vectorized implementation with less for loops would result in a faster
execution of gradient descent. Here, the for-looped version is used for clarity.

We are now ready to try learning the parameter θ. We create a new matrix X to
hold the actual elements of A as well as the appended column for the bias term
(Listing 17).

1 X = [ ones ( s ize (A, 1 ) , 1 ) A ( : , 1 ) A ( : , 2 ) ] ;

Listing 17: The sample matrix with extra column of ones

We run gradient descent and come up with new values for θ, as in Listing 18.

1 % i n i t i a l values o f the hypothes is parameter the ta
2 t h e t a i n i t i a l = [0 0 0 ] ;
3 % lea rn i ng ra te ; ( note : 0.003 too slow / 0.03 f a i l s to converge )
4 alpha = 0 .01 ;
5 % f i n a l l y get to l ea rn i ng
6 t he ta = grad ien t descen t ( t h e t a i n i t i a l , X , Y, alpha ) ;

Listing 18: Executing gradient descent

The sample set is relabeled using the hypothesis, shown in Figure 6 along with
the decision boundary, a line separating the two classes in logistic regression.
That is, when we pass the boundary, the prediction changes.

The result is expected but clearly unacceptable as it is not possible to meaning-
fully fit a linear decision boundary to a sample set such as this. We proceed to
introduce two additional methods in Listing 19 with which to manipulate the data
to a more fitting form.
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Figure 6: Linear relabeling of the sample set

1 % f u n c t i o n to scale the values
2 f u n c t i o n O = scale (X, average , d ev i a t i o n ) ,
3 O = (X.−average ) . / d e v i a t i o n ;
4 end ;
5 % f u n c t i o n wi th which to manipulate the samples to reach a des i red de tec t i on boundary
6 f u n c t i o n O = manipulate (X) ,
7 O = exp (X ) ;
8 end ;

Listing 19: The functions for scaling and manipulating the samples

In addition, we compute the means and the standard deviations for both columns
of the sample matrix X, which we then pass on to the scale function to normalize
the sample set. Without this gradient descent with the manipulated version of X
would fail to converge, essentially rendering the learned parameters useless.

1 % compute no rma l i za t i on terms
2 m2 = mean(X ( : , 2 ) ) ;
3 sdev2 = std (X ( : , 2 ) ) ;
4 m3 = mean(X ( : , 3 ) ) ;
5 sdev3 = std (X ( : , 3 ) ) ;
6 % wi thou t no rma l i za t i on the lea rn i ng a lgo r i t hm w i l l f a i l to converge
7 XX = [X ( : , 1 ) manipulate ( sca le (X ( : , 2 ) , m2, sdev2 ) ) manipulate ( sca le (X ( : , 3 ) , m3, sdev3 ) ) ] ;

Listing 20: Computing the means and the standard deviations
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When we run gradient descent again, we end up with a decision boundary that is
much more suitable for our purposes. The end result, accompanied by the initial
labeling, is shown in Figure 7.

Figure 7: Relabeling after the manipulation of the sample set

To see how much the differences in the initial labeling affect the end result, we go
through the process of gradient descent with different percentages of anomalous
readings (variable n in Listing 14). The results can be examined in Figure 8.

Figure 8: The effect of initial labeling



27

As seen, not all choices lead to a usable outcome. One way to circumvent this
is to use artificial data, that is, include either normal, anomalous or both types of
samples of artificial nature in the sample set. However, one has to remember that
the more artificial data is included, the less effective the authenthic sample set is.
Figure 9 displays the effect of artificial anomalous data, with which we force the
decision boundary below the specified limits.

Figure 9: The effect of artificial data (15 % of real samples anomalous)

The last part of the process is testing the hypothesis. In a typical machine learning
scenario the sample set is divided into groups. Only one of these groups is used
for the actual learning process, while the other groups are reserved for validation
and testing purposes. The natural assumption here is that the sampled data has
been labeled externally, that is, not labeled in the course of the learning process.

However, as the labeling of our data set is much more ambiguous, such a segre-
gation will only limit the generality of our hypothesis without providing additional
benefits. Instead, we choose to create 100 units of randomly generated sample
data, each of them acting as a singular addition to the original set. The effect is
that every random sample will be considered not to have an effect on the means
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and standard deviations already computed in listing 20. Rather, the means and
standard deviations will be used to normalize the random test data we have gen-
erated. When we do so, we see the desired result in Figure 10.

Figure 10: Testing 100 units of random test data

6 IMPLEMENTATION ON A DJANGO SITE

Regardless of the final choices we have made (the percentage of samples marked
anomalous, the inclusion of artificial data etc), we now have all the necessary val-
ues to implement the relevant parts of the solution in Python using the Django
Framework. These include the process for data extraction as well as the hypoth-
esis.

We will, however, omit the actual learning process. This is because whenever
the data changes enough to warrant a new learning run, it is impossible to say
beforehand if the learning algorithm needs to be modified or run several times.
Creating a Django app which can take these considerations into account without
impeding the availability of the actual site is usually not worth the time invested.
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We begin by creating a model for storing usage readings in Listing 21.

1 c lass Usage ( models . Model ) :
2 device = models . ForeignKey ( Device , on de le te=models .CASCADE)
3 k percentage = models . I n t e g e r F i e l d ( n u l l =True )
4 cmy percentage = models . I n t e g e r F i e l d ( n u l l =True )
5 computable = models . BooleanFie ld ( d e f a u l t =True )
6 r e l i a b l e = models . BooleanFie ld ( d e f a u l t =True )
7 cont inuous = models . BooleanField ( d e f a u l t =False )
8 anomalous = models . BooleanField ( d e f a u l t =False )
9 hidden = models . BooleanFie ld ( d e f a u l t =False )

Listing 21: The Django model for usage readings

This is only one of the several possible ways of writing the model. In this example
the fields of the type BooleanField are meant for storing true/false information
about each record. Unlike in Chapter 3 we will compute usages for a broader
range of devices, because invalid/unreliable information will not affect our hypoth-
esis. Instead, we use the booleans in Listing 21 to monitor the stage of each
reading in the following way:

• computable: can the usage reading be computed (no data discrepancies)
• reliable: is the reading reliable (enough data accumulated)
• continuous: does the related device report continuous toner levels
• anomalous: has an anomality been detected
• hidden: in case of anomality, has the reading been hidden from the user

The complete source code for a solution such as this is very similar to that of
Appendix 1, and, as said, ultimately defined by the needs of the implementation.

We proceed to define the model for the hypothesis in Listing 22. The first step is
to define the fields of the model:

1 c lass Hypothesis ( models . Model ) :
2 t h e t a b i a s = models . F l o a t F i e l d ( )
3 t he ta k = models . F l o a t F i e l d ( )
4 theta cmy = models . F l o a t F i e l d ( )
5 k avg = models . F l o a t F i e l d ( )
6 cmy avg = models . F l o a t F i e l d ( )
7 k s td = models . F l o a t F i e l d ( )
8 cmy std = models . F l o a t F i e l d ( )

Listing 22: The Django model for the hypothesis
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In the rare case of re-learning the hypothesis parameters these values can simply
be inserted via the Django shell, unless there is a real need to construct a Django
view or an interface for the learning script to insert new values automatically.

After the introduction of the model we implement (under the Hypothesis class) the
actual methods for making predictions (Listing 23, exp function from the standard
math package).

1 @staticmethod
2 def sigmoid ( va l ) :
3 r e t u r n (1 / ( 1+ math . exp(−va l ) ) )
4

5 def p r e d i c t ( s e l f , usages ) :
6 t he ta = [ s e l f . t he ta b ias , s e l f . the ta k , s e l f . theta cmy ]
7 i f type ( usages ) == Usage :
8 usages = [ usages ]
9 f o r u i n usages :

10 i f not u . computable :
11 cont inue
12 x1 = math . exp ( ( u . k percentage − s e l f . k avg ) / s e l f . k s td )
13 x2 = math . exp ( ( u . cmy percentage − s e l f . cmy avg ) / s e l f . cmy std )
14 # compute the ” s imulated ” dot product o f usage and the ta
15 do t p roduc t = the ta [ 0 ] + the ta [ 1 ] ∗ x1 + the ta [ 2 ] ∗ x2
16 s i g m o i d r e s u l t = Hypothesis . sigmoid ( do t p roduc t )
17 u . anomalous = True i f s i g m o i d r e s u l t >= 0.5 e lse False
18 u . save ( )

Listing 23: Computing the hypothesis in Python

The predict function can be used to predict the anomality of both old usage
readings and new ones not present at the time the parameters were learned.
The only limitation is that if the device fleet grows or transforms over time, one
needs to evaluate when to re-learn the parameters.

In addition, some other implementation specific decisions are needed. For exam-
ple, one needs to decide how to present anomalous usages to the user, if and
what plotting tools are needed for the visualization of the data etc. These, how-
ever, have more to do with UI design than with the actual topic of this thesis. For
demonstration, one possible view is presented in Picture 4.

To the left, a general usage distribution is shown; to the right, the samples marked
anomalous and the decision boundary. Below these are some examples of de-
vices detected to have excessive toner usage.
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Picture 4: The usage analysis view in PCC

7 CONCLUSIONS AND REMARKS

The increasing performance of personal computers and the widely available tools
and libraries have made it easier than ever to apply machine learning principles
and procedures in solving complex problems without precise answers. The ob-
jective of this thesis was to utilize these tools in order to provide a detailed toner
usage analysis of a printer fleet consisting of hundreds of devices and offer the
possibility to automatically pinpoint devices with excessive toner use.

The analytical methods devised in this thesis consist of three central phases:

1. transforming the device-specific readings into an aggregated data set
2. labeling the data using the principles of multivariate Gaussian distributions
3. classifying the data using the principles of logistic regression

The results are somewhat close to what was expected. They demonstrate that
such an analysis is indeed possible and that it offers a way for the fleet manager



32

to monitor the fleet and toner consumption in a sensible way. In part this is pos-
sible because of the accuracy of the ISO/IEC standard 19798:2017, at least with
respect to the sample set used in this thesis. The distribution of the devices is the
most dense roughly around the standard point, and the devices that differ are dis-
tributed so that handling them with the methods of Gaussian distribution provides
viable results.

On the other hand the results display a certain level of ambiguity that can be
considered inseparable in nature. This stems from the fact that the classification
between normal and anomalous toner usage is always a matter of subjective
choice. In the end it is up to the fleet manager to decide how to implement the
solution to offer an outcome best suited for a particular organization.

As to the further development of these methods, the most obvious road is that
of improved usability and dynamics. In the current form the learning requires
manual intervention to happen, and this is adequate as long as there are no
sudden changes in the fleet. However, if the fleet were to undergo such changes
constantly, a different kind of approach would be needed. The most simple one
would be to schedule periodic reruns of the Octave script in Appendix 2, the
results of which could then be stored, perhaps as simply as in a plain-text file.
The Django implementation would then read this file and update the parameters
of the hypothesis accordingly. The drawback of this is that automatic runs of the
learning phase will either be subject to disruptions and errors in case the sample
set does not fit the default algorithm anymore. Or, additional effort would be
required to make sure this does not happen.

In the present state the methods in this thesis offer a middle ground solution
between accuracy, automation and effort, which is suitable for many independent
local MFP dealers.
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APPENDIX 1. The data extraction script in Python

1 impor t s q l i t e 3
2

3 # The format o f each en t ry :
4 # [SN, BW# , COL# , K%, C%, M%, Y%, K# , C# , M# , Y#]
5 # Indexes , i f need to change the format
6 I SN = 0
7 I MOD = 1
8 I BW = 2
9 I COL = 3

10 # Toner l e v e l s
11 I K l = 4
12 I C l = 5
13 I M l = 6
14 I Y l = 7
15 l e v e l i n d e x = [ I K l , I C l , I Ml , I Y l ]
16 # I n s t a l l e d c a r t r i d g e counts
17 I Kc = 8
18 I Cc = 9
19 I Mc = 10
20 I Yc = 11
21 counts index =[ I Kc , I Cc , I Mc , I Yc ]
22

23 def l e v e l s t o i n t s ( s t a t l i n e ) :
24 s t a t l i n e = l i s t ( s t a t l i n e )
25

26 # keep t rack t h a t the i n i t i a l l e v e l s were i n t e r v a l s or cont inuous
27 s t a t l i n e . append ( ’ i n t e r v a l ’ i f ’− ’ i n s t a t l i n e [ I K l ] e lse ’ cont inuous ’ )
28

29 f o r i i n l e v e l i n d e x :
30 # o lde r machines r e p o r t toner l e v e l s i n i n t e r v a l s 75−100%, 50−75% etc
31 # we take the lower l i m i t and add h a l f ( rounded down) to approximate
32 i f ’− ’ i n s t a t l i n e [ i ] :
33 s t a t l i n e [ i ] = i n t ( s t a t l i n e [ i ] [ 0 : s t a t l i n e [ i ] . index ( ’− ’ ) ] ) +12
34 s t a t l i n e . append ( ’ i n t e r v a l ’ )
35 else :
36 s t a t l i n e [ i ] = i n t ( s t a t l i n e [ i ] . s t r i p ( ’%’ ) )
37

38 r e t u r n s t a t l i n e
39

40

41 db = s q l i t e 3 . connect ( ’ . . / db . s q l i t e 3 ’ )
42 cur = db . cursor ( )
43

44 cur . execute ( ’ ’ ’
45 SELECT ser ia l number , model , to ta l bw , t o t a l c o l ,
46 k l e v e l , c l e v e l , m level , y l e v e l ,
47 k i n s t a l l e d , c i n s t a l l e d , m ins ta l l ed , y i n s t a l l e d
48 FROM p c c t o t a l INNER JOIN pcc device
49 ON p c c t o t a l . dev i ce id = pcc device . i d WHERE c i n s t a l l e d > −1
50 ORDER BY pcc device . ser ia l number , p c c t o t a l . da te sent
51 ’ ’ ’ )
52

53 # l i s t s t a t i s t i c s o f the devices , device per en t ry ; t h i s t ime the values
54 # i n d i c a t e change i n t o t a l s : [SN, BW# , COL# , K%, C%, M%, Y%, K# , C# , M# , Y#]
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55 d e v i c e s t a t s = [ ]
56

57 # f o r the computat iona l phase ; we exclude devices wi th too few e n t r i e s
58 e n t r i e s p e r d e v i c e = 0
59 MIN ENTRY COUNT = 2
60

61 # minimal l e v e l s f o r toner changes f o r accepted values
62 MIN CONT CHANGE = 5
63 MIN INTERV CHANGE = 125
64

65 # set some values t h a t need to e x i s t f o r comparisons
66 new entry = [ ]
67 ser ia l number = ’ ’
68 s t a t s v a l i d = True # to check i f the s t a t s are va l i d , see below
69

70 # y i e l d groups , f o r d i f f e r e n t devices using d i f f e r e n t toners w i th d i f f . y i e l d s
71 # var = standard pages (5 % coverage ) / 1 % of toner
72 BK23 = 180
73 COL23 = 100
74 BK36 = 240
75 COL36 = 150
76 BK51 = 400
77 COL51 = 180
78 BK60 = 400
79 COL60 = 240
80

81 y i e l d s = {
82 ’MX−2310U ’ : [ BK23 , COL23 ] ,
83 ’MX−2314N ’ : [ BK23 , COL23 ] ,
84 ’MX−2614N ’ : [ BK23 , COL23 ] ,
85 ’MX−3111N ’ : [ BK23 , COL23 ] ,
86 ’MX−3114N ’ : [ BK23 , COL23 ] ,
87 ’MX−2610N ’ : [ BK36 , COL36 ] ,
88 ’MX−2640N ’ : [ BK36 , COL36 ] ,
89

90 ’MX−3110N ’ : [ BK36 , COL36 ] ,
91 ’MX−3610N ’ : [ BK36 , COL36 ] ,
92 ’MX−3640N ’ : [ BK36 , COL36 ] ,
93

94 ’MX−4112N ’ : [ BK51 , COL51 ] ,
95 ’MX−4140N ’ : [ BK51 , COL51 ] ,
96 ’MX−4141N ’ : [ BK51 , COL51 ] ,
97 ’MX−5112N ’ : [ BK51 , COL51 ] ,
98 ’MX−5140N ’ : [ BK51 , COL51 ] ,
99 ’MX−5141N ’ : [ BK51 , COL51 ] ,

100

101 ’MX−3050N ’ : [ BK60 , COL60 ] ,
102 ’MX−3060N ’ : [ BK60 , COL60 ] ,
103 ’MX−3070N ’ : [ BK60 , COL60 ] ,
104

105 ’MX−3550N ’ : [ BK60 , COL60 ] ,
106 ’MX−3560N ’ : [ BK60 , COL60 ] ,
107 ’MX−3570N ’ : [ BK60 , COL60 ] ,
108

109 ’MX−4050N ’ : [ BK60 , COL60 ] ,
110 ’MX−4060N ’ : [ BK60 , COL60 ] ,
111 ’MX−4070N ’ : [ BK60 , COL60 ] ,
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112

113 ’MX−5050N ’ : [ BK60 , COL60 ] ,
114 ’MX−5060N ’ : [ BK60 , COL60 ] ,
115 ’MX−5070N ’ : [ BK60 , COL60 ] ,
116

117 ’MX−6040N ’ : [ BK60 , COL60 ] ,
118 ’MX−6050N ’ : [ BK60 , COL60 ] ,
119 ’MX−6070N ’ : [ BK60 , COL60 ] ,
120 }
121

122 whi le True :
123 t r y :
124 p rev ious en t r y = new entry
125 new entry = l e v e l s t o i n t s ( cur . fe tchone ( ) )
126 except TypeError :
127 new entry = [ ’ end ’ ]
128

129 # i f s e r i a l changes , new entry i s f o r the next device i n the query
130 i f ser ia l number != new entry [ I SN ] :
131 i f e n t r i e s p e r d e v i c e >= MIN ENTRY COUNT:
132

133 # p rev ious en t r y i s the l a s t en t r y f o r the device now analyzed
134 # change i n the number o f p r i n t e d pages
135 bw = prev ious en t r y [ I BW ] − b w f i r s t
136 co l = p rev ious en t r y [ I COL ] − c o l f i r s t
137

138 # change i n the i n s t a l l e d number o f c a r t r i d g e s
139 k c r t g = p rev ious en t r y [ I Kc ] − k c t r g f i r s t
140 c c r t g = p rev ious en t r y [ I Cc ] − c c t r g f i r s t
141 m crtg = p rev ious en t r y [ I Mc ] − m c t r g f i r s t
142 y c r t g = p rev ious en t r y [ I Yc ] − y c t r g f i r s t
143

144 # change i n toner l e v e l s
145 k l e v e l = k l e v e l f i r s t + 100 ∗ k c r t g − p rev ious en t r y [ I K l ]
146 c l e v e l = c l e v e l f i r s t + 100 ∗ c c r t g − p rev ious en t r y [ I C l ]
147 m leve l = m l e v e l f i r s t + 100 ∗ m crtg − p rev ious en t r y [ I M l ]
148 y l e v e l = y l e v e l f i r s t + 100 ∗ y c r t g − p rev ious en t r y [ I Y l ]
149

150

151 # i f the change i n the number o f pages i s smal l , we should probably
152 # exclude the device f o r the t ime being , as we have not enough data
153 i f bw + co l > 5000 and s t a t s v a l i d :
154

155 # due to the approximat ion i n l i m i t s t o i n t s , we can not
156 # inc lude i n t e r v a l monitored devices wi th low l e v e l changes
157 i f p rev ious en t r y [−1] == ’ i n t e r v a l ’ :
158 i f ( k l e v e l < MIN INTERV CHANGE
159 or c l e v e l < MIN INTERV CHANGE
160 or m leve l < MIN INTERV CHANGE
161 or y l e v e l < MIN INTERV CHANGE ) :
162 s t a t s v a l i d = False
163

164 # also i n devices wi th cont inuous l e v e l s we should see at
165 # l e a s t some change before cons ider ing the values safe
166 e l i f p rev ious en t r y [−1] == ’ cont inuous ’ :
167 i f ( k l e v e l < MIN CONT CHANGE
168 or c l e v e l < MIN CONT CHANGE
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169 or m leve l < MIN CONT CHANGE
170 or y l e v e l < MIN CONT CHANGE ) :
171 s t a t s v a l i d = False
172

173 i f s t a t s v a l i d :
174 t r y :
175 b k y i e l d = y i e l d s [ p rev ious en t r y [ I MOD ] ] [ 0 ]
176 c o l y i e l d = y i e l d s [ p rev ious en t r y [ I MOD ] ] [ 1 ]
177

178 # consumed toner i n standard pages (5 % coverage )
179 s td k = k l e v e l ∗ b k y i e l d
180 s td c = c l e v e l ∗ c o l y i e l d
181 std m = m leve l ∗ c o l y i e l d
182 s td y = y l e v e l ∗ c o l y i e l d
183

184 # a d i c t l a t e r exported i n t o a csv f i l e
185 s t a t d i c t = {
186 ’bw ’ : s t r (bw) ,
187 ’ co l ’ : s t r ( co l ) ,
188 ’ s t d k ’ : s t r ( s td k ) ,
189 ’ s t d c ’ : s t r ( s td c ) ,
190 ’ std m ’ : s t r ( std m ) ,
191 ’ s t d y ’ : s t r ( s td y ) ,
192 }
193

194 d e v i c e s t a t s . append ( s t a t d i c t )
195 except KeyError :
196 # no y i e l d def ined f o r the ( too o ld ) model , drop i t
197 pass
198 except Ze roD iv i s i onEr ro r :
199 # one of the y i e l d s was 0?
200 pass
201

202 i f new entry [ I SN ] != ’ end ’ :
203 s t a t s v a l i d = True
204

205 # begin to analyze the next device
206 e n t r i e s p e r d e v i c e = 1
207 ser ia l number = new entry [ I SN ]
208

209 # the i n i t i a l numbers o f p r i n t e d pages
210 b w f i r s t = new entry [ I BW ]
211 c o l f i r s t = new entry [ I COL ]
212

213 # i n i t i a l % l e v e l s o f toners
214 k l e v e l f i r s t = new entry [ I K l ]
215 c l e v e l f i r s t = new entry [ I C l ]
216 m l e v e l f i r s t = new entry [ I M l ]
217 y l e v e l f i r s t = new entry [ I Y l ]
218

219 # i n i t i a l number o f i n s t a l l e d c a r t r i d g e s
220 k c t r g f i r s t = new entry [ I Kc ]
221 c c t r g f i r s t = new entry [ I Cc ]
222 m c t r g f i r s t = new entry [ I Mc ]
223 y c t r g f i r s t = new entry [ I Yc ]
224

225 else :
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226 break
227

228 else :
229 # i f the toner l e v e l s have increased but the number o f i n s t a l l e d
230 # c a r t r i d g e s has not , there ’ s bound to be problems −> i gnore device
231 f o r i i n range ( 0 , 4 ) :
232 i f ( new entry [ l e v e l i n d e x [ i ] ] > p rev ious en t r y [ l e v e l i n d e x [ i ] ] and
233 p rev ious en t r y [ counts index [ i ] ] >=
234 new entry [ counts index [ i ] ] ) :
235 s t a t s v a l i d = False
236

237 e n t r i e s p e r d e v i c e += 1
238 p rev ious en t r y = new entry
239

240 wi th open ( ’ s t a t s . csv ’ , ’w ’ , encoding= ’ u t f−8 ’ ) as f i l e :
241 f o r s i n d e v i c e s t a t s :
242 f i l e . w r i t e ( s [ ’bw ’ ] + ’ , ’ + s [ ’ co l ’ ] + ’ , ’ + s [ ’ s td k ’ ] + ’ , ’ +
243 s [ ’ s td c ’ ] + ’ , ’ + s [ ’ std m ’ ] + ’ , ’ + s [ ’ s td y ’ ] + ’ \n ’ )
244

245 db . c lose ( )
246
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APPENDIX 2. The data analysis script in Octave

1 % Anomaly / toner overuse detec t ion , an extens ion f o r Python Copy Counter
2 % Timo Jokela , 2017
3 % This s c r i p t i s f o r p ro to t yp i ng and hypothes is f i t t i n g purposes ;
4 % monitored execut ion only !
5

6 pkg load s t a t i s t i c s ;
7 warning ( ” o f f ” ) ;
8

9 % legend p o s i t i o n and s ize
10 r e c t = [0 .33 , 0.79 , 0 .1 , 0 . 1 ] ;
11

12 %%%%%%%%%%%%%%%%%%%%%%
13 %Funct ion d e f i n i t i o n s%
14 %%%%%%%%%%%%%%%%%%%%%%
15

16 % f u n c t i o n to scale the values
17 f u n c t i o n O = scale (X, average , d ev i a t i o n ) ,
18 O = (X.−average ) . / d e v i a t i o n ;
19 end ;
20

21 % f u n c t i o n wi th which to manipulate the samples to reach a des i red de tec t i on boundary
22 f u n c t i o n O = manipulate (X) ,
23 O = exp (X ) ;
24 end ;
25

26 % hypothes is f o r l o g i s t i c regress ion
27 f u n c t i o n H = hypothes is ( theta , X) ,
28 Z = X∗ theta ’ ;
29 O = ones ( s ize (Z , 1 ) , 1 ) ;
30 H = O . / (O + exp(−Z ) ) ;
31 end ;
32

33 % grad ien t descent f o r l ea rn i ng values o f the ta
34 f u n c t i o n the ta = grad ien t descen t ( t h e t a i n i t i a l , X , Y, alpha ) ,
35 l rounds = 4000; % s u i t a b l e f o r the t e s t data i n the t ime of w r i t i n g
36 p r i n t f ( ” \nLearning (%d i t e r a t i o n s ) : ” , l rounds ) ;
37 t he ta = zeros ( s ize ( t h e t a i n i t i a l ) ) ;
38 f o r k=1:4000 ,
39 i f ( rem ( k ,100)==0) ,
40 p r i n t f ( ” %d . . . ” , k ) ;
41 end ;
42

43 theta temp = the ta ;
44 f o r j = 1 :3 ,
45 summation = 0;
46 f o r i = 1 : s ize (Y, 1 ) ,
47 summation += ( ( hypothes is ( theta temp , X( i , : ) ) − Y( i ) )∗X( i , j ) ) ;
48 end ;
49 t he ta ( j ) = the ta ( j ) − alpha .∗ summation ;
50 end ;
51 % uncomment the f o l l o w i n g i f need to see i g / how the ta i s converging
52 % p r i n t f (”%d :\ t \ t %.5 f \ t %.5 f \ t \ t %.5 f \n ” , k , the ta ( 1 , 1 ) , t he ta ( 1 , 2 ) , the ta ( 1 , 3 ) ) ;
53 end ;
54 p r i n t f ( ”Done .\n ” ) ;
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55 end ;
56

57 %%%%%%%%end f u n c t i o n d e f i n i t i o n s%%%%%%%%%
58 p r i n t f ( ” \nBegin the lea rn i ng process .\n ” ) ;
59

60 % read data csv => mat r i x M
61 M = csvread ( ’ s t a t s . csv ’ ) ;
62

63 % mat r i x A f o r the i n i t i a l i nspec t i on o f the data
64 A = zeros ( s ize (M, 1 ) , 2 ) ;
65 f o r i = 1 : s ize (M, 1 ) ,
66 % average use of CMY toners
67 cmy std avg = mean(M( i , 4 : 6 ) , 2 ) ;
68

69 % r a t i o o f standard pages (5% coverage ) to a c t u a l l y p r i n t e d pages
70 k s t d t o r e a l = M( i , 3 ) / (M( i , 1 ) + M( i , 2 ) ) ;
71 c m y s t d t o r e a l = cmy std avg / M( i , 2 ) ;
72

73 % r a t i o o f a c t u a l l y p r i n t e d pages to standard pages
74 k r e a l t o s t d = (M( i , 1 ) + M( i , 2 ) ) / M( i , 3 ) ;
75 c m y r e a l t o s t d = M( i , 2 ) / cmy std avg ;
76

77 % pick wichever i s la rge r , and ad jus t so t h a t std>r e a l
78 % equals moderate toner use ( mark negat ive )
79 % and rea l>std equals excessive toner use ( mark p o s i t i v e ) ,
80 % also the r a t i o 1 equals to standard
81 % so s h i f t to zero (+/− 1)
82 i f k s t d t o r e a l > k r e a l t o s t d ,
83 k = k s t d t o r e a l − 1;
84 else ,
85 k = −k r e a l t o s t d + 1;
86 end ;
87

88 i f c m y s t d t o r e a l > cmy rea l to s td ,
89 cmy = c m y s t d t o r e a l − 1;
90 else ,
91 cmy = −c m y r e a l t o s t d + 1;
92 end ;
93

94 % f i n a l l y conver t to percentages
95 A( i , 1 ) = round ( k ∗100) ;
96 A( i , 2 ) = round (cmy∗100) ;
97

98 end ;
99

100 % p l o t devices on a K/CMY char t
101 p r i n t f ( ” \ n P l o t t i n g K/CMY char t . . . \ n ” ) ;
102 f i g u r e ( 1 ) ;
103 p l o t (A ( : , 1 ) , A ( : , 2 ) , ’ bx ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
104 hold on ;
105 ax is ([−250 , 250 , −250, 250] , ” square ” ) ;
106 x l a b e l ( ”K %” ) ;
107 y l a b e l ( ”CMY %” ) ;
108 p l o t (0 ,0 , ’ go ’ , ’ MarkerSize ’ , 15 , ’ LineWidth ’ , 3 . 5 ) ;
109 hold on ;
110 h = legend ( ” Device ” , ” Standard use ” ) ;
111 ch = get ( h , ” Ch i ld ren ” ) ;



Appendix 2 (3)

112 set ( ch ( 1 ) , ” Color ” , [0 1 0 ] ) ;
113 set ( ch ( 2 ) , ” Color ” , [0 0 1 ] ) ;
114 set ( h , ” Pos i t i on ” , r e c t ) ;
115 p r i n t f ( ’−−−−Press any key to proceed−−−−\n ’ ) ;
116 pause ;
117

118 % histograms of K and CMY d i s t r i b u t i o n s
119 p r i n t f ( ” \ n P l o t t i n g histograms . . . \ n ” ) ;
120 c lose a l l ;
121 f i g u r e ( 1 ) ;
122 h i s t (A ( : , 1 ) , 30 ) ;
123 f i g u r e ( 2 ) ;
124 h i s t (A ( : , 2 ) , 30 ) ;
125 p r i n t f ( ’−−−−Press any key to proceed−−−−\n ’ ) ;
126 pause ;
127

128 % compute the mean of the d i s t r i b u t i o n s and the covar iance mat r i x
129 p r i n t f ( ” \nComputing the parameters o f the Gaussian d i s t r i b u t i o n . . . \ n ” ) ;
130 mu A = mean(A , 1 ) ;
131 Sigma A = (A.−mu A ) ’ ∗ (A.−mu A) . / s i ze (A , 1 ) ;
132

133 p r i n t f ( ” \nGaussian parameters o f the sample mat r i x A:\n\nAverages :\n ” ) ;
134 disp (mu A ) ;
135 p r i n t f ( ” \nCovariance mat r i x :\n ” ) ;
136 Sigma A
137

138 % check f o r symmetry
139 i f Sigma A != Sigma A ’ ,
140 p r i n t f ( ” Covariance mat r i x i s not symmetric ! Abor t ing . . . \ n ” ) ;
141 q u i t ;
142 end ;
143

144 % check f o r p o s i t i v e de f i n i t eness , compute eigenvalues
145 [ eig1 , eig2 ] = e ig ( Sigma A ) ;
146 i f e ig1 < 0 | | eig2 < 0 ,
147 p r i n t f ( ” Covariance mat r i x i s not p o s i t i v e d e f i n i t e ! Abor t ing . . . \ n ” ) ;
148 q u i t ;
149 end ;
150

151 % check to see i f the cdf i s reasonably c lose to 1
152 [ p , e ] = mvncdf ( [ I n f I n f ] , [− I n f − I n f ] , mu A , Sigma A ) ;
153 p r i n t f ( ” \nCumulative d i s t r i b u t i o n f u n c t i o n (− I n f , I n f ) : %f , est imated e r r o r %f \n\n ” , p , e ) ;
154

155 % a sur face p l o t f o r v i s u a l v e r i f i c a t i o n o f the s i t u a t i o n
156 p r i n t f ( ” P l o t t i n g sur face graph of the pdf . . . \ n ” ) ;
157 c lose a l l ;
158 f i g u r e ( 1 ) ;
159 x1 = −100:5:100;
160 x2 = −200:5:100;
161 [ X1 , X2 ] = meshgrid ( x1 , x2 ) ;
162 S = mvnpdf ( [ X1 ( : ) X2 ( : ) ] , mu A , Sigma A ) ;
163 S = reshape (S, leng th ( x2 ) , leng th ( x1 ) ) ;
164 s u r f ( x1 , x2 , S ) ;
165 hold on ;
166 p l o t (0 ,0 , ’ ro ’ ) ;
167 x l a b e l ( ”K %” ) ;
168 y l a b e l ( ”CMY %” ) ;
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169

170 % compute the pdf f o r each sample
171 C = [A ( : , 1 ) A ( : , 2 ) mvnpdf (A, mu A , Sigma A ) ] ;
172

173 % f i g u r e out the th resho ld value eps i l on f o r the pdf ;
174 % below t h i s a sample i s i n i t i a l l y considered anomalous
175 % pick eps i l on so t h a t about 30 % of samples get tagged
176 % (we set o ther a d d i t i o n a l requirements l a t e r ! )
177 D = sor t rows (C, 3 ) ;
178 n = round ( s ize (D, 1 ) ∗ 0 . 3 0 ) ;
179 eps i l on = D( n , 3 ) ;
180 c l ea r D;
181

182 p r i n t f ( ” Threshold o f the pdf below which the sample i s anomalous :\n ” ) ;
183 eps i l on
184 p r i n t f ( ’ \n−−−−Press any key to proceed−−−−\n ’ ) ;
185 pause ;
186 c lose a l l ;
187

188 % mark the sample as normal i f pdf over theshold or both K and CMY uses below standard ,
189 % otherwise anomalous
190 p r i n t f ( ” \nMarking the samples . . . \ n ” ) ;
191 Y = zeros ( s ize (C, 1 ) , 1 ) ;
192 h = zeros ( s ize (C, 1 ) , 1 ) ;
193 f i g u r e ( 1 ) ;
194 f o r i = 1 : s ize (A, 1 ) ,
195 i f C( i , 3 ) > eps i l on | | (C( i , 1 ) < 0 && C( i , 2 ) < 0) ,
196 Y( i ) = 0 ;
197 p l o t (A( i , 1 ) , A( i , 2 ) , ’ kx ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
198 hold on ;
199 else ,
200 p l o t (A( i , 1 ) , A( i , 2 ) , ’ r x ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
201 hold on ;
202 Y( i ) = 1 ;
203 end ;
204 end ;
205 x l a b e l ( ”K %” ) ;
206 y l a b e l ( ”CMY %” ) ;
207 ax is ([−250 , 250 , −250, 250] , ” square ” ) ;
208 h = legend ( ” Normal ” , ” Anomalous ” ) ;
209 ch = get ( h , ” Ch i ld ren ” ) ;
210 set ( ch ( 1 ) , ” Color ” , [1 0 0 ] ) ;
211 set ( ch ( 2 ) , ” Color ” , [0 0 0 ] ) ;
212 set ( h , ” Pos i t i on ” , r e c t ) ;
213 hold on ;
214 p r i n t f ( ” \nDone .\n ” ) ;
215 p r i n t f ( ’ \n−−−−Press any key to proceed−−−−\n ’ ) ;
216 pause ;
217

218 % add column of ones f o r the b ias i n the ta
219 X = [ ones ( s ize (A, 1 ) , 1 ) A ( : , 1 ) A ( : , 2 ) ] ;
220

221 % generate a r t i f i c i a l normal / anomalous samples to account f o r the lack o f data
222 %X0 = ones (100 ,3 ) ;
223 %Y0 = zeros (100 ,1 ) ;
224 %X1 = ones (100 ,3 ) ;
225 %Y1 = ones (100 ,1 ) ;
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226 %% an excess o f 50% normal , an excess o f 100% anomalous
227 %f o r i = 1 :3 :150 ,
228 % X0( f l o o r ( i / 3 )+ rem ( i , 3 ) , : ) = [1 −i−90 5 0 ] ;
229 % X0( f l o o r ( i / 3 )+ rem ( i , 3 ) + 5 0 , : ) = [1 50 −i −90];
230 % X1( f l o o r ( i / 3 )+ rem ( i , 3 ) , : ) = [1 −i−90 100 ] ;
231 % X1( f l o o r ( i / 3 )+ rem ( i , 3 ) + 5 0 , : ) = [1 100 −i −90];
232 %end ;
233 % add to the end of the sample set and the l a b e l set
234 %X = [X ; X0 ; X1 ] ;
235 %Y = [Y ; Y0 ; Y1 ] ;
236 %X = [X ; X0 ] ;
237 %Y = [Y ; Y0 ] ;
238 %X = [X ; X1 ] ;
239 %Y = [Y ; Y1 ] ;
240

241 % compute no rma l i za t i on terms
242 m2 = mean(X ( : , 2 ) ) ;
243 sdev2 = std (X ( : , 2 ) ) ;
244 m3 = mean(X ( : , 3 ) ) ;
245 sdev3 = std (X ( : , 3 ) ) ;
246 p r i n t f ( ” \nValues f o r no rma l i za t i on :\n\nK average : . . .
247 \ t%f \ t \ tK standard d e v i a t i on :\ t%f \n ” , m2, sdev2 ) ;
248 p r i n t f ( ” \nCMY average :\ t%f \ t \tCMY standard d ev i a t i o n :\ t%f \n ” , m3, sdev3 ) ;
249

250 % wi thou t no rma l i za t i on the lea rn i ng a lgo r i t hm w i l l f a i l to converge
251 XX = [X ( : , 1 ) manipulate ( sca le (X ( : , 2 ) , m2, sdev2 ) ) manipulate ( sca le (X ( : , 3 ) , m3, sdev3 ) ) ] ;
252

253 % i n i t i a l values o f the hypothes is parameter the ta
254 t h e t a i n i t i a l = [0 0 0 ] ;
255 % lea rn i ng ra te ; ( note : 0.003 too slow / 0.03 f a i l s to converge )
256 alpha = 0 .01 ;
257 % f i n a l l y get to l ea rn i ng
258 t he ta = grad ien t descen t ( t h e t a i n i t i a l , XX, Y, alpha ) ;
259 p r i n t f ( ” \nLearned values o f the ta :\n ” ) ;
260 disp ( the ta ) ;
261

262 % p r e d i c t i o n s o f the sample set
263 YY = ( hypothes is ( theta , XX) >= 0 . 5 ) ;
264

265 % p l o t t i n g the dec is ion boundary ; go over every x i n (−250 ,250)
266 % and see at which y the p r e d i c t i o n changes
267 p r i n t f ( ” \ n P l o t t i n g the dec is ion boundary . . . \ n ” ) ;
268 N = zeros (501 ,1 ) ;
269 f i r s t = l a s t = −999;
270 f o r a = −250:1:250 ,
271 f o r b = −250:1:250 ,
272 % remember to normal ize the boundary p l o t t i n g values too f o r the ta to hold
273 c = manipulate ( sca le ( a , m2, sdev2 ) ) ;
274 d = manipulate ( sca le ( b , m3, sdev3 ) ) ;
275 L = [1 c d ] ;
276 res = hypothes is ( theta , L ) ;
277 i f res >= 0.5 ,
278 N(251+a ) = b ;
279 i f f i r s t == −999,
280 f i r s t = a ;
281 else
282 l a s t = a ;
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283 end ;
284 break ;
285 end ;
286 end ;
287 end ;
288

289 f i g u r e ( 1 ) ;
290 hold on ;
291 x l a b e l ( ”K %” ) ;
292 y l a b e l ( ”CMY %” ) ;
293 ax is ([−250 , 250 , −250, 250] , ” square ” ) ;
294 p l o t ( ( f i r s t : 1 : l a s t ) ,N(251+ f i r s t :251+ l a s t , : ) ) ;
295 hold on ;
296 f o r i = 1 : s ize (X, 1 ) ,
297 i f YY( i ) == 0 ,
298 p l o t (X( i , 2 ) , X( i , 3 ) , ’ kx ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
299 hold on ;
300 else ,
301 p l o t (X( i , 2 ) , X( i , 3 ) , ’ r x ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
302 hold on ;
303 end ;
304 i f i == s ize (A, 1 ) ,
305 p r i n t f ( ” \ n P l o t t i n g ac tua l samples f i n i s h e d . Press any key to p l o t a r t i f i c i a l data . ” ) ;
306 pause ;
307 p r i n t f ( ” P l o t t i n g . . . ” ) ;
308 end ;
309 p l o t (0 ,0 , ’ go ’ , ’ MarkerSize ’ , 15 , ’ LineWidth ’ , 3 . 5 ) ;
310 h = legend ( ” Normal ” , ” Anomalous ” , ” Boundary ” ) ;
311 ch = get ( h , ” Ch i ld ren ” ) ;
312 % Legend f o r boundary d i sp lays dot ins tead of l i n e , needs f i x i n g
313 set ( ch ( 1 ) , ” Color ” , [0 0 1 ] , ” Marker ” , ” . ” ) ;
314 set ( ch ( 2 ) , ” Color ” , [1 0 0 ] ) ;
315 set ( ch ( 3 ) , ” Color ” , [0 0 0 ] ) ;
316 set ( h , ” Pos i t i on ” , r e c t ) ;
317 hold on ;
318 end ;
319 p r i n t f ( ” \nDone .\n ” ) ;
320 p r i n t f ( ’ \n−−−−Press any key to proceed−−−−\n ’ ) ;
321

322 pause ;
323 c lose a l l ;
324 p r i n t f ( ” \nGenerating %d samples o f random t e s t data . . . ” , n ) ;
325 % random t e s t samples
326 n = 100;
327 T = ones ( n , 3 ) ;
328 TY = zeros ( n , 1 ) ;
329 f o r i = 1 :n ,
330 k = round ( rand ( )∗250) ∗ (−1)ˆ ( round ( rand ( ) ) ) ;
331 cmy = round ( rand ( )∗250) ∗ (−1)ˆ ( round ( rand ( ) ) ) ;
332 T( i , : ) = [1 k cmy ] ;
333 end ;
334

335 % normal ize the t e s t samples ;
336 % we w i l l t r e a t each sample as a s i n g u l a r a d d i t i o n to the o r i g i n a l sample set ,
337 % t h a t is , we do not compute averages / s tds f o r the t e s t set ,
338 % as t h a t would not f i t the hypothes is
339 TX = [ T ( : , 1 ) manipulate ( sca le (T ( : , 2 ) , m2, sdev2 ) ) manipulate ( sca le (T ( : , 3 ) , m3, sdev3 ) ) ] ;



Appendix 2 (7)

340 %TX = [ T ( : , 1 ) exp ( ( T ( : , 2 ) . −m2 ) . / sdev2 ) exp ( ( T ( : , 3 ) . −m3 ) . / sdev3 ) ] ;
341 TY = ( hypothes is ( theta , TX) >= 0 . 5 ) ;
342

343 f i g u r e ( 1 ) ;
344 f o r i = 1 : s ize (T , 1 ) ,
345 i f TY( i ) == 0 ,
346 p l o t (T ( i , 2 ) , T ( i , 3 ) , ’ kx ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
347 hold on ;
348 else ,
349 p l o t (T ( i , 2 ) , T ( i , 3 ) , ’ r x ’ , ’ MarkerSize ’ , 10 , ’ LineWidth ’ , 1 . 0 ) ;
350 hold on ;
351 end ;
352 end ;
353 p l o t ( ( f i r s t : 1 : l a s t ) ,N(251+ f i r s t :251+ l a s t , : ) ) ;
354 hold on ;
355 x l a b e l ( ”K %” ) ;
356 y l a b e l ( ”CMY %” ) ;
357 ax is ([−250 , 250 , −250, 250] , ” square ” ) ;
358 p r i n t f ( ” \n\nProcess f i n i s h e d .\ nPress any key to q u i t .\n\n ” ) ;
359 pause ;
360
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