
 

 

Kalle Koskinen 

Development of Cost-efficient Embedded Con-
trol System for Cryo°Cabin 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Information and communications technology 

Thesis 

28 April 2018 



 Abstract 

 

Preface 

This project was clearly the most challenging technological project I’ve ever been in-

volved in. In the beginning of this project my knowledge of the techniques and technology 

was well below sufficient level but the demanding nature of this project made sure that 

this will not be the case after the finish line was reached. I wish to thank all the people at 

CTN and CTF who made this project possible, especially Jan Eklund and Juha Yliol-

litervo. I also wish to thank Sakari Lukkarinen for giving me great tips when composing 

this thesis. 

The smell of a burnt transistor is the smell of technological progression. 

28.4.2018 

Kalle Koskinen 

  



 Abstract 

 

Author 
Title 
 
Number of Pages 
Date 

Kalle Koskinen 
Development of Cost-efficient Embedded Control System for 
Cryo°Cabin 
 
47 pages + 2 appendices  
28 April 2018 

Degree Bachelor of Engineering 

Degree Programme Information and communications technology 

Professional Major Health informatics 

Instructors 
 

Jan Eklund, Managing Director 
Sakari Lukkarinen, Senior Lecturer 

 
This thesis was commissioned by Cryotech Nordic AS and its subsidiary Cryotech Finland 
Oy. The project was triggered by a demand for a simplified cryotherapy system. Thus, the 
aim of the thesis was to design and develop cost-efficient embedded control system alter-
native for current Cryo°Cabin cryotherapy system. 
 
The success criterion of the project was to create a control system prototype whose cost-
effiency and reliability would allow the creation of a new product at a reduced cost in the 
future. The prototype should have as much of the features of Cryo°Cabin system as possi-
ble. 
 
The project consisted of automation, electrical and software engineering, which were re-
quired for ensuring the operation of the system logic, components, devices and software.  
 
The outcome of the project is a prototype which, with its cost-effiency, exceeded the given 
targets. The development and testing of the prototype continues after this thesis and it will 
be used in other projects for Cryotech Nordic in the future. 
 

Keywords Cryotherapy, Embedded control systems, Python, Android 



Abstract 

 

Tekijä 
Otsikko 
 
Sivumäärä 
Aika 

Kalle Koskinen 
Kustannustehokkaan sulautetun ohjausjärjestelmän kehitys 
Cryo°Cabin:lle  
 
47 sivua + 2 liitettä  
28.4.2018 

Tutkinto Insinööri (AMK) 

Koulutusohjelma Tieto- ja viestintätekniikka 

Suuntautumisvaihtoehto Hyvinvointi- ja terveysteknologia 

Ohjaajat 
 

Jan Eklund, Toimitusjohtaja 
Sakari Lukkarinen, Lehtori 

 
Tämä insinöörityö toteutettiin Cryotech Nordic AS:n ja Cryotech Finland Oy:n 
toimeksiannosta. Insinöörityön tavoite oli suunnitella ja toteuttaa kustannustehokas 
vaihtoehto nykyiselle Cryo°Cabin kryoterapialaitteen sulautetulle ohjausjärjestelmälle. 
Projektin taustalla oli kasvanut kysyntä edullisemmalle kryoterapiajärjestelmälle. 
 
Projektin onnistumisen kriteereinä oli luoda ohjausjärjestelmän prototyyppi, jonka 
toimintavarmuus  ja kustannustehokkuus mahdollistaisi tulevaisuudessa uuden tuotteen 
luomisen alennetuilla kustanuksilla. Prototyypissä pitäisi olla mahdollisimman paljon jo 
olemassa olevan kryoterapiajärjestelmän ominaisuuksista. 
 
Projekti sisälsi automaatio-, ohjelmisto- ja sähkösuunnittelua, joita vaadittiin 
ohjausjärjestelmän toimintalogiikan, komponenttien sekä laitteiden ja ohjelmiston toiminnan 
varmistamiseksi. 
 
Projektin lopputuloksena syntyi prototyyppi, joka kustannustehokkuudellaan ylitti 
positiivisesti annetut rajat. Protyypin kehittäminen ja testaaminen jatkuu myös insinöörityön 
jälkeen ja kyseistä tuotetta hyödynnetään jatkossa muissa Cryotech Nordicin projekteissa. 

Avainsanat Kryoterapia, Sulautettu ohjausjärjestelmä, Android, Python 



Abstract 

 

 

 

Contents 

List of Abbreviations 

1 Introduction 1 

2 Whole-body cryotherapy 2 

 WBC systems 2 

2.1.1 Operating principle 2 

2.1.2 Cryochamber 3 

2.1.3 Cryosauna 4 

3 Embedded control system 6 

 Embedded system 6 

 Embedded computers 7 

 Control systems 9 

 Software 11 

4 Cryotech Nordic AS 13 

 Background 13 

 Cryo°Cabin 14 

 Competitors in the market 15 

5 Requirements for new product 17 

 Cost reduction 17 

5.1.1 Devices 18 

5.1.2 Control system 18 

 Product reliability 19 

6 Design & development 20 

 Design decisions 20 

 Pre-prototype phase 22 

6.2.1 Control system 22 

6.2.2 Python 25 

 Prototype I 26 



Abstract 

 

6.3.1 Control system 26 

6.3.2 Python 29 

 Prototype II 30 

6.4.1 Raspbian 30 

6.4.2 Python 31 

6.4.3 Android 32 

 Prototype III 35 

6.5.1 Control system 35 

6.5.2 Python 37 

 Prototype IV 37 

6.6.1 Control system 38 

6.6.2 Python 40 

6.6.3 Android 40 

7 Results 43 

 Cost reduction 43 

 Product reliability 44 

8 Summary 45 

References 46 

Appendices 

Appendix 1. Control logic flowchart 

Appendix 2. Schematic diagram 

  



Abstract 

 

List of Abbreviations 

ADC Analogue to digital signal converter 

Cron Time-based job scheduler in Unix-like operating systems 

Cryo°Cabin Cryotherapy system developed by Cryotech Nordic 

CTF Cryotech Finland Oy 

CTN Cryotech Nordic AS 

DAC Digital to analogue signal converter 

GPIO General purpose input output 

GUI Graphical user interface 

IDE Integrated drive electronics 

I/O Input/Output 

LED Light emitting diode 

LN2 Liquid nitrogen 

NPN Transistor type 

PC Personal computer 

PV Process variable 

PSU Power supply 

R&D Research and development 

RPM Revolutions per minute 



Abstract 

 

SBC Single-board computer 

SP Set Point 

Tkinter Python’s standard GUI package 

USB Universal serial bus 

USD The United States dollar 

WBC Whole-body cryotherapy 

WiFi Wireless Fidelity 



1 

  

1 Introduction 

Different kinds of cryotherapy systems and equipment are developed at accelerating 

rate. This is the due to numerous high profile athletes who have taken cryotherapy as a 

part of their training routine. (Kemp 2016; Lelinwalla 2015) When it comes to cryotherapy 

systems, there are two distinctive types of them: large room-sized systems called cry-

ochambers and cryosaunas, which are barrel-like cabins. There are a few aspects that 

separate these two systems, but one thing that they both have in common, is a rather 

high price tag starting from around 40000 US dollars (USD) up to over 100000 USD. 

(Domin 2015; Marshall 2016) 

The combined price of cryotherapy system, the coolant and other business-related ex-

penses towards whole-body cryotherapy (WBC), for example the cost of business prem-

ises, makes it risky especially for small businesses to consider creating a flourishing 

cryotherapy business. This is why there has been a demand from the market for a budget 

alternative of cryotherapy system. 

The purpose of this thesis is to develop a cost-efficient alternative for the Cryo°Cabin’s 

current embedded system for Cryotech Nordic. The idea is to decrease the costs of the 

components used in the embedded system while retaining the same usability and prod-

uct reliability. The cost of the finished product will be significantly lower compared to the 

current system thus allowing the creation of completely new model of Cryo°Cabin. The 

longer term aim is to create a whole new market for this new budget product while the 

current product remains a high end system. 

This thesis contains 8 sections. Following the Introduction, sections 2 and 3 provide the 

theory around cryotherapy and the control system. The fourth section introduces the 

company while the fifth section focuses on the requirements for the new product. Section 

6 covers the process of design and development of the product. The seventh section has 

the results of the project while the section 8 contains some final thoughts of the project. 
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2 Whole-body cryotherapy 

The WBC treatment was first used in Japan by Dr. T. Yamauchi in 1978. The idea was 

to find out how extreme cold temperatures affect rheumatoid arthritis patients when ap-

plied on their skin for a short period of time. The conclusion was that the application of 

the extreme cold on the patient’s skin released great amounts of endorphins which eased 

the pain of the subjects. Since then WBC has been developed in Europe and in the US. 

Today, WBC is utilized by top-tier athletes all over the world for faster recovery from 

training sessions as well as patients with different kinds of conditions. (Lombardi et al. 

2017) 

 WBC systems 

There are two main types of WBC systems in the market, that use liquid air or nitrogen 

(LN2) as a cooling method: cryogenic chambers (cryochambers) and cryosaunas (Yliol-

litervo et al. 2017). They both share the same operating principle, but differentiate when 

it comes to size, operating temperature and the equipment required for the patient. There 

are also cryogenic chambers that are electrically cooled, but this thesis does not include 

them, as their operating principle differs significantly from the others. 

2.1.1 Operating principle 

The main principle of a WBC system is simple: air inside the system is cooled to extreme 

proportions using either LN2, which has a boiling point of -196 °C or liquid air, which is a 

mixture of different gases compressed to liquid form and has a boiling point of around -

194 °C (Yliollitervo et al. 2017: 3). If LN2 is used in WBC system, the system always 

requires careful surveillance due to treacherous nature of N2 gas. 

There are two ways of inputting the liquid gas to the cryotherapy system: direct input and 

indirect input. Direct input means that liquid gas is sprayed in small amounts straight into 

the treatment space where the patient is. This method cools the space quickly, but the 

downside is, that the extremely cold liquid presents a risk of a frostbite to the patient. 

(Yliollitervo et al. 2017) 



3 

  

The second method, indirect input, is a method where liquid gas is sprayed into a con-

tainer, so that the cold liquid evaporates and mixes with air. This mixture of gases is then 

channeled into the treatment space from the container. Indirect input is not as quick 

method of cooling the treatment space as direct input, but it is easier to control and has 

way lower risk to cause a frostbite. (Yliollitervo et al. 2017) 

2.1.2 Cryochamber 

Cryochambers (Figure 1) are usually large, room-sized, containers where patients wear 

protective masks, headgear, gloves, shoes and underwear. Protective mask is used to 

cover the patient’s nose and to prevent the cold air causing patients discomfort when 

breathing. These chambers can usually take multiple persons at a time, although there 

are also smaller chambers that take only one person at a time.  

 

Figure 1. Cryochamber with 2 precool areas using temperatures of -10 °C and -60 °C. The main 
room operating at -110 °C. (Sequence 2016) 

Depending on the model of the chamber, the container can have up to two precool areas 

like in Figure 1, which are cooled to significantly milder temperatures, around -10 to -60 

°C, before the main room, which operates around -100 to -110 °C. Smaller chambers do 

not have these precool areas. The treatment usually lasts around 2-3 minutes. The pa-

tient can move freely while in the cryochamber. (Muhic 2016; Sequence 2016) 
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2.1.3 Cryosauna 

Cryosaunas are 2 to 3 meter tall barrel-like cylindrical cabins made for one person where 

the patients only wear protective shoes and underwear. The cryosaunas are open from 

the top so the patient’s head is not exposed to the extreme cold, allowing patients to use 

cryosaunas without headgear or a protective mask. As figure 2 illustrates, no gloves are 

required since the patient can rest his/her hands on the rim above the cold air mass. As 

cryosaunas are open from the top, patients suffering from claustrophobia can also take 

cryotherapy sessions in these systems. (Muhic 2016) 

 

Figure 2. The orientation of the patient during a treatment in a cryosauna. (Savic et al. 2013) 
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Before treatment, the cryosauna is precooled usually around to 90 % of the operation 

temperature after which the patient steps into the cryosauna. The treatment usually lasts 

2 to 3 minutes and the operation temperature varies from -80 to -140 °C. It is recom-

mended for the patient to move and rotate slowly in cryosauna when the session is in 

progress. This is due to fact that cold air is usually channeled into the treatment space 

from one spot, usually from the back of the cryosauna. In Figure 2, the cold air is chan-

neled into the treatment space through the pipes right of the patient. The rotation of the 

patient ensures that the cold air will not be concentrated to one spot of the body and 

causing discomfort to the patient. (Eklund 2018) 
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3 Embedded control system 

 Embedded system 

The characteristic of an embedded system is a computer-aided system, although it might 

not be apparent to the user. Embedded systems come in various sizes and a system can 

be a mixture of multiple components and appliances, or it could just be a single computer. 

Usually, an embedded system performs a dedicated function or a task, or it processes 

several smaller tasks. In a large complex unit, such as a modern car, a group of small 

embedded systems performing different tasks form a network of systems to create the 

best possible platform for a user to enjoy multiple different features. (Barr 2017) 

Embedded systems were created for the Apollo space program in the United States in 

the 1960’s (Tomayko 1988). Nowadays, since the processors have developed to be 

cheaper, smaller and more powerful, the market for embedded systems, like the figure 

3 illustrates, has skyrocketed and today an estimation of 98 % of every manufactured 

processor unit in the world ends up being a part of an embedded system. (Barr 2017) 

  

Figure 3. Estimation of sold processors (Barr 2017) 
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The user of an embedded system might not be aware of the computer that lies inside, 

because the user interface of the system can be compact with very little options to play 

with, or it might not exist at all (Forrai 2013). The cruise control in a modern car, for 

example, is an embedded system. The driver of the car can influence the system by 

switching it on or off and when it is activated, the driver can set the desired speed to be 

maintained. 

Earlier, every component of an embedded system had to be tailored just for the occasion 

because of the lack of performance of the used parts. Nowadays, customized compo-

nents are still being used in different embedded systems, but if the embedded system in 

question is performing similar actions to regular PC’s, like TCP/IP actions, it’s more ben-

eficial to use a PC solution for the embedded system, as they offer enough performance 

with good price. If optimization is needed, it can be done in the software. (Embedded 

systems 2017) 

 Embedded computers 

Usually these PC solutions for embedded systems are called embedded computers, in-

dustrial computers or embedded box-computers, which name comes from its box-like 

appearance (Figure 4). An embedded computer differs from a regular PC with its size, 

durability and cooling. There are often more IO-ports (Input/Output) than usual, that are 

required for connecting different devices and sensors that might be part of the embedded 

system. These differences between a regular PC and an embedded computer are the 

result of the fact that the the embedded computer needs to stay functional under constant 

stress for long periods of time without maintenance and it has to fit in small-sized systems 

with ease. In other words, it should be embeddable for a system. (Fanton 2014) 



8 

  

 

Figure 4. Embedded box-computer with metal housing designed as heatsink (Uibx-230-bt-
n2/2g-r11 2016) 

There are roughly two types of embedded computers: computers with housing and com-

puters without housing, the latter ones being called single-board computers (SBC). In 

computers with housing the computer circuit is installed inside a durable metal case, 

which operates as a heatsink for passive cooling. SBC, according to its name, is just a 

circuit board with the standard PC connections, for example HDMI or VGA-port for a 

display. Which computer type works best, depends heavily on the application and the 

system where the computer should be installed. (Fanton 2014) 

Most of the time, computers with housing are more powerful and stable for tasks with 

greater need of performance, thanks to its passive cooling, which makes it possible to 

install more powerful components on the computer. On the other hand, if the task is 

simple and the computer has to be small-sized, an SBC is the best option because they 

are available in a size of a matchbox (Figure 5) (Brown 2016). The price-range of em-

bedded computers is very vast. The least powerful SBC’s cost only around 10 to 20 

euros, the intermediate SBC’s and the cheapest box-PC’s around 100 to few hundred 

euros while the most powerful computers with housing for extremely demanding tasks 

could cost several thousand euros (Atwell 2015; Uibx-230-bt-n2/2g-r11 2016; Advantech 

MIC-7900-S5A1E Sulautettu teollisuustietokone 2016). 
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Figure 5. Matchbox-sized SBC with Ethernet and USB connections (Brown 2016) 

 Control systems 

A control system controls other devices and systems with control loops. A control system 

can be mechanic, electrical or computer-aided, ergo embedded control system. A simple 

control system can be just a device or a component, which bases its functionality to 

physical or chemical reactions of its ingredients of fabrication (a thermostat, for example). 

This functionality can be represented with two values: SP (Set point) and PV (Process 

variable). (Forrai 2013: 2; Control system 2017) 

SP is a value, which is critical to the control system. It is a pivotal point to the embedded 

system to base its actions on. For example, the SP value of a thermostat is a temperature 

where it either activates a device or deactivates it. If the thermostat is mechanical, its 

materials, e.g. metals or gases, react to the change of temperature and contracts or 

expands. This gives the connected device a signal to power on or off. The connected 

device in this case could be a radiator, where hot water is fed when the surrounding air 

temperature drops below the SP. This continues as long as the surrounding air temper-

ature reaches the SP again and the water feed is closed. An electrical system works in 
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very similar fashion: the thermostat closes or opens an electrical circuit and the con-

nected device, such as heating resistor, powers on or off (Figure 6). (Control system 

2017) 

 

Figure 6. Control system where the temperature of the liquid is maintained using temperature 
sensor and heating element (Frenzel 2013) 

A PV is a value, which is constantly measured. PV always exists even if the user of the 

system is not aware of it. This is usually the case in very simple control systems, where 

there are no indicators for the PV and the exact value of the PV could be determined 

with separate tools. User can only determine an estimation of the PV by checking the 

status of the system and seeing if it’s greater or less than SP. It is extremely important 

that the measure methods of the control system work correctly as corrupted measure-

ments compromise the stability of the system. When choosing the methods for measure-

ments of the control system, the prevailing conditions must be taken into consideration. 

(Control system 2017) 
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 Software 

An embedded control system requires an operating logic, a computer program, for it to 

work. The language used in the creation of the software for the system heavily depends 

on device or computer that controls it. If the device is a PLC (Programmable logic con-

troller), essentially a computer designed for automation processes, the language for the 

software is chosen from the IEC 61131-3 standard. The standard defines 5 different lan-

guages which are used to write software for PLC, for example ST (structured text). If 

again the device influencing the control system is an embedded computer with operating 

system like Microsoft Windows or Linux, the language for the software can be chosen 

from various languages. It is also possible that the control system operates as a mixture 

of these two and the tasks are shared between these two devices. (John & Tiegelkamp 

2010: 99)  
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Figure 7. Flowchart illustrating control logic of system controlling a valve (Flowchart based de-
sign 2010) 

In the beginning of software development, it is extremely important to know what kind of 

devices and components the control system is dealing with. Also, the operating principle 

needs to be decided before the development. This includes the information of how the 

user can interact with system. It is also possible that the user cannot interact with the 

system at all. The operating principle of the system can be depicted with state diagram 

or flowchart as seen in figure 7 and appendix 1. (Forrai 2013: 21-30; 242) 
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4 Cryotech Nordic AS 

 Background 

Cryotech Nordic AS (CTN) specializes in non-invasive, non-surgical health and aesthetic 

treatment devices. CTN was founded in 2013 in Harju County, Estonia. Its subsidiary 

Cryotech Finland Oy (CTF) was also founded in 2013 in Espoo, Finland. Today, the CTN 

factory in Estonia is still located in Harju County, but the CTF’s office and the research 

and development (R&D) center, also known as the CTN Center, in Finland changed its 

location to new premises in Vantaa in summer of 2017. The factory in Estonia produces 

all the frames of the products while the CTN Center in Finland focuses both on the re-

search and product development and the final assembly of the products. At the time of 

writing, CTN products can be found in more than 30 countries all the way from North 

America to Australia. 

 

 

Figure 8. CTN products: Octagon Duo, Cryo°Cabin, Monolith Quattro, Altium Duo. In reality the 
Cryo°Cabin is twice as tall as the other machines. (Cryotech Nordic 2018) 

Besides the Cryo°Cabin, Monolith Quattro, Altium Duo and Octagon Duo are the other 

products of CTN as seen on the figure 8. Monolith Quattro is a cryolipolysis device for 

body fat removal. Altium Duo is a High Intensity Focused Ultrasound (HIFU) device for 

non-surgical face lifting and Octagon Duo is a lipolysis laser, lipolaser, device for 

bodyscuplting. 
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 Cryo°Cabin 

Cryo°Cabin is a cryosauna-type of a WBC system created by CTN. The first model of 

the Cryo°Cabin was developed in the end of 2015. The first shipments to customers were 

made in the beginning of 2016. Its control system relies on Windows platform with the 

help of high-end PLC. This combination makes it extremely reliable. The newest model 

of 2018 has some differences when compared to the first model of 2016. The visible 

changes are mostly aesthetical with some adjustments of the operating principle aimed 

for better user experience of the Cryo°Cabin. The most important change, however, is 

the vastly improved usability through some material and structure changes. 

 

Figure 9. Cryo°Cabin model 2018 with brown interior and black exterior (Cryotech Nordic 2018) 
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The model of 2018 (Figure 9) has 2 different sized monitors for user interaction and 

temperature monitoring. The 24” touchscreen is used for controlling the device, while the 

smaller 10” monitor shows current temperature, time elapsed and image of thermal cam-

era to the customer. To control the gas flow of the system, the Cryo°Cabin has a high-

quality three-phase induction motor system. There is also a patented Vortex® active gas 

circulation system, which allows the Cryo°Cabin to consume less liquid coolant. The 

Cryo°Cabin can be used with both LN2 and liquid air. The flow of the liquid coolant is 

controlled with solenoid valve, and the system uses an indirect input of the coolant, as 

LN2 or liquid air is sprayed into a container for evaporation. 

 Competitors in the market 

There are other manufacturers in the market who have managed to build a cryotherapy 

system, but only few of them have managed to establish themselves to sell cryotherapy 

systems worldwide. Some of them manufacture cryochambers, while others manufac-

ture cryosaunas. In addition, every notable manufacturer has its own network of distrib-

utors which makes it difficult to tell if the company in question is only a distributor or if 

they manufacture the product themselves. Table 1 illustrates all the companies that ad-

vertise a cryotherapy system as a manufacturer. Some of the companies are part of a 

larger enterprise which are mentioned in parenthesis. The company status in the table 

is an estimation of the size of the company with all its products and services taken into 

consideration.  
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Table 1. Competitors 

Company name HQ location Product Company status 

BOC (Linde Group) UK (Germany) Cryochamber Established 

Cryo innovations USA Cryosauna Growing 

Cryomed Slovakia Cryosauna Growing 

Cryoness (Asperia Group) Poland Cryosauna Startup 

Cryoniq Slovakia Cryosauna Growing 

Cryoscience Poland Cryosauna Growing 

Grand Cryo Russia Cryosauna Startup 

Impact USA Cryosauna Established 

Juka Poland Cryosauna & -chamber Established 

Krion Russia Cryosauna Established 

Kriosystem life Poland Cryochamber Startup 

Mecotec Germany Cryochamber Established 

Medner medizintech Germany Cryosauna Established 

Metrum Poland Cryochamber Established 

Revocryo USA Cryosauna Startup 

Us cryotherapy USA Cryochamber Growing 

Vucuactivus Poland Cryosauna Startup 

Zimmer Germany Cryochamber Established 

The most notable thing about table 1 is the location of the competitors. Most of them 

operate from Central Europe, with a few in the USA and Russia, but none in Eastern 

Asia like Japan, South Korea or China. 
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5 Requirements for new product 

When designing a new product for the health technology market, it is essential to under-

stand the requirements of this business field. The operational reliability has to meet cer-

tain standards so that the system is safe to use in every situation. Only trained personnel 

can operate the Cryo°Cabin and this fact makes the design process slightly easier, since 

the designer can be sure, the user of the system has a basic knowledge of how the 

product works. 

If the product is aimed for a market in a certain country, it is also extremely important to 

know the legislation of the aimed destination. The regional differences can be drastic 

when a country can treat Cryo°Cabins as a non-medical device while another country 

next to it can classify Cryo°Cabin as a medical device. When a device has been classified 

as a medical device, the requirements of the product get higher. The components used 

must have certain seal of approval, for example FCC Declaration of Conformity or CE 

European Conformity. This can be also the case when the product is not a medical de-

vice, but the country of destination requires certain standards for electrical devices. 

 Cost reduction 

To really make a difference in the current cryotherapy system market, the new system 

has to be at least 66 % less expensive to manufacture than the current Cryo°Cabin. The 

percentage could be even higher, up to 75 %. These rates have been found by making 

a market analysis in the developing countries, where the new product could really make 

a great impact with its cost-effiency. This drop in price sets limits to the budget where 

the designer can operate when choosing components for the control system. It is also 

assumed that the new Cryo°Cabin system will use the same physical frame as the cur-

rent Cryo°Cabin, with minimum amount of modifications. Manufacturing only one frame 

type offers savings in mold costs, but limits reducing the total costs to the control system. 
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5.1.1 Devices 

There are over 20 devices connected to the current control system. To reach the 66 % 

price drop for the new product, some of them have to be removed or replaced with re-

duced-cost alternatives. The devices that do not affect the basic operating principle of 

the Cryo°Cabin can be stripped off. 

The most important devices for the Cryo°Cabin are the motor unit, the solenoid valve 

and the temperature sensors. These devices will remain the same for the new system 

as they are proved to be extremely reliable and their availability from the suppliers is 

good. Also the small fans of the system will stay the same as their price is already good 

enough. 

The current Cryo°Cabin has a mechatronic lift to easily adjust the patients head above 

the rim. Although this device is very useful, it is not a necessity and thus costs can be 

saved if this device is left out from the new product. It also requires a few relays to oper-

ate and these can be left out as well. An air compressor for automatic door opening can 

be removed from the system for it’s just a nice addition for the user experience. 

5.1.2 Control system 

The current control system of Cryo°Cabin consist of a switchboard and a computer unit 

with two monitors. The high-quality components of the switchboard are somewhat costly. 

The system include PLC, motor control unit, 2 power supplies, 60 terminal blocks, relays, 

residual current device and the attachment panel.  

A motor control unit is essential when using a three-phase motor unit. Therefore it has 

to remain untouched when creating the new control system. Also, the attachment panel 

itself will remain the same since there is no need for a change: it’s easier for the company 

to only order attachment panels of one type which will fit both versions of the Cryo°Cabin. 

To really make the control system cost efficient, the embedded computer unit must be 

replaced with a cost-efficient alternative. The two monitors of the unit, the computer itself 

with a Windows license can be easily replaced with Linux based system and the two 

monitors are not a necessity for the system to operate. 
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 Product reliability 

To ensure the safe use of the Cryo°Cabin, the devices and the control system must meet 

a certain level of reliability. Also, the user must feel secure when operating the cryother-

apy system and he/she has to be able to trust the system. This can be achieved by 

testing the created system and analyzing the data from the current system. Especially 

the data gathered from the current system will show what kind of technical problems the 

Cryo°Cabin might face in the future. 

The second part of the reliability is the software. It must be designed in a way that it can 

either recover from errors it might face, or if it cannot recover from an error, it never 

compromises the health of the patient. This can be achieved by making a risk analysis 

that shows the most vulnerable parts of the system. The current software bases its op-

erations on a signal data gathered from the sensors mounted inside the cabin. If this data 

is corrupted in any way, the software must recognize the situation and adapt to it. If the 

situation is unadaptable, the system needs to stop its operations and if possible, inform 

the user about the error it encountered. Also, the devices connected to the control system 

have to be set up in such a way that a possible software crash will not cause danger to 

the user or to the patient. 

The combination of the devices, the switchboard and the software define the operational 

reliability of the whole product. The reliability can be measured for example counting the 

failures per year or failures per runtime. A failure is counted when any part of system 

dysfunctions. The current Cryo°Cabin has really high operational reliability. The new 

product must meet these reliability standards. 
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6 Design & development 

This chapter covers the process of production from the first prototype to the fourth and 

the final version. The chapter is divided to parts and one part covers the phase of the 

production in question with detailed information about changes in the project. This thesis 

covers the production part of the project from the start at the end of March, 2017 to the 

end of December, 2017. 

 Design decisions 

When the designing process begun, the first thing was to determine what could be left 

out of the product and still maintain the usability of the product. Windows platform itself 

is a rather expensive operating system and it was clear that it needed to go. Linux based 

operating systems are usually completely free and their compatibility with other devices 

is great. This fact made it easy to choose a Linux based computer for the new embedded 

system. The only problem with changing Windows to Linux was that the current 

Cryo°Cabin software could not run on Linux platform so it would need a brand new soft-

ware that was designed just for this application. 

The next step of the process was to decide what kind of embedded computer would run 

the control system. The debate was between Arduino Uno and Raspberry Pi (Figure 10), 

since both of them are very small sized, they have pretty good availability from the ven-

dors, their performance is sufficient to run the Cryo°Cabin software and they both have 

numerous I/O-ports to control other devices. Raspberry Pi was chosen because it had 

bluetooth and WiFi (Wireless Fidelity) connections, it has the option for graphical win-

dowed user interface and it was familiar to the developer from earlier school projects. 
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Figure 10. Raspberry Pi 3 model B, SBC with numerous connections. (Raspberry Pi Model 3 B 
2018) 

The language of the new software was a difficult decision to make since there were many 

options to choose from. The languages that were tested before the decision were C++, 

a combination of PHP and Javascript, Java and Python. The three last mentioned options 

were the strongest languages for the developer and the final decision was to create the 

software with Python, as it would offer great tools to operate the I/O-ports. What is more, 

software development with Python is quite simple and fast. 

The last decision to make before the prototyping phase could start was to decide how 

the cabin would be operated and what devices the control system would control. If the 

monitors of the current system would be left out, it would drop the price of the system 

significantly but it also would mean that the way the user interacts with the system and 

vice versa would change considerably. Also the other devices like the lift, door pusher, 

heater, drying fan and thermal camera were under consideration to be removed from the 

system. They provide a great additional value for the product, but their significance to 

the basic operational principle is small. The decision was to remove the monitors and 

replace them with a simple push button that would control the system. A single led light 

would be sufficient to give the user information of the system status. All unnecessary 

devices would be removed at first, but taking them back could be taken into considera-

tion, if the situation needed so. 
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 Pre-prototype phase 

The design process started from absolute scratch. No components were ordered for the 

start of the project and every component used in the first stages of the project were spare 

parts used in previous CTN projects. The Raspberry Pi was lent from Metropolia. 

6.2.1 Control system 

At first, there were only two components in the system: the Raspberry Pi and the solenoid 

valve. The question was, how to operate the valve when it requires 24 V of supply voltage 

and the programmable Raspberry Pi GPIO pins can only output 3,3 V of supply voltage? 

The solution was to use solid state relay which could be activated with 5 V supply voltage. 

The Pi has two 5 V non-programmable GPIO pins and one of them worked as the power 

supply for the relay. To control the relay, a NPN transistor had to be installed on the 

ground side of the relay to work as a switch. The relay activated when 3,3 V signal from 

a GPIO pin was inputted to the base of the transistor. This is depicted in figure 11. 

 

Figure 11. The transistor-relay solution controlling a 24 V device 

Now that the relay could be controlled, only a 24 V power supply (PSU) was needed to 

give sufficient voltage to the valve. This breakthrough also meant, that any device or 

component could be controlled with the solution and it was an important step since al-

most every device on the system requires at least 10 V of supply voltage. Also, the tran-

sistor-relay solution was fairly inexpensive to create which suited the agenda of this pro-

ject. 
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To make the creation of the first prototype possible, the missing important devices 

needed to be introduced to the system. These were the temperature sensor, the control 

button and the motor control unit. The control button was straight forward, as it did not 

require any other components to work. It got its voltage from one of the non-programma-

ble 3,3 V GPIO pins and the ground side was directed to one of the programmable GPIO 

pins. If the button was pressed, the destination GPIO port’s value changed from 0 to 1. 

The motor control requires two signals: a 24 V start signal, which has to be activated to 

operate the motor and a motor speed signal, which can vary from 0 V to 10 V and where 

the inputted voltage signal corresponds the RPM (Rounds per minute) value of the motor. 

The start signal was simply handled with the transistor-relay solution but the speed signal 

needed a little bit extra thinking. To operate the cabin properly, it requires at least 3 

different speeds for the motor and the voltage of the speed signal should not exceed the 

10 V. The different speeds are a full speed with value of 10 V, a medium speed with 

value of 7,6 V and a low speed with value of 6,7 V. 

Since the PSU supplied 24 V of voltage, a full voltage could not be inputted to the speed 

signal port. The supply voltage needed to be divided properly to achieve the 10 V maxi-

mum signal voltage. The solution was to use two resistors with values of 1,4 kΩ and 1 

kΩ on a connected line to create a voltage divider. The 1,4 kΩ resistor was connected 

to the supply of the PSU and the 1 kΩ resistor to the ground. Then from the middle of 

the line, between the resistors, a line could be taken which supplied the 10 V of voltage. 

This 10 V was then directed to a group of connected terminal blocks, where one line was 

connected to the speed signal port (Figure 12). This connection worked as the full power 

signal. 

Other two ports of the terminal block group were connected to two different relays. The 

first relay was connected with a line and 1 kΩ resistor and the output side of the relay 

was grounded. This same method was used on the second relay but with resistor of 2 

kΩ. Both relays were controlled with the transistor-relay solution. Now, if the both of the 

relays were not activated, the motor got 10 V signal and full power. If the first relay were 

activated, the value of the speed signal dropped to the 6,7 V which was the low speed. 

Then if the first relay were deactivated and the second relay were activated, the speed 

signal got value of 7,6 V which was the medium speed (Figure 12). With this solution the 

motor could be controlled. Also, when the number of the relays got higher, a 5 V PSU 

was introduced to the system to supply the needed voltage to the components. 
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Figure 12. Motor control schematic 

The last device was the temperature sensor. The problem with it was that it was an 

analogue temperature sensor and the GPIO pins of the Pi understand natively only digital 

input signal. An analogue to digital converter (ADC) was needed and luckily there was a 

USB ADC available. With this ADC, the temperature sensor could be connected to the 

system. The sensor got its voltage from 3,3 V GPIO pin and the output was directed to 

the input port of the ADC. Also, a 1 kΩ resistor was connected from the same input port 

to the ground, so that any noise voltage would be grounded and it would not cause inac-

curate measurements of the temperature. (Figure 13) 
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Figure 13. The temperature sensor circuit 

6.2.2 Python 

Before the creation of the software logic could begin, modules for GPIO pins and ADC 

needed to be installed and the newly installed modules needed to be tested. To control 

the GPIO pins, the GPIO module needed to be initialized. After that, a setup for the 

desired pin needed to be made. In this setup, the direction, input or output, of the pin 

was determined. When the setup was complete the pin was ready to be either controlled 

or listened depending on if the direction was output or input. 

The software logic for the output signals works as follows: the pin has two states, true or 

false and the state determines if the pin works as a 3,3 V voltage supply or a ground. In 

this situation the controlled output devices were the transistors connected to the relays. 

The temperature measurements were made with an ADC which meant the data gathered 

from the device were in the form of bits. The range of the bits varied from 0 to 1024. To 

convert these bits to corresponding temperature, a mathematical formula was needed 

and it was created by making a table, where the measured bit value was matched with 

a temperature, which was measured with a separate thermometer. From this table, a 

graph could be drawn and with that the formula could be determined. 
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 Prototype I 

The first prototype was installed on a cabin in the end of May, 2017. This prototype was 

different from the others as it had a Python software with graphical user interface (GUI). 

This meant it required a monitor to fully operate it. Although this was the first fully running 

prototype, no tests with a patient were ran with this setup. 

6.3.1 Control system 

A couple of devices needed to be introduced to the system to make it a real prototype: a 

led light and a boost fan, which was essentially a 24 V fan used in PC computers. The 

led’s purpose was to be the indicator of the state of the system. The idea was to program 

it to switch on or off or blink when the systems state changes. The led was connected to 

a GPIO pin and a ground. 

The boost fans logic in the system was as follows: always on, but with half-power and at 

certain times full-power. To control the boost fan, a 3-port terminal block and a transistor-

relay solution was needed. 24 V of voltage was inputted to one of the ports with a 56 Ω 

power resistor, which dropped the voltage to 12 V and this was the half-power voltage. 

The second port of the terminal block was used to bypass this 12 V. It was connected to 

a relay with 24 V input and which was controlled by the Pi. If the relay were activated, 

the voltage of the fan, which was connected to the third port, went to 24 V which was the 

full-power. To make the prototype complete, a main power switch was added to easily 

power up the system. Figure 14 illustrates all the devices used in the first prototype. 
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Figure 14. Cabling layout of the control system with connected devices 

The control system was very messy at the time (Figure 15). The connections between 

the Raspberry Pi and the devices were made with a 40 pin IDE cable and terminal blocks. 

The other end of the cable was plugged to the pins of the GPIO while the connector of 

the other end was removed and the desired wires were separated and plugged to the 

terminal blocks. 
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Figure 15. Control system’s layout of the first prototype 

At that time, there were some concerns about the reliability of the Pi. The question was: 

if the software crashes in the middle of the session, will it close the solenoid valve if it’s 

in open state? This was a situation where the time and repetition could only give the 

answer for this reliability issue and since the development process was in the early 

stages, an alternative solution was needed. The solution was a time-relay, which could 

be programmed to only activate for a period of time on a given signal. To make things a 

little bit complicated, the signal strength for the activation needed to be 24 V so a tran-

sistor-relay solution was needed for this one as well. As shown in the figure 15, a con-

siderable amount of terminal blocks was needed to build the first prototype. This com-

bined with the 5 solid state relays and the time-relay, the price of the control system 

slowly started to rise. 
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6.3.2 Python 

The idea of the logic running on the Pi is fairly simple: measure temperature and time 

and check the status of the control button. These three parameters were the only things 

affecting the status of the system. The status of the control button could be true or false 

and when the button was pressed this status changed. Also, if a time limit in a session 

was reached, the status of the button went from true to false. The logic is illustrated in 

the appendix 1. 

There are two types of sessions: precooling sessions and main sessions for the patients. 

The differences between these two sessions from the aspect of the logic are very clear. 

Precool sessions can last significant amount of time, even over 10 minute sessions can 

occur when the ambient air is very hot or the coolant input systems pressure is getting 

low. The main session on the other hand will never exceed the desired treatment time 

which is usually 2-3 minutes.  

The temperature also affects these sessions. Both of the sessions will do solenoid cy-

cles, opening the solenoid for a period of time and then closing it, until the desired tem-

perature is reached. If the precool session’s target temperature is reached, the session 

finishes and the systems is ready for the patient to step in and start the main session. 

This is not the case in the main session, where the temperature only tells if the system 

needs to do more solenoid cycles.  

Of course several error recognizing algorithms were implemented to the system in addi-

tion, for example if the temperature sensor broke or got disconnected from the system 

during a session, the session would stop and sessions could not be started before a 

proper temperature measurement could be made. 

The Python GUI was made for the development purposes using Tkinter module which 

allowed creating dialogs for user interaction. The reason for this was to monitor the tem-

perature measurements during the sessions and to allow I/O port activations when the 

system was idle, which meant that the manual activations of the I/O ports were disabled 

during sessions. For example the motor could be operated with the I/O signals to ensure 

the correct RPMs of the system (Figure 16). 
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Figure 16. Python software with GUI 

 Prototype II 

There were some major software changes made for the second prototype. The biggest 

of them was the introduction of the mobile software, which allowed the remote control 

and monitoring of the system via bluetooth connection. This prototype was the first to 

have tests with a patient. The second prototype was installed on a cabin in the mid of 

June, 2017. It did not have a big impact on the control system itself. The most notable 

change was that the monitor was removed from the system. This meant that the system 

was the first time completely automated, with the indicator led giving signals of the status 

of the system. 

6.4.1 Raspbian 

To control the system via bluetooth, the Raspbian system needed to be set up properly. 

A bluetooth module had to be installed and some important changes were needed to 

make before the system was running in a desired way. One of them was the use of cron. 

This method allows scheduling of tasks and it was used to start the Python software 

when the Raspbian booted. This way also the system-ready time got better, as the time 
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required from the power up to the situation where a session could be started, significantly 

decreased. 

The other setting was the bluetooth setup. Because there were no monitor in the system 

to accept device pairing queries, an automation was needed. The system needed to be 

set up to accept all incoming pairing attempts and also advertise itself to the devices 

nearby so it could be found. Also, the system needed a name so it could be identified 

from the other devices nearby. Fortunately these settings were part of the system and 

there was no need for a custom script. 

6.4.2 Python 

The software of the second prototype faced significant changes. The introduction of the 

bluetooth remote control and monitoring system meant, that the data gathered from the 

system needed to be distributed to the Android device. Also, commands from this device 

must be listened and executed. The bluetooth connection has a few ways to be set up. 

In this system, the bluetooth connection was basically a traditional serial connection, 

where there is a port for transmission and a port for reception. This meant that the data 

moving between the devices was in the form of bytes, which could be interpreted as 

ASCII characters, essentially as plain text. 

The hierarchy of the bluetooth connection needed to be determined before the connec-

tion could be made. The pair of devices, in this case the Raspberry and the Android 

device, had to have a server and a client. Since Raspberry collects all the data and 

controls the system, it was the natural choice to be the server of the system, while the 

Android device worked as a client.  

The incoming data from the device were commands of different kind. The most important 

command was the start signal. It needed to work beside the control button. The solution 

was to create own listener to the start command from the device and to make it manipu-

late the same variable which the control button controls. This way the sessions could be 

started and stopped from both locations. 

Now that the monitor was removed from the system, a new way of controlling manually 

the I/O ports needed to be made. The solution was a two-phase command listener. This 

was created to make sure the commands for the I/O ports were accurate and no errors 
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would occur. In the first phase, the received command for the I/O ports prepared the 

system for the I/O port control and the second phase listened which ports should be 

activated or deactivated. 

The outgoing data included the temperature information, status of the system and the 

state of the session. The temperature data were sent to the Android device just for mon-

itoring purposes, but the other two were critical for the synchronisation of the system. 

6.4.3 Android 

The idea of the Android application was that it would function as extension for the Python 

software. The system could operate without the Android application, but the use of the 

remote device would significantly improve the user experience. With this in mind, the 

software should be easily connectable and disconnectable without interruption, even dur-

ing a session. 

The application would have two states: a disconnected and a connected state. In the 

disconnected state, the user could search for new devices or connect to already known 

devices. The connected state would have two views: a main view for the session control 

and monitoring and I/O signal view for controlling the I/O ports. From the main view the 

user could start and stop sessions, monitor the temperature and elapsed time of sessions 

and set the session temperature and duration. The I/O signal view would list all the avail-

able I/O devices with an activation button next to them.  

The development of the Android software begun from setting up the Android develop-

ment software, Android studio. Usually when creating an app for Android, the Android 

studio offers real time app simulation on an emulator, where the app can be tested before 

installing it on an Android device. This is not the case if the app requires bluetooth con-

nection. The emulator cannot simulate bluetooth connection, thus the app under devel-

opment has to be tested directly on an Android device (Figure 17). To do this, the Android 

device has to be set on developer mode (Figure 17). This way the Android studio can 

update the app on the device fluently and the development process speeds up mas-

sively. 
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Figure 17. Developer mode activated in Android device which is indicated by the last option in 
the menu with the braces icon (left). Android studio recognizing external device (right) 

The bluetooth connection has a few steps which has to be met before the connection 

can be established. The first one is to find the counterpart, which can done by starting a 

search. The Raspberry was set up in a way that it would always broadcast itself to nearby 

devices and this made it possible to the Android device to find it. When the correct device 

is found, a request to connect can be made. Usually this means that a paring between 

the two devices is made and a confirmation from both devices is needed to complete 

this. The Raspberry accepted all the incoming pairing attempts which made it easy to 

pair the devices up. Now that the devices were paired, the connection could be estab-

lished. The device pairing also meant, that in the future no search was needed before 

the connection because the Android device saves the paired devices. 

The disconnected state (Figure 18) was created with 4 elements: two buttons, text vari-

able and a list. The first button was for the new devices which could be searched pushing 

this button. The second button was for the existing connections, the already paired de-

vices. The list was a blank element before any action would be made. The found new 

devices or the already paired devices were listed on this list after the desired command. 

If the user clicked a listed device, the Android tried to create connection to it. The text 

variable was for the Bluetooth connection status. If the bluetooth was not activated from 

the Android device or the connection could not be established, the app notified the user 

of it. 
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Figure 18. Disconnected state of the mobile app 

The main view of the connected state had 6 elements: 4 different text variables, start/stop 

button and options button. The first text element had the information of the current state 

of the system, the second were only active if a session was in progress as it indicated 

the elapsed time of the session, the third indicated the current temperature of the system 

and the fourth indicated the connection status. The start/stop button sent a command to 

the Raspberry on click. Its status, start or stop, depended on the state of the system. The 

options button opened options menu, where the I/O signal view could be opened. The 

menu had also two other options: a view for setting session temperature and a view for 

setting session duration (Figure 19). 
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Figure 19. Connected state of the mobile app 

The current cryocabin system has the duration and temperature setting on the main 

screen and this was the goal for the Android software as well. This could not be done on 

the first Android version as the element used for choosing the value was too large for the 

main view and there were no space for the two of them. 

 Prototype III 

The biggest change made to the third prototype was the introduction of ADC microchip. 

This microchip would replace the USB ADC which was used for temperature measure-

ments. Also, the solid state relays would be replaced with two relay modules which con-

sisted 4 relays each. The third prototype was installed on a cabin in the beginning of 

August 2017. 

6.5.1 Control system 

The main reason for the ADC microchip introduction was clear: the price. The microchip’s 

price was almost 80% lower than the price of the USB module. Of course the USB mod-

ule had all the ports for component connections built-in, while the microchip needed a 
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circuit board where it could be installed (Figure 20), but all that taken into consideration, 

the microchip would still be more cost-efficient. Another reason for replacing the USB 

ADC was the low polling rate of the device, which caused some problems when meas-

uring temperature continuously for long periods of time. 

 

Figure 20. Layout of the third prototype 

The price was also the reason for replacing the solid state relays with the relay modules. 

The relay module cost as much as one solid state relay, which made the decision very 

easy when the system required 5 solid state relays and the module had 4 relays on it. 

Also, the relay modules were compatible with the Raspberry GPIO which meant that the 

transistors were no longer required to activate the relays (Figure 20). The new relays 

were active low, which meant that the logic to control them was the opposite as when 

the transistor-relay solution was in place. To activate them, the control pin for the specific 
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relay in the module needed to be grounded, not input a 3,3 V signal, and this could be 

done through the GPIO pins as they can operate both ways. 

6.5.2 Python 

The changes made to the control system had some impacts on the logic software. The 

operating principle of the new relays meant that the whole logic for controlling the relay-

controlled devices needed to be inverted: what earlier was true was now false. Although 

this change meant that some time consuming coding had to be implemented to make 

the new relays operate, the task was fairly straight forward. 

Also the new ADC microchip required changes to the way the temperature data was 

acquired. While the USB ADC required 3-step data acquisition, a method where the data 

request command is first sent to the device, then the answer from the device is read and 

the value is saved to a variable which then can be modified for further use; the data from 

the new ADC could be gathered with just one function call. The new method also meant 

that the device was more responsive and the polling rate was higher. This meant that 

more temperature data could be gathered for more precise results. In addition, the data 

collected from the new ADC was in the same form as in the USB ADC which meant that 

the old formulas for calculating the temperature was still usable. 

 Prototype IV 

The final prototype of the control system was installed on the cabin in the middle of Sep-

tember, 2017. It introduced a digital to analogue signal converter (DAC) microchip for 

stepless and more precise motor RPM control. This change required a circuit board 

where both ADC and DAC could fit with sufficient amount of GPIO and PSU connections. 

During this time the Android app also faced major changes when the UI was made more 

similar to the current Cryo°Cabin Windows software with adjustment circles for session 

duration and temperature. 
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6.6.1 Control system 

The introduction of the DAC microchip was inevitable. A motor control system where only 

3 possible settings were available, was bad for optimizing and testing the system. Also, 

if minor changes were needed for the motor control, the implementation of these changes 

were clumsy and time-consuming. With this component, the need for 5 different relays 

decreased to 3 which meant the system only required one 4-relay module to operate 

(Figure 21). The system also required less terminal blocks since most of the connections 

were made on the circuit board. Although the DAC was easily implemented to the system 

since it was compatible with the Raspberry Pi, it required an amplifier to reach the voltage 

levels the motor control unit required. The DAC outputted voltage signals from 0 to 3,3 

V and the required levels were 0 to 10 V. To reach these levels the amplifier would need 

to boost the voltage levels of the incoming signal 3 times higher than the original signal. 
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Figure 21. Layout of the fourth prototype 

Now that there were 3 microchips: ADC, DAC and amplifier; a larger circuit board was 

required. The connectivity of the board should be good with some room for additional 

analogue components such as additional temperature sensors. The answer was a 16 

pin IDE which offered the required amount of connections for easy installation. It could 

carry all the supply voltages, the GPIO connections, the analogue input signals and the 

motor control signal. The supply voltages of the circuit board were 3,3 V, 5 V, and 24 V. 

The reason for this were the microchips which required different levels of supply voltage 

(Appendix 2). The old 24 V PSU was also changed for smaller profile 24 V PSU (Figure 

21). 
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6.6.2 Python 

The Python software of the fourth prototype had to be adjusted to the changes made for 

the control system. The old logic where the motor RPM was controlled with the relays 

was now replaced with the DAC. The microchip itself required a software module to be 

controlled. The earlier method where the relay state defined the motor speed was Bool-

ean type, true or false; after the change the motor was controlled with function calls 

where an integer type of parameter was given and this numerical value set the voltage 

inputted to the motor. The determination of the correct numerical values for the motor 

speed presets was very easy since the control voltage of the speed vary from 0 to 10 V 

which meant that any speed from that range is the percentage value of the range divided 

by 10. For example, the low speed preset is 6,7 V which means it was 67 % of the full 

speed. 

The changes made to the Android software did not affect the Python software greatly but 

since the session temperature and duration selectors were changed a new operating 

logic was needed. Earlier, if the user selected the duration or the temperature option 

from the options menu, a bluetooth command were sent to the Python to listen and parse 

the next value for the new temperature or duration. User could cancel this by leaving the 

view and there were no time limit for this action. The new system also had this two-step 

system where a preparation command was sent for the Python, but since the preparation 

command stops the logic for the time period it listens the new value, a time-out was 

needed for this action. If the user did not set the new value within this time-out time the 

session parameter in question was returned to its earlier value and a warning message 

was sent to the Android device. 

6.6.3 Android 

In the previous prototype versions the Android app was run on a phone which meant that 

the size of the screen was tiny compared to the computer screen of the current 

Cryo°Cabin. This fact made it almost impossible to recreate the UI of the Windows soft-

ware with all the same control buttons. To make the UI recreation possible, a tablet was 

purchased. Although the screen size of a tablet is still small compared to the computer 

monitor, it’s roughly three times larger than a phone screen size. 
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The control buttons in the Windows version of the Cryo°Cabin software are all circular 

shaped (Figure 22). This type of layout requires a lot of space because the radius of the 

buttons has to be large enough to contain the data inside the button. The positive side 

of the circular button is that it can fit a slider control its edge and this is used for example 

setting the session temperature. To recreate this in the Android app, the main view of 

the connected state required 3 circular buttons and a text element for the temperature 

data. Also two slider controls were needed for the temperature and duration control. 

 

Figure 22. The Windows Cryo°Cabin software (left). The Android app of the fourth prototype run-
ning on tablet (right) 

By default, the slider controls are hidden from the main view, but the user can activate 

them by clicking the desired session parameter button (Figure 22). This sends a prepa-

ration command for the Python which then listens the set value the user inputs with the 

slider control. If this action takes too long, the earlier value is restored, the slider control 

is hided and a warning message is displayed for the user. To avoid conflicts in the set 

values of the session parameters, two slider controls cannot be active at the same time. 

If one slider control is activated the other slider control cannot be activated before the 
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changes for the other are fully complete. If the user tries to activate the other slider con-

trol while on is already in use, a warning message is shown to the user. 

The last change for the Android software was the cleanup of the I/O-view. The true-false 

boxes were replaced with a slider control to set the motor speed steplessly. Also 4 radio 

buttons were tied to the slider; with these radio buttons the user could choose preset 

values of 0, the low, the medium and the full speed. Clicking a radio button would move 

the slider to the position of the desired speed. 
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7 Results 

The development process which was conducted in this thesis started at the end of March, 

2017 and ended at the end of December, 2017. During this period of time major changes 

in the control system and in the software took place. The experimental nature of the first 

prototype turned into more industrial type of a prototype in the fourth version. The soft-

ware written for this project improved with each iteration as more features were added 

for better user experience. 

 Cost reduction 

To make a fair comparison between the costs of the previous model and the developed 

lower-cost model, the features and devices which were replaced and not removed are 

mainly taken into account. The monitor of the current system, the computer and the PLC 

were replaced with the Raspberry Pi, a circuit board, a relay module and a time-relay. 

The Android app is optional, but it greatly improves the user experience of the system. 

When comparing the costs of these components with the assumption that the future cus-

tomer already has an Android device, the manufacturing cost of the new control system 

is 90 % lower than the current control system. If the price of the Android device included 

in the control system, the cost saving still reaches almost 80 %. 

If the new simplified Cryo°Cabin is viewed as a complete unit without the existing cabin’s 

non-crucial features, the price of the system would be significantly lower. This is due to 

fact that the most expensive components can be replaced with lower cost alternatives or 

removed completely. The savings made with these changes easily exceed the 66 % 

threshold of the cost-efficiency rating determined in the beginning of the project. When 

looking at these numbers, it is safe to say that this project has achieved the goal of 

developing a cost-effective alternative for the previous Cryo°Cabin. This gives the com-

pany a great opportunity to start manufacturing a lower cost model of the Cryo°Cabin. 
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 Product reliability 

The new system with its software and the mobile app were tested throughout the devel-

opment process. The electrical part of the control system did not show any signs of mal-

functioning during this time. Not a single system crash or equivalent major error were 

recorded during the time. The Python software also endured quite well as the most no-

table errors recorded usually were bugs after an introduction of new feature to the sys-

tem. Most of the bugs were easy to fix. This same applied to the Android app which 

usually had some bugs after changes in the code. 

These results were really promising although no real standardized tests were run on the 

system. To really compare the reliability of the two control systems, these standardized 

tests must be completed and feedback from users must be collected. This requires at 

least 6 to 12 months of testing time. Until this data is gathered no real reliability rating 

can be assessed for the system. 
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8 Summary 

The goal of this project was to create a cost-efficient and reliable option for the current 

control system of the Cryo°Cabin. It is safe to say that this goal was reached and ex-

ceeded with a great margin. Although it is yet to be decided if the simplified Cryo°Cabin 

will ever be included in the product range of CTN, the control system itself appeared very 

promising. The same control system will also be used for other CTN projects and prod-

ucts in the future. 

The circuit board created for this project has been further developed since it was first 

installed on the prototype IV and at the time of writing it is a full I/O extension card with 

multiple functions for Raspberry Pi named CRKKV-18; the name comes from the words: 

CTN Raspberry Kalle Koskinen Version 2018. Also, the development of an Apple version 

of the mobile app has been started. 

Cryotherapy is still a quite unknown treatment amongst people. One reason for this is 

the fact that it is such a new method and the information about it has reached mostly the 

sports and wellbeing enthusiasts only. The second reason is the status of the treatment 

which can be viewed falsely as an “elitist treatment”. To really raise the awareness of 

people, cryotherapy should be affordable for any customer. This project aimed for a cost-

efficient outcome to lower the costs of cryotherapy systems and hopefully in the future 

these cost-efficient systems will serve customers of all kinds. 
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Control logic flowchart 

 

 


