
Bachelor’s thesis

Information Technology

NINFOS14

2018

Nikolay Baychenko

IMPLEMENTING A
MASTER/SLAVE
ARCHITECTURE FOR A DATA
SYNCHRONIZATION SERVICE

BACHELOR’S | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2018 | 28 pages

Nikolay Baychenko

IMPLEMENTING A MASTER/SLAVE
ARCHITECTURE FOR A DATA
SYNCHRONIZATION SERVICE

A data synchronization service called “Tehden connector” is an application developed by
Codaone Ltd to synchronize data between online stores and Tehden Ltd. The application is being
used by a certain number of customers and supports a variety of E-commerce platforms.

The purpose of this thesis was to implement optimization of the “Tehden connector” in a
master/slave architecture to make the application more scalable, robust, and decentralized.

The application operates on the Ubuntu operating system, implemented via the PHP framework
– Symfony and supported by the MySQL database management system. The optimization was
conducted as a refactoring of the current application, with the addition of using HTTP as data
transfer protocol and JSON as data structure for an internal communication within the
master/slave structure.

The logic of the optimization is implemented in a way that instead of storing and operating all
tasks on one machine, it stores settings and customer data on a master machine and the master
assigns executable tasks to slave machines

The database of the application was extended with different structure both for the master and the
slaves in a way that the master stores settings and connections between customers and slave,
and the slaves store credentials necessary for communicating with the master.

The refracturing of the code was implemented as an addition of the current application with
master/slave communication features and creation of relations between the main code and the
communication features.

The tests revealed that optimization was implemented successfully and that the “Tehden
connector” can work within a master/slave communication structure. However, the optimization
was not released into the production environment due to the missing features that are out of the
scope of the thesis.

The implementation of the optimization within the scope of this thesis has proven that the “Tehden
connector” is able to work within a master/slave communication architecture. However, to provide
production ready solution, more work will be performed by Codaone Oy in the future.

KEYWORDS:

Master/slave, optimization, PHP, Symfony, MySQL

CONTENTS

1 INTRODUCTION 1

1.1 Background of the topic 1

1.2 Statement of the problem 2

1.3 Scope and objectives 2

1.4 Justification of the project 3

2 RELEVANT TECHNOLOGIES 4

2.1 Ubuntu operating system 4

2.2 PHP programming language 4

2.3 Symfony framework 5

2.4 MySQL database 5

2.5 JSON data format 5

3 APPLICATION DESCRIPTION 7

3.1 Main idea and structure 7

3.2 Logic structure and algorithm 8

3.3 Master communication algorithm 9

3.4 Slave communication algorithm 10

4 DATABASE DESIGN 13

5 IMPLEMENTATION 16

5.1 Slave structure 16

5.1.1 Cron 16

5.1.2 SlaveCommand 16

5.1.3 SlaveService 16

5.1.4 SlaveAPIService 17

5.2 Master Structure 19

5.2.1 MasterController 19

6 TESTING 22

6.1 Configuring a slave 22

6.2 Sending first request to the master 23

6.3 Authenticating the slave 24

6.4 Updating settings 24

7 CONCLUSION 27

REFERENCES 28

 FIGURES

Figure 1. Master/slave basic structure. 1
Figure 2. Structure of Tehden connector before optimization. 2
Figure 3. Structure of Tehden connector after optimization. 7
Figure 4. Logic structure of creating a new slave. 8
Figure 5. Logic structure of, regular communication exchange. 9
Figure 6. Master communication algorithm. 10
Figure 7. Slave communication algorithm. 12
Figure 8. Database slave table structure. 13
Figure 9. Database master table structure. 14
Figure 10. Database customer table structure. 15
Figure 11. SlaveService structure. 17
Figure 12. SlaveApiService structure. 18
Figure 13. MasterController structure. 20
Figure 14. Configuring new slave. 22
Figure 15. Add slave to a customer. 23
Figure 16. Slave is pending for authorization. 24
Figure 17. Slave after authenticating to the master. 24
Figure 18. Updated slave's timestamp after changed settings. 25
Figure 19. Slave’s updated settings. 26

 CODE SNIPPETS

Code snippet 1. Headers data of master's response for slave authentication request. 24
Code snippet 2. Simplified view of customer data before master sends it to slave. 25

LIST OF ABBREVIATIONS AND TERMS

API Application programming interface

CUI Console User Interface

CLI Command-line Interface (Text mode programs (CUI: Console

User Interface)" Wine User Guide. Retrieved Sep 22, 2013.)

Controller A controller, in a computing context, is a hardware device or

a software program that manages or directs the flow of data

between two entities (A definition of controller by Margaret

Rouse)

Entity An entity is an object that exists and is distinguishable from

other objects (Entities and Entity Sets by Osmar R. Zaï ane)

Optimization In computer science, program optimization or software

optimization is the process of modifying a software system to

make some aspect of it work more efficiently or use fewer

resources. In general, a computer program may be optimized

so that it executes more rapidly, or is capable of operating

with less memory storage or other resources, or draw less

power. (Robert Sedgewick, Algorithms, 1984, p. 84)

OS Operating system

Sync Synchronization

PHP Recursive acronym: Hypertext Preprocessor (PHP: What is

PHP – Manual)

HTML Hypertext Markup Language

LAMP Linux Apache MySQL PHP

JSON JavaScript Object Notation

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

UI User Interface

UNIX A family of general purpose, multi-user operating systems

originated from the original AT&T Unix (Ritchie, D.M;

Thompson, K., The UNIX Time-Sharing System, July 1978)

IP Internet Protocol

ID In database science, Identity Column

GET An HTTP method request that requests a specified resource

(Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen,

Henrik Frystyk; Masinter, Larry; Leach, Paul J.; Berners-Lee,

Tim, Hypertext Transfer Protocol – HTTP/1.1, June 1999)

POST An HTTP method request that requests a server to accept an

entity enclosed in the request as a new subordinate of a web

resource (Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.;

Nielsen, Henrik Frystyk; Masinter, Larry; Leach, Paul J.;

Berners-Lee, Tim, Hypertext Transfer Protocol – HTTP/1.1,

June 1999)

1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

1 INTRODUCTION

1.1 Background of the topic

In computer networking, master/slave is a model for a communication protocol in which

one device or process (known as the master) controls one or more other devices or

processes (known as slaves) [1] (Figure 1).

Figure 1. Master/slave basic structure.

Master/slave optimization that is being applied to a sync application (Tehden connector)

is a process of refactoring of the application, changing its structure and the way of

working to achieve optimization goals. The Tehden connector is an application that

performs synchronization of customer data between online stores which allows these

customers to reduce the manual work of synchronization of the content, product

information and stocks between multiple stores as it shown in Figure 2.

The Tehden connector consists of one application which is written in PHP using the

Symfony framework. The application is supported by a MySQL database and it runs on

the Ubuntu operating system which allows it to run on the LAMP (Linux Apache MySQL

PHP) environment, and automates the process of work using Cron.

2

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

The interface of the application is separated into 2 types. The web interface, which is

accessible in an Internet browser, is mostly meant for workers of Tehden Oy who operate

with customer data personally. The CLI set of commands is used for different sync

operations and used mostly by Cron and developers of Codaone Oy.

Figure 2. Structure of Tehden connector before optimization.

1.2 Statement of the problem

The Tehden connector is a complex software solution that requires a great amount of

processing power to work fast. With a growing number of customers who wish to

synchronize their data across online stores, it is essential that the current solution is

flexible to growth. Master/slave technology model optimization will help the application

to be scalable to the growing number of customers.

1.3 Scope and objectives

The objective of this thesis is to implement an optimization for the Tehden connector in

a master/slave technology model. The application will be modified in a way that it could

be configured to be either master or slave. The master and its slaves will be placed on

different machines (physical or virtual) and work individually from each other, yet at the

same rate, the slaves will be exchanging information with the master that will give them

instructions to sync data.

3

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

The optimization will make the application flexible to the growth of customers and make

it more secure when physical failures occur.

1.4 Justification of the project

Even though the main justification of the project is an optimization of the synchronization

service that will benefit only to the companies that use it. Potentially, this thesis could

be used as an example or materials for other people who would like to use master/slave

technology model to optimize their application.

4

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

2 RELEVANT TECHNOLOGIES

This chapter introduces the main technologies used in this thesis project. The main

technologies are: Ubuntu operating system, PHP programming language, Symfony

framework, MySQL database, JSON data format.

2.1 Ubuntu operating system

Ubuntu is an open source operating system which is a Linux distribution based on

Debian's architecture and infrastructure [2]. Ubuntu was chosen as the host operating

system for numerous reasons. One of the reasons is that Ubuntu provides great amount

of Web server software such as: Apache HTTP Server, Nginx, Varnish, Cherokee,

Lighttpd and OpenLiteSpeed, however only Apache was chosen for hosting the

application due to the fact that it provides great support from the community of

developers and an easy configuration. Besides the fact that Linux is safe in terms of

viruses [3] and stability - “these systems can easily run for months or years without the

need for restart and requiring only minimal maintenance” [4], which is a good

combination for a server that requires stability and security.

Another reason why Ubuntu was chosen as an OS for this solution is its job scheduler

- Cron. “Cron is the name of program that enables unix users to execute commands or

scripts (groups of commands) automatically at a specified time/date.” [5], which makes

it a great solution for the Tehden connector to run sync scripts (both customer and

master/slave related) automatically in a scheduled time.

2.2 PHP programming language

PHP, which stands for "PHP: Hypertext Preprocessor" is a widely-used Open Source

general-purpose scripting language that is especially suited for web development and

can be embedded into HTML.” [6]. The PHP programming language was chosen

because Tehden connector is not only a software that synchronizes customer data but

also displays its interface as a web application, which can be well implemented with

Symfony framework. Considering the fact that the Tehden connector combines both

these functions as a synchronizer and an interface, it is the easiest option to implement

5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

master/slave related code refactoring and additions in the same application

environment. Having all the structure: entities, controllers and services implemented

within one application, makes it simple to retrieve data for master/slave optimization.

Other options, such as using external application, would still require creating an

Application Programming Interface (API) in the current application to communicate with

external one.

2.3 Symfony framework

“Symfony is a set of PHP Components, a Web Application framework, a Philosophy,

and a Community — all working together in harmony.” [7] Symfony is a tool that

combines multiple PHP components into one framework. Symfony was chosen for its

abilities to create entities based on table in database, functionality of controllers,

services, ability to create custom APIs which would allow to establish communication

exchange between master and slaves.

2.4 MySQL database

MySQL is an open-source relational database management system (RDBMS) [8].

MySQL is widely used and has a very well written documentation as well as a large

community of developers who use it, which makes developing and supporting systems

with MySQL easy.

MySQL integration is also available in PHP and Symfony provides a third-party library

called Doctrine which is used in the application.

2.5 JSON data format

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy

for humans to read and write. It is easy for machines to parse and generate. It is based

on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition

[9]. JSON is a text format that is completely language independent but uses conventions

that are familiar to programmers of the C-family of languages, including C, C++, C#,

Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

data-interchange language [10]. In this application JSON is used as a format for data

exchange between master and slaves via the HTTP protocol.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

3 APPLICATION DESCRIPTION

3.1 Main idea and structure

The main idea behind the Tehden connector after master/slave optimization, as it

expressed in Figure 3, is that the main application will be used both on master and

slaves. However, different configurations will be applied. The master will have certain

configurations that will specify its role as a master in the structure. Also, slaves, in their

turn, will get certain configurations that will specify them as slaves. Customers will be

interacting directly only with master and the master will store their configurations that

specify stores and how to operate with these stores. A certain customer or several

customers will be linked to a specific slave that will operate their synchronization. Slaves

will receive configurations from the master with specifications of which customers they

need to sync and how.

Figure 3. Structure of Tehden connector after optimization.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

3.2 Logic structure and algorithm

If the master is already configured and set, the process starts with creating a new slave

(Figure 4). When the new slave has been created and set up with enough information to

know how to communicate with the master, it starts attempting to authorize to the master.

After the authorization request has been sent, on the master’s application User Interface

(UI) appears a pending request from the slave. To proceed with the process, the master’s

user must confirm the slave from the UI manually. When the slave is not confirmed, it is

sending authorization requests and receives “401 Unauthorized” responses/messages.

After the slave has been confirmed, its authorization request receives response as an

API token that slave will store in its database. As soon as the API token has been saved,

the slave will start attempting to retrieve settings from the master. After the master

accepts the request from the slave, it responds with current settings relevant to the

slave.

Figure 4. Logic structure of creating a new slave.

After the slave has successfully acquired settings from the master and started to sync,

the following communication exchange runs on a regular basis as it shown on Figure 5.

The slave checks if there are any new settings that it should receive from master. It sends

a request for settings to the master, if the master performs a check if the settings for the

specified slave were changed by a customer. If the settings were not changed, the

master responds with a “200 OK” response, which the slave will interpret as the master

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

is alive, nothing was changed and continue to sync. However, if the settings were

changed, the master will get new settings and send them back to the slave. On acquiring

new settings, the slave will update settings that were changed and continue to sync.

Figure 5. Logic structure of, regular communication exchange.

3.3 Master communication algorithm

From the master’s point of view, a logic structure, while processing the slave’s requests

could be expressed in more steps as it shown on Figure 6.

After retrieving a request, the master checks if the requesting client (client as a request

client) exists in the database. If the client does not exist, the master records the client’s

data in to the database and responds back to the slave with a “401 Unauthorized”

response. When the master records a new client into the database, the record appears

as a pending slave in the master’s application UI, which the user can later confirm to

allow the slave to authorize. This simple mechanism prevents unwanted client’s access

to restricted data since the user will recognize the client as slave by its information.

When the master retrieves a request and from the data from the request it can be

concluded that the client is a slave that already exists in the database, the master will

perform a check to determine if the slave is enabled (confirmed) by a user. If the slave

is not confirmed, the master will respond to the slave with “401 Unauthorized”. However,

if the slave is enabled, the master will perform a check to determine if the slave’s request

headers contain an API token. If the API token does not exist, the master will generate it

for the slave and send a response that will contain an API token, which will authorize the

slave for future requests. If the slave is already authorized (headers contain an API

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

token), the master will check if the slave needs new settings. If the slave needs new

settings, the master will return them as a response and if the slave does not need new

settings the master will respond “200 OK”.

Figure 6. Master communication algorithm.

3.4 Slave communication algorithm

From the slave’s point of view, a logic structure, while attempting to get settings from the

master could be expressed in more steps. In the Figure 7 algorithm shows an execution

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

of a Cron every time the slave runs synchronization and the algorithm determines if the

synchronization should be performed or not.

First, the slave conducts a check to determine if an API token exists in its database. If

the API does not exist in the database, it means that slave is not authorized and it then

it performs an authorization request to the master. If, because of authorization request,

an API token was retrieved, the slave will save it to the database.

If the slave is already authorized (it has an API token), the slave will check if the sync

settings exist and this will help to determine if it is a new set up or an updating of settings.

The only difference between having sync settings already and getting new ones is that

when there are already some settings, the slave will perform a check to determine if new

settings are available. If there are no new settings available, the slave will not request

any settings from the master and continue performing synchronization. However, if new

settings are needed or there are no settings at all, the slave will request settings from

the master while also including the API token in the request’s headers to authorize. If the

result of the request was getting new settings, the slave will save the settings and might

perform sync on its next iteration if no settings changed since the last check.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 7. Slave communication algorithm.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

4 DATABASE DESIGN

Both the master and slave use databases for storing data necessary for their

communication. Because master and slave use the same application, their database

structure is also the same even though the data is different. This chapter describes the

structure of databases’ tables that only involve master/slave optimization.

The table “slave” only used by master and stores data about slaves that are already

confirmed and operational and those that are still pending for confirmation. The field

“secret” represents a slave’s name, “is_enabled” defines if slave can operate,

“settings_last_update” stores a UNIX time stamp for comparison of settings between

master and slave, “address” is an Internet Protocol (IP) address of a slave (Figure 8).

Figure 8. Database slave table structure.

The table “master” used on each slave. It stores data necessary to establish connection

with the master. The slave also keeps the master’s Uniform Resource Locator (URL)

address in the “url” field as it is necessary for slave to know where it should forward its

requests (Figure 9).

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 9. Database master table structure.

The table “customer” is mainly used for the synchronization process. However, the field

“slave” serves as reference to the slave Identity Column (ID) in table “slave”, hence the

master determines which slave is used for a certain customer using this table (Figure

10).

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 10. Database customer table structure.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

5 IMPLEMENTATION

As it has been mentioned previously, the application itself can serve both as a master or

a slave. The type is determined by configurations.

5.1 Slave structure

Slave structure consists of several components where a Cron schedule triggers the

SlaveCommand, SlaveCommand triggers SlaveService which contains the logic for the

slave’s behavior related to settings and uses SlaveApiService as an interface for

communication with the master.

5.1.1 Cron

On the slave side, the factor that initializes slave to sync settings with the master is Cron.

Cron is set up on Linux slave machine and scheduled to run slave command every n

interval. A Cron task can be set up by running the following command in a terminal:

“crontab -e”. After running this command, an editor with Cron tasks will be opened where

tasks could be inserted. Example: “*/15 * * * * php /var/www/html/app/console

slave:sync”, will run slave synchronization command every 15 minutes [11].

5.1.2 SlaveCommand

The next layer of the slave’s work is the SlaveCommand which is called with Cron as the

“slave:sync”. SlaveCommand is simply a command built within the application that reacts

to CLI with combination of letters as the slave:sync. SlaveCommand, after being called,

executes settings synchronization within the application’s SlaveService.

5.1.3 SlaveService

SlaveService is a service of the application responsible for the slave’s logic during

settings synchronization. The service contains necessary methods that allow it to

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

validate settings with the master, retrieve it (if necessary) and update on the slave (Figure

11). To establish communication with the master, the slave uses SlaveAPIService.

Figure 11. SlaveService structure.

slaveApiService in the scope of SlaveService is an instance of the service, which serves

to call serves’ methods.

em is an Entity Manager, it is part of the Doctrine (third party integration that Symfony

uses to handle databases). In the scope of SlaveService, em is used to create/update

entities necessary for a slave’s synchronization, settings that master sends back to the

slave.

MASTER_ID is simply a constant that defines master ID in a slave’s database.

__construct function injects dependencies of em and slaveApiService.

syncSettings is a function that is being called from SlaveCommand and it’s main

responsibility is to validate if a slave needs new settings and act accordingly to the

situation.

updateSettings is a function that is being called by syncSettings when it receives new

settings from master. It updates existing settings to new settings from the master or

creates new if settings do not exist on a slave.

5.1.4 SlaveAPIService

SlaveAPIService contains necessary methods that serve as a communication interface

between the slave and master (Figure 12). When SlaveService executes some

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

operations that require data exchange with the master, it uses SlaveAPIService to

generate an HTTP request understandable for the master and sends it. SlaveAPIService

is responsible for operations/tasks such as: authentication process, construction of URL

path, handling a request’s headers, constructing and sending GET and POST requests

and handling HTTP response errors.

Figure 12. SlaveApiService structure.

em as in SlaveService is an Entity Manager. In SlaveApiService it is used for changing

information about the master stored in the slave’s database.

buzz is an HTTP client used for constructing request that are being send to the master.

__construct function injects buzz and em dependencies

auth is a function that is responsible for authentication of slave with the master. It checks

if a slave has an API token in the database and if it does not, it sends a request for a

token to the master. This function is executed every time before executing any other

requests in the SlaveApiService and if authentication is not passed, other requests will

not be executed.

makeUrl is a function made for convenience of creating new requests, it uses necessary

URL notation to create a valid request to the master.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

getHeaders is a function made for convenience of creating new requests, it creates

necessary request header to create a valid request to the master.

executeGet is a function for creating GET requests.

executePost is a function for creating POST requests.

getSettings is a function that creates a request to the master that requests settings.

handleError is a function that handles response error. Every time there is an error in

response, this function checks the code of an error and reports about it.

5.2 Master Structure

Master structure consists only of the MasterController which defines the logic of

responses on slave’s requests, generates slave’s settings and creates secure API

tokens.

5.2.1 MasterController

MasterController is a controller which is responsible for handling requests from slaves

and act accordingly. The controller contains 2 types of methods: those that act directly

from certain requests and those that work internally within the controller (Figure 13).

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 13. MasterController structure.

The methods that act directly to slaves’ request would be: `authAction()` which

executes when a slave request a `/auth` path in a request URL and is responsible for

authentication of slave, and `settingsAction()` which responds to `/settings` path

and is responsible for validation of slaves’ settings and their sync (see more in Figure 6

- Master communication algorithm).

During an authentication of slave, MasterController may trigger other methods

responsible for verifying a slave’s IP address and generating secure tokens.

When a slave has been validated and it needs settings to return, MasterController

triggers a set of methods that first retrieve necessary data from master’s database,

convert it into a JSON format and return it back as a request’s response.

request is a part of Symfony core components, it is responsible for handling incoming

requests and responding to them.

setContainer is a function that executes on every incoming request. In MasterController

it is used for getting request data.

authAction is a function which executes when a slave requests “/auth” path in a request

URL. It is responsible for authentication of slave.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

settingsAction is a function which executes when a slave requests “/settings” path in a

request URL. It is responsible for validation of slaves’ settings and their sync data (see

more in Figure 6 - Master communication algorithm).

getSlaveSettings is a function which executes if validation in settingsAction passed and

a slave needs new settings. The function collects all necessary data for slave’s

synchronization process and returns it back. This function uses several other functions

within MasterController that help it to prepare data for a request. First, it collects data

from necessary entities and converts this data into an array using normalizeObject

function. However, sometimes entities have references to other entities and in this case

callbacks are necessary. Instead of getting a reference to another entity,

getDefaultNormalizerCallback constructs a callback that will fetch referenced entity’s id.

getSlaveFromRequest is a function that collects data from slave’s request and matches

it’s “secret” with data stored in the master database.

cryptoRandSecure and getToken are function that generate a random secure API

token. Those function are using during authentication process, when the master confirms

slave’s rights for authentication and grants it an API token.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

6 TESTING

In the testing example, a master and a slave were created on the same machine.

Sending a HTTP request will be handled manually via slave’s command (which will be

used by Cron in the production version).

6.1 Configuring a slave

First, it is necessary to give a slave some settings that would allow it to connect to the

master (Figure 14).

Figure 14. Configuring new slave.

Only 2 values need to be set for a new slave manually: url and secret. The slave will use

url as a path URL for sending requests to the master and use secret as its name. Other

parameters will be initially set by default and are not necessary at this stage.

Since this is the first slave created on the master and id value is an Auto Increment, the

id of the slave is 1. The next step is to assign the slave to a customer by adding 1 to

slave_id field (Figure 15).

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 15. Add slave to a customer.

6.2 Sending first request to the master

To send a first request to the master, the following command is executed on the slave:

“php app/console slave:sync”. This command triggers synchronization mechanisms,

which in absence of an API key will invoke authentication process (see more in Figure 7

- Slave communication algorithm). The result of such process is: 401: Unauthorized,

which means that the slave is not yet authorized to the master. However, the master has

recorded the slave’s activity (Figure 16).

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 16. Slave is pending for authorization.

Now the slave exists in the state of pending for authentication. In the production version,

it will be scheduled to send request until it obtains a permission to authorize.

6.3 Authenticating the slave

To authenticate the slave, it is necessary to allow to sync and for that the value in the

is_enabled field must be changed from 0 to 1. After this is done, the next slave’s request

for authentication will be successful. The slave receives in a master’s response to an

authentication request (Code snippet 1):

Code snippet 1. Headers data of master's response for slave authentication request.

The slave notices that response’s headers contain API token in Authorization field and

saves it to its database (Figure 17).

Figure 17. Slave after authenticating to the master.

6.4 Updating settings

Until no new settings available on the master and the slave does not have any settings

available, it continues to send requests to the master checking for new settings.

When new settings for the slave applied on the master, it will change

setting_last_updated field to a timestamp when those changes were made as it shown

on Figure 18.

[0]=>string(30) "content-type: application/json"

[1]=>string(15) "Secret: slave-1"

[2]=>string(24) "Settings-Last-Updated: 0”

[3]=>string(27) "Authorization: L9VTeprTJMoM”

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 18. Updated slave's timestamp after changed settings.

Now, when the slave makes another request to the master, the master compares

settings_last_updated passed by the slave and its own. In the current situation settings

on the master were changed and the master prepared settings in a JSON format to

respond it to the slave.

Code snippet 2. Simplified view of customer data before master sends it to slave.

When the new setting was saved on the slave, it updated the settings_last_updated

field to the same value as on master which would allow master to compare for its values

for the future settings updates as it shown on Figure 19.

Object

(

 [1] => Object

 (

 [customer] => Object

 [customerHasServices] => Object

 [branches] => Object

 [branchServiceIdentifiers] => Object

 [stocks] => Object

 [stockServiceIdentifiers] => Object

 [shopVersions] => Object

 [shopVersionServiceIdentifiers] => Object

 [activeShopVersions] => Object

 [shippingMethods] => Object

 [shippingMethodServiceIdentifiers] => Object

 [paymentTerms] => Object

 [paymentTermServiceIdentifiers] => Object

 [paymentMethods] => Object

 [paymentMethodServiceIdentifiers] => Object

 [shelfs] => Object

 [shelfServiceIdentifiers] => Object

 [services] => Object

)

)

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

Figure 19. Slave’s updated settings.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

7 CONCLUSION

The main idea of the thesis was to optimize synchronization process by distributing work

of one machine into several via implementing master/slave communication structure,

was fulfilled. There is a master machine that contains customer data and slave’s settings

and then distributes synchronization work to slaves by giving them necessary settings.

The application was tested in a development environment and showed positive results

of work.

The application was optimized as planned, based on the master/slave structure. Master

and slave applications run on Ubuntu operating system and are scheduled to work by

Cron. The application itself was implemented in the PHP programming language using

the Symfony framework, MySQL was used for database and JSON data format for data

transfer between master and slaves. The application’s logic was implemented according

to the logic and communication algorithms as well as general structure design. The main

challenges of the thesis were to understand the general structure of the application

implementation and to understand and describe the application process in a

master/slave communication structure.

The application is not yet used in the production environment due to the missing features

that are out of the scope of the thesis. The application will be completed within the

organization scope and then will be put to production environment. The features that will

be added to the application before production: an interface that would allow monitoring

and control of slaves, additional control interactions of syncing process from master on

slave, automation of a slave creating process.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Nikolay Baychenko

REFERENCES

1. Rouse, M. (2008). What is master/slave? – Definition from WhatIs.com. [online]
searchnetworking.techtarget.com. Available at:
http://searchnetworking.techtarget.com/definition/master-slave

[Accessed 19 Feb. 2018].

2. Canonical Ltd, (2018). Debian is the rock on which Ubuntu is built. [online]
ubuntu.com. Available at: https://www.ubuntu.com/community/debian

[Accessed 19 Feb. 2018].

3. Granneman, S. (2003). Linux vs. Windows Viruses. [online] securityfocus.com.
Available at: https://www.securityfocus.com/columnists/188

[Accessed 24 Feb. 2018].

4. Kleinman, S (2012). Unix Fundamentals. [online] cyborginstitute.org. Available at:
http://cyborginstitute.org/projects/administration/unix-fundamentals/

[Accessed 24 Feb. 2018].

5. cogNiTioN, (1999). Newbie: Intro to cron. [online] unixgeeks.org. Available at:
http://www.unixgeeks.org/security/newbie/unix/cron-1.html

[Accessed 24 Feb. 2018].

6. The PHP Group, (2001-2018). PHP: Preface – Manual. [online] secure.php.net.
Available at: https://secure.php.net/manual/en/preface.php

[Accessed 24 Feb. 2018].

7. Potencier, F. (2018). What is Symfony. [online] symphony.com. Available at:
https://symfony.com/what-is-symfony

[Accessed 24 Feb. 2018].

8. solid IT gmbh, (2018). MySQL System Properties. [online] db-engines.com.
Available at: https://db-engines.com/en/system/MySQL

[Accessed 24 Feb. 2018].

9. Ecma International, (2017). ECMAScript® 2017 Language Specification. [online]
ecma-international.org. Available at: https://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf

[Accessed 24 Feb. 2018].

10. Ecma International, (2017). Introducing JSON. [online] json.org. Available at:
https://json.org/ [Accessed 24 Feb. 2018].

11. gweatherby, (2016). CronHowto – Community Help Wiki. [online] help.ubuntu.com.
Available at: https://help.ubuntu.com/community/CronHowto

[Accessed 24 Feb. 2018].

