

Ella Hyvärinen

Modern WordPress development tools

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Thesis

31 March 2018

Abstract

Author
Title

Number of Pages
Date

Ella Hyvärinen
Modern WordPress development tools

41 pages + 4 appendices
31 March 2018

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Media Technology

Instructor

Ilkka Kylmäniemi, Lecturer

This thesis focuses on the research of modern web development with WordPress content
management system (CMS). The thesis suggests an alternative approach to WordPress
theme development and aims at perfecting it with the latest technologies. The objective of
this thesis is to indicate that usage of the modern web development tools is beneficial for
the developer in order to obtain an efficient development process and error-free production.
Furthermore, the objective of this thesis was set because an equivalent documentation ex-
ists.

This qualitative study is researched with the help of Roots, which is an open-source tool
stack for modern WordPress development. Utilization of each tool, Trellis, Bedrock and
Sage, in WordPress development perform in a different area with individual purposes and
methods. The purpose of this study is to explore development by using the basics of Sage
starter theme and demonstrate an advanced workflow of WordPress theme development
with Sage. The demonstration is created with experimental setup in a local development
environment while the proposed workflow is simulated as a website.

As a result of this thesis, a documentation of an advanced development workflow with Sage
was developed. The documentation recommends extending and customizing the theme es-
pecially by adding ACF plugin (Advanced Custom Fields). By extending the theme more
diverse and controlled behaviour of the theme and website can be attained. In addition, using
ACF helps developers to build their own content builder for a theme.

In the documentation, the suitability of Sage to WordPress theme from the developer and
end user point of view are evaluated. This study indicates that dividing theme development
process into iterations according to the agile software principles is beneficial for achieving
the best end result for the both parties. Furthermore, the study concluded that continuous
adaptive improving of the workflow is essential, and Sage is applicable for changes due to
its flexibility. Therefore, based on this study the utilization of modern WordPress develop-
ment tools, especially Sage, is recommended in WordPress development process to obtain
an advanced workflow from development stage to production.

Keywords modern web development, WordPress, theme development

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Ella Hyvärinen
Modernit WordPress-kehitystyökalut

41 sivua + 4 liitettä
31.3.2018

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Pääaine Mediatekniikka

Ohjaaja

Lehtori Ilkka Kylmäniemi

Insinöörityön tarkoituksena oli tutkia moderneja web-kehityksen työkaluja ja sitä, kuinka niitä
voidaan hyödyntää WordPress-sovellusalustalla. Insinöörityössä kehitettiin vaihtoehtoinen
menetelmä WordPress-teeman kehittämiselle modernista lähtökohdasta uutta teknologiaa
hyödyntäen. Lisäksi työssä tutkittiin ketterien menetelmien mukauttamista web-teknologioi-
den kehitykseen. Tavoitteena oli osoittaa, että modernit web-kehityksen työkalut ovat hyö-
dyllisiä kehittäjille tehokkaan tuotantovaiheen ja virheettömän lopputuloksen takaamiseksi.
Tutkimusongelman tavoitteenasettelu pohjautui tilanteeseen, jossa vastaavaa dokumentaa-
tiota valittujen työmenetelmien soveltamisessa tavoitteen saavuttamiseksi ei ollut saatavilla.

Insinöörityössä opiskeltiin Roots-nimisen avoimen lähdekoodin työkalujen osa-alueita
WordPress-kehityksessä. Näihin työkaluihin kuuluvat Trellis, Bedrock ja Sage. Työssä kes-
kityttiin erityisesti WordPress-teeman työnkulun kehitykseen kokeellisen esimerkin avulla.
Tuotetun työnkulun ohjeistus muodostettiin luomalla kokeellinen esimerkkiverkkosivusto
paikallisessa työympäristössä.

Insinöörityön lopputuloksena valmistui yksinkertainen työnkulun dokumentaatio WordPress-
teeman kehityksen vaiheista Roots-työkalupakkiin kuuluvan Sage-aloitusteeman avulla.
Teeman kehityksen dokumentaatiossa käydään Sage-teeman perusteet läpi. Lisäksi doku-
mentaatiossa ehdotetaan teeman räätälöintiä ja laajentamista, erityisesti ACF-lisäosan (Ad-
vanced Custom Fields) yhdistäminen teemaan on suositeltavaa monipuolisemman ja kont-
rolloidumman lopputuloksen saavuttamiseksi. ACF:n käyttö Sagen kanssa mahdollistaa ke-
hittäjille suunnatun edistyksellisen työnkulun yksilöllisen teeman luomiseksi.

Dokumentoinnissa arvioidaan Sage-teeman soveltuvuutta WordPress-teemaksi kehittäjän
näkökulmasta unohtamatta loppukäyttäjän tarpeita. Insinöörityössä tehty tutkimus osoittaa,
että huolellinen suunnittelu ja testaus on tärkeää toteutusvaiheen kannalta ja että teeman
kehitysvaiheet tulisi jakaa ketterien kehitysmenetelmien mukaisiin iteraatioihin parhaan lop-
putuloksen saavuttamiseksi molemmille osapuolille. Huomioitavaksi asiaksi nousi myös
Sage-teeman joustavuus jatkuvan työnkulun ja metodien kehittämisen tärkeyden kannalta.
Tutkimuksen perusteella voidaan suositella modernien WordPress-kehityksen työkalujen,
etenkin Sage-aloitusteeman, hyödyntämistä WordPress-kehitysprosessin aikana edistyk-
sellisen työnkulun saavuttamiseksi kehityksen ja tuotantovaiheen välillä.

Avainsanat moderni web-kehitys, WordPress, teeman kehitys

Contents

List of Abbreviations

1 Introduction 1

2 Web Development with WordPress 2

2.1 Problems and possibilities with WordPress 3

2.2 The future of WordPress 8

3 Modern development tools 10

3.1 Roots 11

3.2 Dependency management tools 17

4 Advanced theme development workflow 21

4.1 Extending and customizing Sage 23

5 Results 33

5.1 Evaluation of the benefits of using Sage in theme development 34

5.2 Considerations 39

6 Conclusion 41

References 42

Appendices

Appendix 1. Sage theme installation setup

Appendix 2. The user view of creating content to ACF fields

Appendix 3. hero-page.blade.php file

Appendix 4. The browser view of the example webpage

List of Abbreviations

CMS Content management system. Software application for creation and modi-

fication online content.

HTML Hypertext Markup Language. Markup language for creating online content.

CSS Cascading style sheets. Stylesheet language for visual presentation of

online content.

Sass Syntactically awesome style sheets. Scripting language compiled into

CSS. Includes features such as variables, nesting, mixins and inheritance

that do not exist in CSS.

PHP PHP: Hypertext Preprocessor. Server-side scripting language for pro-

cessing data. PHP can be embedded into HTML.

JS JavaScript. Interpreted programming language for creating dynamic online

content.

SQL Structured Query Language. Language designed for managing data in a

relational database management system.

UI User interface. Graphical interaction between human and product, system

or machine.

UX User experience. Received experience when interacting with product, sys-

tem or machine.

1

1 Introduction

Modern web development methods with WordPress ensure an efficient way to create

single or multifunctional websites and services. Modern WordPress development tools

ensure a proper package managing, automating the workflow process as well debugging

errors from development to production stage. The usage of the modern development

tools provides a solid and efficient workflow at the development stage and smooth tran-

sition to production stage.

Management of the website is generally responsibility of the user. Responsibility of the

developer in turn is to ensure that users can create and modify the content of website

without problems or interruption. Therefore, user generated and managed content has

to take into consideration as early stage as at the planning and development process of

the website. The challenge for developers is to resolve how to improve technical and

creative processes at the development stage in order to produce custom made and func-

tional product without forgetting to provide unique and easily maintained management

system for the user.

The purpose of this thesis is to study and demonstrate the advanced workflow in the

WordPress theme development process. The second chapter merges detailed research

and theoretical background of WordPress with analysis of the present state of modern

web development. The third chapter presents Roots, the modern development tool stack

for WordPress and provides background information of dependency management tools.

The chapter four focuses on the advanced workflow and implementation of the tools to

the theme development. Finally, the chapter five summarizes the conclusion and pre-

sents benefits of the usage of modern development tools with WordPress.

2

2 Web Development with WordPress

Web development is generally associated with developing websites for hosting on the

internet. In fact, web development ranges from plain websites to complex web-based

applications. The web development process involves web design and development, cli-

ent-side and server-side scripting, database configuration on top of other tasks. [1]

The web development hierarchy can be divided into three areas at high level that include

client-side scripting, server-side scripting and database technology. The role of modern

web development is to optimize all these three areas that the key factors - speed, security

and performance - will improve [1]. The key factors are main indicators for the success

of web product.

Web development is in continuous transformation and it is developing rapidly. The used

technologies and best practises are improving and changing all the time. Modern web

development uses the latest technologies, and the fundamental concept is that always

using the latest versions of the software improves speed, security and performance of

the overall application. [2]

WordPress is in turn a free and open-source CMS (Content Management System) soft-

ware that is based on PHP support and MySQL database. In order to function WordPress

application software needs to be installed on a web server. Installation, maintaining and

upgrading the application is very simple. Setting up WordPress is convenient with a well-

known five-minute installation, so anyone can build a basic website and start creating

content immediately [2].

WordPress is suitable for building simple or complex websites, web-based applications

among other web services. Flexibility of the CMS expands it to be suitable for developers

as well as non-technical users. Approximately 30% of the internet uses WordPress as a

website platform amongst professionals, businesses and bloggers, which makes Word-

Press the most popular CMS platform. [3]

Despite the popularity of CMS, it has significant problems when it comes to relevant

elements of the modern web development. However, multiple solutions with web devel-

opment tools are broadly provided to correct the issues.

3

2.1 Problems and possibilities with WordPress

WordPress was released in 2003, but its roots and development started already in 2001.

Originally WordPress was developed for a blog publishing platform, but it has evolved to

be used as a full CMS. At the moment, the latest stable release of WordPress is version

4.9.4. [4]

The server needs to fill a few requirements in order to run WordPress. WordPress rec-

ommends that the host server is compatible with PHP version 7.2, MySQL version 5.6

or MariaDB version 10.0. The host server should also have HTTPS support. HTTPS

(HTTP Secure) is an adaptation of the HTTP (Hypertext Transfer Protocol) and it stands

for a secure communication over a network. In HTTPS, the communication protocol is

encrypted by TLS (Transport Layer Security) or SSL (Secure Sockets Layer). TLS and

SSL are standard security technologies for establishing an encrypted link between a web

server and a browser. Basically, the host server can be any server that supports PHP,

MySQL and HTTPS. [5]

The problem with performing the key factors of web development is that WordPress

works in a legacy environment with older PHP and MySQL versions. At the moment a

minimum requirement for PHP is version 5.2.4 and MySQL version 5.0. However, Word-

Press strongly recommends using the latest versions of PHP and MySQL, which are

usually faster, more secure and stable [2].

WordPress backwards compatibility

WordPress strives to and prides on with its backward compatibility. Compatibility for the

majority is one of the most important philosophies behind the WordPress project also

known as Design for the Majority. The majority of WordPress users are non-technically

minded and they are the users WordPress is designed for. Obviously, when taking into

account the majority it happens over minority. So, from the developer’s point of view,

backward compatibility is not a good idea, because it is not serving modern technical

requirements and needs even if it is part of WordPress philosophy. [6]

4

WordPress has chosen backward compatibility over technological progress in the past

years. This decision has made the application codebase complex, outdated and with

technical debt. Over the years the codebase has become more complicated to improve,

because the previous versions have to take into consideration as well. The main goal

with backward compatibility is that the product can be used by many users even if they

are not using the latest components the product may require.

In the reality, backward compatibility means that WordPress can still function even if the

PHP version of the server is not updated to the latest version. In the same way as plugins

work with WordPress even if the WordPress version is not the latest and the other way

around. Commitment to backwards compatibility and fast release cycles of WordPress

enables very easy updating of the application and its components without problems for

users and developers. At the same time, every new release of WordPress means more

work into the codebase. [7]

As mentioned earlier, WordPress allows the software to be performed on a PHP version

5.2.4. PHP version 5.2.4 was released in 2007, which means that the version is over 10

years old [8]. Moreover, the PHP team has stopped supporting the PHP version 5.2.4 in

2011, so it has been unsupported ever since [9].

Each PHP release branch has supported versions. Active support period lasts two years

from the initial stable release of the version, and that period covers new releases of fixed

bugs and security issues that have been reported.

After the active support period, the release is supported for an additional year for critical

security fixes only. When the supported years are finally completed, the branch reaches

its end of life and becomes unsupported. Users of the unsupported versions are strongly

advised to upgrade PHP branch to a current release. Unsupported versions may be ex-

posed to security vulnerabilities and bugs, which creates major security issues, for in-

stance, to the WordPress services. [10]

Instead of focusing only on backward compatibility, forward compatibility should be taken

into account. The goal with forward compatibility is to focus on the forward thinking about

the future code and avoid the unnecessary backward compatibility. The best practise to

keep WordPress installation more secure, is to keep WordPress application up to date

[2].

5

WordPress optimization

Optimizing WordPress is essential for improving the speed and performance. Hosting

setup and WordPress configuration are the main sections to be optimized [11]. In the

WordPress configuration optimizable components include the application software,

server load and the size of used graphics. Unused themes and plugins should be deac-

tivated and deleted. In addition, code of the used plugins and theme should be optimized.

Optimizing code is important, because the code executes faster and the website con-

sumes less memory after optimization. As a result, the website will load faster, so the

performance will be better for end users as well as for developers. [12]

Other benefits of code optimization are cleaner codebase, so the code maintenance is

easier and readability is better. Also, refactoring and debugging the codebase will be-

come more efficient and straightforward.

While handling the optimization issues of WordPress, bloated code generated by the

content editor becomes a concern. Content editor, also named as WYSIWYG editor

(What You See Is What You Get), is the basic tool for editing the page and post content

in WordPress administration panel. The elements are rendered on the front-end client

view as defined in the content editor and styled according to the theme stylesheets. The

end result is usually similar that can be expected from the content editor view. However,

the rendered code on the webpage can be bloated as can be seen in figure 1 below.

6

Figure 1. Example of the HTML created by content editor in WordPress. Reprinted from the
local development environment view.

As an obvious example of the problems that WordPress includes, the bloated code gen-

erated by the content editor is one of the major issues. The rendered code is actually a

bad HTML, including unnecessary and empty elements on top of wrapping other ele-

ments inside paragraph elements (figure 1). Even if bloated code does not always have

a direct difference nor impact on the visual front-end result, it is not following the best

practices of HTML.

7

Figure 2. Example of the optimal HTML code with the same content as in the figure 1. Reprinted
from the local development environment view.

The optimal result without unnecessary HTML elements and attributes would be similar

as illustrated in figure 2. In principle, the HTML code in figure 1 is valid, but it is not

optimal. Bloated code generated by WYSIWYG editor can be optimized and controlled

by multiple ways. One way is to avoid using WYSIWYG editor by replacing it with other

custom content field options introduced in chapter four. While the WYSIWYG editor might

be the only possibility in some cases, avoiding to using it as much as possible is the best

solution for preventing the bloated code issue.

WordPress and code optimization are workflow optimization, because the workflow gets

optimized and improved at the same time as well. Overall, smaller technical debt is

adapted to the application when everything is optimized as well as possible.

Theme development

Theme development with WordPress have a few options - installing a theme, creating a

child theme, using a starter theme or creating an own theme. Creating a theme from

scratch or using a starter theme to meet certain needs, conditions and design is usually

8

what developers have in mind when starting to develop a website [13]. Overall, theme

development can provide an entirely customized end result for the website. Since there

are no issues with backwards compatibility and code optimization, the theme develop-

ment has many possibilities.

WordPress has minimum requirements for the theme development. The theme files can

include only index.php and style.css files. In reality, themes tend to require more files in

most cases. Theme development should always follow WordPress instructions accord-

ing to which theme files have to consist of semantic HTML, valid CSS and reliable Ja-

vaScript. Semantic elements mean that elements have a meaning, like headings are

marked-up according to their hierarchy. Validated HTML and CSS helps in solving cross-

browser rendering issues in turn.

The principle called DRY (Don’t Repeat Yourself) means that the code in theme tem-

plates should be modified to reusable parts. Reusable parts may include content blocks

or even functions. Templates should be restructured into reusable components so there

is no need to repeat same code blocks in the different templates. Besides, using custom

made PHP functions and WordPress built-in functions have conducive impact to staying

DRY. [13]

All previously mentioned quality factors are effortlessly controllable with modern front-

end development tools within theme development. The idea behind usage of the modern

front-end development tools in theme development is to provide efficient, automated and

more error-free workflow. Overall, correctly structured code is easily maintainable and

quickly modifiable [13].

2.2 The future of WordPress

The fundamental matter with WordPress is that it needs to evolve and grow. The change

of needs of users and developers takes place faster than WordPress changes. Word-

Press is no longer used for the most part as a blog publishing platform but as a full

website or service. Today’s need is to create content blocks and views instead of only

posts and pages to the website. Blocks and views can be any consistent, reusable and

wrapper HTML elements, such as articles, sections or divs, for instance.

9

At the moment, WordPress core does not have the feature in edit screen to have full

control of how the content is viewed on the website when using a browser. However,

developers need to control how the content is displayed on the website. Currently, the

only possibility is to use plugins and front-end programming to organize, control and style

the code, so the end result will be well-structured and reliable code.

WordPress has many years of technical depth development due to backwards compati-

bility. In the future some major core changes need to be made to keep up with modern

demands that developers and users have. Efficient websites which do not compromise

with WordPress limitations and requirements must be developed. Also, developers want

to manage the websites by creating ways for users to administer them. Users want to be

able to easily modify and create new content on the website.

Agile software development

Agile software development pursues adaptive planning, iterative development style and

continuous improvement among other deliverables. Agile practices encourage to rapid

and flexible response to a change which is possible, because the issues are identified at

the early stage of process. Agile software development is the target that WordPress is

aiming for, but it is unreachable due to fundamental issue of backward compatibility with

WordPress.

Iterative and incremental development were invented by making mistakes. Iterative re-

fers to staging the strategy of reworking the project in iterations whereas incremental

refers to staging the strategy of developing pieces of the project and integrating as soon

as they are developed. Iterative development lets the developer learn about the require-

ments and design of the system. Incremental development in turn lets the developer

learn more about own development process as well as design of the system at the same

time.

The reason for using incremental and iterative strategies is to allow failing and discover-

ing mistakes as early stage as possible, in order that they can be repaired easily. Over-

coming failure is essential for development process. While making mistakes and learning

of them, the system evolves and developers learn about the process. When the stage of

10

process fails is the moment when lessons are learned and consequently the developers

evolve. Usually the failure or not-functioning situation is the first push when process

starts to develop into better and sometimes more modern direction. [14]

Lean practices can be easily implemented to the web development with WordPress. Web

development iterations contain design, development and testing at the high level. Plan-

ning carefully what to do before starting the development is time-saving and convenient,

because identifying the challenges and possible problems at the beginning can save the

developer from encountering those issues later at the development or production stage.

During designing phase developers focus on how to obtain things identified during the

planning phase. This means designing development tools in a practical way. Implemen-

tation stage includes the actual performance of the tool. At the end of each iteration,

results should be evaluated and reviewed carefully.

Modern developments tools support agile software development, because all the stages

are planned, executed, tested and evaluated in iterative or incremental iterations. Usually

the iteration stages are automated with the modern development tools.

3 Modern development tools

This chapter will introduce Roots which is combination of modern WordPress develop-

ment tools and dependency management tools which are the used methods and mate-

rials to support the development workflow. Also, this chapter will investigate the benefits

of using modern WordPress development tools to achieve common objectives of the

modern web development. The presented tools will provide solutions for identified prob-

lems of WordPress in the previous chapter.

The role of the modern WordPress development tool stack is to optimize the three hier-

archy areas of the web development, so the whole application stack will perform faster

(figure 3). The client-side includes the request-response cycle between the browser and

WordPress application. Server-side means WordPress application and the scripts that

the PHP runtime executes. Database technology in turn encapsulates the query-result

cycle between WordPress and the database. [15]

11

Figure 3. WordPress stack. Reprinted from smashingmagazine.com [15].

The research approach follows action research using a modern web development model

as a method for a common data (figure 3). Choosing the right tools for the project is an

important part of the designing and planning the workflow.

3.1 Roots

Roots is a stack of modern open-source WordPress development tools that cover a full

WordPress application for the advanced development and deployment. Roots is de-

signed and created to improve the development workflow by using tools named Trellis,

Bedrock and Sage. The development process can be done by using the Roots tools

together or separately. Each tool has a different placement in the stack. Trellis covers

the server, Bedrock includes the application and Sage focuses on the theme. Conse-

quently, depending on the choice of used Roots tool, the process can be focused on the

theme, application, server or the whole service. [16]

Trellis

Trellis is a modern WordPress LEMP stack. LEMP is a variation of the more well-known

LAMP stack [17]. LAMP is an archetypical model of web service stacks comprising of the

combination of components for deploying and developing the web services. LAMP in-

cludes Linux as an operating system, Apache as a web HTTP server application, MySQL

as a RDBMS (Relational Database Management System) and PHP as a programming

language. The difference between LAMP and LEMP is that Apache is replaced by nginx

in the LEMP stack [18]. Nginx is a HTTP proxy server application, which is faster, more

lightweight and scalable yet powerful compared to its predecessor Apache.

12

The minimum installation requirements as a software tools for a development server are

VirtualBox and Vagrant. Vagrant is a tool for building and managing virtual machine en-

vironments and VirtualBox in turn is a free and open-source cross-platform virtualization

application. VirtualBox supports the creation and management of virtual machines run-

ning environments like Vagrant. [19]

Figure 4. The recommended directory structure of a Trellis project. Reprinted from roots.io/trellis
[19].

In development, Trellis automatically creates virtual machine to simulate a server, provi-

sions it and installs WordPress for a hosting a WordPress site. The recommended project

directory structure is illustrated in figure 4.

Trellis uses Vagrant virtual machine environment for development and any Ubuntu

server of Linux distributions in production. Basically, Trellis provides a complete Word-

Press server running with all the software needed and configured according to the best

modern practices. With Trellis, the WordPress development and production servers are

developed and deployed by a proper way.

In addition, Trellis provides a remote server and deploys it with a single command. De-

velopment and production parity is an important part of the ideology of Trellis, which

means keeping development, staging, and production as similar as possible. Generally,

there are major gaps between development and production, for instance, time, personnel

and tools gaps. All of the gaps may have substantial impact to the project workflow, but

from the modern development tools point of view the major issue is the gap influencing

between tools. For example, the development environment may use a LEMP stack, while

production deploy uses a LAMP stack. The advantage of development and production

parity approach with Trellis, is that development project can be deployed to production

without issues, because both of the environments remain similar. [20]

13

Bedrock

Bedrock is a WordPress project boilerplate with improved folder structure and modern

development tools. Bedrock organizes the WordPress project better, improves security

and configuration files in addition to proper dependency management. In other words,

Bedrock is a self-contained WordPress project that installs WordPress and required

plugins with automation. The installation requirements for Bedrock are PHP version 5.6

or later and Composer as a dependency manager for PHP. [21]

Figure 5. Folder structure of a Bedrock application. Reprinted from roots.io/bedrock [22].

The improved folder structure organization of Bedrock application places WordPress to

its own subdirectory (figure 5). Bedrock separates web, configuration and dependency

files into different folder directory destinations named web/ and config/ and vendor/ ac-

cording to their purposes. The web/ directory includes WordPress application. Word-

Press core is located under wp/ subdirectory and WordPress content under app/ subdi-

rectory. Moreover, previously named wp-content subdirectory is renamed to app for con-

sistency and better reflection to its content. [22]

All the actual configuration files are separated under to the config/ directory. The reason

why wp-config.php configuration file still remains under the web/ directory is that

14

WordPress requires it. Composer managed dependencies are installed to the vendor/

directory except WordPress plugins and themes which are installed under web/app/.

The main configuration file is application.php located under the config/ directory that con-

tains information what wp-config.php usually would. For environment specific configura-

tion, Bedrock uses the files under config/environments subdirectory. WordPress config-

uration operates on environment specific configuration files and environment variables

specified in ENV file. Using environment variables is an efficient way to separate config-

uration code from the application code, because variables are available in the application

with built-in methods. [23]

Required environment variables are:

• DB_USER

• DB_NAME

• DB_PASSWORD

• WP_HOME

• WP_SITEURL

The installation process of Bedrock resembles a lot of classic WordPress installation

workflow. First steps are to download Bedrock and install Composer. The second step

is to edit ENV files to match necessary environment variables, such as database creden-

tials, home and site URL information and alternative authentication keys. The final step

is to install WordPress.

Sage

Sage is a WordPress starter theme with a minimal HTML5 templates and template in-

heritance with a theme wrapper templating system [24]. A custom theme development

with Sage follows a modern front-end development workflow. Main features of Sage in-

clude Sass (Syntactically awesome style sheets) as a style sheet scripting language,

modern JavaScript as an interpreted programming language and Blade as a template

engine provided by Laravel [25].

15

Other features are Webpack, Browsersync and Controller for Sage. Dependency man-

agement tools for the theme development are introduced later in this chapter.

Optional features include CSS frameworks, such as, Bootstrap 4, Bulma, Tachyons and

Foundation. Also, Fontawesome can be included, which is a wide icon set and toolkit.

WordPress version 4.7 or later, PHP version 7.0 or later, Composer, Node.js and Yarn

need to be installed as dependencies before installing Sage. The latest version of Sage

is 9.0.0 and its release was in February 2018. The latest release contains major changes

with development toolkit and features compared to previous releases. In previous ver-

sions of the Sage theme build tools were Grunt or Gulp and front-end package manager

was Bower. Laravel’s Blade template engine replaced completely the previous theme

wrapper system. Also, the theme file structure was reorganized, so theme template files

are no longer placed in the theme root (figure 6). [26]

16

Figure 6. Sage theme files structure. Reprinted from github.com/roots/sage [27].

The app/ directory contains all of the theme functionality whereas all the theme template

files and assets are placed into resources/ directory (figure 6). Since Sage is a starter

theme, it is acceptable, even recommended and necessary to modify most of the theme

files to satisfy the needs of the website.

For theme setup the file setup.php in app/ directory need to be edited. Functions regard-

ing to enabling or disabling theme features, navigation menus settings, defining post

thumbnail sizes, and displaying sidebars availability are all placed in setup.php file. [27]

17

The resources/views/ directory contains files that can be extended according to the

WordPress template hierarchy. The files in resources/views include template files from

the resources/views/partials/ directory.

The theme templates are minimal HTML5 templates provided by Laravel’s Blade tem-

plate engine. Blade templates can be easily modified to specific developing purposes

and site needs. In addition, new Blade templates can be added if needed. The advantage

of using the template engine is to avoid repeating the same code in the different tem-

plates. So, modifying and creating new templates should follow the DRY principle of de-

velopment strategy.

Passing data to Blade templates functions via controller or namespace functions. Con-

troller for Sage is basically a WordPress package to enable a controller when using Blade

with Sage [28]. The PHP code in Sage is namespaced, which means that every function

is prefixed with a unique name. So, effective way to manage reusable components, that

are used through the website, is to create a controller for them or add the component

function into namespace for passing the data to the blade template.

3.2 Dependency management tools

Dependency management tools, sometimes also called task running tools, allow error

free and faster development by automating the process. Each tool has its own purpose

and advantage for the development process. Dependency management tools optimize

the overall workflow by keeping dependencies organized and updated all the time. The

installation process of dependency management software to part of the system varies

by the operating system, but the usage of tools in command line is similar with every

system. The most important tools in developing with Sage for dependency management

are introduced in this subchapter.

18

Composer

Composer is a dependency manager for PHP. Composer declares the packages that the

application depends on and it will manage them by installing and updating into vendor/

directory inside the application. [29]

Theme installation process happens via single Composer command following with con-

trolled theme setup installation in command line. The overall installation steps are illus-

trated in the appendix 1.

@ app/themes/ or wp-content/themes/

$ composer create-project roots/sage theme-name

The command above installs Sage by placing it into a new theme project folder in Word-

Press themes directory [27]. During theme installation process is possible to update

theme headers for the style.css file, configure the development URL for Browsersync,

select a desired CSS framework and include Fontawesome. The steps dealt with theme

installation process are optional, so those can be completed at the theme setup stage or

anytime later if necessary. Defining the local development URL and used CSS frame-

work is very easy, convenient and time-saving to do at theme setup stage even though

those can be defined later as well. (Appendix 1)

Installation of dependencies for the project with Composer can be executed with the

command below.

$ composer install

The command above installs the defined dependencies for the project according to com-

poser.json and composer.lock files (figure 6). The composer.json file lists all the used

dependencies for the project whereas the composer.lock files incudes the exact infor-

mation of dependencies versions. The composer.lock file secures that the project uses

the specific versions of defined dependencies. Updating the dependencies with Com-

poser can be done with the command below.

$ composer update

19

The command above installs the latest versions of dependencies according to com-

poser.json file and updates composer.lock file to match the new versions of dependen-

cies.

Yarn

Yarn is a package and dependency manager for the application code [30]. Yarn replaces

npm as a package manager in the theme development process with Sage. Benefits of

the use of Yarn include that the node_modules/ directory is smaller and Node depend-

encies installation process is faster.

For enabling the build process with Yarn in theme, the command below need to be exe-

cuted in the theme directory.

@ themes/your-theme-name/

$ yarn

The command above installs necessary dependencies to run the build process [27].

@ themes/your-theme-name/

$ yarn run build

$ yarn run build:production

The first command above is used at development stage to run the build process, whereas

the second command above is used to run the build process for deployment. Both build

processes compile and optimize the files in the assets directory, but the build process

for production compile assets without source maps. However, the most used command

with Yarn in the theme development workflow is the command below. [27]

@ themes/your-theme-name/

$ yarn run start

The command starts Browsersync session and compile assets whenever file changes

are made to the theme files [27].

20

Webpack

Webpack is a module bundler made for modern JavaScript applications which means a

build system toolkit for automating and improving development workflow. In Sage theme

development process Webpack is used for compiling assets, optimizing images, check-

ing JavaScript errors and concatenating together with minifying files. In the build process

Webpack generates one or multiple bundles of static assets from the modules with de-

pendencies of the application. [31]

Browsersync

Browsersync is a module for synchronized browser testing while developing [32]. If

Browsersync is wanted to be enabled during the yarn run start command, the develop-

ment URL need to configured according to local development hostname. For example,

if the local development host uses port number 8888, the development URL should re-

flect localhost:8888. The new Browsersync session opens the connection according to

proxy URL, which default is localhost:3000. The development URL and proxy URL can

be defined at the theme installation process or updated to resources/assets/config.json

file [27].

NPM

Node Package Manager (npm) is a package manager for JavaScript modules and the

largest software registry. Npm downloads and installs repositories into local development

environment, so those can be compiled into project by new ways. In Sage theme devel-

opment npm is used as a front-end package manager. For example, the chosen CSS

framework for the theme development is pulled via npm as a dependency. [33]

21

Git

Version control is essential for every development project. Git is a version control system

that controls the different versions of the project and at the same time creates back-ups.

Accurate version control is particularly important in distributed developing process be-

tween multiple developers, but it is necessary for single developer projects as well. [34]

Ignoring files with GITIGNORE file is a good way to not include, for instance, dependency

packages to the Git repository. Sage theme ignores by default dist/, node_modules/ and

vendor/ directories among other files. So, when pulling the theme project to development

with Git, Composer packages need to be installed for the project again as instructed

earlier.

4 Advanced theme development workflow

This chapter describes the setup and implementation needed for building Sage theme

for WordPress site. The aim of the experimental setup is to test and evaluate the meth-

ods used to achieve the object. Focus is on the gathering observations of the corner-

stones of the workflow and analysing results of the used methods in Sage theme devel-

opment. The goal is to propose solution for extending and customizing Sage theme.

Before starting the advanced theme development process with Sage a few steps have

to be taken care of. First step is to have an active local development environment with

up-to-date WordPress installation. Second step is to make sure that Composer, Node.js

and Yarn are installed, so those software can function as a part of the operating system.

Third step is to install Sage with Composer in WordPress themes directory with the com-

mand below.

$ composer create-project roots/sage theme-name

The command above runs the controlled theme installation process as illustrated in Ap-

pendix 1. After the theme installation is complete the next step is to run command below

in the theme directory as advised in Appendix 1.

22

$ yarn && yarn build

The command above installs necessary dependencies to run the build process with Yarn,

so the advanced theme development workflow will be enabled for the project. The final

step is to activate the created theme in WordPress administration panel in the section

where themes are managed. After all the steps are completed, the theme development

workflow can proceed. The command below should be used while developing the theme

to attain the advanced development workflow advantages.

$ yarn run start

The indicated command above compiles theme assets every time when file changes are

made and also starts Browsersync session in the browser. In addition, is important to run

the build process with Yarn and commit changes with Git often enough while developing

the theme.

The theme development stages include design, implementation and testing. In this con-

text, design does not mean the looks of the website but the design of the web page

structure, functionality and workflow. At the design stage is determined of what kind of

blocks the web page is structured, what are the required functions and how they are

implemented. The implementation stage is about combining the development tools and

design decisions into a smooth theme development workflow. The final stage of theme

development is testing the performance and usability.

Workflow of the theme development with modern technologies and methods combines

usage of the front-end development tools with the actual theme. However, advanced

theme development with Sage needs extending and customizing the theme. Sage is just

a starter theme for developing WordPress theme. For a better theme development and

content editor control of WordPress is essential to use a plugin for building a pages and

views. This thesis introduces ACF (Advanced Custom Fields), because it is recom-

mended plugin by Roots to implement in Sage theme.

23

4.1 Extending and customizing Sage

ACF is a plugin for WordPress developers to get full control to WordPress content fields

and the field data [35]. Custom fields are a native part of WordPress and they can appear

on pages, posts or custom post types depending on the WordPress application settings.

However, the native custom field interface is complicated and not very user friendly to

use. The look of custom fields can be tailored and the usage of data can be controlled

with ACF plugin. ACF enables easy and controlled content editing and it can be easily

integrated to Sage theme.

ACF plugin can be downloaded and activated in WordPress administration panel in the

section where the plugins are managed. Secondary option is to download ACF from its

website and manually place it to WordPress application plugins/ directory or install it in

the WordPress administration panel.

Creating a field group

Field groups are used to attach fields to post and page edit screens. Each field group

contains a title, fields, location rules and settings options. Figure 7 illustrates the creation

of a new field group.

Figure 7. Creation of a new field group. Reprinted from the ACF administration panel view in
WordPress.

The title of the field group is Sage Page Builder and it contains a field named Page

builder. In the location part is defined when and where the created fields are added on

24

the edit screen. For example, different field groups are created for different purposes, so

header, footer, posts and pages most likely have own field groups displayed on their edit

screens. As demonstrated in figure 7, the field group is displayed if the page template

equals to Page Builder template.

Field group settings are below the location rules. In the settings can be defined how the

ACF field group is displayed on the edit screen and also the visibility of the native Word-

Press custom fields can be modified. Overall view of the ACF field group settings can be

found in figure 8.

Figure 8. Overview of the field group settings. Reprinted from the ACF administration panel view
in WordPress.

The figure 8 demonstrates that the content editor is hided from the screen, so ACF

groups are the only way for the end user to create a content.

Field settings

Field settings contain a few required values, which are field label, name and type. The

field label is the name what is displayed in the end user view. The field name in turn is

25

the value queried in the template. The field type options are illustrated in the figure X.

The example field group contains one field which type is flexible content, as can be found

in figure 7.

The flexible content field is essentially a wrapping system for an unlimited number of sub

fields, called layouts. In addition, each layout can contain endless amount of sub field

groups, so with flexible layout can be created very plain or complex layouts.

Figure 9. Overview of the ACF field type options. Reprinted from the ACF administration panel
view in WordPress.

Figure 9 illustrates how the field type of a sub field called Hero Image is an image. The

field type should be selected according to its purpose. For instance, image for images,

URL for external links and page link for internal links. WYSIWYG editor is right choice

for the content like WordPress shortcodes and complex piece of text with links.

26

Figure 10. Overview of the example Hero Page layout. Reprinted from the ACF administration
panel view in WordPress.

Figure 10 shows an overall view of the layout called Hero Page, which is a sub field of

Page Builder. Hero Page contains multiple sub fields and each of them has a different

purpose in the layout.

Once ACF field group is created it can be implemented anywhere on the website. Figure

11 illustrates the end user view of implementing the created layout named Hero Page to

the webpage named Sample Page.

27

Figure 11. Demonstration of adding a new ACF layout to the webpage. Reprinted from the Word-
Press administration panel view.

As can be noticed in figure 11, the page template must be equal to Page Builder Tem-

plate, otherwise ACF field group will not show in the edit screen. The end user view of

creating and modifying content to Hero Page layout in Sample page can be found in

Appendix 2. Appendix 2 demonstrates the end result view for Hero Page layout and its

sub fields. Sub fields are divided into different tabs according to their purpose and for

consistency reasons. The user can easily add multiple Hero Page layouts into same

webpage (figure 12).

Figure 12. Demonstration of adding multiple ACF layouts to the webpage. Reprinted from the
WordPress administration panel view.

28

The layouts can be reordered, deleted or duplicated as preferred. Sample Page contains

four Hero Page layouts (figure 12).

At this point of the theme development workflow, nothing of the content created is dis-

played on the actual Sample Page webpage in the browser, because no functionality for

displaying values in the theme templates exists.

Displaying ACF values

ACF is made especially for developers, so using ACF combines knowledge of program-

ming, ACF and WordPress functions. However, displaying the field values in templates

is easy. Any field value can be returned as a PHP variable via get_field() function or as

a HTML via the_field() function. Displaying field values happens in the theme templates

with ACF API functions.

First step for displaying values is to create a new ACF field group with fields in WordPress

administration panel at ACF plugin control system as illustrated in figures 7, 8 and 10.

Second step is to implement the layout to the webpage and insert content to it at Word-

Press administration panel page editing view. The third step is to create needed tem-

plates to the theme and create queries for the ACF values into created templates.

Firstly, a new page template need to be created into theme views/ directory. To maintain

the consistency in the naming system the page template is named template-page-

builder.blade.php. The page template for Sage Page Builder field group is shown below.

template-page-builder.blade.php

{{--

 Template Name: Page Builder Template

--}}

@extends('layouts.app')

@section('content')

 @while(have_posts()) @php(the_post())

 @include('partials.page-header')

 @include('partials.content-page-builder')

 @endwhile

@endsection

29

Secondly, a new theme template for Page Builder field need to be created, which content

is demonstrated in the code example below. The new theme content template is named

to content-page-builder.blade.php and it is placed into views/partials/ directory in this

example. Page template file, such as the code example above, includes content template

file, such as the code example below, to template engine.

content-page-builder.blade.php

@php(the_content())

@if(have_rows('page_builder'))

 @while(have_rows('page_builder')) @php(the_row())

 @if(get_row_layout() == 'hero_page')

 @include('partials.page-builder.hero-page')

 @elseif(get_row_layout() == 'hero_images')

 @include('partials.page-builder.hero-images')

 @endif

 @endwhile

@endif

The file, content-page-builder.blade.php code example above, involves the basic logic

for looping through the Page Builder flexible content fields. Basically, the loop checks if

Page Builder field has specific layouts. If the statement is true, then it will include a theme

template according to the layout.

For each layout in Page Builder field will be created a new template file, so layout named

Hero Page has a template file named hero-page.blade.php (Appendix 3). In this research

example, all the Page Builder templates for layouts are located in views/partials/page-

builder/ folder named after the ACF layout for keeping the theme directory organized and

the naming system coherent. The final step for displaying the ACF values is to add nec-

essary ACF queries to the layout template file in order to view the webpage result in the

browser. Content of the hero-page.blade.php file demonstrates the combination of ACF

functionality in actual theme template file (Appendix 3).

As mentioned before about the problem with the content editor screen, ACF provides full

control to the content created in the WordPress. The queried ACF result is HTML or PHP

object, that can be displayed and stylized exactly how it is defined in the theme template.

Each layout template is completely customizable for the layout needs and targets by

stylizing with Sass. Optimal idea would be creating a new style file for every layout, so

the codebase will stay organized. In this example layout style files of Page Builder field

30

are placed into a new /page-builder folder in resources/assets/styles directory. Each lay-

out style file is named after the layout name, so style file for Hero Page layout is named

_hero-page.scss. Page Builder layout files are imported to main.scss file as shown be-

low.

@import “page-builder/hero-page”;

Finally, after passing all the steps as designed and preferred, the layout view should be

visible in the webpage. The final output view on the browser of the research example

Hero Page layout can be found in Appendix 4.

The workflow for creating new layouts to Page Builder field starts from ACF settings with

creating a new layout. After the layout sub fields and options are set, a new template file

and style file for the layout need to be created. Also, content-page-builder.blade.php and

main.scss need to be modified as demonstrated in the earlier steps.

The options page

The options page feature in ACF provides a function to add new administration pages

with subpages for editing ACF fields. The options page feature is particularly good for

header and footer elements, because the saved data is global which means it can be

displayed anywhere on the website. [36]

Before creating new administration pages with the options page feature a few steps have

to be completed. For enabling options page feature in WordPress administration panel,

a code snippet need to be added, for example into setup.php file in app/ directory. The

code example below demonstrates how to create a new options page with subpage.

31

if(function_exists('acf_add_options_page')) {

 acf_add_options_page(array(

 'page_title' => 'Theme General Settings',

 'menu_title' => 'Theme Settings',

 'menu_slug' => 'theme-general-settings',

 'capability' => 'edit_posts',

 'redirect' => false

));

 acf_add_options_sub_page(array(

 'page_title' => 'Theme Footer Settings',

 'menu_title' => 'Footer',

 'parent_slug' => 'theme-general-settings',

));

}

In the code snippet above is created a new options page named Footer, and it will be

used for managing ACF fields in the footer element in this example. The next step is to

create a new field group for the Footer options page. The example field group is named

also Footer. The important part in creating the field group for options page is to update

location rules according to intended options page (figure 13).

Figure 13. Footer field group for the options page feature. Reprinted form ACF administration
panel view in WordPress.

Figure 13 illustrates a new field group named Footer with one field for the Footer options

page. The next steps are to create content to ACF fields in Footer administration options

page and modify the Blade template for footer element.

32

The example below demonstrates how to query a value from an options page in the

footer template. Querying the values differs from the standard get_field() API function,

because a second parameter is required to target the options page.

footer.blade.php

<footer class="content-info">

 <div class="container">

 <div class="row">

 @if(have_rows('footer_block', 'option'))

 @while(have_rows('footer_block', 'option')) @php(the_row())

 <div class="col-md-4">

 <div class="wrapper">

 <h6>@php(the_sub_field('heading'))</h6>

 <p>@php(the_sub_field('textarea'))</p>

 </div>

 </div>

 @endwhile

 @endif

 </div>

 </div>

</footer>

The example footer has one repeater field named Footer Block and the repeater has sub

fields for heading and text area. The code example loops through sub fields of Footer

Block field.

The same workflow can be implemented to creating an options page for header element.

The advantage of saving the menu into ACF options page is that the version control

covers menu options as well other ACF options of the website.

Local ACF JSON files

Local JSON feature in ACF saves field group and field settings as JSON files within the

theme directory. Enabling the local JSON feature requires only creating a new folder

named acf-json in the theme directory root which is resources/ directory. If the folder

exists, each time when a field group is saved a JSON file will be created or updated with

the data of field group and field settings. [37]

The main functionality with local JSON is the capacity to synchronize changes between

database and saved data in ACF JSON files. Synchronization will be available if the

33

JSON field groups does not exist in the database or the JSON field group is more recently

updated in ACF settings than the one existing in the database. [38]

The main advantage with local JSON feature is that when the JSON file exists, ACF will

load the information from JSON file and not from the database, so ACF functions faster

and less database requests is made. In addition, there is a possibility to include the entire

ACF plugin to theme directory, so version control covers both ACF plugin and the field

groups data.

For security reasons it is possible to hide field group settings from the public by adding

empty index.php file to acf-json folder. Besides, WordPress uses the same method to

hide wp-content/themes folder.

5 Results

The main objective of a web development design is to provide a fast-functioning, high

performance application which is secure to use. Supporting obsolete and insecure soft-

ware versions constructs resistance to the positive progress, whereas modern develop-

ment tools support achieving the goal within all the different areas of web development.

The responsibility of developers is to push WordPress forward to continue evolving and

growing.

While the role of modern web development is to optimize client-side scripting, server-

side scripting and database technology, the modern development tools and practices

provide a solution for optimizing all those areas. In terms of introduced problems with

WordPress, Roots tools stack provide a solution for each area. Such issues as PHP

runtime and matters related to hosting and server stack can be improved with Trellis.

Bedrock instead focuses on WordPress application by organizing the software files bet-

ter, improving security and adding proper dependency management. While theme de-

velopment can be managed with Sage by providing resistant, reliable and optimized

code.

34

All the components, speed, security and performance, of the web development at all

three hierarchy levels become automatically improved and more easily attainable with

Roots tools. In addition, the overall development process will gain an advanced workflow

when using Roots stack tools.

5.1 Evaluation of the benefits of using Sage in theme development

Extending Sage theme to customized purposes such as implementing ACF and creating

custom templates, provides a fast and efficient development process. The process can

be implemented to single projects as well multiple ones, because of the flexible theme

structure. The basic theme structure remains same, but it enables entirely customizable

templates, functions and styles providing a unique end result for diverse websites. It is

also worth considering that the creation of a personalized starter theme with reusable

components and functions is probably the most suitable and efficient theme for a devel-

oper to work with.

Using Sage in the theme development has many benefits. Theme development process

with starter theme is faster than building WordPress theme from scratch and more effi-

cient than creating a child theme from ready WordPress theme. Sage is a very flexible

starter theme and customizing the theme is easy. Furthermore, theme development with

Sage enables advanced development workflow.

The real power when developing with Sage tools and methods lies in the advanced and

efficient workflow that contains automated builds with Yarn, error reduced development

process with Webpack and Blade template engine for creating templates with DRY prin-

ciple. Also, version control managed by Git is important part of the workflow. With Git

multiple developers can easily develop the same project due to updated version of the

theme.

Designing and developing reusable components and functions that can be used through-

out the web application service follows the DRY principle. There is no need to repeat

same code in the different components once the components are built properly. Modu-

larity is a significant advantage when it comes to maintaining the theme. Besides, using

35

already created and similarly structured blocks and functions will speed up the develop-

ment process considerably.

Modern theme development tools support needs of developers by providing full control

to theme functionality from content editor screens to front-end view result with combina-

tion Sage and ACF. User generated content which is controlled and instructed by a de-

veloper, also supports the philosophy of WordPress. The non-technically minded users

are allowed to make decisions and have an impact on the website and end result by

creating and modifying the content [6]. However, options to the user decisions are pro-

vided by the developer. This approach to theme development ensures that the user can

not break the website’s functionality, but still has enough authority.

UI/UX

UI (User Interface) and UX (User Experience) are usually referenced in the success of

the product’s end result, which is in the most cases the website. In the context of the

development process, where the end user needs to create and modify the website, UI

and UX receive a whole new purpose.

In general, the main goal in web development is to create a desired and well-functioning

product for a customer. In most cases the customer is a non-technically minded main

end user of the product while the developer is a technical person who develops the prod-

uct [14]. The skill gap in the aspect of technology between developer and end user is a

consequential factor in the development process, because the product must be dynamic

for customization operated by the both parties. So, developers must pay attention to end

user UX in production while developing. It is important to discover a correct way to create

a product that suits the end user needs in production. The modern web development

tools support the better development workflow but also the outcome of the development

process.

Decisions, not options, is one of the WordPress philosophies, which means that the duty

of developers is to make design decisions and avoid leaving technical choices on end

users. Using ACF features to control the end user options and actions supports Word-

Press philosophy perfectly. At the same time, the responsibility of the developer

36

increases, because in the theme development need to take into consideration that the

ACF options serve the user needs sufficiently. [6]

Developers must give special attention to a clear and consistent content structure with

the ACF in the content editing view by providing UI/UX interactions with a smooth and

enjoyable experience for the end user. One example of creating consistence UX with

ACF screens is shown in Appendix 2, where the ACF edit screen layout is restructured

to be consistent for the user. ACF administration tools allows developers to expand

UI/UX of content builder for meaningful graphical and behavioural fine-tuning.

Behind software UI/UX there is planning, designing and implementing the design with

technology. The challenge with providing good UX is to understand and discover the

user needs. The following example demonstrates which decisions the user has to make

when creating a post to a website. The process starts from planning the minimum re-

quirements for the post object. After minimum requirements are resolved, additional fea-

tures can be added for the user to create more dynamic posts.

Figure 14. The edit screen of post object with different layouts. Reprinted from WordPress ad-
ministration panel.

37

Figure 14 demonstrates the user view of editing the content of post. The user can decide

which layouts are displayed and how those are arranged in the post. Each layout has

options, so the user can decide, for example, how to align the post content and the size

of images (figure 15).

Figure 15. The edit screen of post object with content builder. Reprinted from WordPress admin-
istration panel.

The goal is to provide enough options within the theme support, so the user can make

the decisions which have a direct effect on the website’s end result in the browser (figure

15). The final output is rendered to front-end view which is exactly according to the added

ACF objects of the post. The published post in the browser view is presented in figure

16.

38

Figure 16. The final view of the post in the browser. Reprinted from the local development envi-
ronment.

The developer has full control of the website’s output, even though the user makes de-

cisions regarding the website content, because of behaviour of ACF layouts and fields is

predetermined. Also, HTML elements in Blade templates are stylized by the developer.

When editing a single post view in Blade template of Sage, the changes can be made

directly to content-single.blade.php file. This is the template file for constructing the single

post view in template engine.

39

content-single.blade.php

@if(have_rows('post_builder'))

 @while(have_rows('post_builder')) @php(the_row())

 <div class="row">

 @if(get_row_layout() == 'post_alignment')

 @php($align = get_sub_field('align'))

 @elseif(get_row_layout() == 'post_heading')

 <div class="col-md-12 d-flex justify-content-{{$class}}">

 <h2>@php(the_sub_field('heading'))</h2>

 </div>

 @elseif(get_row_layout() == 'post_image')

 @php($image = get_sub_field('image'))

 @php($size = get_sub_field('image_size'))

 @if($image)

 <div class="col-md-12 d-flex justify-content-{{$class}}">

 {!! wp_get_attachment_image($image, $size) !!}

 </div>

 @endif

 @endif

 </div>

 @endwhile

@endif

The code above is refactored to illustrate only the layout queries of essential layouts

according to the ACF edit screens in figure 14. The code and figures regarding to crea-

tion of the post object of WordPress demonstrate that by providing a limited amount of

valued options, multiple post views can be built diversely. The benefit for a developer

who is investing in the end user UI/UX is that content changes and updates can be made

by anyone without programming skills, so the developer can focus on developing.

5.2 Considerations

Advanced theme development workflow demonstrated in this thesis is an experimental

setup and a suggestion for developing and extending Sage theme. The proposed work-

flow is suitable for creating simple and complex blocks and views in a flexible way with

the help of ACF. It is worth noting that there are many ways of developing the theme with

Sage’s existing terms of using Blade templates. The creation of namespace functions

and ACF queries as well as ACF field groups, layouts, fields and sub fields can be used

in multiple ways. As a result, many different approaches exist when developing with Sage

and ACF.

The experimental setup contains very minimal functionality and styling, because the pur-

pose was to demonstrate as many combination possibilities as possible with Sage and

40

ACF together. Hence the customization of example website is minimal, the main focus

is on the advanced workflow of building multiple view for different elements of the web-

site. The idea behind personalizing the starter theme for multifunctional purposes is that

the personalized theme can be assembled into other projects in new ways.

The advanced front-end development workflow could be attained with using gulp and

Bower dependency management tools instead of Webpack and npm. However, Bower

is not primarily used any longer and same dependency packages are available on the

npm registry as well.

The theme deployment of Sage does not differ noticeably from standard theme deploy-

ment process. The deployment process of Sage includes theme validation and auto-

mated building process with Yarn for generating the theme assets ready for production.

Yarn compiles assets for production with versioned filenames and without source maps.

The proper way to deploy Sage 9 includes minimal steps. Composer needs to be in-

stalled in the theme directory on the remote server and the compiled production ready

theme assets need to be copied to the remote destination.

Benefits of the development process with the advanced workflow approach is definitely

an advantage for the developer, but not forgetting the user gains with obtaining unique,

functioning and customizable end result for the website. Advantages of Sage combined

to ACF makes the theme applicable for the both parties in development and production

of WordPress website.

41

6 Conclusion

The purpose of this thesis was to demonstrate and validate the best practices for using

modern development tools in WordPress theme development. Roots, the modern devel-

opment tools stack was studied for providing solutions to issues with WordPress back-

wards compatibility and optimization. Also, the study researched how the Roots tools

can support theme development and agile principles in software development. The re-

search found that usage of the modern development tools support to maximizing the

speed, security and performance of the website.

Sage, the starter theme and a part of Roots modern development tools stack for Word-

Press was tested as a simulated WordPress website. The example website was created

for the experiment of the usage patterns and subjective preferences of the theme devel-

opment workflow. The results show that Sage theme needs extending with additional

features in order to build elegant, unique and fast WordPress websites. Also, the end

user must be taken into account when planning and developing the product.

The study demonstrated that it is important to always use the latest and most vibrant

technologies while developing new projects to enhance the workflow. Development pro-

cess performed by the best practices is the initial way to ensure error-free and smooth

production stage. Furthermore, the results of this study show that adaptive improving of

the workflow is essential, because of the continuous change of web development prop-

erties. Therefore, using modern WordPress development tools in web development is

recommended for developers to obtain an advanced workflow from development stage

to production.

42

References

1 Manian Divya. 2012. HTML5 Boilerplate Web Development. Packt Publishing.
23-26, 87,117.

2 Hedengren, Thord Daniel. 2014. Smashing WordPress: Beyond the Blog. 4th
Edition. Chichester: John Wiley & Sons. 6, 21.

3 WordPress.org. Introduction[online]. URL: https://wordpress.org/. Accessed
15.1.2018.

4 WordPress.org. About WordPress [online]. URL: https://wordpress.org/about/.
Accessed 15.1.2018.

5 WordPress.org. WordPress requirements [online]. URL: https://word-
press.org/about/requirements/. Accessed 15.1.2018.

6 WordPress.org. About WordPress philosophy [online]. URL: https://word-
press.org/about/philosophy/. Accessed 15.1.2018.

7 WordPress.org. About WordPress security [online]. URL: https://word-
press.org/about/security/. Accessed 15.1.2018.

8 PHP.net. PHP version releases [online]. URL: http://php.net/releases/. Accessed
15.1.2018.

9 PHP.net. Unsupported branches [online]. URL: http://php.net/eol.php. Accessed
15.1.2018.

10 PHP.net. Supported PHP versions [online]. URL: http://php.net/supported-ver-
sions.php. Accessed 15.1.2018.

11 WordPress.org. WordPress optimization [online]. URL: https://codex.word-
press.org/WordPress_Optimization. Accessed 24.2.1018.

12 WordPress.org. WordPress optimization and performance [online]. URL:
https://codex.wordpress.org/WordPress_Optimization/WordPress_Performance.
Accessed 24.2.2018.

13 Professional WordPress: Design and Development, Third Edition, 2015. John
Wiley & Sons, Inc. Brad Williams, David Damstra, Hal Stern. 237, 241, 354-356.

14 Agile Software Development: The Cooperative Game, Second Edition. Alistair
Cockburn, 2007. Pearson Education, Inc. 72-73, 171.

15 Alexander, Carl. A look at the modern WordPress server stack [online]. URL:
https://www.smashingmagazine.com/2016/05/modern-wordpress-server-stack/
Accessed 15.1.2018.

43

16 Roots.io. Roots WordPress development tool stack [online]. URL: https://roots.io/.
Accessed 3.3.2018.

17 Roots.io. Trellis [online]. URL: https://roots.io/trellis/. Accessed 17.2.2018.

18 Lemp.io. LEMP stack [online]. URL: https://lemp.io/. Accessed 17.2.2018.

19 Roots.io. Installing Trellis [online]. URL: https://roots.io/trellis/docs/installing-trel-
lis/. Accessed 17.2.2018.

20 Roots.io. Twelve-factor WordPress app [online]. URL: https://roots.io/twelve-fac-
tor-10-dev-prod-parity/. Accessed 17.2.2018.

21 Roots.io. Bedrock [online]. URL: https://roots.io/bedrock/. Accessed 17.2.2018.

22 Roots.io. Folder structure of Bedrock software [online]. URL: https://roots.io/bed-
rock/docs/folder-structure/. Accessed 17.2.2018.

23 Roots.io. Environment variables in Bedrock [online]. URL: https://roots.io/bed-
rock/docs/environment-variables/. Accessed 17.2.2018.

24 Roots.io. Sage [online]. URL: https://roots.io/sage/. Accessed 17.2.2018.

25 Laravel. Blade template engine [online]. URL: https://laravel.com/docs/5.5/blade.
Accessed 17.2.2018.

26 Roots.io. Introduction to new Sage 9 version [online]. URL: https://roots.io/sage-
9/. Accessed 17.2.2018.

27 GitHub. Sage [online]. URL: https://github.com/roots/sage. Accessed 17.2.2018.

28 GitHub. Controller for Sage [online]. URL: https://github.com/soberwp/controller.
Accessed 17.2.2018.

29 Get Composer. Introduction [online]. URL: https://getcomposer.org/doc/00-in-
tro.md. Accessed 17.2.2018.

30 Yarnpkg. Introduction [online]. URL: https://yarnpkg.com/en/. Accessed
17.2.2018.

31 Webpack. Introduction [online]. URL: https://webpack.js.org/concepts/. Accessed
17.2.2018.

32 Browsersync. Introduction [online]. URL: https://browsersync.io/. Accessed
17.2.2018.

44

33 NPM. Introduction [online]. URL: https://www.npmjs.com/. Accessed 15.1.2018.

34 Git. Introduction [online]. URL: https://git-scm.com/. Accessed 15.1.2018.

35 Advanced Custom Fields. Introduction [online]. URL: https://www.advancedcus-
tomfields.com/. Accessed 10.3.2018.

36 Advanced Custom Fields. Options page feature [online]. URL https://www.ad-
vancedcustomfields.com/add-ons/options-page/. Accessed 10.3.2018.

37 Advanced Custom Fields. Local JSON feature [online]. URL https://www.ad-
vancedcustomfields.com/resources/local-json/. Accessed 10.3.2018.

38 Advanced Custom Fields. Synchronized JSON feature [online]. URL
https://www.advancedcustomfields.com/resources/synchronized-json/. Accessed
10.3.2018.

Appendix 1

 1 (4)

Appendix 1: Sage theme installation setup

Appendix 2

 2 (4)

Appendix 2: The user view of creating content to ACF fields

Appendix 2

 2 (4)

Appendix 3

 3 (4)

Appendix 3: hero-page.blade.php file

Appendix 4

 4 (4)

Appendix 4: The browser view of the example webpage

