

Svetlana Sannikova

Chatbot implementation with Microsoft Bot
Framework

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Thesis

19.03.2018

Tekijä
Otsikko

Sivumäärä
Aika

Svetlana Sannikova
Chatbot-sovelluksen kehitys Microsoft Bot Frameworkilla

28 sivua
19.03.2018

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Smart Systems and Software Engineering

Ohjaajat Kimmo Saurén, Senior Lecturer

Insinöörityön tavoitteena oli kehittää chatbot-sovellusta projektitiimin Slack-kanavaa varten
ja tutustua Microsoft Bot Framework ja Azure Cloud -teknologioihin. Chatbot-projekti suun-
niteltiin yhteistyössä projektitiimin jäsenten kanssa. Projektin tavoitteena oli saada chatbot-
sovellus asennettuna tiimin yksityiseen Slack-kanavaan.

Sovellus kehitettiin Visual Studio IDE:llä käyttäen C# -ohjelmointikieltä ja muita Microsoftin
teknologioita kuten Azure Cloud Services, Bot Framework and Unit Test Framework.

Sovellus suunniteltiin reagoimaan vain tiettyihin avainsanoihin, jotta se ei häiritsisi normaa-
lia kommunikaatiota kanavalla. Jos viestissä on avainsana, sovellus tarkistaa, onko vies-
tissä tämän lisäksi komentoa. Havaitessaan komennon, sovellus suorittaa siihen liittyvän
toiminnon. Tässä tapaustutkimuksessa sovelluksen oli osattava lähettää päivän lounasruo-
kalista sekä pyynnöstä että itsenäisesti kello 10.00 yhteiseen keskustelu kanavaan.

Sovellus on tallennettu Git -repositorioon ja sijoitettu Azure Cloud hosting-palveluun. So-
vellus ei vaadi uudelleenkäyttöönottoa, vaan se päivittyy automaattisesti repositoriossa ha-
vaitun muutoksen yhteydessä.

Sovellusalustan käyttöönoton jälkeen, sovellusta on kehitetty monilla tässä työssä mainit-
semattomilla toiminnoilla. Sovellus pysyy edelleen aktiivisena projektitiimin Slack-kana-
vassa.

Avainsanat VS, C#, Slack, chatbot, Azure, Bot Framework, Git, .NET

Author
Title

Number of Pages
Date

Svetlana Sannikova
Chatbot implementation with Microsoft Bot Framework

28 pages
21 August 2017

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Smart systems

Instructors Kimmo Saurén, Senior Lecturer

The purpose of this thesis is to create a chatbot application for a Slack channel and to get
familiar with the Microsoft Bot Framework and Azure Cloud services. The chatbot project
was designed in cooperation with .NET team members. The aim of the project is to deploy
the chatbot to the team’s private chat channel.

The application was developed on Visual Studio tools using C# as a primary programming
language and others Microsoft technologies, such as Azure Cloud services, Bot Framework
and Unit Test Framework.

The application developed in this thesis project is designed to react to a few keywords in
messages, because without restriction it would interrupt normal communication in the chan-
nel reacting to every message. If the key word is detected, the application is checking if there
is a command word, and if one is found it returns the provided by its program logic answer.
In this case study the application should be able to send a lunch menu by request and also
proactively at 10AM every day to the common chat channel.

The application is stored to a Git repository and deployed to Azure Cloud hosting with option
of continuous delivery, which means that the application should not be redeployed every
time a new feature was developed, but it is happening automatically, when new commit in
the repository is detected.

After the working bot base was successfully deployed, many other features were added by
team members. The application remains to be in active use in the team channel.

Keywords VS, C#, Slack, chatbot, Azure, Bot Framework, Git, .NET

Contents

List of Abbreviations

1 Introduction 1

2 Chatbot concept and history 2

2.1 Background 2

2.2 Use of chatbots 4

2.3 Development aspects 5

3 Implementation alternatives 7

3.1 Bot frameworks 7

3.1.1 Facebook Bot Engine 7

3.1.2 Dialogflow 8

3.1.3 Microsoft Bot Framework 8

4 Project Implementation 10

4.1 Version control 10

4.2 Hosting service 12

4.3 Development 14

4.4 Testing 18

4.4.1 Unit testing 19

4.4.2 Bot Framework Emulator 19

4.5 Deployment 21

5 Results 25

6 Conclusions 25

References 27

List of Abbreviations

API Application programming interface

JSON JavaScript Object Notation

IDE Integrated development environment

REST Representational state transfer

SDK Software Development Kit

URL Uniform Resource Locator

VCS Version Control System

1

1 Introduction

Text communication nowadays takes huge part in peoples’ lives. Almost all age groups

for personal, family and social communication as well as for business purposes use text

messaging. Many companies use text messaging for communication between employ-

ees.

Last several years in software development was growing a concept of “virtual teams”,

where team members work from multiple locations and communicate between each

other mostly online. In such scenario, the communication channels are playing the key

role in successful teamwork. As team members may work from different time zones, the

easiest way to communicate is texting in team’s private channels.

A number of services provide platforms for team online collaboration. One of such ser-

vices is Slack, which offers persistent chat rooms for teamwork, option of creating private

groups and direct messaging. Slack is mostly oriented to software development teams

and it has integrations with large number of tools useful for developers.

The purpose of this thesis project was to create a chatbot for Slack channel of software

developers’ team, which would offer services useful for the team members. Another goal

was to get familiar with functionality provided by Microsoft Bot Framework and Azure Bot

Services.

The idea of the bot was developed by .NET team members in Digia Oy in spring 2017.

The project did not have any commercial use purposes. It was designed and developed

in free time as a hobby project only for internal use in private Slack workspace of the

team.

2

2 Chatbot concept and history

2.1 Background

A chatbot is a computer program, which simulates human conversation, or chat, through

artificial intelligence. Typically, a chatbot will communicate with a real person, but appli-

cations are being developed today can communicate also with each other.

The idea of chatbots is as old as a computer itself. For the first time it was introduced by

a creator of theoretical computer science Alan Turing in his seminal paper "Computing

Machinery and Intelligence" in 1950. In the paper, he introduced the concept of the Tu-

ring Test, which would test if a computer can act indistinguishably from the way a thinker

acts.

Figure 1. The traditional interpretation of the Turing Test. [1.]

The traditional interpretation of the Turing Test is presented in the figure 1. The test

includes at least three participants: a human, a machine and a judge. The judge should

decide whether it is a human or a machine he is talking to at the moment. The job of the

judge would be to interrogate the human and machine with a series of questions and

3

based on their reactions, tone, and how they reply to the questions being asked, make

a decision. [2.]

The first said to be a program able to pass the Turing Test was ELIZA, created in 1966

by Joseph Weizenbaum at the MIT Artificial Intelligence Laboratory. In the program, text

was read and inspected for the presence of a keyword. If a keyword was found, the

answer was transformed according to the rule, associating with the word. [3.] In other

words, it was recognizing words or phrases in the input, and producing the output with

corresponding pre-programmed sentences. The same method is used by chatbot pro-

grammers ever since.

Michael Mauldin mentioned the term ”ChatterBot” first time in 1994 for describing con-

versational programs at the twelfth national conference on artificial intelligence and after

this the term was actively in use.

In 1997 was lunched first chatbot with real-time learning algorithms, Jabberwacky. While

all older programs got responses from a static database, Jabberwacky collected phrases

used by human participants and added them to its database, dynamically growing its

own content.

The popularity of artificial intelligence concept significantly increased, when the

smartphone came to mass market in the 2000s. It happened that messaging applications

became the most popular, as they are especially well suited for mobile devices. [4.] Af-

fordable mobile internet networks only increased their popularity.

Nowadays the global chatbot market is valued at about $200 million and it is expected

to grow in the coming years. According to a study by Aspect Software Research, 44% of

consumers said they would prefer to interact with a chatbot over a human customer ser-

vice representative, because a bot is able to provide instant responses to questions. [5.]

A big advantage of the bot applications in customer service is that people feel free to put

the questions they would not put to a human representative.

4

2.2 Use of chatbots

Chatbots are usually integrated into the dialog systems of, for example, virtual assistants,

giving them the ability of natural communication or engaging in casual conversations

unrelated to the scopes of their primary expert systems.

They can be useful in many aspects of the customer experience, including providing

customer service, presenting product recommendations and engaging customers

through targeted marketing campaigns.

In most cases, chatbots use messenger apps to communicate with customers. A person

can type or ask a question and the chatbot responds with the right information. Depend-

ing on the situation, many chatbots can learn from what a customer says to personalize

the interaction and build off previous interaction. For example, if a customer talks with a

chatbot and asks for movie recommendations, the chatbot can remember which movie

the customer saw and follow up with it later when providing a recommendation for a

restaurant or another movie. [6.]

One of the best examples of using chatbots is Facebook Messenger app. Facebook is

the most popular messaging app with over 1.2 billion active users. In 2016, Facebook

Messenger allowed developers to place chatbots on their platform and in one year by

developers was created over 100,000 bots and amount of messages between business

applications and customer has reached to 2 billion per month.

For example on image 2 is shown a Spring Bot, it was one of the first bots launched on

Facebook Messenger in 2016. It is a real time messaging and personal shopping assis-

tant with a direct-to-consumer sales model created in 2014. Fashion brands can use it

to connect with customers bypassing traditional stores, which cost a lot, especially for

smaller brands. At the application launch in 2014, Spring had 150 brands on board, but

by 2017 it had 3,000 brands selling in application and sells were growing by 20% month

over month for almost 2 years. [7.]

5

Figure 2. Spring shopping assistant for Facebook Messenger. [8.]

2.3 Development aspects

The biggest challenge chatbot developers face today is a big amount of messaging plat-

forms. To create a successful bot, developer should make sure, that users of every of

these platform experience a similar, consistent interaction with the bot, and that they are

able to share these services with friends, who are using other platforms.

6

Figure 3. Top social messaging apps among smartphone users. [9.]

Currently all users of messaging applications are divided between few primary platforms

shown on figure 3. Every platform differentiate itself from other with technical possibili-

ties, audience and communication types.

The limitations of every platforms make software developers to look for new approaches

and bot frameworks provide them with an opportunity to solve the problem in the short

term. Modern bot frameworks let developers create cross-platform applications, which

can be integrated into multiple channels, without making changes to the source code.

7

3 Implementation alternatives

3.1 Bot frameworks

Bot framework is a set of predefined and preinstalled methods and classes created for

bot developers. It gives to developer a set of tools which help write the code better and

faster. In simple terms bot developers and programmers use development frameworks

to create chat bots from scratch using programming language.

The most famous and modern bot platforms, which allow developers to create own bots

from scratch are Facebook Bot Engine, Dialogflow developed by Google and Microsoft

Bot Framework.

3.1.1 Facebook Bot Engine

Facebook released Facebook Bot Engine in April 2016. It is based on Wit.ai technology,

bought by Facebook in 2015. Wit.ai runs from its own server in the cloud. The Bot Engine

allows developing bot applications for Facebook Messenger platform. Being a huge so-

cial media network with more than a billion users Facebook decided to stay focused on

Facebook Messenger only.

Facebook adopted a new strategy with the Facebook Bot Engine. If developers grasp

the framework, Facebook Messenger users are going to get a variety of specialized chat-

bots.

The Facebook Bot Engine actively relies on Machine Learning. Users feed the Bot

Framework sample conversations and it can handle many different variations of the

same questions. The potential is quite big as developers could improve their chatbots

over the period.

Being one of the most modern framework, Facebook Bot Engine does not support any

other platforms, except of Facebook Messenger and does not fit the purpose of the pro-

ject. [10.]

8

3.1.2 Dialogflow

Dialogflow is a Google-owned technology of developing human-computer interaction

based on natural language conversations. Dialogflow provides a platform that allows de-

velopers to design and implement conversation interfaces which can be embedded in

external applications like bots. [11.] The basic data flow in Dialogflow system in shown if

figure 4.

Figure 4. Data flow in Dialogflow. [12.]

Dialogflow supports 14 different platforms including Skype, Telegram, Slack, Cortana,

Alexa and Facebook Messenger. However, even though bot application created with

Dialogflow is technically possible integrate with Azure Bot service; it would demand ad-

ditional preparation, because Dialogflow bots are designed to work with Google’s own

Cloud Platform.

3.1.3 Microsoft Bot Framework

Microsoft introduced own bot framework in early 2016. Microsoft bot framework SDK,

like all the other frameworks, provides the resources a developer needs to build intelli-

gent conversational chatbot that interact naturally.

9

My final work project was implemented using Microsoft Bot Framework, because I have

a lot of experience with Microsoft technologies and C# - programming. Microsoft Bot

Framework’s full SDK is available in C#.

The Bot Framework provides components for developers to help solve such problems

as automatic translation to different languages, user and dialog state management and

debugging. Main components of the framework are:

1. Bot Connector is a service, which allows a bot to exchange messages with chan-

nels that are available in Microsoft Bot Framework, by using REST API and JSON

over secure protocol HTTPS. When a user sends a message, the Bot Connector

sends a POST request to the endpoint that is specified during bot registration.

An example of body of the request is shown in Listing 1.

{

 "type": "message",

 "text": "message text",

 "from": {

 "id": "default-user"

 },

 "locale": "en-GB",

 "textFormat": "plain",

 "timestamp": "2018-03-09T15:22:55.174Z",

 "channelData": {

 "clientActivityId": "1520608946838.7637367733445164.0"

 },

 "entities": [

 {

 "type": "ClientCapabilities",

 "requiresBotState": true,

 "supportsTts": true,

 "supportsListening": true

 }

],

 "id": "hc11k7eafh8f",

 "channelId": "emulator",

 "localTimestamp": "2018-03-09T17:22:55+02:00",

 "recipient": {

 "id": "96elffmf1d0d",

 "name": "Bot"

 },

 "conversation": {

 "id": "3gh9i70d5eb5"

 },

 "serviceUrl": "http://localhost:53369"

}

Listing 1. Example of request body

When bot gets a JSON object, the information from it can be used to create a

response to user.

10

2. Bot Builder is a SDK for .NET Framework developers for developing bots using

Visual Studio and Windows. The SDK supports C# and Node.js programming

languages. The kit consists of Bot Application, Bot Controller and Bot Dialog tem-

plates. Bot Application template already contains a simple project with all of the

components for a simple bot. It includes a POST method to accept messages

and a dialog builder to generate a response as shown on image 5.

Figure 5. Autogenerated dialog builder in Bot Application project.

4 Project Implementation

4.1 Version control

Version control is a system used for recording changes to a file or set of files over time

so that user can return specific version later, if it is necessary. The need for a logical way

to organize and control revisions has existed for almost as long as writing has existed,

but revision control became much more important and complicated, when the era of

computing began. Today the most complex version control systems are the ones using

in software development, where many developers work on the same project at the same

time. In software development, version control usually is used for tracking source code

changes, but it also can be used for documentation maintaining.

11

The most popular available version control systems today is Git. Git is a mature, actively

maintained open source project originally developed in 2005 by Linus Torvalds. A stag-

gering number of software projects rely on Git for version control, including commercial

projects as well as open source. [13.]

The major difference between Git and any other VCS is the way Git groups its data. With

Git, every time a new commit is pushed it takes a picture of what files look like at that

moment and stores a reference to that snapshot. To be efficient, if files have not

changed, Git does not store the file again, just a link to the previous identical file it has

already stored. [14.] The process is shown in figure 5.

Figure 6. Storing data as snapshots of the project over time. [14.]

As the chatbot project was in common access with all the team, it was important to use

version control. Many web-based hosting services provide support for Git repositories.

Some of them are oriented mainly to host open-source software project like GitHub. The

chatbot’s source code was stored in Bitbucket, which allows creating private repositories

also for free accounts.

Usually in software projects work is happening in many branches. Branching is a func-

tion, which is available not only in Git, but also in all modern VCSs. A separate branch

represents a line of development. In most cases for every new feature should be created

a new branch as shown in figure 6. After the feature is ready and tested, the branch can

be merged to master, main branch containing production version.

12

Figure 7. New branch for feature1. [15.]

However, while the project was relatively small and amount of developers actively taking

part in it was limited by one or two persons, the development was easy to coordinate and

it happened only in one master branch.

4.2 Hosting service

To make bot accessible for a Slack channel, it should be hosted on a web hosting ser-

vice. There are a number of cloud platforms, which provide hosting services. The most

common cloud platforms are Amazon Web Services, Microsoft Azure and Google Cloud

Platform. All of them have similar services for web application hosting and possibility to

use limited functionality free of charge.

As for implementation was chosen Microsoft Bot Framework, the best option for hosting

became Azure, also developed by Microsoft.

Microsoft Azure is a cloud computing service announced by Microsoft in 2008. Azure

allows to host web application, servers, databases, file storages, virtual machines or user

directories. Many companies use it instead of buying their own hardware, as it is cheaper

option and in case when company needs more resources, it is easier to add them.

13

Figure 8. List of Microsoft Azure services. [16.]

The figure 8 gives an overview of all the services Azure platform provides to developers.

Azure Bot Service became generally available in late 2017 on Azure platform. It provides

a scalable, integrated bot development and hosting environment for conversational bots

that can reach customers across multiple channels on any device. At the same time,

Azure presented Microsoft Cognitive Services Language Understanding service (LUIS)

which helps to create customized natural interactions. LUIS designed to identify im-

portant information in conversations. [17.]

The basic data flow is illustrated in figure 9. Chatbot provides the interface for user input;

it can be in traditional text format or, for example, speech or image. The Azure Bot Ser-

vice supports fourteen channels for communication with users including Slack, Facebook

Messenger, Skype, etc. Intelligence is enabled in the Azure Bot Service through the

cloud AI services forming the bot brain that understands and reasons about the user

input. [17.]

14

Figure 9. Bot Application data flow. [17.]

4.3 Development

First step in software application development is creation of an empty application project.

As for implementation was chosen Microsoft Bot Framework and Azure hosting services,

the most appropriate IDE for my goals is Microsoft Visual Studio and C# as a program-

ming language.

Visual Studio provides a suite of tools for developers for creating software projects, from

the planning phase through user interface design, coding, testing, debugging, analysing

code quality and performance, deploying to production, and gathering telemetry on us-

age. [18.]

Visual Studio has a set of editions with different service plans depending on developer’s

needs. For student and individual developers there is a free Community edition of Visual

Studio. It provides almost full functionality free of charge. All the necessary tools for a

chatbot application development are functioning correctly in the free edition of Visual

Studio.

15

The first step of creation of a new bot project is to download application templates from

Microsoft Bot Framework web page. The templates should be saved to Visual Studio

project templates directory. After it is done, Visual Studio suggests a Bot Application

template, when creating a new project as shown on figure 10.

Figure 10. New Bot Application creation

When the project is created, it already contains all of the required references to the Bot

Builder SDK for .NET and components for building a simple bot.

The sample application includes a POST method to accept messages and send a response

telling how many characters were in the sent message.

As the bot is designed to work in a team’s Slack channel, the first improvement needed

to do is restricting messages it is reacting to, not to interrupt normal communication

between team members, when messages are not addressed to the bot. With the code

example shown in Listing 2 the chatbot will react only to messages, which contain word

“bot”.

if (activity.Type == ActivityTypes.Message)

{

 try

16

 {

 var text = activity.Text.ToLower();

 if (text.Contains("bot")

 await Conversation.SendAsync(activity, MakeRoot);

 }

 catch (Exception ex)

 {

 throw new Exception(ex.Message);

 }

}

Listing 2. Limitation for messages bot is sending response to.

When bot is configured to react only to certain messages, some other functionality can

be added. One of the most important function for the bot by opinion of the team is posting

lunch menu in Amica restaurant downstairs. Amica group provide menus on restaurant’s

web page also in JSON format to help developers in embedding menus into their web

applications.

As the bot project did not have strictly defined architecture or functionality and it would

evolve further development, it is better way to create separate classes for every new

service, not to run into code readability issues in the future. The service for sending menu

lists can have name FoodService, and inside of it, a method GetAmicaMenu. Such nam-

ing allows to add other restaurants in neighbourhood later. The example code for parsing

the menu is shown in listing 3. The method returns a text variable with list of food items

separated with line feeds.

public String GetAmicaMenu(string url)

{

 try

 {

 dynamic menuList = JsonConvert.DeserializeObject(

 new WebClient().DownloadString(url));

 string response = "";

 foreach(dynamic item in menuList.MenusForDays[0].SetMenus){

 response += item.Name + ": ";

 foreach(dynamic component in item.Components){

 response += component + "\n\n";

 }

 }

 byte[] bytes = Encoding.Default.GetBytes(response);

 response = Encoding.UTF8.GetString(bytes);

 return response;

 }

 catch (Exception e){

 throw new Exception(e.Message);

 }

 }

Listing 3. Method for menu parsing

17

For separating the menu request from others, there is a NuGet package called Best-

MatchDialog for Bot Framework, which allows to match the incoming messages against

a list of strings it takes as a parameter. It can be separate words or sentences. If a re-

quest, in an addition to the key word “bot”, consists any of the words from the list, dialog

handler calls the following function. If there is no match in the list, then the default No-

MatchFound handler will be called.

After the NuGet package is installed, the RootDialog can be changed to be the Best-

MatchDialog type. After that, the default response method can be replaced with two sep-

arate methods for each necessary case as shown in listing 4. There is a method to han-

dle a case, when request contains some word of BestMatch list, and a method for a case,

when no match was found. In first case bot responses with a lunch list and in second just

says, “I don't know what to say”.

[BestMatch("food, lunch, amica, menu")]

public async Task HandleFood(IDialogContext context, string messageText)

{

 FoodService foodService = new FoodService();

 var response = foodService.GetAmicaMenu("http://www.amica.fi/mod-

ules/json/json/Index?costNumber=3121&language=fi");

 await context.PostAsync(response);

 context.Wait(MessageReceived);

 }

 public override async Task NoMatchHandler(IDialogContext context, string mes-

sageText)

 {

 var response = "I don't know what to say";

 await context.PostAsync(response);

 context.Wait(MessageReceived);

 }

Listing 4. BestMatchDialog implementation in root dialog.

Now the bot is functional and can be deployed, but for comfort of the users, bot could be

proactive and post the menus every day before lunchtime without a request. For this bot

needs, in addition to the automatically generated POST method, a GET method which

would respond with a message to the specified Slack channel. The MenuResponse

method is shown on listing 5, it will be called if API gets a request to address host-

name/api/requests/menu. If the request succeeded, API responds with success code

200. In case if some error happened during the request, API returns the error information.

[Route("api/requests/menu")]

[HttpGet]

public async Task<HttpResponseMessage> MenuResponse()

18

{

 FoodService foodService = new FoodService();

 var msg = foodService.GetAmicaMenu(

 "http://www.amica.fi/modules/json/json/Index?costNumber=3121&lan-

guage=fi");

 return await SendMessage(msg);

}

Listing 5. MenuResponse function

SendMessage method creates a message and send it to the specified conversation

channel. Channel parameters will be known after bot’s deployment.

4.4 Testing

Testing is the process of evaluating a system or its components with the intent to find

whether it satisfies the specified requirements or not and discover software bug before

deploying it to production. The universe of testing automation can be neatly split into two

predominant testing techniques known as white-box and black-box testing. [19.]

White-box approach evaluates work of internal structures or services, instead of func-

tionality provided to users. The developer itself creates test cases for the services and

chooses input parameters for every unit to determine the appropriate outputs.

Black-box testing focuses mainly on the functionality of the software product, without

information about its internal structure and implementation methods. It usually repre-

sents the end-user point of view.

For the white-box approach, developers use unit and integration tests and for black-box

testing of the application interface by real users or testers.

For testing the services in the bot application, I used Microsoft Unit Test Framework to

create and run unit tests. Interface testing happened with Bot Framework Emulator, also

developed by Microsoft.

19

4.4.1 Unit testing

Unit testing is a level of software testing where individual units/components of a software

are tested. The purpose is to validate that each unit of the software performs as de-

signed. [20.]

For the testing to the solution should be added a new Unit Test template project and

should have a reference pointing to the project it is testing.

 As an example of unit tests, the code in listing 6 is testing that Food Service returns not

empty text variable.

[TestMethod]

public void TestGetAmicaMenuSuccess()

{

 string menu = "";

 menu = foodService.GetAmicaMenu("http://www.amica.fi/modu-

les/json/json/Index?costNumber=3121&language=fi");

 Assert.AreNotEqual(menu, "");

}

Listing 6. Test method

Similarly can be tested, that Food Service throws an error, if it cannot load a JSON from

the given URL, using attribute ExpectedException, which indicates that during the test

method execution application should throw an exception of specific type.

4.4.2 Bot Framework Emulator

The Bot Framework Emulator is a desktop application that allows bot developers to test

and debug their bots, either locally or remotely. Using the emulator, developer or tester

can chat with the bot and inspect the messages that it sends and receives. The emulator

displays messages as they would appear in a web chat UI and logs JSON requests and

responses. [21.]

The Bot Emulator connects to the given endpoint URL, when chatbot application is run-

ning, and emulates a communication between bot and user.

The endpoint URL is configured in Bot Builder sdk and default endpoint for local debug-

ging is usually http://localhost:3978/api/messages.

20

Figure 11. Microsoft Bot Emulator view

As shown on figure 11, the emulator window consists of 3 separate view:

1. The dialog window on left side where user can see input sent to the bot and

output produced by the bot.

2. JSON object of chosen message on right upper side. The view helps developers

see the sequence sent to the application and response from it.

3. Logs of requests and responses in right lower corner with information about API

activities and codes of statuses.

For testing the posting menu GET method the specified URL can simply opened by

web browser, as browsers by default send a GET request to the given address.

Another option is to use special tools for API developers, for example provided by

Google Postman. The main profit of such tools is possibility to choose type of request,

see and modify request body, see full response and possible errors.

21

In both cases, response sent to Bot Emulator is similar and shown in listing 7. Answer

“no food” only means, that request was sent on weekend and JSON did not contain

any menu items.

{

 "type": "message",

 "channelId": "emulator",

 "from": {

 "id": "96elffmf1d0d",

 "name": "Bot"

 },

 "conversation": {

 "isGroup": true,

 "id": "j9f71ai0592k"

 },

 "recipient": {

 "id": "n66bc2bmjdie"

 },

 "membersAdded": [],

 "membersRemoved": [],

 "text": "no food :(",

 "attachments": [],

 "entities": [],

 "id": null

}

Listing 7. API response to lunch menu request

After chatbot’s functionality was tested and all bugs fixed, it can be deployed to the Azure

Cloud hosting service.

4.5 Deployment

The deployment of the bot starts from registration on Azure Portal. After registration user

can choose a subscription and support plans. There are free options with Pay-As-You-

Go subscription and I used it for the project.

After registration user can add a new source and choose a Web App Bot application

template. When application created, there is a bot template, which just echoes back us-

ers input. This template should be replaced with the Slack bot code, stored in Bitbucket

repository. For this in Bot Management section user can configure continuous deploy-

ment.

22

Continuous deployment on practice means that every change pushed to the version con-

trol is deployed to production automatically, if the build succeeded. For Azure web appli-

cation continuous deployment can be configured to use straight Bitbucket version control

repository as shown in figure 12.

Figure 12. Azure continuous deployment options.

After authorization, system allows to choose the branch it would use for deployment, by

default it is master branch. If the given repository contains any project, Azure fetch the

files from there and replace the template project, created by Bot Service. When build is

complete, the bot application is hosted in Azure Cloud on URL https://botname.azureweb-

sites.net/api/messages and ready to use in communication channels. There is also an op-

tion to test the application in Azure web chat (figure 13), to make sure that application

works correctly after deployment.

23

Figure 13. Azure Web Chat for testing Web Bot applications.

For using the bot in Slack, it should be registered as a new application in api.slack.com,

a hub for developers, which allows integrating complex services and third-side applica-

tions with Slack. When choosing a Create app option, first should be chosen a Slack

channel, the application will be installed to and an application name. During the registra-

tion, new bot user account should be set pointing to the Azure bot and the application

credentials, generated by Slack should be stored to the Azure Cloud to channel infor-

mation for Slack. Information about active channels is available in Channels section of the

bot application. If authorization was successful, the channel status changes to running

as shown on figure 14.

Figure 14. Running bot application in Slack channel

After registration on both sides is completed, the running bot application appears as an

App in the specified Slack channel (figure 15).

24

Figure 15. Bot application in Slack channel

Once the application added to a workspace, an administrator can add the bot to any

channel inside the workspace he or she wants.

For the proactive messaging can be used any webhook service. One of the easiest is

IFTTT (If this, then that), which takes a trigger “this” and if it is hit, then it makes action

specified in “that”. It allows to create webhooks with requests to given URL and set time

as a trigger of the request. Good time to post lunch menu is about 10 am. The ready

webhook is shown in figure 16.

Figure 16. IFTTT request set at 10 AM.

25

5 Results

As a result was created a fully functioning chatbot, which could be integrated into a num-

ber of channels including Slack.

After the application deployment, the functionality of the bot was significantly extended

by the team members.

In addition to the lunch menus, the bot is able to provide weather forecast, news, cat

videos, Instagram pictures, daily Fingerpori and Dilbert comics, train timetable for

Pitäjänmäki train station, Digia’s share price and other services. It also was taught to

joke, motivate and support team members, remind about coffee breaks and end of the

working day, recognize languages and, if no matching phrases were found, answer to

messages with twitter posts.

At the moment, when this report is being written, the bot is still in active use and devel-

opment of current and former .NET team members.

6 Conclusions

The purpose of this project was to create a chatbot for a Slack channel of software de-

velopers’ team, which would offer services useful for the team members.

The technology stack for the project was selected considering advantages provided by

the tools as well as suitability of every technology for the stack. Using beforehand defined

stack of technologies was implemented functionality and REST API of a bot application

using quality assurance practices and stored into version control repository. After the

functionality was approved, it was deployed to Azure Cloud hosting service and added

as an application to team’s Slack channel.

The project was developed using agile software development approach. First version of

the bot produced only basic functionality, but later it was extended based on users’ needs

and feedbacks. The project also involve adding more features in the future and existing

application base is a big advantage in further development.

26

The objective of developing bot application was successfully achieved.

Another goal was to get familiar with functionality provided by Microsoft Bot Framework

and Azure Bot Services. For these purposes was applied “learning by doing” approach.

The team members, who participated in the project development, could learn the new

technology by implementing an application using it and discussing with the rest of the

team results and best practices.

The quality of self-learning may vary, however the goal of getting familiar with a Microsoft

Bot Framework and Azure services can also be recognized as achieved, at least not on

the professional level.

27

References

1. Clark, Nate. 2015. What is Turing test? [online]
http://www.clarkoncode.com/What-is-the-Turing-Test/. 7.10.2015. [Accessed
15.03.2018].

2. Irwin, Paula. 2017. What’s the Turing Test and Which AI Passes It? [online]
https://www.knowmail.me/blog/whats-turing-test-ai-pass/. 11.01.2017. [Ac-
cessed 15.03.2018].

3. Weizenbaum, Joseph. 1966. ELIZA—A Computer Program For the Study of
Natural Language Communication Between Man And Machine. [online]
http://web.stanford.edu/class/cs124/p36-weizenabaum.pdf. 01/1966. [Accessed
15.03.2018].

4. Kholod, Anastasia. 2017. The Brief History of Artificial Intelligence and Chat-
bots. [online] https://api2cart.com/business/brief-history-artificial-intelligence-
chatbots/. 16.08.2017. [Accessed 15.03.2018].

5. Sweezey, Mathew. 2018. The Value Of Chatbots For Today's Consumers.
[online] https://www.forbes.com/sites/forbescommunicationscoun-
cil/2018/02/13/the-value-of-chatbots-for-todays-consumers/#36b530762918.
13.02.2018. [Accessed 15.03.2018].

6. Morgan, Blacke. 2017. What Is A Chatbot, And Why Is It Important For Cus-
tomer Experience? [online] https://www.forbes.com/sites/blakemor-
gan/2017/03/09/what-is-a-chatbot-and-why-is-it-important-for-customer-experi-
ence/#6ab644c37188. [Accessed 15.03.2018].

7. Milnes, Hilary. 2017. The spiral of Spring’s great mobile experiment. [online]
https://digiday.com/marketing/spiral-springs-great-mobile-experiment/.
31.03.2017. [Accessed 15.03.2018].

8. Arthur, Rachel. 2016. Shopping Startup Spring Launches One Of First Bots On
Facebook Messenger. [online]
https://www.forbes.com/sites/rachelarthur/2016/04/12/shopping-start-up-spring-
launches-one-of-first-bots-on-facebook-messenger/#68d8f5a4e3ce.
12.04.2016. [Accessed 15.03.2018].

9. Garg, Arun. 2015. Most Popular Messaging Apps – Country Wise. [online]
http://www.quytech.com/blog/most-popular-messaging-apps-country-wise/.
18.09.2015. [Accessed 15.03.2018].

10. Maruti, Techlabs. 2017. Which are the best chatbot frameworks? [online]
https://chatbotslife.com/which-are-the-best-on-site-chatbot-frameworks-
3dbf5157fb57. 12.04.2017. [Accessed 15.03.2018].

28

11. Zyane, Rania. 2017. AI Platforms — You’ll need them to make your chatbot
smarter. [online] https://chatbotsmagazine.com/ai-platforms-youll-need-them-to-
make-your-chatbots-smarter-rex-a884e1fea1ea. 12.10.2017. [Accessed
15.03.2018].

12. Huhtanen, Hanu. 2017. Chatbots made easy with Dialogflow. [online]
https://blog.huhtanen.eu/2017/10/15/chatbots-made-easy-dialog-flow.html.
15.10.2017. [Accessed 15.03.2018].

13. Bitbucket tutorials. What is Git. [online] https://www.atlassian.com/git/tutori-
als/what-is-git. [Accessed 15.03.2018].

14. Git. Getting Started - Git Basics. [online] https://git-scm.com/book/en/v2/Get-
ting-Started-Git-Basics. [Accessed 15.03.2018].

15. Microsoft. 2017. Git branch statistics. [online] https://www.visualstudio.com/en-
us/docs/integrate/api/git/stats. [Accessed 15.03.2018].

16. Swinkels, Mark. 2016. Microsoft Azure Cloud Services Overview. [online]
http://markswinkels.nl/2016/06/microsoft-azure-cloud-services-overview/.
30.06.2016. [Accessed 15.03.2018].

17. Microsoft Azure. 2017. Conversational Bots Deep Dive – What’s new with the
General Availability of Azure Bot Service and Language Understanding. [online]
https://azure.microsoft.com/en-us/blog/conversational-bots-deep-dive-what-s-
new-with-the-general-availability-of-azure-bot-service-and-language-under-
standing/. 13.12.2017. [Accessed 15.03.2018].

18. Microsoft. Developer Network. Visual Studio IDE. [online] https://msdn.mi-
crosoft.com/en-us/library/dn762121.aspx. [Accessed 15.03.2018].

19. Ericsson, Ulf. 2015. TEST DESIGN TECHNIQUES EXPLAINED #1: BLACK-
BOX VS WHITE-BOX TESTING. [online] https://reqtest.com/testing-blog/test-
design-techniques-explained-1-black-box-vs-white-box-testing/. 08.06.2015.
[Accessed 15.03.2018].

20. Software testing. Fundamentals. Unit Testing. [online] http://softwaretestingfun-
damentals.com/unit-testing/. [Accessed 15.03.2018].

21. Microsoft. Bot Framework. 2017. Debug bots with the Bot Framework Emulator.
[online] https://docs.microsoft.com/en-us/bot-framework/bot-service-debug-em-
ulator. 13.12.2017. [Accessed 15.03.2018].

