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Sammandrag:  

Examensarbetet fokuserar på taligenkänning av enskilda ord med ett konvolutionellt neu-

ronnät, där målet är att lära sig klassificera ett antal fördefinierade ord. Taligenkänning 

av enskilda ord kan användas som röstgränssnitt med nyckelordsigenkänning på t.ex. 

smarttelefoner och inbäddade system. Dessa apparater har ofta strikta krav för datakraft 

och minne, vilket beaktas i examensarbetet fastän det huvudsakliga målet inte är en mo-

dell som kan användas i dem. Examensarbetet använder sig av datamängden Speech 

Commands, som består av ca 65 000 en sekund långa uttalanden med 30 engelskspråkiga 

ord som t.ex. ”left”, ”right” och ”stop”. Målet är att klassificera 10 av orden i datamäng-

den, samt två separata klasser för alla andra ord och tystnad. För att klassificera orden 

används ett konvolutionellt neuronnät, som består av endimensionella konvolutioner för 

att användas på rå ljuddata. Målet är att utnyttja kraften av djupinlärning där neuronnätet 

självt lär sig särdragsrepresentationer under inlärningprocessen. Traditionella metoder för 

taligenkänning använder sig däremot av funktionsteknik för att förvandla dataexemplaren 

till exempelvis spektrogram, som sedan används av modellen. För effektiv inlärning an-

vänds fyra huvudsakliga metoder: viktad slumpmässig provtagning, Stochastic Gradient 

Descent with Warm Restarts (SGDR), artificiell utvidgning av datamängden och använd-

ning av pseudo-etiketter. Viktad slumpmässig provtagning används för att jämna ut klass-

distributionen  under inlärningsprocessen. SGDR är en metod för hur man ändrar inlär-

ningstakten efter varje inlärningsiteration. Artificiell utvidgning av datamängden består 

av att man modifierar de tillgängliga dataexemplaren på ett sätt där de fortfarande kan 

identifieras med samma etikett. För att använda sig av pseudo-etiketter utnyttjar man en 

färdigt inlärd modell som gör förutsägelser på okänd data. Dessa förutsägelser används 

sedan som sanna värden för inlärning av en ny modell. Den slutliga modellen uppnår 

97,4% noggrannhet på valideringsdatamängden, och 88,7% samt 89,4% noggrannhet på 

två testdatamängder. Resultaten visar att modellen med hög noggrannhet kan förutsäga 

ord som den sett under inlärningprocessen, men det uppstår vissa problem med att förut-

spå nya ord samt exemplar med mycket backgrundsoljud eller låg ljudkvalitet. 
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Abstract:  

This work focuses on single-word speech recognition, where the end goal is to accurately 

recognize a set of predefined words from short audio clips. It uses the Speech Commands 

dataset, which consists of 65 000 one-second long utterances of 30 short words of which 

we learn to classify 10 words, along with classes for “unknown” words as well as “silence”. 

Single-word speech recognition can be used in voice interfaces for applications with key-

word detection, which can be useful on mobile and embedded devices. These devices often 

have strict requirements in terms of computing power and memory, which is recognized in 

the design of the speech recognition model. To classify samples, we use a Convolutional 

Neural Network (CNN) with one-dimensional convolutions on the raw audio waveform. 

As opposed to more traditional methods where feature-engineering is crucial, we leverage 

the power of deep learning to learn the feature representation during training. To effectively 

train the model we use data augmentation, weighted random sampling, Stochastic Gradient 

Descent with Warm Restarts (SGDR) and pseudo-labeling. The model achieves 97.4% ac-

curacy on the validation set, 88.7% and 89.4% on the two test sets. The results show that 

the model can predict samples of words it has seen during training with high accuracy, but 

it somewhat struggles to generalize to words outside of the scope of the training data and 

extremely noisy samples. 
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1 INTRODUCTION 

Deep learning and neural networks have achieved state of the art results in various tasks 

such as image classification (Simonyan, Zisserman 2014), machine translation (Wu et al. 

2016) and speech recognition (Amodei et al. 2016).  These neural network models can 

consist of up to tens of millions of parameters where both training and inference require 

a lot of time and powerful hardware. While these models achieve state of the art results, 

they are not able to be efficiently used on devices such as mobile phones and embedded 

devices. Model architectures like MobileNet by Howard et al. (2017) have been created 

for efficient inference and low memory usage while still achieving comparable results to 

the state of the art.  

This work focuses on single-word speech recognition or keyword spotting (KWS), where 

the end goal is to accurately recognize a set of predefined words from short audio clips. 

Zhang et al. (2017) discussed the importance of high accuracy and low compute require-

ment models needed for efficient use of keyword spotting on devices like mobile phones 

and microcontrollers. They pointed out problems with always-on, over the network, 

speech recognition on devices like Amazon Echo, Google Home and smart phones, where 

transmitting continuous streams of audio is not only inefficient, but also leads to privacy 

concerns. They also discussed how some of these problems are mitigated using KWS, 

where the device is only listening for specific keywords such as “Ok Google”, and when 

recognized it enables the full-scale speech recognition system. This allows the device to 

use more complex models only when needed and alleviates some of the privacy concerns.  

The focus of this work is on the use of one-dimensional convolutions on raw audio data 

as well as effective training methods, to create a model which achieves the highest possi-

ble accuracy. This work was done as a part of the TensorFlow Speech Recognition Chal-

lenge1 on Kaggle, a platform for data science and machine learning competitions. The 

goal of the competition was to achieve the highest possible accuracy on the test set pro-

vided by Kaggle, where the labels for the set were not given out and results are given 

based on prediction submissions done through the Kaggle website.  

While the main use case of models like these are on smart-devices, this work doesn’t 

specifically focus on that use case, but it does acknowledge it both in terms of design of 

                                                 
1 https://www.kaggle.com/c/tensorflow-speech-recognition-challenge  

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge


 

 

the model architecture as well as results. Real-life use cases generally also require classi-

fication from a continuous audio stream, this work doesn’t address this problem as the 

main focus is on classifying the test set data, which only requires one prediction per sam-

ple. 

This work was done while working on the Katumetro2 research project on intelligent 

methods and models for mining community knowledge from social media. 

1.1 Speech recognition 

Although single-word speech recognition differs a lot from full scale speech recognition, 

many of the underlying ideas are the same. Traditional speech recognition systems com-

monly use Hidden Markov models (HMMs) along with a lot of feature engineering and 

Gaussian mixture models (GMMs) for acoustic models. The first steps towards using 

neural networks in speech recognition were using neural networks for acoustic modeling 

instead of GMMs. (LeCun, Bengio & Hinton 2015) These have since been mostly re-

placed by end-to-end trained neural architectures such as Deep Speech (Hannun et al. 

2014, Amodei et al. 2016).  

1.2 Deep learning 

Deep learning is a subset of machine learning where the models, generally artificial neural 

networks, use multiple layers to create a richer representation of the data. Traditional 

machine learning algorithms like support vector machines, require hand-made features to 

reach optimal results, whereas deep learning algorithms are capable of creating their own 

features from more raw data, based on what is learned to be relevant during training.   

Deep learning allows computational models that are composed of multiple processing layers to learn 

representations of data with multiple levels of abstraction. These methods have dramatically improved 

the state-of-the-art in speech recognition, visual object recognition, object detection and many other 

domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data 

sets by using the backpropagation algorithm to indicate how a machine should change its internal pa-

rameters that are used to compute the representation in each layer from the representation in the previous 

layer. (LeCun, Bengio & Hinton 2015) 

                                                 
2 http://rdi.arcada.fi/katumetro-digilens-hki/en/  

http://rdi.arcada.fi/katumetro-digilens-hki/en/


 

 

This thesis focuses on both supervised and semi-supervised learning. Supervised learning 

is the most common form of machine learning. Supervision entails that training leverages 

labeled data to teach the algorithms. In this work we train a deep neural network to rec-

ognize keywords such as “yes” or “no” from short utterances where the label for each 

utterance is the keyword. Semi-supervised learning is very similar to supervised learning, 

but it tries to leverage unlabeled data along with the labeled data. Training neural net-

works is done using Stochastic Gradient Descent (SGD) or some of its variants like Adam 

(Kingma, Ba 2014). SGD uses the error between the predictions of the model and the 

labels to adjust the weights so that the error is minimized. This process is done in batches 

of training examples and repeated until convergence. (LeCun, Bengio & Hinton 2015) 

The basic neural network architecture, or the feedforward neural network consists of 

fully-connected layers and non-linear functions where a weighted sum of the inputs to a 

fully-connected layer is computed and passed through a non-linear function. Commonly 

used non-linear activation functions are sigmoid and hyperbolic tangent (tanh), as well as 

the Rectified Linear Unit (ReLU) which has largely replaced the other activation func-

tions as they show improvements in training deep networks (Glorot, Bordes & Bengio 

2011). The output of the final layer is often passed through a softmax function so that 

each output is mapped to a probability representing the predictions for each class in the 

supervised learning setting (LeCun, Bengio & Hinton 2015). While the advancements in 

deep learning and neural networks are centralized in the current decade, neural networks 

have been around since the 1940s (Schmidhuber 2015). 

 

 

 

 

 

 

 



 

 

2 THEORY AND METHODS 

This section introduces the basic theory of how to use audio data for speech recognition 

models, the building blocks used in the final model architecture as well as the basic prin-

ciples behind training neural networks. 

2.1 Sound as data 

The dataset consists of a set of WAVE-files, which are all roughly one second long. To 

use the data, each file is sampled into a vector with a sampling rate of 16000. A common 

strategy for speech recognition is to first extract features from the raw waveform. Com-

monly used speech features like spectrograms, log-Mel filter banks and Mel-frequency 

cepstral coefficients (MFCC) convert the raw waveform into a time-frequency domain 

(Zhang et al. 2017). These features are then used as an input to a model. Sainath and 

Paranda (2015) show how log-Mel filter banks can be used as input features to a neural 

network.  

Figure 1. A sample depicting the word “yes” as the raw waveform (left) and as a log-spectrogram (right) 

Dai et al. (2017) discuss the challenges with audio-feature-engineering, which requires 

certain domain knowledge without necessarily building optimal features. Instead of using 

feature engineering of any kind, this work aims to leverage the power of deep learning to 

discover features during training from the raw waveform. 

2.2 Convolutional neural networks 

Convolutional neural networks (CNN), originally introduced by LeCun et al. (1990, 

1998) were popularized by AlexNet after showing significant improvements over other 



 

 

submission in the ImageNet ILSVRC challenge in 2012 (Krizhevsky, Sutskever & Hinton 

2012). Since then, Convolutional neural networks have achieved state of the art results in 

various task in computer vision such as object-detection (Redmon et al. 2016) and image 

segmentation (Badrinarayanan, Kendall & Cipolla 2017), as well as machine translation 

(Wu et al. 2016), text classification (Kim 2014) and speech recognition (Amodei et al. 

2016).  

Deep neural networks exploit the property that many natural signals are compositional hierarchies, in 

which higher-level features are obtained by composing lower-level ones. In images, local combinations 

of edges form motifs, motifs assemble into parts, and parts form objects. Similar hierarchies exist in 

speech and text from sounds to phones, phonemes, syllables, words and sentences. (LeCun, Bengio & 

Hinton 2015) 

Convolutional neural networks consist of four main operations: convolutions, non-line-

arities, pooling and classification. Optionally the models can include batch normalization 

as well as dropout. These operations are commonly stacked together so that convolutions 

are followed by a non-linearity such as a ReLU, this operation is then repeated a few 

times after which a pooling operation is used. When the network is deep enough, and the 

original input is subsampled by pooling to a size where it is manageable, it is passed 

through to the classification part of the network. If batch normalization is applied, it’s 

commonly used after the convolution but before the non-linearity.  

2.2.1 Convolutional layers 

Convolutional layers in a CNN consists of a set of learnable filters, sometimes also called 

kernels. Each filter is applied by independently striding over the entire input, creating an 

output feature map for each filter. Applying the same filter over the entire input space 

leverages the fact that the same motif can appear in different locations in the input. Con-

volutional layers often use a relatively small filter sizes, which allows detection of local 

features which for data such as images and sound are crucial. Filters in stacked convolu-

tional layers operate on the feature map from the previous layer, combining features to 

detect higher order features. (LeCun, Bengio & Hinton 2015) 

The most common convolutional layer operates on 2-dimensional inputs, the height and 

width of images for instance. Since this work uses the 1-dimensional raw audio waveform 

data as input, the convolutional layers use 1-dimensional filters.  



 

 

2.2.2 Pooling layers 

While convolutional layers detect local features from its input, a pooling layer merges 

semantically similar features by only keeping the maximum value (max-pooling) or av-

eraging (average-pooling) the values within a patch (LeCun, Bengio & Hinton 2015). 

This reduces sensitivity to shifts and distortions of features, by reducing the size of the 

feature map. Pooling layers are used after one or a few convolutional layers, continuously 

reducing the size of the input as the network gets deeper. Every reduction in the input size 

followed by the pooling operation also reduces the amount of computation needed in the 

network. (LeCun et al. 1998)  

While most modern convolutional neural networks use max-pooling layers, some argue 

against the use of pooling layers as they simply discard potentially valuable information. 

Springenberg et al. (2015) show that replacing max-pooling layers with convolutions us-

ing a larger stride to reduce the input size can yield competitive results compared to mod-

els using max-pooling. 

2.2.3 Batch normalization 

As a neural network is trained and the networks parameters are updated, the distribution 

of weight activations change, this is referred to as internal covariate shift. Internal covari-

ate shift makes training much more difficult, by requiring lower learning rates and careful 

parameter initializations. To address this problem, Ioffe & Szegedy (2015) introduced 

batch normalization, which makes normalization a part of the model itself. Batch normal-

ization normalizes the output from a previous layer by using estimates of the mean and 

variance on a batch-level. Batch normalization also introduces two trainable parameters, 

gamma and beta, which are used to scale and shift the normalized values restoring repre-

sentation power of the network. Batch normalization allows the use of higher learning 

rates, as the normalization process addresses issues with vanishing and exploding gradi-

ents, stabilizing the training process. During inference, instead of per batch statistics, 

mean and variance statistics are used from the whole training data. (Ioffe, Szegedy 2015) 



 

 

2.2.4 Activation functions  

Activation functions are non-linearities used between convolutional layers so that the 

neural network can model more complex than linear data. A common activation function 

is the Rectified Linear Unit (ReLU), which is a function that takes input x and returns 

max(0, x). The ReLU and variants of it such as PReLU have mostly replaced the older 

activation functions sigmoid and tanh. This is due to much greater training efficiency 

compared to the older activation functions. (Krizhevsky, Sutskever & Hinton 2012, Glo-

rot, Bordes & Bengio 2011) 

2.2.5 Classification 

In most cases the classification part of convolutional neural networks consists of fully-

connected layers and a softmax function. Fully-connected layers are used after the final 

convolutional layer in order to match the output size of the neural network to the desired 

output size. The output is then passed through a softmax function in order to create a 

probability representation for the predictions for each class in the supervised learning 

setting. To use the fully-connected layers, the output from the final convolutional layer is 

commonly flattened out, or the feature maps are subsampled to a size of 1.  

2.2.6 Dropout 

Dropout is a regularization technique where a percentage of connections between units in 

a layer are dropped before the following layer. Randomly dropping a set of units for each 

training iteration prevents co-adaptation by making the presence of other units in the net-

work unreliable. This forces the network to learn a more general representation, rather 

than learning specific connections. A downside with using dropout is increased training 

time as the broken connections increase noise in parameter updated. No connections are 

dropped during inference. (Srivastava et al. 2014) 

 



 

 

2.3 Training deep neural networks 

Neural networks are trained using backpropagation and gradient descent. Backpropaga-

tion is used to compute the gradients in respect to each weight in the network based on 

the error of the output. In classification tasks, the error is commonly the cross-entropy 

loss between the output of the network and the target. The gradients are used to give a 

direction in which to adjust the weights so that the error is minimized. Computing the 

outputs and the error for a batch of inputs, computing the average gradient for the exam-

ples in the batch and adjusting the weights based on the gradient is called Stochastic Gra-

dient Descent (SGD). Stochastic Gradient Descent is a stochastic approximation of gra-

dient descent optimization, where instead of taking a single training step for each full 

iteration of the training set, steps are taken after each batch where the per-batch average 

gradient acts as an estimate for the true gradient. (LeCun, Bengio & Hinton 2015) 

The amount which the weights are updated by is defined by the gradient as well as a 

learning rate. This value plays a large part in training neural networks, as a learning rate 

which is too high will never reach a proper minimum and a learning rate which is too low 

can get stuck is suboptimal minima or require very long training times as each training 

step only updates the weight by a small margin. To counter this, it’s common to use some 

sort of learning rate schedule such as turning down the learning rate after a certain number 

of updates, or when the loss on a held-out validation set has stopped decreasing (Smith 

2015). Another option is to use optimizers like Adam (Kingma, Ba 2014) or RMSProp 

(Tieleman & Hinton, 2012) that use adaptive learning rates.  

 

 

 

 

 

 

 



 

 

3 DATA, TOOLS AND PRE-EXPERIMENTS 

The work in this thesis is implemented in Python3. The main Python library used in this 

work is PyTorch (Paszke et al. 2017), which is a deep learning framework that allows its 

users to create and train powerful deep learning models, with possibility to do computa-

tions on a Graphics Processing Unit (GPU). The other main libraries used are NumPy 

(Oliphant 2006), Pandas (McKinney 2010), scikit-learn (Pedregosa et al. 2011), and 

Librosa (McFee et al. 2017). 

3.1 Dataset 

The availability of large public datasets such as ImageNet (Deng et al. 2009) for image 

classification and Microsoft COCO (Lin et al. 2014) for object detection, segmentation 

and captioning have accelerated the advancements in deep learning.  

This thesis uses the Speech Commands dataset (Warden 2017b). The dataset consists of 

65 000 one-second long utterances of 30 short words such as “yes”, “no”, “right” and 

“left”. The dataset aims to help with building voice interfaces for applications with key-

word detection, which can be useful on mobile devices and microcontrollers (Warden 

2017a).  

The goal is to classify the following words: "yes", "no", "up", "down", "left", "right", 

"on", "off", "stop" and "go". All other words are labeled as “unknown” and are used to 

help the model learn a representation for all words which are not in the 10 words to be 

classified. The final class is “silence”, which represents samples with no word. The test  

Figure 2. Counts for each class in the Speech Commands dataset. Blue examples represent words that should be clas-

sified, red examples represent the unknown class 

                                                 
3 Code available on GitHub: https://github.com/PJansson/speech  

https://github.com/PJansson/speech


 

 

set provided by Kaggle consists of roughly 150 000 additional utterances, including 

words and speakers that do not appear in the Speech Commands dataset.  

The files in the dataset are arranged into folders by label, the filenames start with a hash 

representing the speaker, followed by a number representing the number of times that 

utterance by the same speaker appears in the dataset. The data is split into training and 

validation sets using the hash so that the same speaker does not appear in both sets. 

Kaggle also provided a set of audio files which are denoted as background noise, using 

these files we create data for the silence class as well as background noise which is used 

during training. Some files which were found to be silence but were mislabeled were 

corrected and used as additional silence during training.  

3.2 Pre-experiments 

To reach the final implementation, including model architecture, data augmentation tech-

niques and training setup, an iterative process of experiments were covered. These exper-

iments included testing different model architectures, mainly inspired by VGGNet (Si-

monyan, Zisserman 2014), ResNet (He et al. 2016) and DenseNet (Huang et al. 2017), all 

modified to use 1-dimensional convolutions. Along model architectures and hyperparam-

eters various training- and data augmentation-techniques were also experimented with. 

The final implementation is described in detail in Section 4, a discussion on the results of 

the experiments can be found in Section 6.1.  

 

 

 

 

 

 



 

 

4 IMPLEMENTATION SPECIFICATION 

4.1 Model architecture  

The final model architecture is heavily inspired by VGGNet (Simonyan, Zisserman 2014) 

and the models used by Dai et al. (2017). The model consists of six blocks, where each 

block contains two convolutional layers, which are both followed by batch normalization 

layers as well as ReLU-activation functions. The convolutional layers use one-dimen-

sional convolutions with a kernel size of 5, unlike the work by Dai et al. (2017), the first 

layer uses a smaller kernel size which is then kept throughout the network. The number 

of convolutional filters for the first block is 8, after which the number is doubled for every 

block ending with 256 filters. Each block is followed by a pooling operation, all but the 

final pooling layers use max-pooling, the last pooling layer is a global average pooling 

layer which takes each feature map and returns the average, each max-pooling layer uses 

a kernel-size of 4. 

The global average pooling layer is followed by the classification part of the network, 

which consists of two fully-connected hidden layers and the output layer. The output sizes 

of the hidden layers are 128 and 64, both hidden layers are followed by ReLU-activations 

and dropout with a rate of 0.5. The output layer has an output size of 12, to match the 

number of classes in the dataset. The total amount of parameters in the network is roughly 

0.7 million. 

Figure 3. Model architecture (right), middle layers omitted for clarity. C = conv-batch norm-relu (left), M = max-

pooling layer, G = global average pooling layer, F = fully-connected layer, O = output layer  



 

 

4.2 Model training 

4.2.1 Data augmentation 

Data augmentation is a way to increase the amount of training data by modifying the 

available data in a way where it can still be identified with the same label. Data augmen-

tation has shown to be a simple and effective way of reducing overfitting, and thus im-

proving model performance. Data augmentation can also help the model learn a wider 

range of features as the augmented samples can be quite different from the original train-

ing samples while still being identifiable as the same. (Krizhevsky, Sutskever & Hinton 

2012) 

Three data augmentation techniques were used: shifting the audio in time, scaling the 

amplitude and adding noise. The first step, shifting in time, is applied with a 50% proba-

bility to each sample. The augmented samples are shifted forward or backward in time by 

up to 20% of the samples original length. Occasionally this causes the utterance in the 

sample to be partially cut out, but the probability of this happening is negligible. This 

augmentation technique should help the model learn a more time-invariant representation 

of the utterances, as they can appear anywhere within the sample.   

Figure 4. A sample of the word “yes” as the original sample (left) and an augmented version of it (right) 

The second augmentation technique is mixing in noise with the sample, this is also ap-

plied with a 50% probability. Noise is generated in the same way silence is generated 

during training, where up to two samples from the dataset background audio are scaled 

down and added together. This noise is then added to the original input, which has been 

scaled between 75% and 125% of its original amplitude. Adding noise should help the 

model to better distinguish relevant information from the data. 



 

 

4.2.2 Sampling 

The training set is heavily skewed towards the unknown class, as shown in Figure 2. 

Training with the dataset as-is can lead to problems where the overrepresented class is 

favorably predicted. To combat the class imbalance during training, we use weighted ran-

dom sampling with replacement, where instead of going through each sample in the train-

ing data for each epoch, each sample has a weight which equals to 1 / the number of the 

samples label in the training set. When selecting a sample to train on, the sample weight 

defines the probability of that sample to be chosen, leading to the more common classes 

to be down-sampled and the less common classes to be up-sampled. This leads to training 

on batches where each label is represented equally, but where all samples are still seen 

during training.  

The usual definition of an epoch is iterating through the training set once, but because we 

are using sampling, an epoch is referred to as selecting samples until the amount is equal 

to the size of the training data. 

4.2.3 Pseudo-labeling 

Pseudo-labeling is a simple but effective semi-supervised training method, where a 

trained model is used to predict unlabeled data, in our case the test set which we don’t 

have the labels to, then use the model predictions as pseudo-labels. The model is then re-

trained using a combination of data from the original training set and pseudo-labeled data. 

The end goal of pseudo-labeling is to improve generalization performance by using the 

unlabeled data. (Lee 2013) 

Pseudo-labeling introduces label noise into the training data since it’s impossible to know 

if all the pseudo-labels are correct. Fortunately, deep neural networks can be trained on 

data where a significant percentage is miss-labeled as shown by Sukhbaatar and Fergus 

(2014). They show that with a large enough training set the effect of label noise isn’t 

significant enough to warrant not using all the data available. 

We use the predictions of the initial model for pseudo-labels only if the maximum output 

of the model, after going through a softmax function is higher than 0.95. This discards 

the data when the model prediction isn’t very confident, theoretically decreasing label 

noise. Since we know that our test set contains utterances which are not included in, using 

pseudo-labels should allow our model to learn a better representation for the “unknown” 



 

 

class. Once the pseudo-labels are selected, each sample is given a sample weight similarly 

as during the original training process. The model is then re-trained using both the original 

training data and the pseudo-labels so that 2/3 of each batch consists of samples from the 

original training data and 1/3 consists of samples from the pseudo-labeled data.  

4.2.4 Learning rate schedule 

A good learning rate schedule is crucial for not only reaching better results but also to 

possibly improve training time. Common learning rate schedules include turning down 

the learning rate after a certain number of updates, when the loss on a held-out validation 

set has stopped decreasing or linearly turning down the learning rate. Loshchilov and 

Hutter (2016) propose a training method they call Stochastic Gradient Descent with 

Warm Restarts (SGDR). SGDR introduces the concept of warm restarts by first decaying 

the learning with cosine annealing for each training iteration, followed by resetting the 

learning rate and repeating the cosine annealing process. Loshchilov and Hutter (2016) 

also show that using SGDR can result in competitive results in two to four times faster 

training time. 

In this work we use SGDR with an initial learning rate of 0.1, which is trained for 70 

epochs where the first restart is done after 10 epochs, and the epoch count for each con-

secutive cycle is doubled. The learning rate for the training process is shown in Figure 5 

below, an additional cycle is added when training with pseudo-labels. 

 

Figure 5. Learning rate schedule 

 



 

 

5 RESULTS 

The evaluation of results is split into three sets, the validation set as well as two test sets. 

The validation set contains roughly 10% of the samples in the dataset. The two test sets 

are based on the two Kaggle leaderboards, the public and the private leaderboard which 

contain 30% and 70% of the test data respectively, for clarity these will be denoted as the 

public test set and private test set. Accuracy, precision, recall and F1-scores are reported 

for the validation data, but as we don’t have access to the correct labels for the test sets, 

only accuracy scores will be reported for them. Some analysis of manually reviewed pre-

dictions on the test set will be discussed, as the test sets contain words and speakers not 

in the training data and reviewing predictions will give greater insight to the strengths and 

weaknesses of the model.   

Before the use of pseudo-labels in the training process the model achieves 97.5% accu-

racy on the validation set, 87.8% accuracy on the public test set and 88.4% accuracy on 

the private test set. After incorporating pseudo-labels into the training process, the model 

achieves 97.4% accuracy on the validation set, 88.7% accuracy on the public test set and 

89.4% accuracy on the private test set. 

Per class precision, recall and F1-scores for the validation set are reported in Table 1.  

Table 1. Precision, recall, F-measure and support for validation set 

Label Precision Recall F1-score Support 

Yes 0,99 0,99 0,99 238 

No 0,95 0,98 0,96 233 

Right 0,94 0,97 0,95 258 

Left 0,97 0,98 0,98 240 

Up 0,97 0,98 0,97 224 

Down 0,95 0,97 0,96 234 

Go 0,88 0,98 0,93 211 

Stop 0,94 0,97 0,95 205 

On 0,93 1,00 0,96 205 

Off 0,95 0,98 0,97 218 

Silence 0,65 0,87 0,75 63 

Unknown 0,99 0,97 0,98 3946 

 



 

 

5.1 Discussion 

The results show that the model is able to correctly predict a very high percentage of 

samples, however there is a significant difference between validation and test set accura-

cies. Manually reviewing test set predictions show that the test set is much more difficult 

than the validation set. It contains much more noise in the samples, along with a large 

number of samples which are cut out in such a way that the complete word cannot be 

heard. This causes difficulties for the model, as in many of the samples it is very hard to 

make out an utterance, let alone a specific word. Another reason is the addition of com-

pletely new words, which are occasionally predicted as one of the 10 distinct words in the 

training set as opposed to the unknown class, two words which are often predicted incor-

rectly are “backward” and “learn”. The word “learn” is most commonly predicted as 

“left”, where the similar phoneme in the word seems to make the prediction more diffi-

cult, other word pairs where a similar difficulty can be observed are “no” and “nine” as 

well as “on” and “one”. These issues along with the difference in validation and testing 

accuracies, show that simply using the raw waveform data as an input is not enough to 

create a perfect representation of the data, both in terms of generalizing to words outside 

the scope of the training set as well as dealing with noise, whether its environmental 

background audio or noise caused by poor quality recordings. 

 

 

 

 

 

 

 

 

 

 



 

 

6 CONCLUSION 

This work has shown that a model using one-dimensional convolutions along with sensi-

ble training techniques can effectively be used for single-word speech recognition, but 

more work needs to be done on generalizing to unseen samples and dealing with ex-

tremely noisy samples. 

6.1 Discussion 

This section discusses the pre-experiments on model architecture, data augmentation 

techniques and training setup. As the experiments were explorative in nature and the re-

sults achieved aren’t conclusive, results from them haven’t been reported in the thesis and 

thus this section will be more of an open discussion covering what worked and what didn’t 

in the experiments.  

The final model architecture is relatively simple. More complex model architectures that 

resemble ResNet (He et al. 2016) and DenseNet (Huang et al. 2017) did not achieve test 

results as good. Various kernel sizes for both the convolutional layers and max-pooling 

layers were tested. A small kernel size for the convolutional layers worked very well, the 

difference between the sizes 3, 5 and 9 was not significant, but the kernel size of 5 was 

chosen as it performed slightly better. The kernel size 4 for max-pooling layers was cho-

sen as it provides a middle ground between the amount of pooling layer used as well as 

allowing the use of multiple consecutive convolutional layers between each pooling op-

eration without the model getting too deep. Replacing max-pooling with convolutions 

using a larger stride didn’t perform as well as when using max-pooling. Other architec-

tural experiments included using global max-pooling instead of global-average pooling 

between the convolutional and fully-connected layers, using both global max-pooling and 

global average-pooling and simply flattening out the output from the convolutional layers. 

Simply using global average-pooling, as in the work by Dai et al. (2017) worked the best. 

Not only do the other two methods use more parameters, they also performed worse in 

both validation and testing.  

Various types of data augmentation were used during testing, ranging from simply scaling 

the amplitude of the input to changing the pitch. The effect of each augmentation tech-

nique varied significantly. Mixing noise with the input showed to be the most effective 



 

 

augmentation technique, this effect was slightly improved further by randomly scaling 

the amplitude of the input. Shifting the input in time also showed to be a useful technique. 

Stretching the input in time, changing the pitch and randomly altering the speed of the 

input basically showed no effect, or in some cases even a negative effect on the perfor-

mance of the model. 

Two methods for using pseudo-labels during training were tested. The first method was 

to keep training the model further, by doing a warm restart in the same way as during the 

original training process. The second method was to fully re-train the model. Completely 

re-training the model achieved better results in the end, but it also required more training 

time. If training-time would be a bottleneck, it would be recommended to use the method 

of continuing training after a warm restart.  

The learning rate schedule was chosen based on the results by Loshchilov and Hutter 

(2016). Other SGRD learning rate schedules were experimented with and they achieved 

similar results. Other optimizers like Adam (Kingma, Ba 2014) converged faster but did 

not generalize as well to the test data. 

6.2 Future work 

While the current model is small compared to computer vision models like VGGNet (Si-

monyan, Zisserman 2014), it is relatively large compared to models intended for running 

on mobile devices and microcontrollers like the models used by Zhang et al. (2017). Many 

steps could be taken to decrease the model size, at varying degrees of cost in performance. 

A smaller kernel size could be used in the convolutional layers, alternatively the smaller 

kernel size could be combined with dilated convolutions (Yu, Koltun 2015) in order to 

maintain the same receptive field but the parameter count of the smaller kernel size. Apart 

from tuning hyperparameters, methods such as pruning convolutional kernels could be 

used. Molchanov et al. (2016) showed that pruning can be a very effective technique to 

speed up inference time, with only limited effects on overall performance.  

Most real-life use cases require classification from a continuous audio stream. This re-

quires some sort of posterior-handling which could be done by smoothing out frame-

based posteriors and computing a confidence score for a smoothed-out window of frames. 

A final decision would be made if the confidence score exceeds a predefined threshold-

value. (Chen, Parada & Heigold 2014) 



 

 

While this work focused on only using a single model for the entire process, results could 

be quite easily improved with the use of ensembles. Ensembles of multiple models could 

be used both for generating pseudo-labels as well as the final predictions. Generating only 

the pseudo-labels with an ensemble of models would theoretically allow for higher quality 

pseudo-labels while keeping the parameter count low, as only one model would be used 

for inference.  
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APPENDIX 1. SWEDISH SUMMARY 

Taligenkänning av enskilda ord med Konvolutionella neuronnät 

på rå ljuddata 

Djupinlärning (eng. deep learning) och neuronnät har uppnått toppresultat inom flera 

olika fält inom maskininlärning som t.ex. bildklassificering (Simonyan, Zisserman 2014), 

maskinöversättning (Wu et al. 2016) och röstigenkänning (Amodei et al. 2016). Dessa 

neuronnät kan bestå av tiotals miljoner parametrar, där både träning och inferens kräver 

mycket tid samt kraftfull hårdvara. Medan dessa modeller uppnår toppmoderna resultat, 

kan de inte användas effektivt på mindre kraftfulla enheter som mobiltelefoner samt in-

bäddade system. Modell arkitekturer som MobileNet av Howard et al. (2017) har skapats 

för mer effektiv inferens samt lägre minnesanvändning där man fortfarande uppnår jäm-

förbara resultat gentemot den absoluta toppen. 

 

Det här examensarbetet fokuserar av taligenkänning på enskilda ord eller nyckelords 

igenkänning (eng. keyword spotting, KWS), där målet är att känna igen en uppsättning av 

fördefinierade ord från korta ljudklipp. Zhang et al. (2017) diskuterar behovet av att ha 

modeller med hög noggrannhet samt låga beräknings krav för att effektivt användas på 

enheter som mobiltelefoner och inbäddade system. De diskuterar problem med alltid-på, 

över nätverket, röstigenkänning på enheter som t.ex. Amazon Echo och Google Home, 

där det inte endast är ineffektivt att kontinuerligt strömma ljud över nätverket, men det 

leder även till problem med integritetsfrågor. De nämner även hur en del av problemen 

lindras genom användning av KWS, där enheten endast lyssnar för enstaka nyckel-ord 

eller fraser som “OK Google”. Efter igenkänningen aktiveras det fulla röstigenkännings-

systemet. Detta tillåter enheten att använda mer komplexa modeller endast när det behövs 

och lättar på en del av integritetsfrågorna.  

Fokus med arbetet är användningen av ett konvolutionellt neuronnät (eng. Convolutional 

Neural Network, CNN) som använder sig av endimensionella konvolutioner på rå ljud-

data. Såväl som effektiva inlärningsmetoder för att skapa en modell som uppnår högsta 

möjliga noggrannhet. Detta arbete gjordes som en del av TensorFlow Speech Recognition 



 

 

Challenge4 på Kaggle, en plattform för datavetenskap- samt maskininlärningstävlingar. 

Målet med tävlingen var att uppnå högsta noggrannhet på testdatamängden försedd av 

Kaggle, där etiketten för datat inte gavs ut och resultaten är baserade på inlämningen av 

en förutsägelsefil via Kaggle nätsidan. 

Medan huvudanvändningsfallen för modeller som används i detta arbete är smarta enheter 

och inbäddade system, så fokuseras inte på detta specifika ändamål. Men användnings-

fallen beaktas både i design av modellarkitekturen såväl som resultaten. I verkliga an-

vändningsfall krävs ofta klassificering inom kontinuerliga ljudströmmar. Arbetet tar inte 

hänsyn till detta problem då syftet är på att klassificera testdatamängden som enbart krä-

ver en förutsägelse per prov. 

Arbetet använder sig av datamängden Speech Commands (Warden 2017) som består av 

ca 65 000 en sekund långa uttalanden om 30 ord som t.ex. ”yes”, ”no”, ”right” och ”left”. 

Målet är att lära sig klassificera tio av dessa ord samt två separata klasser där den ena 

representerar alla andra ord (”unknown”) och den andra representerar inget ord dvs. tyst-

nad (”silence”). Testdatamängden, även försedd av Kaggle består av ytterligare 150 000 

uttalanden. Dessa innehåller både ord och uttalare som inte finns i tränings datamängden.  

För att nå den slutliga modellarkitekturen samt de använda träningsmetoderna genomför-

des ett flertal experiment där olika arkitekturer testades i samband med olika träningstek-

niker och hyperparametrar.  

Den slutliga modellarkitekturen är starkt inspirerat av VGGNet (Simonyan, Zisserman 

2014) samt modellerna av Dai et al. (2017). Modellen består av sex block där varje block 

består av två konvolutionslager, satsnormaliseringslager (Ioffe, Szegedy 2015) samt 

Rectified Linear Unit (ReLU) aktiveringsfunktioner. Varje block följs av ett pooling-la-

ger där alla förutom sista lagret använder sig av max-pooling, det sista lagret använder 

global average pooling. Konvolutionslagren använder sig av endimensionella konvolut-

ioner med en filterstorlek av 5, max-pooling lagren har en filterstorklek av 4. Det första 

blockets konvolutionslager har 8 filter, följt av en fördubbling av filter för varje block 

därefter. Modellens klassificeringsdel består av två lager med 128 och 64 neuroner, de 

följs av ReLU aktiveringsfunktioner och dropout-lager med en utfallshastighet av 0.5. 

                                                 
4 https://www.kaggle.com/c/tensorflow-speech-recognition-challenge  

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge


 

 

Det sista lagret består av 12 neuroner för att motsvara antalet klasser i datamängden. Den 

totala mängden parametrar i modellen är ca. 0.7 millioner. 

För effektiv träning av modellen används fyra huvudsakliga tekniker: viktad slumpmässig 

provtagning, Stochastic Gradient Descent with Warm Restarts (SGDR), användning av 

pseudo-etiketter samt artificiell utvidgning an träningsdatamängden (eng. data aug-

mentation). Data augmentering (eng. data augmentation) är ett sätt att öka mängden trä-

ningsdata genom att modifiera den tillgängliga datan på ett sätt där det fortfarande kan 

identifieras som samma klass. Viktad slumpmässig provtagning hjälper med klassbalan-

sen vid träning med att ge varje dataexemplar en vikt beroende på den totala mängden 

exemplar av den klassen. Vikten används sedan för att slumpmässigt välja exemplar för 

varje tränings iteration. SGDR är en träningsmetod föreslagen av Loshchilov och Hutter 

(2016) där modellens parametrar optimeras med en gradvis sjunkande inlärningstakt (eng. 

learning rate) med ett antal omstarter där inlärningstakten återställs till sitt ursprungliga 

värde och sänkningsprocessen omstartas. Användningen av pseudo-etiketter består av att 

först med en tränad modell göra förutsägelses på omärkt data, i detta fall testdatamäng-

den, och använda de mest självsäkra förutsägelserna som sanna etiketter (Lee 2013).  

Modellen uppnår 97,4% noggrannhet på valideringsdatamängden, samt 88,7% och 89,4% 

noggrannhet på de två testdatamängderna som består av 30% respektive 70% av den to-

tala testdatamängden. Den höga valideringsnoggrannheten tyder på att modellen effektivt 

kan lära sig representationer för de ord som det ser under träningsprocessen. Granskning 

av förutsägelser visar att testdatamängden är mycket svårare än valideringsdatamängden, 

mängden oljud och bakgrundsljud är mycket högre, samt är en del av orden avkapade så 

att man inte kan säga vilket or det är frågan om. Modellen har också svårigheter med ord 

som är utanför träningsdatamängdens omfattning som t.ex. ”backward” or ”learn”. Ordet 

”learn” är ofta felaktigt förutsedd som order ”left”, vilket tyder på svårigheter med ord 

som innehåller liknande fonem. Andra ordpar med liknande svårigheter är “no” och 

“nine” samt “on” och “one”. Dessa problem visar att användningen av endast rå ljuddata 

samt CNN är inte tillräckligt för att perfekt generalisera till nya ord samt exemplar med 

mycket oljud eller bakgrundsljud.
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