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A data synchronization service called “Tehden connector” is an application developed by 
Codaone Ltd to synchronize data between online stores and Tehden Ltd. The application is being 
used by a certain number of customers and supports a variety of E-commerce platforms.  

The purpose of this thesis was to implement optimization of the “Tehden connector” in a 
master/slave architecture to make the application more scalable, robust, and decentralized.   

The application operates on the Ubuntu operating system, implemented via the PHP framework 
– Symfony and supported by the MySQL database management system. The optimization was 
conducted as a refactoring of the current application, with the addition of using HTTP as data 
transfer protocol and JSON as data structure for an internal communication within the 
master/slave structure. 

The logic of the optimization is implemented in a way that instead of storing and operating all 
tasks on one machine, it stores settings and customer data on a master machine and the master 
assigns executable tasks to slave machines 

The database of the application was extended with different structure both for the master and the  
slaves in a way that the master stores settings and connections between customers and slave, 
and the slaves store credentials necessary for communicating with the master. 

The refracturing of the code was implemented as an addition of the current application with 
master/slave communication features and creation of relations between the main code and the 
communication features.  

The tests revealed that optimization was implemented successfully and that the “Tehden 
connector” can work within a master/slave communication structure. However, the optimization 
was not released into the production environment due to the missing features that are out of the 
scope of the thesis. 

The implementation of the optimization within the scope of this thesis has proven that the “Tehden 
connector” is able to work within a master/slave communication architecture. However, to provide 
production ready solution, more work will be performed by Codaone Oy in the future.  
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LIST OF ABBREVIATIONS AND TERMS 

API  Application programming interface 

CUI Console User Interface 

CLI Command-line Interface (Text mode programs (CUI: Console 

User Interface)" Wine User Guide. Retrieved Sep 22, 2013.) 

Controller A controller, in a computing context, is a hardware device or 

a software program that manages or directs the flow of data 

between two entities (A definition of controller by Margaret 

Rouse) 

Entity An entity is an object that exists and is distinguishable from 

other objects (Entities and Entity Sets by Osmar R. Zaï ane) 

Optimization In computer science, program optimization or software 

optimization is the process of modifying a software system to 

make some aspect of it work more efficiently or use fewer 

resources. In general, a computer program may be optimized 

so that it executes more rapidly, or is capable of operating 

with less memory storage or other resources, or draw less 

power. (Robert Sedgewick, Algorithms, 1984, p. 84) 

OS  Operating system 

Sync  Synchronization 

PHP Recursive acronym: Hypertext Preprocessor (PHP: What is 

PHP – Manual) 

HTML Hypertext Markup Language 

LAMP Linux Apache MySQL PHP 

JSON JavaScript Object Notation 

URL Uniform Resource Locator 

HTTP Hypertext Transfer Protocol  



UI User Interface 

UNIX A family of general purpose, multi-user operating systems 

originated from the original AT&T Unix (Ritchie, D.M; 

Thompson, K., The UNIX Time-Sharing System, July 1978) 

IP Internet Protocol 

ID In database science, Identity Column 

GET An HTTP method request that requests a specified resource 

(Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen, 

Henrik Frystyk; Masinter, Larry; Leach, Paul J.; Berners-Lee, 

Tim, Hypertext Transfer Protocol – HTTP/1.1, June 1999) 

POST An HTTP method request that requests a server to accept an 

entity enclosed in the request as a new subordinate of a web 

resource (Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; 

Nielsen, Henrik Frystyk; Masinter, Larry; Leach, Paul J.; 

Berners-Lee, Tim, Hypertext Transfer Protocol – HTTP/1.1, 

June 1999) 
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1 INTRODUCTION 

1.1 Background of the topic 

In computer networking, master/slave is a model for a communication protocol in which 

one device or process (known as the master) controls one or more other devices or 

processes (known as slaves) [1] (Figure 1). 

 

Figure 1. Master/slave basic structure. 

Master/slave optimization that is being applied to a sync application (Tehden connector) 

is a process of refactoring of the application, changing its structure and the way of 

working to achieve optimization goals. The Tehden connector is an application that 

performs synchronization of customer data between online stores which allows these 

customers to reduce the manual work of synchronization of the content, product 

information and stocks between multiple stores as it shown in Figure 2.  

The Tehden connector consists of one application which is written in PHP using the 

Symfony framework. The application is supported by a  MySQL database and it runs on 

the Ubuntu operating system which allows it to run on the  LAMP (Linux Apache MySQL 

PHP) environment, and automates the process of work using Cron. 
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The interface of the application is separated into 2 types. The web interface, which is 

accessible in an Internet browser, is mostly meant for workers of Tehden Oy who operate 

with customer data personally. The CLI set of commands is used for different sync 

operations and used mostly by Cron and developers of Codaone Oy. 

 

Figure 2. Structure of Tehden connector before optimization. 

1.2 Statement of the problem   

The Tehden connector is a complex software solution that requires a great amount of 

processing power to work fast. With a growing number of customers who wish to 

synchronize their data across online stores, it is essential that the current solution is 

flexible to growth. Master/slave technology model optimization will help the application 

to be scalable to the growing number of customers. 

1.3 Scope and objectives 

The objective of this thesis is to implement an optimization for the Tehden connector in 

a master/slave technology model. The application will be modified in a way that it could 

be configured to be either master or slave. The master and its slaves will be placed on 

different machines (physical or virtual) and work individually from each other, yet at the 

same rate, the slaves will be exchanging information with the master that will give them 

instructions to sync data.  
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The optimization will make the application flexible to the growth of customers and make 

it more secure when physical failures occur.  

1.4 Justification of the project 

Even though the main justification of the project is an optimization of the synchronization 

service that will benefit only to the companies that use it. Potentially, this thesis could 

be used as an example or materials for other people who would like to use master/slave 

technology model to optimize their application. 
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2 RELEVANT TECHNOLOGIES 

This chapter introduces the main technologies used in this thesis project. The main 

technologies are: Ubuntu operating system, PHP programming language, Symfony 

framework, MySQL database, JSON data format. 

2.1 Ubuntu operating system 

Ubuntu is an open source operating system which is a Linux distribution based on 

Debian's architecture and infrastructure [2].  Ubuntu was chosen as the host operating 

system for numerous reasons. One of the reasons is that Ubuntu provides great amount 

of Web server software such as: Apache HTTP Server, Nginx, Varnish, Cherokee, 

Lighttpd and OpenLiteSpeed, however only Apache was chosen for hosting the 

application due to the fact that it provides great support from the community of 

developers and an easy configuration. Besides the fact that Linux is safe in terms of 

viruses [3] and stability - “these systems can easily run for months or years without the 

need for restart and requiring only minimal maintenance” [4], which is a good 

combination for a server that requires stability and security. 

Another reason why Ubuntu was chosen as an OS for this solution is its job scheduler 

- Cron. “Cron is the name of program that enables unix users to execute commands or 

scripts (groups of commands) automatically at a specified time/date.” [5], which makes 

it a great solution for the Tehden connector to run sync scripts (both customer and 

master/slave related) automatically in a scheduled time.  

2.2 PHP programming language 

PHP, which stands for "PHP: Hypertext Preprocessor" is a widely-used Open Source 

general-purpose scripting language that is especially suited for web development and 

can be embedded into HTML.” [6]. The PHP programming language was chosen 

because Tehden connector is not only a software that synchronizes customer data but 

also displays its interface as a web application, which can be well implemented with 

Symfony framework. Considering the fact that the Tehden connector combines both 

these functions as a synchronizer and an interface, it is the easiest option to implement 
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master/slave related code refactoring and additions in the same application 

environment. Having all the structure: entities, controllers and services implemented 

within one application, makes it simple to retrieve data for master/slave optimization. 

Other options, such as using external application, would still require creating an 

Application Programming Interface (API) in the current application to communicate with 

external one.  

2.3 Symfony framework 

“Symfony is a set of PHP Components, a Web Application framework, a Philosophy, 

and a Community — all working together in harmony.” [7] Symfony is a tool that 

combines multiple PHP components into one framework. Symfony was chosen for its 

abilities to create entities based on table in database, functionality of controllers, 

services, ability to create custom APIs which would allow to establish communication 

exchange between master and slaves. 

2.4 MySQL database 

MySQL is an open-source relational database management system (RDBMS) [8]. 

MySQL is widely used and has a very well written documentation as well as a large 

community of developers who use it, which makes developing and supporting systems 

with MySQL easy.  

MySQL integration is also available in PHP and Symfony provides a third-party library 

called Doctrine which is used in the application.  

2.5 JSON data format  

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy 

for humans to read and write. It is easy for machines to parse and generate. It is based 

on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition 

[9]. JSON is a text format that is completely language independent but uses conventions 

that are familiar to programmers of the C-family of languages, including C, C++, C#, 

Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal 

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
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data-interchange language [10]. In this application JSON is used as a format for data 

exchange between master and slaves via the HTTP protocol.  
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3 APPLICATION DESCRIPTION 

3.1 Main idea and structure 

The main idea behind the Tehden connector after master/slave optimization, as it 

expressed in Figure 3, is that the main application will be used both on master and 

slaves. However, different configurations will be applied. The master will have certain 

configurations that will specify its role as a master in the structure. Also, slaves, in their 

turn, will get certain configurations that will specify them as slaves. Customers will be 

interacting directly only with master and the master will store their configurations that 

specify stores and how to operate with these stores. A certain customer or several 

customers will be linked to a specific slave that will operate their synchronization. Slaves 

will receive configurations from the master with specifications of which customers they 

need to sync and how. 

 

Figure 3. Structure of Tehden connector after optimization. 
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3.2 Logic structure and algorithm 

If the master is already configured and set, the process starts with creating a new slave 

(Figure 4). When the new slave has been created and set up with enough information to 

know how to communicate with the master, it starts attempting to authorize to the master. 

After  the authorization request has been sent, on the master’s application User Interface 

(UI) appears a pending request from the slave. To proceed with the process, the master’s 

user must confirm the slave from the UI manually. When the slave is not confirmed, it is 

sending authorization requests and receives “401 Unauthorized” responses/messages. 

After the slave has been confirmed, its authorization request receives response as an 

API token that slave will store in its database. As soon as the API token has been saved, 

the slave will start attempting to retrieve settings from the master. After the master 

accepts the request from the slave, it responds with current settings relevant to the 

slave.  

 

Figure 4. Logic structure of creating a new slave. 

After the slave has successfully acquired settings from the master and started to sync, 

the following communication exchange runs on a regular basis as it shown on Figure 5. 

The slave checks if there are any new settings that it should receive from master. It sends 

a request for settings to the master, if the master performs a check if the settings for the 

specified slave were changed by a customer. If the settings were not changed, the 

master responds with  a “200 OK” response, which the slave will interpret as the master 
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is alive, nothing was changed and continue to sync. However, if the settings were 

changed, the master will get new settings and send them back to the slave. On acquiring 

new settings, the slave will update settings that were changed and continue to sync. 

 

Figure 5. Logic structure of, regular communication exchange. 

3.3 Master communication algorithm 

From the master’s point of view, a logic structure, while processing the slave’s requests 

could be expressed in more steps as it shown on Figure 6. 

After retrieving a request, the master checks if the requesting client (client as a request 

client) exists in the database. If the client does not exist, the master records the client’s 

data in to the database and responds back to the slave with a “401 Unauthorized” 

response. When the master records a new client into the database, the record appears 

as a pending slave in the master’s application UI, which the user can later confirm to 

allow the slave to authorize. This simple mechanism prevents unwanted client’s access 

to restricted data since the user will recognize the client as slave by its information. 

When the master retrieves a request and from the data from the request it can be 

concluded that the client is a slave that already exists in the database, the master will 

perform a check to determine if the slave is enabled (confirmed) by a user. If the slave 

is not confirmed, the master will respond to the slave with “401 Unauthorized”. However, 

if the slave is enabled, the master will perform a check to determine if the slave’s request 

headers contain an API token. If the API token does not exist, the master will generate it 

for the slave and send a response that will contain an API token, which will authorize the 

slave for future requests. If the slave is already authorized (headers contain an API 



10 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko 

token), the master will check if the slave needs new settings. If the slave needs new 

settings, the master will return them as a response and if the slave does not need new 

settings the master will respond “200 OK”. 

 

Figure 6. Master communication algorithm. 

3.4 Slave communication algorithm 

From the slave’s point of view, a logic structure, while attempting to get settings from the 

master could be expressed in more steps. In the Figure 7 algorithm shows an execution 
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of a Cron every time the slave runs synchronization and the algorithm determines if the 

synchronization should be performed or not.   

First, the slave conducts a check to determine if an API token exists in its database. If 

the API does not exist in the database, it means that slave is not authorized and it then 

it performs an authorization request to the master. If, because of authorization request, 

an API token was retrieved, the slave will save it to the database.  

If the slave is already authorized (it has an API token), the slave will check if the sync 

settings exist and this will help to determine if it is a new set up or an updating of settings. 

The only difference between having sync settings already and getting new ones is that 

when there are already some settings, the slave will perform a check to determine if new 

settings are available. If there are no new settings available, the slave will not request 

any settings from the master and continue performing synchronization. However, if new 

settings are needed or there are no settings at all, the slave will request settings from 

the master while also including the API token in the request’s headers to authorize. If the 

result of the request was getting new settings, the slave will save the settings and might 

perform sync on its next iteration if no settings changed since the last check. 
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Figure 7. Slave communication algorithm. 
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4 DATABASE DESIGN 

Both the master and slave use databases for storing data necessary for their 

communication. Because master and slave use the same application, their database 

structure is also the same even though the data is different. This chapter describes the 

structure of databases’ tables that only involve master/slave optimization. 

The table “slave” only used by master and stores data about slaves that are already 

confirmed and operational and those that are still pending for confirmation. The field 

“secret” represents a slave’s name, “is_enabled” defines if slave can operate, 

“settings_last_update” stores a UNIX time stamp for comparison of settings between 

master and slave, “address” is an Internet Protocol (IP) address of a slave (Figure 8). 

 

Figure 8. Database slave table structure. 

The table “master” used on each slave. It stores data necessary to establish connection 

with the master. The slave also keeps the master’s Uniform Resource Locator (URL) 

address in the “url” field as it is necessary for slave to know where it should forward its 

requests (Figure 9). 
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Figure 9. Database master table structure. 

The table “customer” is mainly used for the synchronization process. However, the field 

“slave” serves as reference to the slave Identity Column (ID) in table “slave”, hence the 

master determines which slave is used for a certain customer using this table (Figure 

10). 
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Figure 10. Database customer table structure. 
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5 IMPLEMENTATION 

As it has been mentioned previously, the application itself can serve both as a master or 

a slave. The type is determined by configurations.  

5.1 Slave structure 

Slave structure consists of several components where a Cron schedule triggers the 

SlaveCommand, SlaveCommand triggers SlaveService which contains the logic for the 

slave’s behavior related to settings and uses SlaveApiService as an interface for 

communication with the master. 

5.1.1 Cron 

On the slave side, the factor that initializes slave to sync settings with the master is Cron. 

Cron is set up on Linux slave machine and scheduled to run slave command every n 

interval. A Cron task can be set up by running the following command in a terminal: 

“crontab -e”. After running this command, an editor with Cron tasks will be opened where 

tasks could be inserted. Example: “*/15 * * * * php /var/www/html/app/console 

slave:sync”, will run slave synchronization command every 15 minutes [11]. 

5.1.2 SlaveCommand 

The next layer of the slave’s work is the SlaveCommand which is called with Cron as the 

“slave:sync”. SlaveCommand is simply a command built within the application that reacts 

to CLI with combination of letters as the slave:sync. SlaveCommand, after being called, 

executes settings synchronization within the application’s SlaveService. 

5.1.3 SlaveService 

SlaveService is a service of the application responsible for the slave’s logic during 

settings synchronization. The service contains necessary methods that allow it to 



17 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko 

validate settings with the master, retrieve it (if necessary) and update on the slave (Figure 

11). To establish communication with the master, the slave uses SlaveAPIService. 

 

Figure 11. SlaveService structure. 

slaveApiService in the scope of SlaveService is an instance of the service, which serves 

to call serves’ methods. 

em is an Entity Manager, it is part of the Doctrine (third party integration that Symfony 

uses to handle databases). In the scope of SlaveService, em is used to create/update 

entities necessary for a slave’s synchronization, settings that master sends back to the 

slave. 

MASTER_ID is simply a constant that defines master ID in a slave’s database. 

__construct function injects dependencies of em and slaveApiService. 

syncSettings is a function that is being called from SlaveCommand and it’s main 

responsibility is to validate if a slave needs new settings and act accordingly to the 

situation. 

updateSettings is a function that is being called by syncSettings when it receives new 

settings from master. It updates existing settings to new settings from the master or 

creates new if settings do not exist on a slave. 

5.1.4 SlaveAPIService 

SlaveAPIService contains necessary methods that serve as a communication interface 

between the slave and master (Figure 12). When SlaveService executes some 
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operations that require data exchange with the master, it uses SlaveAPIService to 

generate an HTTP request understandable for the master and sends it. SlaveAPIService 

is responsible for operations/tasks such as: authentication process, construction of URL 

path, handling a request’s headers, constructing and sending GET and POST requests 

and handling HTTP response errors. 

 

Figure 12. SlaveApiService structure. 

em as in SlaveService is an Entity Manager. In SlaveApiService it is used for changing 

information about the master stored in the slave’s database.  

buzz is an HTTP client used for constructing request that are being send to the master. 

__construct function injects buzz and em dependencies  

auth is a function that is responsible for authentication of slave with the master. It checks 

if a slave has an API token in the database and if it does not, it sends a request for a 

token to the master. This function is executed every time before executing any other 

requests in the SlaveApiService and if authentication is not passed, other requests will 

not be executed. 

makeUrl is a function made for convenience of creating new requests, it uses necessary 

URL notation to create a valid request to the master.  
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getHeaders is a function made for convenience of creating new requests, it creates 

necessary request header to create a valid request to the master. 

executeGet is a function for creating GET requests. 

executePost is a function for creating POST requests. 

getSettings is a function that creates a request to the master that requests settings. 

handleError is a function that handles response error. Every time there is an error in 

response, this function checks the code of an error and reports about it. 

5.2 Master Structure 

Master structure consists only of the MasterController which defines the logic of 

responses on slave’s requests, generates slave’s settings and creates secure API 

tokens.   

5.2.1 MasterController 

MasterController is a controller which is responsible for handling requests from slaves 

and act accordingly. The controller contains 2 types of methods: those that act directly 

from certain requests and those that work internally within the controller (Figure 13). 
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Figure 13. MasterController structure. 

The methods that act directly to slaves’ request would be: `authAction()` which 

executes when a slave request a `/auth` path in a request URL and is responsible for 

authentication of slave, and `settingsAction()` which responds to `/settings` path 

and is responsible for validation of slaves’ settings and their sync (see more in Figure 6 

- Master communication algorithm).  

During an authentication of slave, MasterController may trigger other methods 

responsible for verifying a slave’s IP address and generating secure tokens.   

When a slave has been validated and it needs settings to return, MasterController 

triggers a set of methods that first retrieve necessary data from master’s database, 

convert it into a JSON format and return it back as a request’s response.  

request is a part of Symfony core components, it is responsible for handling incoming 

requests and responding to them.   

setContainer is a function that executes on every incoming request. In MasterController 

it is used for getting request data. 

authAction is a function which executes when a slave requests “/auth” path in a request 

URL. It is responsible for authentication of slave. 
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settingsAction is a function which executes when a slave requests “/settings” path in a 

request URL. It is responsible for validation of slaves’ settings and their sync data (see 

more in Figure 6 - Master communication algorithm).  

getSlaveSettings is a function which executes if validation in settingsAction passed and 

a slave needs new settings. The function collects all necessary data for slave’s 

synchronization process and returns it back. This function uses several other functions 

within MasterController that help it to prepare data for a request. First, it collects data 

from necessary entities and converts this data into an array using normalizeObject 

function. However, sometimes entities have references to other entities and in this case 

callbacks are necessary. Instead of getting a reference to another entity, 

getDefaultNormalizerCallback constructs a callback that will fetch referenced entity’s id.  

getSlaveFromRequest is a function that collects data from slave’s request and matches 

it’s “secret” with data stored in the master database.  

cryptoRandSecure and getToken are function that generate a random secure API 

token. Those function are using during authentication process, when the master confirms 

slave’s rights for authentication and grants it an API token. 

  



22 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko 

6 TESTING 

In the testing example, a master and a slave were created on the same machine. 

Sending a HTTP request will be handled manually via slave’s command (which will be 

used by Cron in the production version). 

6.1 Configuring a slave 

First, it is necessary to give a slave some settings that would allow it to connect to the 

master (Figure 14). 

 

Figure 14. Configuring new slave. 

Only 2 values need to be set for a new slave manually: url and secret. The slave will use 

url as a path URL for sending requests to the master and use secret as its name. Other 

parameters will be initially set by default and are not necessary at this stage.  

Since this is the first slave created on the master and id value is an Auto Increment, the 

id of the slave is 1. The next step is to assign the slave to a customer by adding 1 to 

slave_id field (Figure 15). 
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Figure 15. Add slave to a customer. 

6.2 Sending first request to the master 

To send a first request to the master, the following command is executed on the slave: 

“php app/console slave:sync”. This command triggers synchronization mechanisms, 

which in absence of an API key will invoke authentication process (see more in Figure 7 

- Slave communication algorithm). The result of such process is: 401: Unauthorized, 

which means that the slave is not yet authorized to the master. However, the master has 

recorded the slave’s activity (Figure 16). 
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Figure 16. Slave is pending for authorization. 

Now the slave exists in the state of pending for authentication. In the production version, 

it will be scheduled to send request until it obtains a permission to authorize.  

6.3 Authenticating the slave 

To authenticate the slave, it is necessary to allow to sync and for that the value in the 

is_enabled field must be changed from 0 to 1. After this is done, the next slave’s request 

for authentication will be successful. The slave receives in a master’s response to an 

authentication request (Code snippet 1): 

Code snippet 1. Headers data of master's response for slave authentication request. 

The slave notices that response’s headers contain API token in Authorization field and 

saves it to its database (Figure 17). 

 

Figure 17. Slave after authenticating to the master. 

6.4 Updating settings 

Until no new settings available on the master and the slave does not have any settings 

available, it continues to send requests to the master checking for new settings. 

When new settings for the slave applied on the master, it will change 

setting_last_updated field to a timestamp when those changes were made as it shown 

on Figure 18. 

[0]=>string(30) "content-type: application/json" 

[1]=>string(15) "Secret: slave-1" 

[2]=>string(24) "Settings-Last-Updated: 0” 

[3]=>string(27) "Authorization: L9VTeprTJMoM” 
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Figure 18. Updated slave's timestamp after changed settings. 

Now, when the slave makes another request to the master, the master compares 

settings_last_updated passed by the slave and its own. In the current situation settings 

on the master were changed and the master prepared settings in a JSON format to 

respond it to the slave. 

Code snippet 2. Simplified view of customer data before master sends it to slave. 

When the new setting was saved on the slave, it  updated the settings_last_updated 

field to the same value as on master which would allow master to compare for its values 

for the future settings updates as it shown on Figure 19. 

Object 

( 

    [1] => Object 

    ( 

        [customer] => Object 

        [customerHasServices] => Object 

        [branches] => Object 

        [branchServiceIdentifiers] => Object 

        [stocks] => Object 

        [stockServiceIdentifiers] => Object 

        [shopVersions] => Object 

        [shopVersionServiceIdentifiers] => Object 

        [activeShopVersions] => Object 

        [shippingMethods] => Object 

        [shippingMethodServiceIdentifiers] => Object 

        [paymentTerms] => Object 

        [paymentTermServiceIdentifiers] => Object 

        [paymentMethods] => Object 

        [paymentMethodServiceIdentifiers] => Object 

        [shelfs] => Object 

        [shelfServiceIdentifiers] => Object 

        [services] => Object 

        ) 

) 
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Figure 19. Slave’s updated settings. 
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7 CONCLUSION 

The main idea of the thesis was to optimize synchronization process by distributing work 

of one machine into several via implementing master/slave communication structure, 

was fulfilled. There is a master machine that contains customer data and slave’s settings 

and then distributes synchronization work to slaves by giving them necessary settings. 

The application was tested in a development environment and showed positive results 

of work. 

The application was optimized as planned, based on the master/slave structure. Master 

and slave applications run on Ubuntu operating system and are scheduled to work by 

Cron. The application itself was implemented in the PHP programming language using 

the Symfony framework, MySQL was used for database and JSON data format for data 

transfer between master and slaves. The application’s logic was implemented according 

to the logic and communication algorithms as well as general structure design. The main 

challenges of the thesis were to understand the general structure of the application 

implementation and to understand and describe the application process in a 

master/slave communication structure. 

The application is not yet used in the production environment due to the missing features 

that are out of the scope of the thesis. The application will be completed within the 

organization scope and then will be put to production environment. The features that will 

be added to the application before production: an interface that would allow monitoring 

and control of slaves, additional control interactions of syncing process from master on 

slave, automation of a slave creating process.  
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