KUONABETONIPOHJAISEN KOEKENTÄN SUUNNITTELU

Lakela Teemu

Opinnäytetyö
Tekniikka ja liikenne
Sähkö- ja automaatiotekniikka
Kaivosmuuntokoulutus
Insinööri (AMK)

2017
Tässä opinnäytetyössä dokumentoitiin toimeksiantajan tuotekehitysprojekti, jossa suunniteltiin teollisuusalueella sijaitsevan huoltohallin edustalle kovalta kultusta kestävä betonikenttä. Testikäyttöön tarkoitetussa betonikentässä käytytään hyvästi tehtaan tuotantoprosessissa syntyiä kuonapohjaisia kiviaineksiä.

Tähän työhön kirjattiin tietoa, jota syntyi suunnittelutyön aikana. Teoria-osuus helpottaa tiedon ymmärtämistä. Suunnitteluoision tietojen käytetään hyväksi betonilaatan varsinaisessa toteutuksessa, joka siirtyi seuraavalle vuodelle.

Työ onnistui sen suhteen, että suuri määrä tietoa saatiin kerättyä yhteen dokumenttiin. Se täyttääkö betonikenttä tavoitteensa, selviää vasta vuosia rakennuksen jälkeen.

Avainsanat
betoni, kuona, sementti, maanrakennus
This thesis was a part of a larger R&D-project: a cooperation of the client Tapojärvi and multiple UAS's in northern Finland. The aim of this thesis was to document the design process of a slag-based concrete field which has four major goals. The field will be later constructed using experimental concrete recipes which will utilize slag-based aggregates and fillers produced by Tornio steel plant.

This document is a collection of information gathered during the design phase of the structure. Various sources were used, including literature and meetings with specialists. Document will act as a manual during the construction phase of the concrete field.

The thesis was successful in its goal to produce the manual for the construction. Whether the concrete field itself will fulfill its goals remains to be seen, as it takes years of heavy use to see if the specifications of the field were met.

Key words concrete, slag, cement, earthworks
SISÄLLYS

1 JOHDANTO ... 8
 1.1 Toimeksiantaja ... 8

2 PROJEKTIN TAUSTAT .. 10

3 TEORIA .. 12
 3.1 Betoni ... 12
 3.2 Runkoaines .. 12
 3.2.1 Rakeisuuks ... 13
 3.3 Vesi .. 13
 3.4 Sementti ... 14
 3.5 Lisä- ja seosaineet ... 15
 3.5.1 Notkistimet .. 15
 3.5.2 Huokostimet ... 16
 3.5.3 Hidastimet ja kiihdyttimet .. 17
 3.6 Betonin lujuusluokat ... 17
 3.7 Kuonabetoni ... 18
 3.8 Geopolymeerit ... 18
 3.9 OKTO-murske .. 19
 3.10 Liikuntasamaat .. 19
 3.10.1 Työsaumat ja irrotussaumat ... 20
 3.10.2 Kutistumissaumat .. 20
 3.10.3 Liikuntasamaat ... 21
 3.10.4 Saumajako ... 21
 3.11 Tarvittavat laitteet ja koneet .. 21
 3.11.1 Betoniasema .. 21
 3.11.2 Asfaltinlevitin ... 24
 3.11.3 Kaksivalssinen täryjyrä ... 25

4 TYÖTURVALLISUUS ... 27
 4.1 Työturvallisuusnäkökohdat .. 27
 4.2 Riskianalyysi .. 28

5 SUUNNITTELU .. 32
 5.1 Koealueen maapohja .. 32
5.2 Betonikentän mitoitus... 32
5.3 Runko- ja muiden aineiden määrät..33
5.4 Betonimassan sekoitus ja laadunvalvonta ...35
5.5 Liikuntasuumat...36
5.6 Levitys..37
5.7 Tiivistäminen...38
5.8 Jälkihoito ja jälkiseuranta ...38

6 POHDINTA ...39

LÄHTEET ..40

LIITTEET ..42
ALKUSANAT

Kiitokset Tapojärven Juha Koskiselle mielenkiintoisesta aiheesta ja Annaleena Kostamolle kärsvällisyydestä toimia työn tarkastajana.

Kemissä 14.12.2017

Teemu Lakela
KÄYTETYT MERKIT JA LYHENTEET

<table>
<thead>
<tr>
<th>JT</th>
<th>jaloteräs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPa</td>
<td>megapascal, pascal (Pa) on paine, jonka yhden newtonin voima kohdistaa neliömetrin pinta-alalle</td>
</tr>
<tr>
<td>VKU</td>
<td>valokaariuuni</td>
</tr>
</tbody>
</table>
1 JOHDANTO

Tämän opinnäytetyön toimeksianto saatiin Tapojärvi Oy:ltä ja se on osa suurempaa yhteistyöprojektia Lapin AMK:n ja alueen muiden ammattikorkeakoulujen kanssa. Yhteistyö on tuottanut jo kaksi opinnäytetyötä, joiden tuottamaa tietoa hyödynnetään tämän työn suorittamisessa.

Työn tavoitteena oli suunnitella Outokumpu Stainless Oy:n tehdasalueella Torniossa sijaitsevan huoltohallin edustalle betonikenttä, sekä dokumentoida työn kulku. Betonikentällä on neljä tehtävää:

1. Luoda säänkestävä kulutuspinta huoltohallien edustalle, jossa liikennöi raskasta kalustoa.

2. Helpottaa alueen puhtaanapitoa.

3. Testata erilaisia betonireseptejä, joissa käytetään terästehtaan tuotantoprosessissa syntyviä sivutuotteita. Projektin tarkoitus on löytää sivutuotteille käyttökohteita.

4. Toimia kustannusselvityksenä.

Betonikentän pinta-ala on yli 900 m² ja se koostuu kolmesta erillisestä laataista, joilla on eri ominaisuuudet.

1.1 Toimeksiantaja

Tapojärvi Oy tarjoaa palveluja liittyen kaivosurakointiin, materiaalinkäsittelyyn ja teollisuusprosessien hoitoon. Yhtiö toimii Suomessa ja muissa Pohjoismaissa ja se työllistää 450 ihmistä. (Tapojärvi Oy 2017.)
Yhtiöllä on vuosikymmenien kokemus toiminnasta maanalaisilla kaivoksilla. Tavoitteena on toiminnan laajentaminen myös avolouhoksiin. Toimenkuvaan kuuluvat malmien ja sivukiven kuljetus, louhosten täyttö, maanalaisten teiden rakentaminen ja ylläpito, rusnaus-, varustelu-, sekä louhintatyöt. Tapojärvi toimii ja on toiminut osana muun muassa Kemin kromikaivoksen, Suurikuusikon kultakaivoksen ja Kylylahden monimetaallikaivoksen toimintaa. (Tapojärvi Oy 2017.)

Tapojärvi on erikoistunut terästeollisuudessa käsiteltävien materiaalien käsittelystä. Palveluihin kuuluvat muu muassa seulonta kiinteällä- tai mobiliseulontatäyttö, kierrätystä yksityiskohtaisesti, bulkin ajo, sekä erilaiset murskaamiset. Yhtiö toimii Outokummun terästehtaalla Torniossa ja SSAB:n Raahen terästehtaalla. (Tapojärvi Oy 2017.)
2 PROJEKTIN TAUSTAT

Kuva 1. Valokuva lähtötilanteesta huoltohallien edustalla.

Tämän työn tarkoitus on hallin edustalle rakennettavan betonikentän suunnittelun dokumentointi ja toteutussuunnitelman luominen, jonka perusteella rakennustyöt voidaan aloittaa seuraavana vuonna.

Betonikentällä on neljä tehtävää:

1. Luoda raskaan liikenteen ja sään kestävä kulutuspinta. Raskaimmat alueella liikkuvat pyöräkoneet painavat kauhakuormineen 49 tonnia ja tela-alustaiset kaivinkoneet 64 tonnia.

4. Toimia kustannusselvityksenä kyseisen kaltaisesta rakenteesta.

Taloudelliselta kannalta kuonapohjaisen betonin tulisi olla edullisempi ratkaisu perinteiseen betoniin verrattuna. Kuonan sementtimäiset ominaisuudet mahdollisesti vähentävät betonin kalleimman komponentin, sementin, tarvetta. Tämä mahdollisesti tekee kuonapohjaisesta betonista kustannustehokkaaman ratkaisun tietyissä tilanteissa.

3 TEORIA

Tässä osuudessa käydään läpi projektin kannalta oleellista teoriaa.

3.1 Betoni

Betonin tärkein ominaisuus on sen hyvä puristuslujuus. Vetolujuus sen sijaan on vain 10 % puristuslujuudesta. Betonin vetoljuuttta voidaan parantaa käyttämällä randoitustankoja. (Suomen Betoniyhdistys ry 2011, 79, 82.)

Runkoaineksen tilavuosuus betonista on 65-80 prosenttia. Runkoaines voi olla lähes mitä tahansa riittävän tiivistä ja luja materiaalia, joka ei osallistu sementin kemiallisiiin reaktioihin. Koska runkoainesta tarvitaan paljon, sen on oltava edullista ja sitä on oltava saatavilla reilusti. Yleinen runkoaines on luonnonkiviaines, joko sellaisenaan tai mekaanisesti murskattuna. Myös niin sanottuja keinotekoisia kiviaineksia, kuten betoni- tai tiilimurskaa, masuunikuonaa, lentotuhkaa tai kevytsoraa, voidaan käyttää. (Suomen Betoniyhdistys ry 2011, 31-32.)

Runkoaineksen on oltava betoniin soveltuvaa ja puhdasta. Kiviaines ei saa olla rapautunutta, eikä sen seassa saa olla epäpuhtauksia kuten jätteitä, öljyä tai savikkareita. Kiviaines ei saa myöskään sisältää jäättä tai lunta. Kasvi- ja eläin- kunnan lahoamisjätteet, eli niin sanotut humusaineet, voivat liiallisina määrinä vaikuttaa betonin ominaisuuksiin, mm. hidastamalla tai jopa pysäyttämällä betonin kovettumisreaktion. Kiviaines ei saa olla radioaktiivista, eikä sisältä klorideja. (Suomen Betoniyhdistys ry 2011, 32, 37.)
3.2.1 Rakeisuus

Kiviaines luokitellaan taulukon 1 mukaan käyttämällä merkintää d/D, jossa d on rakeen alanimellisraja ja D rakeen ylimellisraja (Uusitalo, Ihanamäki, Rajala & Vallin 2002, 19.).

Taulukko 1. Kiviaineksen luokittelu raekoon mukaan. (Suomen Betoniyhdistys ry 2011, 33)

<table>
<thead>
<tr>
<th>Nimi</th>
<th>Raekoko d/D, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karkea</td>
<td>D/d = 2</td>
</tr>
<tr>
<td></td>
<td>D = 11,2</td>
</tr>
<tr>
<td></td>
<td>D/d > 2 ja D > 11,2</td>
</tr>
<tr>
<td>Hieno</td>
<td>0/4</td>
</tr>
<tr>
<td>Luonnonlajittama 0/8</td>
<td>0/8</td>
</tr>
<tr>
<td>Koostekiviaines</td>
<td>0/45</td>
</tr>
</tbody>
</table>

Kuva 2. Betonin huono ja hyvä rakeisuus.

3.3 Vesi

Betonin valmistukseen käy juomakelpoinen luonnonvesi tai vesijohtoverkostosta otettu vesi. Teollisuuden tai asumisen saastuttamat vedet eivät käy. Myöskään
humuspitoiset suovedet eivät sovellu betonin valmistamiseen. Suovesi on hapanta ja sen sisältämät sulfidit ja sulfaatit haittaavat tai jopa kokonaan estävät betonin kovettumisreaktion. Edellisessä kappaleessa mainitut runkoaineksen puhtausvaatimukset koskevat myös vettä. (Suomen Betoniyhdistys ry 2011, 62-63.)

3.4 Sementti

Sementti on hydraulinen sideaine, joka reagoi veden kanssa. Se täyttää runkoainesrakeiden välisen tyhjän tilan ja liimaa rakeet yhteen. Syntyy kova ja kestävä lopputuote, betoni. (Suomen Betoniyhdistys ry 2011, 39.)

Sementin pääraaka-aine on kalkkikivi ja sen sisältämä kalsiumkarbonaatti (CaCO₃). Sementin valmistuksessa hienoksi jauhettu kalkkikivi käy läpi usean lämpökäsittelyn. Lopputuotteena syntyy portlandklinkkeriä, joka koostuu neljästä päämineraalista:

- trikalsiumsilikaatista (C₃S)
- dikalsiumsilikaatista (D₂S)
- trikalsiumaluminaatista (C₃A)
- tetrakalsiumaluminaattiferriiitistä (C₄AF). (Suomen Betoniyhdistys ry 2011, 39-40.)

Näiden mineraalien suhteita säätämällä vaikutetaan sementin ominaisuuksiin (Suomen Betoniyhdistys ry 2011, 40).

Sementtien tulee täyttää standardissa SFS-EN 197-1 asetetut vaatimukset. Standardi määrittelee tavallisten sementtien koostumukset ja laatuvaatimukset. Tavallisten sementtien valmistuksessa käytetään portlandklinkkeriä ja seosaineita ja ne ryhmitellään seuraavasti:

- CEM I Portlandsementti
- CEM II Portlandseossementti
Päälajeista voidaan johtaa 27 erilaista sementtilajia (Suomen Betoniyhdistys ry 2011, 42).

Tietyissä tilanteissa tarvitaan nopeasti kovettuvaa sementtiä, jolloin voidaan käyttää pikasementtiä. Pikasementtiä valmistetaan lisäämällä alumiinisulfaattia ja kipsiä. Sekoitettu pikasementti alkaa kovettumaan viiden minuutin jälkeen ja kovettuu puolessa tunnissa. Pikasementti sopii talvibetonointiin ja korkealujuusbetonin valmistukseen. (Suomen Betoniyhdistys ry 2011, 45; The Construction Civil 2017)

3.5 Lisä- ja seosaineet

Betonin ominaisuuksiin voidaan myös vaikuttaa käyttämällä lisääaineita, jotka vaikuttavat betoniin kemiallisesti tai fysikaalisesti. Niiden määrät ovat pieniä verrattuna betonin muihin ainesosiin, maksimissaan muutama prosentti sideaineen kokonaismäärästä. Lisäaineiden avulla voidaan helpottaa vaativien betonien, kuten pakkasenkestävien ja korkealujuuksisten betonien, valmistusta. Lisäaineiden käyttö vaatii tietämystä ja tarkkuutta, koska niillä on usein myös sivuvaikutuksia. Esimerkiksi huokostimien ja notkistimien yhteistoiminta voi olla epävarma. (Suomen Betoniyhdistys ry 2011, 63.)

Lisääineet ovat kemikaaleja, joten ne voivat aiheuttaa ihoärtsytystä. Tarkemmat tiedot aineen myrkyllisyystä löytyvät tuotteen mukana toimitettavasta käyttöturvallisuustiedotteesta. Käyttöturvallisuustiedote on löydyttävä tiloista, joissa aineita käsitellään. (Sihvonen 2010, 12.)

3.5.1 Notkistimet

Notkistimet toimivat sementin ja veden välillä muodostaen sementtihiukkasten ympärille ohuen kalvon, joka erottaa hiukkaset toisistaan. Sementin ja veden kon-
taktipinta suurenee, jolloin vesi pääsee paremmin tunkeutumaan sementtihiukkasten välissä. Annostus on noin 0,5-1,6 % sideaineen painosta, mutta suuremmatkin annostukset ovat mahdollisia tilanteesta ja notkistimesta riippuen. Notkistimien vaikutusaika vaihtelee varttitunnista useisiin tunteihin. (Sihvonen 2010, 10, 12.)

Notkistimet parantavat betonin teknisiä ja taloudellisia ominaisuuksia. Ne parantavat betonimassan koossapysyvyyttä ja pumpattavuutta. Niiden avulla voidaan vähentää betonissa käytettävän sementin ja veden määrää. Korkealjuuksisten betonien valmistus onnistuu pienemmällä vesimäärällä. (Sihvonen 2010, 10; Suomen Betoniyhdistys ry 2011, 64-65.)

Notkistimet luokitellaan notkistimiin, tehonotkistimiin ja nesteyttimiin. Notkistimilla saadaan aikaan betonimassa 5-15 % pienemmällä vesimäärällä, työstettävyyden pysyessä samana. Tehonotkistimilla vedenvähennys on 12-30 %. Nesteyttimet parantavat ainoastaan työstettävyyttä. Sama lisäämine voi toimia notkistimena tai nesteyttimenä, riippuen kuinka suuri osa lisäämineen tehosta käytetään vedenvähennykseen tai muukkautuvuuden parantamiseen. Notkistimien toimintaan vaikuttavat mm. sementtilaatu ja -määrä, runkoaineen rakeisuus, muut lisä- ja seosaineet, lämpötila, sekä betonisekoittimen teho. (Sihvonen 2010, 10.)

Jotkin notkistimet hidastavat betonin sitomisreaktioita ja vaikuttavat betonin lujuudenkehitykseen. Ne eivät sovellu kylmiin olosuhteisiin, jossa reaktiot tapahtuvat muutenkin hitaasti, eivät kai kohteisiin, jossa vaaditaan nopeaa muotikiertoa. Pitkäaikuiset notkistimet lisäävät veden erottumisriskiä ja mahdollisesti halkeiluriskiä. (Sihvonen 2010, 11; Suomen Betoniyhdistys ry 2011, 65.)

Notkistimia ei ole luokiteltu terveydelle haitallisiksi kemikaaleiksi. Ne voivat kuitenkin aiheuttaa ärsytystä silmissä tai iholla. Suojavarusteiden käyttö on suositeltavaa näitä aineita käsitellessä. (Sihvonen 2010, 12.)

3.5.2 Huokostimet

Huokostimet parantavat betonimassan muokattavuutta, koossapysyvyyttä ja kuljetuskestävyyttä, sekä vähentävät ainesosien erottumista. Niiden tärkein tehtävä

Lisääntyneen ilman määrä heikentää kovettuneen betonin lujuutta: karkea stiili arvioiden ilmamäärän lisääntymisen yhdellä prosentilla heikentää betonin lujuutta viisi prosenttia. (Suomen Betoniyhdistys ry 2011, 66-67)

3.5.3 Hidastimet ja kiihdyttimet

3.6 Betonin lujuusluokat

Rakennussementeillä on kolme lujuusluokkaa (32,5, 42,5 ja 52,5 MPa), jossa standardilujuudella tarkoitetaan betonin puristuslujuutta 28 vuorokauden iässä. Lisäksi betoniilla on kaksi varhaislujuusluokkaa, jotka kertovat betonin lujuuden kahden ja seitsemän vuorokauden iässä. Varhaislujuudet ilmaistaan jälkiliitteellä N tai R lujuusluokan perässä, jossa N on normaali varhaislujuus ja R on korkea varhaislujuus. Taulukko 2 esittää rakennussementin lujuusvaatimuksiset. (Suomen Betoniyhdistys ry 2011, 43-44.)
Taulukko 2. Rakennussementin lujuusvaatimukset. (Suomen Betoniyhdistys ry 2011, 44)

<table>
<thead>
<tr>
<th>Lujuusluokka</th>
<th>Puristuslujuus (MPa)</th>
<th>2 vrk</th>
<th>7 vrk</th>
<th>28 vrk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Varhaislujuus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,5 N</td>
<td>-</td>
<td>≥ 16,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,5 R</td>
<td>≥ 10,0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42,5 N</td>
<td>≥ 10,0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42,5 R</td>
<td>≥ 20,0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,5 N</td>
<td>≥ 20,0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,5 R</td>
<td>≥ 30,0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standardilujuus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,5 N</td>
<td>≥ 32,5</td>
<td>≤ 52,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,5 R</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42,5 N</td>
<td>≥ 42,5</td>
<td>≤ 62,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42,5 R</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,5 N</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52,5 R</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.7 Kuonabetoni

Tässä projektissa betonin runkoaineena käytetään valokaariunikuonaa, jonka käyttö edellyttää tiettyjen seikkojen huomioonottamista. Kuona sisältää mineraalleja, vapaata kalkkia ja magnesiaa, jotka reagoidessaan veden kanssa paisuvat ja saattavat rikkovat betonirakenteen. Reaktion nopeus riippuu partikkelin koosta. Pienet, alle 150 μm:n partikkelit, reagoivat jo betonin pitkien toimien veden kanssa. Suuremmat 8-16 mm partikkelit reagoivat vielä viileällä, jopa vuosien jälkeen, jolloin betoni on ehtinyt kovettua ja paisuminen aiheuttaa vaurioita. (Sarkkinen 2016, 3-5.)

Ennen kuin kuonaa voidaan käyttää, sen on annettava vanhentua kuukausien ajan. Tänä aikana kuonan sisältämät mineraalit ehtivät reagoida veden kanssa. Paisumisvaikutuksia voidaan myös pienentää käyttämällä teräskuonaa korvaamaan vain osa runkoaineesta. (Sarkkinen 2016, 3-5.)

3.8 Geopolymeerit

Geopolymeereja voidaan käyttää korvaamaan betonissa käytetty sementti osittain tai jopa kokonaan. Niiden käyttö ei ole vielä kovin yleistä, mutta tutkimustyö on lisääntynyt 2000-luvulla. Geopolymeereihin käytettävät materiaalit voivat olla alkuperäistä luonnollisia, kuten kaoliniittisavi, tai ne syntyvät teollisuuden sivu-
tuotteina lentotuhkan tai kuonien muodossa. Tämä tekee geopolymeereistä ym-
päristöystävällisemmän ratkaisun sementtiin verrattuna, koska sementti on val-
mistettava erikseen, joka vaatii paljon energiaa ja tuottaa hiilidioksidipäästöjä.
(U.S. Department of Transportation 2010, 1-2.)

Geopolymeeriksi soveltuva materiaali sisältää runsaasti piitä ja alumiinia. Näiden
keskinäinen suhde vaikuttaa geopolymeerin ominaisuuksiin. Geopolymeerit
muodostuvat pitkäketjuisista epäorgaanisista molekyyliketjuista ja verkostoista,
jonka syntyvä, kun piitä ja alumiinia sisältävä materiaali liuotetaan alkaliini akti-
voivaan liuokseen ja altistetaan lämmölle. (U.S. Department of Transportation
2010, 1-2.)

3.9 OKTO-murske

OKTO-rakennustuotteet, eli OKTO-murske ja OKTO-eriste, valmistetaan Tornion
terästehaan tuotantoprosessin sivutuotteena syntyvästä ferrokromikuonasta.
OKTO-murske valmistetaan murskaamalla ilmajäähdytetyn kuonat fraktioihin 0/5
ja 5/22 mm. Karkeampi fraktio käy läpi väliaine-erotuksen, jossa metalli otetaan
talteen murskeesta. Hienosta piirissä metallit poistetaan magneettierottimilla ja
spiraaleilla. Hienoineksen poistamiseksi murskeet käyvät läpi vesiseulonnan.
(Outokumpu Chrome Oy 2010, 4.)

Rakenteeltaan OKTO-murske on kiteistä, osittain lasista kovaa kiviainesta. Sen
vakiotuotannon fraktiot ovat seuraavat: 0/5, 4/8, 4/11, 8/11, 10/16 ja 16/22 mm.
(Outokumpu Chrome Oy 2010, 4-5.)

3.10 Liikuntasauomat

Betoni kutistuu kuivuessaan, jolloin syntyy liike saumakohdasta betonilaatan kesk-
kipistettä kohti. Lämpötilan aleneminen synnyttää samansuuntaista liikettä ja
lämpötilan kohoaminen laajentaa laattaa. Nämä liikkeet synnyttävät pakkovoimia,
jonka halkaisevat laatan, ellei laatalle jätetä liikkumisvaraa saumojen muodossa.
Saumat jaetaan:

- työsaumoiksi
• irrotussaumoiksi
• kutistumissaumoiksi
• liikuntasaumoiksi (Betoniteollisuus ry 2011.)

3.10.1 Työsaumat ja irrotussaumat

Työsaumat syntyvät, kun valu suoritetaan ruutumaisesti ruutu kerrallaan, sillä aina ei ole mahdollista suorittaa koko valua yhdellä kerralla. Työsauma on tehtävä aina kun betonointi keskeytetään niin pitkäksi aikaa, että betoni alkaa jäykistyä ennen töiden jatkamista. Betonointi voidaan tarvittaessa keskeyttää tekemällä muotti keskeytyskohtaan. (Betoniteollisuus ry 2011; Suomen Betoniyhdistys ry 2011, 240, 415)

Irrotussaumoilla maanvarainen laatta erotetaan muista rakenteista, kuten pystyrakenteista, koneperustuksista ja lattiakanavista (Betoniteollisuus ry 2011).

3.10.2 Kutistumissaumat

Kutistumissaumat sahataan valmiiseen lattiaan. Kun laatan kutistumisesta aiheutuvat vetovoimat ylittävät betonin vetojännityskapasiteetin, syntyy halkeama. Kutistumissaumalla halkeaman paikka on hallittavissa, sen sijaan, että se syntyy satunnaisena paikana. Saumojen väli tavallisen paksuisissa laatoissa on yleensä 4-6 metriä. Saumojen etäisyyden kasvu nostaa halkeiluriskiä. Sauma tehdään sahaamalla laatan pintaan noin 3 millimetriä leveä, jonka syvyys on 25-30 % laatan paksuudesta. (Betoniteollisuus ry 2011.)

Saumat on sahattava oikeaan aikaan. Liian aikaisen sahauksen seurauksena saumojen reunat saattavat vahingoittua. Liian myöhäinen sahas taas nostaa ris-kiä, että laatta alkaa halkeilla. Sopiva sahausajankohta on 16-40 tuntia valun jälkeen. Ajankohta on kuitenkin arvioitava tapauskohtaisesti betonilaadun, sementtityypin, kovetumisoloisuhteiden ja sahauskaluston mukaan. (Betoniteollisuus ry 2011.)
Sahatut saumat ovat käyttökelpoisia, kun laattaan ei kohdistu suuria pistekuormia tai kovapyöräistä kuormitusta, joka ajan myötä alkaa murentamaan saumojen reunoja (Betoniteollisuus ry 2011).

3.10.3 Liikuntasauamat

Liikuntasauamat sallivat betonilaatan laajanemisen, kutistumisen ja kiertymisen. Sauman kohdalla betonilaatta on kokonaan poikki. Liikuntasauama on usein myös työsauma. Ne toteutetaan yleensä esivalmistetuilla liikuntasauumaraudotteilla, jotka ovat tukevia ja pysyvät valun aikana paikallaan, siirtävät kuormaa sauman yli ja kestävät pyörärasitusta. Liikuntasauumaraudoite on valittava sen kuorman siirtokyvyn mukaan. (Betoniteollisuus ry 2011; Suomen Betonilattiayhdistys ry. 2012, 19.)

3.10.4 Saumajako

Saumoja sahatessa lattia jaetaan neliömäisiin ruutuihin. Sivujen suhteen tulisi olla korkeintaan 1,5. Saumaväli on noin 30 kertaa laatan paksuus. Liian pitkät saumavälit saattavat synnyttää suunnittelemattomia saumoja, eli kutistumishalkeamia. (Betoniteollisuus ry 2011.)

Mikäli maanvaraiseen betonilaattaan kohdistuu korkeita lämpötiloja, kuten aurinkon säteilyä, laattaan on järjestettävä paisuntasauamoja, joissa on liikevaraa noin 20 mm. (Betoniteollisuus ry 2011.)

3.11 Tarvittavat laitteet ja koneet

Tässä kappaleessa annetaan yleiskuvaus tärkeimmistä koneista ja laitteista, joita tarvitaan betonikentän toteutusvaiheessa.

3.11.1 Betoniasema

Betoniasema on betonin valmistukseen käytettävien laitteiden muodostama kokonaisuus. Asemalla

- varastoidaan betonin raaka-aineet
• lämmitetään runkoaines ja vesi
• mitataan ja annostellaan betonin osa-aineet
• sekoitetaan betonimassa
• suoritetaan laadunvalvonta (Ignatov 2012, 10.)

Betoniasemat jaetaan kiinteisiin ja siirrettäviin. Kuvan 3 mukaiset kiinteät asemat ovat jatkuvia työmaa-alueita ja ne pystyvät varastoimaan suuria määriä betonin ainesosia sekä tuottamaan paljon betonia. (Ignatov 2012, 10.)

Kuva 3. Kiinteä betoniasema. (Wikimedia)

Kuvassa 4 on esimerkki siirrettävästä asemasta, joka koostuu komponenteista, jotka purettuna ovat kuljetettavissa esimerkiksi kuorma-auton perävaunulla. Siirrettävä asema voidaan pystyttää väliaikaisesti työmaan läheisyyteen, jolloin betonia ei tarvitse kuljettaa pitkiä matkoja. Aseman käyttöönottoon kuluu päivä. (Ignatov 2012, 10-11.)
Kuva 5. Betonisikoitin KiBen betoniasemalla Torniossa.

Nykyaikainen betoniasema on tietokoneohjattu ja pitkälle automatisoitu, mikä mahdollistaa halutunlaisen betonimassan tarkan valmistuksen säätlemällä ainesosien sekoitussuhdetta (Ignatov 2012, 20).

3.11.2 Asfaltinlevitin

Asfaltinlevitin on pyörä- tai tela-alustainen kone, joka koostuu traktorista, syöttösiilosta ja levittimestä. Kuvassa 6 on esimerkki tela-alustaisesta mallista.

Kuva 6. Tela-alustainen asfaltinlevitin. (Wikimedia)

Levitin jakaa materiaalin tasaisesti halutun kaistan levyiseksi. Kuumennettu levitinlevy esitiivistää materiaalin paineen ja väripaikan. (SUMITOMO Asphalt Paver. 2016.)

3.11.3 Kaksivalssinen täryjyrä

Tiivistyskalustolla siirretään energiaa löysiin maa-aineeksi. Maarakeiden välissä oleva ilma ja vesi poistuvat. Materiaali asettuu tiheämmin, jolloin

- sen kuormankantokyky kasvaa
- vedentihkuminen vähentyy
- kerrosmateriaalin tiivistymisestä aiheutuva maaperän painuminen vähenee
- maa-aineksen laajeneminen vähenee
- roudan tunkeutuminen hidastuu (Asunen & Mäkelä 2013, 9-10.)

Jyrät ja muut tiivistäjät jaetaan kahteen ryhmään niiden toimintatavan perusteella. Staattisten tiivistäjien vaikutus perustuu koneen massaan. Dynaamiset tiivistäjät tuottavat massavaikutuksensa ohella impulssuja, jotka saavat maarakeet asettumaan lähemmäksi toisiaan. (Asunen & Mäkelä 2013, 9.)
Kuva 7. Kaksivalssinen dynaaminen jyrä. (Wikimedia)

Staattisilla valssijyrillä saadaan aikaan erittäin tasainen ja tiivis pinta. Huonona puolena ne eivät pysty tiivistämään paksuja kerroksia. Dynaamisen jyrän tuotteen tärinän ansiosta tiivistämisvaikutus ulottuu syvemmälle. Tietyissä tapauksissa tärinä voi olla haitallista ja se voi rikkoa herkkiä rakenteita. (Asunen & Mäkelä 2013, 9.)

Tämän projektin toteutukseen on alustavasti valittu dynaaminen kaksivalssijyrä. Kuvassa 7 esimerkki.
4 TYÖTURVALLISUUS

4.1 Työturvallisuusnäkökohdat

Työturvallisuusajattelun lähtökohta on työmaan eristäminen muusta alueesta. Työmaan sisällä toimivat urakoitsijat, jotka tuntevat omaan työhönsä liittyvät työturvallisuustoimet. Työmaa kuitenkin aiheuttaa riskejä myös ulospäin, mm. lisääntyneen liikenteen ja alueelle normaalisti kuulumattomien työkoneiden muodossa. Tämän osion tehtävä on määritellä näitä riskejä ja ehdottaa toimenpiteitä riskien minimoiniseksi ja ehkäisemiseksi.

Huoltohallin käyttöä ei voida keskeyttää valujen ajaksi, jonka vuoksi valu suoritetaan kahdessa vaiheessa kuva 8 näkyvällä jaolla. Valun ja kuivumisen aikana käytetään hallin eteläpään sisäänkäynntiä. Valujen aikana alueella liikkuu kalustoa, joka saattaa aiheuttaa vaaratilanteita. Alue on merkittävä ja rajattava, sekä luotava ohjeistus turvalliseen toimintaan.

Kuva 8. Yleiskuva alueesta. (Google Maps)
4.2 Riskianalyysi

Työturvallisuuden takaamiseksi tunnistetaan riskit betonikentän työmaalla työvaiheittain. Kuvassa 9 on alustava suunnitelma työvaiheista riskeineen.

<table>
<thead>
<tr>
<th>Työvaiheet</th>
<th>Työturvallisuus-riskit</th>
<th>Toimenpiteet riskien ehkäisemiseksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaspeleiden kellaus</td>
<td>Kellaus</td>
<td>Liikennövän koneen alle jääminen</td>
</tr>
<tr>
<td>Maanpoisto</td>
<td>Käytetyt koneet</td>
<td>Koneen alle jääminen</td>
</tr>
<tr>
<td></td>
<td>Läijyys</td>
<td>Pölyäminen</td>
</tr>
<tr>
<td></td>
<td>Kaivannon suojus</td>
<td>Kaivannon putoaminen</td>
</tr>
<tr>
<td></td>
<td>Heikkojen kohtien mahdollisyydet</td>
<td>Työntö OKTO-munareiteilla</td>
</tr>
<tr>
<td></td>
<td>Tiivistys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heitön aseman sijous</td>
<td>Aseman käytön liittyvät riskit</td>
</tr>
<tr>
<td></td>
<td>Heitön aseman käytö</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heitönmassan kuljetus luonnonautolla työmaalle</td>
<td>Liikennövän onnettomuus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betonimassa sekoitus</td>
<td>Betonimassan siirto astiinlevittäen</td>
<td>Astiinlevittimen, jyrän ja murden alueelle normaaliasti kuulumattomien koneiden aineuttamat riskit</td>
</tr>
<tr>
<td></td>
<td>Levitys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiivistys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suojus kuvunmenen ajaksi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levitys</td>
<td></td>
</tr>
<tr>
<td>Jälkihoito</td>
<td>Bitumin levitys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suojus kuvunmenen ajaksi</td>
<td></td>
</tr>
</tbody>
</table>

Arvioidaan kuvan 9 riskien vakavuudet ja todennäköisyysdet käyttäen taulukkoa 3.

Taulukko 3. Riskien arvioimiseen käytetyt kertoimet. (Koskinen 2017)

<table>
<thead>
<tr>
<th>Todennäköisyys (T)</th>
<th>Seuraukset (S)</th>
<th>Vähäiset</th>
<th>Haitalliset</th>
<th>Vakavat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epätodennäköinen</td>
<td>1x1 Merkittysetön riski</td>
<td>1x2 Vähäinen riski</td>
<td>1x3 Kohtalainen riski</td>
<td></td>
</tr>
<tr>
<td>Mahdollinen</td>
<td>2x1 Vähäinen riski</td>
<td>2x2 Kohtalainen riski</td>
<td>2x3 Merkittävä riski</td>
<td></td>
</tr>
<tr>
<td>Todennäköinen</td>
<td>3x1 Kohtalainen riski</td>
<td>3x2 Merkittävä riski</td>
<td>3x3 Sietämätön riski</td>
<td></td>
</tr>
</tbody>
</table>

Riskin vakavuus arvioidaan kaavalla:

\[\text{Todennäköisyys (T) \times \text{Seuraukset (S)} = \text{Kerroin (K)}} \]

Esimerkiksi:

\[\text{Epätodennäköinen} \times \text{Vakava} = 1 \times 3 = 3 \]

Taulukossa 4 on arvioitu riskejä työvaiheittain ja ehdotettu toimenpiteitä niiden ehkäisemiseksi. Ennen töiden aloittamista riskikartoituksen pyydetään vielä työn suorittavilta urakoitsijoilta.
<table>
<thead>
<tr>
<th>Riski</th>
<th>T</th>
<th>S</th>
<th>K</th>
<th>Toimenpiteet riskin ehkäisemiseksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jatkuvat riskit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Työkoneen alle jääminen | 2 | 3 | 6 | • Käytetään merkittyjä turvallisia kulkureittejä ja alueita.
• Koneiden huomiovalot ja sireenit käytössä.
• Työmaalla asiaton oleskelu kielletty. |
| Kemikaalien käsittelystä aiheutuvat riskit | 2 | 2 | 4 | • Käyttöturvallisuustiedote on saatavilla ja siihen on tutustuttu ennen kemikaalien käsittelemistä.
• Suojavarusteiden käyttö käsittelyn aikana. |
| Liukastuminen | 1 | 1 | 1 | • Oikeanlaisten jalkineiden käyttö. |
| Pölyäminen | 3 | 1 | 3 | • Suojavarusteiden käyttö. |
| Kaapeleiden keilaus | | | | |
| Liikennöivän koneen alle jääminen | 2 | 3 | 6 | • Työmaa-aluetta ei ole välttämättä eristetty vielä tässä vaiheessa.
Keilaajan on noudatettava varovaisuutta ja havainnoitava ympäristöä.
• Käytettävä huomiovaatetusta. |
| Maanpoisto | | | | |
| Kaivantoon putoaminen | 1 | 1 | 1 | • Kaivannon merkitseminen |
| Betonimassan sekoitus | | | | |
| Betoniaseman käytön liittyvät riskit | 1 | 2 | 2 | • Betoniaseman alueella asiaton oleskelu kielletty. |
| Liikenneonnettomuudet liittyen bet- | 1 | 2 | 2 | • Tehdasalueen liikennesääntöihin tutustuminen ja niiden noudattaminen ajon aikana. |
| tonimassan kuljetukseen työmaalle kuorma-autolla | | | | |

<table>
<thead>
<tr>
<th>Levitys</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Valuroiskeet silmille ja iholle</td>
<td>3</td>
</tr>
<tr>
<td>• Estettävä suojavarusteiden käytöllä.</td>
<td></td>
</tr>
<tr>
<td>• Vahingon sattuessa silmille: runsas huuhtelu vedellä 15 minuutin ajan.</td>
<td></td>
</tr>
</tbody>
</table>
5 SUUNNITTELU

Tässä kappaleessa käsitellään betonikentän suunnittelun liittyviä seikoja.

5.1 Koealueen maapohja

Hallilla työskentelevien mukaan osa hallien edustan maapohjasta on pehmeää mikä tulee ilmi sadekelillä. Vesi kerääntyy näihin kohtiin ja maa muuttuu upottavaksi liejuksi. Ennen valua heikot kohdat täytetään OKTO-murskeella.

5.2 Betonikentän mitoitus

Betonikenttä koostuu kolmesta laatasta, joilla on eri ominaisuudet. Laattojen mitat ja suunnitellut fyysiset ominaisuudet on esitelty kuvassa 10.

Kuva 10. Betonikentän piirustus. Ruudukko on kooltaan 1x1 m.

Kuva 11. Poikkileikkauskuvuva betonilaatasta. Ruudukko on kooltaan 1x1 m.

Kuvassa 11 betonilaattaa katsotaan länsipuolelta. 0-taso on valmiiden laattojen, jotka lähtevät rakennuksesta poispäin, alareuna. Betonilaatta viettää alaspäin ja laskeutuu 0,5 m 25 metrin matkalla. Laatta on 0,2 m paksu. Laatta 3 jatkuu kolme metriä rakennuksia kohti.

5.3 Runko- ja muiden aineiden määrät

Runkoaine on käynyt läpi märkäpohjaisen rikastusprosessin, jonka jälkeen se on vanhentunut 1,5 vuoden ajan ulkona varastosasassa. Runkoaineen riittävä vanhentuminen on tutkittu keittokokeella, jossa runkoaineen karkeinta fraktiota 10/20 mm, on keitettä 10 minuuttia. Keittokoe suoritettiin myös valetuille koekappaleille. Kun kuonarakeet eivät hajoa keitettäessä, kuona on vanhentunut tarpeeksi. Keittokokeessa rakenen muutokset olivat prosenttiyksikköiden luokkaa eli vähäisiä. Kokeen perusteella voidaan olettaa, että kuona on vanhentunut tarpeeksi. (Kostamo 2017, 5-6.)

Taulukossa 5 ovat lopulliseen toteutukseen valitut reseptit.

Taulukko 5. Käytettävät kuonabetonireseptit.

<table>
<thead>
<tr>
<th>Raaka-aine</th>
<th>Resepti 1</th>
<th>Resepti 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pikasementti (kg/m³)</td>
<td>345</td>
<td>345</td>
</tr>
<tr>
<td>VKU-kuona # 0/10 mm (kg/m³)</td>
<td>754</td>
<td>716</td>
</tr>
<tr>
<td>VKU-kuona # 10/20 mm (kg/m³)</td>
<td>502</td>
<td>477</td>
</tr>
<tr>
<td>JT-filleri # 0/3 mm</td>
<td>752</td>
<td>752</td>
</tr>
<tr>
<td>Kumirouhe (kg)</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>Vesi (kg)</td>
<td>225</td>
<td>242</td>
</tr>
<tr>
<td>Notkistin (kg)</td>
<td>1,2</td>
<td>1,2</td>
</tr>
</tbody>
</table>
Reseptiä 1 käytetään laattaan 3 ja reseptiä 2 laattaan 2. Laatta 1 on erikoistapaus geopolymeeri-komponenttinsa vuoksi, eikä sen lopullista reseptiä saatu valmiiksi tämän työn aikana, joten se jätetään pois laskelmista. Reseptissä 2 oleva kuurouhe parantaa laboratoriotestien mukaan kuonabetonin sitkeää työstettävyyttä, sekä lisää pakkasen- ja kulutuksenkestävyyttä. (Sarkkinen 2017, 9)

Taulukko 6. Runkoainemenekki laattojen 2 ja 3 osalta.

<table>
<thead>
<tr>
<th></th>
<th>VKU-kuona, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pinta-ala m²</td>
</tr>
<tr>
<td>Laatta 1</td>
<td>354,2</td>
</tr>
<tr>
<td>Laatta 2</td>
<td>275,0</td>
</tr>
<tr>
<td>Laatta 3</td>
<td>341,0</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>970,2</td>
</tr>
</tbody>
</table>

5.4 Betonimassan sekoitus ja laadunvalvonta

Betonimassa sekoitetaan siirrettävällä betoniasemalla, joka pystytetään jonnekin teollisuusalueelle. Tarkempaa sijaintia ei ole vielä määritelty. Siirrettävään asemaan päädyttiin, koska betonia tarvitaan paljon ja kuljetusmatkat kiinteältä asemalta ovat pitkät. Asema mahdollistaa betonin sekoittamisen työmaan läheisyydessä, jolloin massan kuljetus onnistuu kuorma-auton lavalla, betoniauton sijaan.

Betonimassaa sekoitettaessa suoritetaan laadunvalvontaa. Betonikentän tilavuus on 194,04 m³. Valu suoritetaan kahdessa osassa, jolloin valettavien osioiden tilavuudet ovat 70,84 m³ ja 123,2 m³. Sekoituksen aikana betonimassan lauttia valvotaan ottamalla näytteitä. Näytteet otetaan seuraavalla frekvenssillä:

- vähintään 3 näytettä ensimmäisen 50 m³ sekoituksen aikana
• jatkossa vähintään 1 näyte / 200 m³ sekoituksen aikana. (Suomen Betoni-
yhdistys ry 2011, 169.)

Kummankin betonimassaerän sekoituksessa otetaan siis vähintään neljä näy-
tettä. (Suomen Betoniyhdistys ry 2011, 169)

5.5 Liikuntasaumat

Liikuntasaumat toteutetaan joko valun aikana käyttämällä saumaraudoitteita tai
valun jälkeen timanttisahauksella. Saumojen maksimietäisyys toisistaan on 30 m.
Suomen Betoniyhdistys suosittelee taulukon 7 mukaista saumajakoa. Vierekkäis-
ten laattojen saumat porrastetaan 0,3-1,0 m etäisyydelle toisistaan. (Suomen Be-
toniyhdistys ry 2011, 412.)

Taulukko 7. Suositeltu saumajako. (Suomen Betoniyhdistys ry 2011, 411)

<table>
<thead>
<tr>
<th>Saumajako</th>
<th>3M-kerrannaisia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poikittain (m)</td>
<td>6,0 7,2 8,4 9,6 12,0 14,4</td>
</tr>
<tr>
<td>Pitkittäin (m)</td>
<td>9,6 12,0 14,4 16,8 19,2 24,0 30,0</td>
</tr>
</tbody>
</table>

Saumat ovat betonilaatan heikoin kohta, joten niitä ei kannata laittaa kovin tihe-
ään. Ajoneuvot kuluttavat saumakohdan reunoja, joka ajan kuluessa murtuu. Lii-
kuntasamaraudoitteiden, jotka suojaavat sauman reunaa, käyttö on suositel
tavaa. Raudoitteen on myös kestettävä raskaita kuormia. Seuraavat ehdotukset on
valittu kahden edellä mainitun seikan perusteella.

Peikko TeraJoint-liikuntasauma (Kuva 13) tarjoaa reunasuojauksen raskaisiin so-
velluksiin ja se soveltuu 100-300 mm paksuihin laattoihin. Kuormansiirto toimii
kutistuvilla liikuntasamaraquoilla, joiden sauman aukeama on enintään 20 mm. Pys-
tysuuntaiset kuormat siirtyvät vierekkäisten laattojen välillä, joka minimoi laatto-
jen pystysuuntaisen siirtymän. (Peikko Group 2017.)
Permaban AlphaJoint Classic 4010 on perinteinen kovan kulutuksen lattioiden saumaraudoite, joka sopii sellaisiin teollisuus-, terminaali ja varastorakentamisen kohteisiin, joissa saumaan kohdistuu kovaa isku- tai laahausrasioita. Korkealujuisteräksestä valmistetut puolisuunnikkaan muotoiset vaarnalevyt siirtävät kuorman tehokkaasti sauman yli. Vaarnalevyt sallivat kaksi-suuntaisen vaakaliikkeen ja estävät tehokkaasti pystyllä sauman auettua jopa 20-30 mm. Rakenteeltaan AlphaJoint on samantyylinen kuin TeraJoint. (PiiMat Oy 2017a, 1; 2017b, 2)

5.6 Levitys

Betonimassan levitys aloitetaan muotin alimmasta kohdasta. Betonimassa tulisi sijoittaa suoraan lopulliselle paikalleen. Massan siirtely saattaa aiheuttaa runkoinen erotuttua runkoinen erotuttua, jossa hienoin aineksien erotettuvat runkoaineen osassa. Myös massan pudotus liian korkealta, > 1,5 m, lisää runkoinen erotuttua. (Suomen Betoniyhdistys ry 2011, 317-319.)
5.7 Tiivistäminen

Tiivistämisellä varmistetaan, että ylimääräinen ilma poistuu betonimassasta ja runkoaineen osaset asettuvat lähekkäin. (Suomen Betoniyhdistys ry 2011, 322)

Asfaltin levityskone suorittaa esitiivistyksen levityksen yhteydessä. Varsinainen tiivistys suoritetaan dynaamisella kaksivalssijyrällä.

5.8 Jälkihoito ja jälkiseuranta

Jälkihoitoaineena käytetään bitumiliuosta tai bitumiemulsiota, joka estää betonin liian nopean kuivumisen. Jatkossa bitumipinnoite suojaa betonia kosteudelta.

Betonikentän käyttöönnoton jälkeen sen kulumista on seurattava, jotta saadaan tietoa, täyttivätkö betonireseptit projektin vaatimukset. Seuranta ei kuulu tähän työhön.
6 POHDINTA

Tämä opinnäytetyö oli hieman erikoinen valinta ottaen huomioon sen rakennustekniikkaan liittyvän luonteen ja sen mitä itse opiskelin niihin aikoinin, kun sain tästä työstä kuulla: kaivosalan opintoja. Aihevalinta ehti muuttua vielä erikoismaksi työn valmistuessa, kun opintojen painopiste oli siirtynyt sähkö- ja automatiotekniikan puolelle. Omalta mukavuusalueelta poistuminen ja uusiin asioihin tutustuminen on tärkeää, joten päätin tarttua haasteeseen, kun sellainen tarjottiin.

Saavuttiko opinnäytetyö tavoitteensa? Siinä mielessä kyllä, että suunnitteludokumentti saatiin alikaiseksi. Se, toimiiko betonikenttä halutulla tavalla, saa vastauksen vasta betonikenttä on oikeasti rakennettu ja sen suorituskykyä on seurattu kuukausia, ellei jopa vuosia.

LÄHTEET

Asunen, M. & Mäkelä, M. 2013. Tärylevyn käyttö maarakenteiden tiivistystyön

http://betoni.com/arkkitehtisuunnittelu/arkkitehtisuunnittelu/lattiat/saumat/

https://www.youtube.com/watch?v=t3kM4bjJJJo

Koiranen, I. 2017. Lisääineen kokeellinen käyttäytyminen betonimassassa.
Tampereen ammattikorkeakoulu. Opinnäytetyö.

Sähköposti teemu.lakela@edu.lapinamk.fi 11.9.2017. Tulostettu 23.10.2017

Outokumpu Chrome Oy. 2010. OKTO-rakennustuotteiden suunnittelu- ja raken
tamisohje tie-, katu- ja maarakenteissa.

Peikko Group. TERAJOINT-liikuntasauma. Viitattu 6.10.2017
http://www.peikko.fi/tuotteet/tuote/terajoint-liikuntasaumajarjestelma/

Salmela, R. 2017. Kuonapohjaisen maabetoniresepitiikan kehittäminen. Lapin
ammattikorkeakoulu. Opinnäytetyö.

ammattikorkeakoulu. Tutkielma.

Sarkkinen, M. 2017. VKU-kuonabetonikokeet: suola-pakkasrasituskokeet ja

tikorkeakoulu. Opinnäytetyö.

LIITTEET

Liite 1. Maanmittaustulokset koealueelta.