

HELSINKI METROPOLIA UNIVERSITY OF APPLIED SCIENCES

Information Technology (Degree program)

Multimedia Communications (Specialization)

Master’s Thesis

Cross-Platform Application Development on Symbian

Author: John Alvin Mathew
Instructor: Ville Jääskeläinen

Approved: 18.05.2010 Kari Björn

Programme Chair

PREFACE

I would like to thank all the people who have helped and inspired me during my
Master of Science studies. Qt is an evolving framework and it was a challenge to
keep up with the changes taking place on a daily basis.

I would especially like to thank my boss Kari Kurppa from Elektrobit Wireless
Communications for providing me with the resources to be able to become ac-
quainted with the world of Qt. I would also like to thank Mr Jouko Kurki from
Metropolia University for his support and guidance through the entire MS course.
Also I would like to thank Dr Marjatta Huhta for her guidance and teachings on
how to write a good Master's thesis.

Helsinki, May 18, 2010

John Alvin Mathew

ABSTRACT

Name: John Mathew
Title: Cross-Platform Application Development on Symbian
Date: 04 May 2010 Number of pages: 51
Degree Programme: Information Technology Specialisation: Multimedia Communica-
tions
Instructor: Ville Jääskeläinen
This thesis takes an in depth look at how a cross-platform application development frame-

work like Qt was ported on to Symbian. One aim of this work is to study the various under-

lying layers of Qt, interaction with the various Symbian/ S60 components, build systems

integrations, native OS considerations and memory management. Another objective is to

examine Qt application development and portability.

The theoretical basis of this study lies with the Qt application framework, the Symbian

operating system and the User Interface framework of Symbian which is S60. The study

investigates the porting of Qt on top of Symbian, and includes an overview of Open C

framework available in Symbian and its usage by Qt. A particular feature like audio is cho-

sen to study the end to end behavior of the cross platform technology. In order to obtain a

better understanding of the theory and also to demonstrate the portability and ease of

development using the Qt framework, an audio application is developed which is capable

of playing mp3 files on a phone. That includes the use of Software Development Kits, In-

tegrated Development Environments, its configurations and how to execute the developed

application on a Smartphone. The development of this application also enables the study

of the integration of the build systems, platform security and memory management.

Through this thesis we understand how a cross-platform application framework can be

developed on top of Symbian.

Based on the findings, the current state of Qt and its future is discussed. Qt is widely used

in the development of Graphical User Interface programs and also for non-GUI programs

such as console tools and servers. QT uses a “write once, compile anywhere” approach.

Using a single source tree and a simple recompilation, applications can be written for

Windows, Linux, Solaris, MacOS, Windows CE and Symbian. In the near future Qt will be

a very interesting option for the mobile software development.

Key words: QT, Symbian,S60

1

TABLE OF CONTENTS

ABBREVIATIONS/ACRONYMS

1 INTRODUCTION 4

1.1 Objectives 6

2 BACKGROUND 7

2.1 Symbian OS 7

2.2 S60 Platform 9

2.3 QT 11

2.4 Open C 13

3 DESCRIPTION OF METHOD AND MATERIAL. 17

4 IMPLEMENTATION 18

4.1 Phase 1: Tools Installation 18
4.1.1 Installing the S60 SDK 18
4.1.2 Installing the Qt Libraries for Symbian 4.6.2 for Symbian 18
4.1.3 Installing the Qt Creator IDE 19

4.2 Phase 2: Development. 20
4.2.1 Creating a New Application in Qt Creator. 20
4.2.2 Creating the UI. 21

4.3 Phase 3: Deployment 24

5 ANALYSIS 27

5.1 Qt Porting to the Symbian Framework. 27
5.1.1 Qt and Symbian Build Integration 30
5.1.2 Qt on Symbian Memory Management 31
5.1.3 Qt on Symbian Platform Security 32

5.2 Qt Audio Framework Porting to the Symbian Framework . 33

5.3 Qt Bugs 38
5.3.1 Seek Slider Bug 38
5.3.2 Waiting for App Trk to Start on Port x Bug 38

6 DISCUSSION AND CONCLUSION 40

7 REFERENCES 42

8 APPENDIX A 44

9 APPENDIX B 45

10 APPENDIX C 46

2

11 APPENNDIX D 47

12 APPENDIX E 48

3

ABBREVIATIONS / ACRONYMS

API Application Programming Interface

ASSP Application Specific Standard Product

AVI Audio Video Interleave

DLL Dynamic Link Library

DOM Document Object Model

FEP Front End Processor

GCCE GNU Compiler Collection for Embedded

GUI Graphical User Interface

IDE Integrated Development Environment

MOC Met Object Compiler

Mp3 MPEG-1 Audio Layer 3

MPEG Moving Picture Experts Group

MMF Multimedia Framework

OS Operating System

POSIX Portable Operating System Interface [for Unix]

P.I.P.S POSIX on Symbian

SDK Software Development Kit

SIS Symbian installation package

SSL Secure Sockets Layer

SVG Scalable Vector Graphics

UIQ User Interface Quartz

XML Extensible Markup Language

4

1 INTRODUCTION

A Smartphone OS is the interface between hardware and user application, which

is responsible for the management and coordination of the various components of

the Smartphone and also acts as a host for the computing applications that run on

it. The Symbian platform is an open source software based operating system that

has been developed from the ground up for low power, small memory devices

such as mobile phones. There are over 350 million Symbian OS based smart-

phone devices in the market [2]. As a result, thousands of applications have been

developed for Symbian and there is a huge developer community also present.

With the growing number of Smartphone vendors the expectations for the Smart-

phone operating systems have increased, as well. This has resulted in the devel-

opment of new operating systems. This, in turn, has created a need to develop

applications for each of these operating systems

Smartphone OS Market Share

47%

21%

15%

9% 5% 3%
Symbian

RIM Black

Apple

Microsoft

Android

Ohers

Figure 1. Smartphone OS Market share [1]

The current approach that each of the Smartphone OS vendor has adopted to get

applications developed for their OSes is to release free SDKs for their OS. This is

why developer communities were formed mainly consisting of amateurs acting out

of interest and a few experts. The problem with this approach is mainly time to

market and stability. Security holes are another major factor as it is not uncommon

to consider security related issues during early development stages. Also the

knowledge to write efficient code and applications that utilize the power of the OS

5

may be missing. So the only solution to all this is to port the existing applications

that have become mature, stable and secure with fixes over time to these new

OSes.

This brings in the need for a common application development framework. It

should be possible to write applications in this framework, and these applications

should run on any platform to which the framework is ported. In the mobile soft-

ware world application portability means power. From a developer's point of view it

means more users for the application and less cost of development. From a user's

perspective it means the look and feel of the application remains the same on mul-

tiple environments. Mobile devices are evolving into increasingly sophisticated,

general purpose computers. This means that a user would expect many of the

desktop applications to run on the mobile device. In order to meet this goal a de-

veloper should be able to write applications once and deploy them across desktop,

mobile and embedded operating systems without rewriting the source code.

A popular cross-platform application development framework which satisfies all of

the above requirements is QT (pronounced “cute”). It is widely used in develop-

ment of GUI programs and also non-GUI programs such as console tools and

servers. Some popular applications based on QT are Google earth, Adobe Photo-

shop album and Skype. At the time of writing this thesis the QT framework had

already been ported to the following OSes: Linux, MacOS, Windows, Embedded

Linux, Windows CE, S60 Platform, Java, Android and iPhone OS

Thus by developing applications in QT the developer is guaranteed that his appli-

cation can be easily executed on any of the OS that has QT ported on it. Also im-

plementing an application with QT is much faster compared to any other applica-

tion development framework. With the use of the various QT tools which will be

explained in the sections to come it can be seen that application development ,

portability and maintenance is much easier using QT compared to other applica-

tion development frameworks. This study focuses on how cross-platform frame-

works like QT are ported on to an OS. The main objectives of the study are de-

scribed in the next section.

6

1.1 Objectives

This thesis takes an in depth look at how QT was ported on to Symbian, the un-

derlying layers, and interaction with the various Symbian/ S60 components. This is

done by developing an experiment application using Qt Integrated Development

environment (IDEs) and tools and studying the effectiveness of this application.

The objectives of this thesis can be categorized as follows.

• To study the various QT application framework components

• To investigate the interaction between the QT layers and S60.

• To observe the role of Open C

• To find out how to create a QT application using QT tools - SDK’s, IDE’s

and configurations.

• To understand the interaction between the QT audio framework and Sym-

bian audio framework.

• To study how of Symbian and QT build were integrated.

• Study of Qt memory management and platform security

This thesis is written in five sections. The first section deals with the back-

ground information of the software components such as S60 Qt and Open C

that will be dealt with in this thesis. The second section describes the methods

and materials used in the thesis in such a way that the experiment performed

will be replicable. The tools and software used are explained in this section.

The third section explains how the application developed for this experiment

was developed at a component level. This section has 3 subsections including

are installation, development and deployment. The fourth section contains the

analysis of the experiment and the final section focuses on discussion and

conclusion.

7

2 BACKGROUND

The background section covers the necessary background information about the compo-

nents involved in the subject area of this thesis. It is mainly divided into four sections. The

first section describes the Symbian OS and its various layers. The second section deals

with the application framework that sits on top of Symbian OS which is S60. It also de-

scribes the basic architecture of an S60 application which will help to understand the in-

teraction with Qt better in the later sections. The third section gives a general overview of

the Qt framework and its various components. The final section deals with the Portable

Operating System Interface (POSIX) compliant software support provided by Symbian

through the Open C libraries which is the basis of the Qt support by Symbian.

2.1 Symbian OS

Symbian OS is an advanced, customizable operating system licensed by the world's lead-

ing mobile phone manufacturers. It is designed for the specific requirements of advanced

2.5G and 3G mobile phones and includes a robust multi-tasking kernel, integrated te-

lephony support, communications protocols , data management, advanced graphics sup-

port, a low level graphical user interface framework and a variety of application engines.

The simplest architectural view of Symbian OS is the layered view given below.

Figure 2. Symbian OS architecture [16]

8

The topmost layer of Symbian OS, the UI Framework layer provides the frame-

works and libraries for constructing a user interface, including the basic class hier-

archies for user interface controls and other frameworks and utilities used by user

interface components. The Application Services layer provides support independ-

ent of the user interface for applications on Symbian OS. The OS Services layer

is, in effect, the ‘middleware’ layer of Symbian OS, providing the servers, frame-

works, and libraries that extend the bare system below it into a complete operating

system. The foundational layer of Symbian OS, the Base Services layer provides

the lowest level of user-side services. In particular, the Base Services layer in-

cludes the File Server and the User Library. The microkernel architecture of Sym-

bian OS places them outside the kernel in user space. The lowest layer of Sym-

bian OS, the Kernel Services and Hardware Interface layer contains the operating

system kernel itself, and the supporting components which abstract the interfaces

to the underlying hardware, including logical and physical device drivers and ‘vari-

ant support’, which implements pre-packaged support for the standard, supported

platforms.

The native programming language of Symbian is Symbian C++. It is a variant of

C++ developed for resource constrained devices. Though this version of C++

takes care of robustness and memory efficiency, it is relatively difficult to use for

programmers. Standard C++ developers find it tough to familiarize with Symbian

C++ due to its limited source code availability and small developer community.

This issue is hoped to be addressed with Symbian being made open source by the

starting of the Symbian Foundation and gradual release of Symbian source codes

by this foundation. One big step taken by Symbian in the area of application port-

ability was to provide the support for POSIX on Symbian (PIPS) which will allow an

ever increasing number of popular desktop middleware and applications such as

web servers and file sharing software as well as applications based on other mo-

bile operating systems to be easily ported to Symbian OS. In fact this is the start-

ing point of porting the Qt framework to Symbian, which will be explained in detail

in the coming sections.

9

2.2 S60 Platform

The S60 platform is the most widely used application framework for the Symbian

OS developed by Nokia. It supports a large color screen and an intuitive interface,

and it incorporates leading-edge communications and device technologies that

interoperate safely and respond quickly. After the Symbian foundation was formed

and Symbian was made open source, the S60 application framework was merged

with Symbian to be called as Symbian platform [3]. The Symbian Foundation is a

non-profit organization that stewards the Symbian platform, an operating system

for mobile phones, based on Symbian OS which was previously owned and li-

censed by Symbian Ltd. So the initial port of Qt to Symbian was done to interface

with the UI framework classes with S60. This will be explained in detail in the later

sections. The following figure shows the S60 application framework layered archi-

tecture.

Figure 3. S60 Application framework layered architecture [19]

The various services provided by the S60 platform include

240x 320 pixel
User interface –Resolutions and input methods

S60 applications

S60 application services

Web based servi-
ces

S60 Java Tech-
nology Services

S60 platform services

Symbian OS

Hardware

Symbian OS
Extensions

Open C

10

• Application Framework Services - providing the basic capabilities for

launching applications and servers, state-persistence management, and UI

components.

• UI Framework Services - providing the concrete look and feel for UI com-

ponents and handling UI events.

• Graphics Services - providing capabilities for the creation of graphics and

their drawing to the screen.

• Location Services - allowing the S60 platform to be aware of a device’s lo-

cation.

• Web-Based Services - providing services to establish connections and in-

teract with Web-based functionality, including browsing, file download, and

messaging.

• Multimedia Services - providing the capabilities to play audio and video, as

well as support for streaming and speech recognition.

• Communication Services — providing support for local and wide area.

In order to understand how the Qt port on Symbian was done we need to under-

stand the S60 application framework of S60 a bit. The following figure shows the

objects to be used by an S60 application.

11

Figure 4. Objects of a typical S60 application [19]

We shall now take a look at the figure shown above in detail. Avkon is UI-Specific

application framework layers implemented on top of the common Symbian OS UI

framework, which is called Uikon. Cone is the control framework for the UI. The

application class stores the properties of the application. The document class

manages persistent storage related to the application. The UI class directs the

menu and key events to the right controls. The container class contains one or

more controls visible to the user. View classes are used to display the application

pages. The application will activate and deactivate views based on the inputs from

the user. The QT port of Symbian initiates the Avkon classes while starting an ap-

plication. The details of this are explained in the following sections.

2.3 QT

Qt is a cross-platform application and UI framework that allows developers to write

applications that can be deployed to desktop, mobile, and embedded operating

systems without the need to rewrite the source code. Qt is a superset of standard

C++ so developers can use either Qt’s or standard C++ types, or a mixture of both

(on the Symbian platform Qt is layered over Symbian’s standard C/C++ compati-

bility layer). Qt is already used by hundreds of thousands of developers, and is

notable as the framework used in the popular Linux KDE desktop, Google Earth

and Skype. Migrating Qt applications to the Symbian platform is often no more

difficult than a recompilation. Qt includes a rich set of widgets (“controls” in Win-

12

dows terminology) that provide standard GUI functionality. Qt introduces an inno-

vative alternative for inter-object communication, called “signals and slots”, that

replaces the old and unsafe callback technique used in many legacy frameworks.

Qt also provides a conventional event model for handling mouse clicks, key

presses, and other user input. Qt’s cross-platform GUI applications can support all

the user interface functionality required by modern applications, such as menus,

context menus, drag and drop, and dockable toolbars. [5]

The QT framework consists of modules. An application developer has to link to the

binaries of modules whose functionality is required by the application. In this thesis

the experiment application was an audio application so it is linked to the audio ap-

plication which will be explained in detail in section 5.2. The rest of the Qt modules

that have been ported to Symbian are shown in table 1 below.

QtCore QtCore contains the core non-GUI func-

tionality of Qt like Event, text, and time
classes are part of this module. All other
Qt modules rely on QtCore.

QtGui QtGui extends QtCore with GUI func-
tionality like Widget, graphics, image,
paint, and style-related classes

QtNetwork QtNetwork offers high-level classes (
QHttp , QFtp) that implement specific
application-level protocols and lower-
level classes like QTcpSocket ,
QTcpServer , QUpdSocket to provide
easier network programming.

QtScript The QtScript module can be used to
make Qt applications scriptable using
ECMAScript, the standardized version
of JavaScript. With the QtScript module
it is possible, to add scripting support to
a Qt application and thus allow users to
add their own functionality in addition to
what the application already provides.

QtSql Classes for database integration using
SQL. The module has SQLite3 imple-
mentation for Symbian OS as a
backend.

QtSvg The QtSvg module provides classes for
rendering and displaying SVG content.
 QtSvg supports the static features of
SVG 1.2 Tiny

13

QtTest The QtTest module provides classes for
unit testing Qt applications and libraries.

QtXml QtXml provides a stream reader and
writer for XML documents, and C++ im-
plementations of SAX and DOM.

QtWebKit QtWebKit provides classes for display-
ing and editing Web content

Phonon Phonon module provides multimedia
framework classes. With an experimen-
tal backend.

Table 1. Qt Modules

The above Qt modules are available in the Qt 4.6 Beta for the Symbian platform

release.

Qt offers an extensive set of tools for developing software. Qt Assistant is a tool

which works as Qt's reference documentation. It contains code snippets and a lot

of helpful information on how to use the framework's classes. The information in Qt

Assistant is usually in a simple format and easy to use. Qt Assistant has also good

search tools. Qt assistant was extensively used in the making of this thesis. An-

other good tool is Qt Designer. It makes it possible to design GUI’s fast and easy

with layouts. Layouts make it possible that GUI’s look the same in different de-

vices. Qt takes care of scaling GUI components automatically for the resolution

used on the devices. Qt Designer generates files that have the extension .ui. It is

an XML file that is used for creating C++ code automatically. Own Qt widgets can

be used with Qt Designer if they are promoted for some Qt Designer's widget. Qt

Creator is an IDE (Integrated Development Environment) which combines text edi-

tor, debugger, Qt Assistant and Qt Designer. Qt creator is the IDE used for this

thesis. Compared to other popular IDE used for Qt development, Java-based Car-

bide C++ IDE, Qt Creator is more lightweight. The features of Qt Creator include

text editor with code completion and real time error as well as warning indicators.

2.4 Open C

The need for portable software was realized even before Qt was developed. One

such effort is the POSIX - Portable Operating System Interface [for Unix] standard.

POSIX assures code portability between systems and is increasingly mandated for

commercial applications. To enable such software to be easily ported to Symbian

14

OS, Symbian introduced frameworks such as P.I.P.S. and Open C that overlay

native Symbian OS Application Programming Interfaces (APIs) with standards-

compliant wrappers. These enable reuse of existing (standards-compliant) code

when developing software for Symbian OS.P.I.P.S. and Open C are primarily port-

ing aids that help you port POSIX-based software to Symbian OS, quickly and effi-

ciently. The Qt port for Symbian utilizes these POSIX APIs provided by Open C

which will be explained in detail.

P.I.P.S. (a recursive acronym for P.I.P.S. Is POSIX on Symbian OS) is a set of

standard libraries that enable you to write and build POSIX-compliant code on

Symbian OS v9.x. Available for both the S60 3rd Edition and UIQ 3 platforms, it

comprises the four 'base' libraries - libc, libm, libpthread and libdl .Despite some

limitations, P.I.P.S. can substantially reduce the time and effort required to port

POSIX-based software to Symbian OS. Open C is a set of additional libraries built

on P.I.P.S. and supplied by Nokia for the S60 3rd Edition platform only. The librar-

ies provided are libssl, libz, libcrypto, libcrypt and libglib. These libraries are ported

from their open source versions and provide the same interfaces. P.I.P.S. add-ons

are libraries and tools that extend P.I.P.S. The first of these is the libz port for UIQ

3 platforms; other libraries that debuted in Open C will follow. Utilities such as tel-

netd and zsh are also part of this set.

15

Figure 5. Symbian PIPS architecture [18]

The functionality of each of the P.I.P.S and Open C libraries are described below.

Library Description

libc (Open C
Libs)

Basic C programming routines: basic types, sockets, I/O, proc-
ess, etc.

libm (Open C
Libs)

Mathematical functions.

libdl (Open C
Libs)

Dynamic loading and symbol lookup.

libpthread POSIX standard interface for multiple threads.

libssl Implements SSL v2/v3 and TLS v1 protocols.

libcrypto Provides services for OpenSSL

euser (Symbian Libs) Basic Symbian OS types and services: active scheduler, etc.

A Symbian OS application that uses main() or wmain() as the entry point is a

P.I.P.S. application. For these applications, P.I.P.S. provides a static library to

serve as glue code between the native E32Main() entry point and the user-

specified main() or wmain(). libcrt0 is the glue code that you need to use for appli-

16

cations that start with main(). This static library has an implementation of E32Main

within which it calls the library initialization method followed by calling main() writ-

ten by the developer. This static library also gets command-line arguments and

passes the same to main(). libwcrt0 is the glue code that you need to use for Uni-

code applications that start with wmain(). Section 5.2 explains how Qt uses this

PIPS component of Symbian OS for portability.

17

3 DESCRIPTION OF METHOD AND MATERIAL.

This study is based on some experiments and desk research. A specific area was

chosen to study the end to end functionality between the QT framework and Sym-

bian OS. The audio playback functionality was studied in detail to understand the

fine details of the cross-platform framework interaction with the native OS. A test

Qt application was developed for this purpose. It is a simple audio player capable

of playing mp3 files. This experiment application was developed on a Windows XP

laptop. It was developed using the Qt application development IDE called the Qt

Creator for Windows. Version 1.3.1 of the Qt creator was used for this thesis. Qt

for Symbian version 4.6.2 was used as the Qt library for this thesis. The Qt creator

supports testing the application using the S60 emulator. Nokia 3rd Edition FP1

SDK was used as the S60 version. But the S60 emulator had limited audio codec

support. It is, therefore, not possible to do any kind of playback of mp3 files or any

other audio formats. Thus, the audio functionality was tested directly on the de-

vice. The final testing of the application was done using the on target debugging

tool called the app TRK on an actual device. A Nokia E63 device was used for this

purpose. The TRK tool supports the step by step debugging which helped to set

break points in various parts of the code and thus helped in understanding the

code flow in detail which gave a clear picture of interaction between the two

frameworks which could not be studied from literature available so far. The Qt

creator IDE was used for source browsing. Information available from the web was

also analyzed and presented in this thesis. In addition to the audio frameworks the

following areas were analyzed.

• Qt Symbian Build Integration

• Qt on Symbian memory management

• Qt support for Platform security

Information required for the above was collected from the Symbian and Qt web-

sites and by analyzing the Qt sources.

18

4 IMPLEMENTATION

In this section we create a Qt for Symbian application to study its operation and

interoperability with the Symbian framework.

4.1 Phase 1: Tools Installation

The tools required for creating a Qt for Symbian application are as follows.

• S60 3rd Edition SDK – a combination of Symbian OS binaries and UI

framework

• Qt Libraries for Symbian 4.6.2 for Symbian

• Qt Creator IDE

There are some add-ons that need to be installed too like active perl and open C

which will be discussed in this section, as well.

4.1.1 Installing the S60 SDK

Before downloading the S60 SDK make sure that that active perl is installed in the

system in a folder name that does not contain any space character. This is be-

cause perl scripts are used by the SDK. The site for active perl installation is pro-

vided in the appendix. Now download the S60 SDK from the forum Nokia website

provided in the appendix. At the time of writing this thesis the S60 5th version SDK

was available, but S60 3rd edition was used as it was compatible with the phone to

be tested. Install the SDK to the same drive as the perl installation. The installation

is straight forward. It is advisable to try building an example Symbian application

and checking if the build succeeds in order to verify that the environment is func-

tioning properly as it is very important in order for the rest of the steps to succeed.

4.1.2 Installing the Qt Libraries for Symbian 4.6.2 for Symbian

Before Qt can be used on Symbian the Open C/C++ plugin should be installed to

19

the Symbian environment. This plugin can be downloaded from the Forum Nokia

website in the appendix. It should be installed to the S60 SDK installed in the pre-

vious step. Now download the Symbian 4.6.2 for Symbian libraries from the Qt

website link provided in the appendix. During the installation process it will be

asked to select the Symbian SDK that the Qt libraries need to be installed. So se-

lect the SDK installed in the previous step.

4.1.3 Installing the Qt Creator IDE

Download and install the Qt Creator 1.3.1 Binary for Windows from the link pro-

vided in the appendix. This should be installed on the same drive as your SDK

installation. Qt Creator should automatically detect SDKs that have been config-

ured for use with Qt. To ensure that the correct SDK is used as the Qt build target:

Start Qt Creator from the windows start button: All Programs -> Qt Creator by

Nokia v1.3.0 (open source) -> Qt Creator. Navigate to the Qt Versions settings at

menu: Tools -> Options-> Qt4-> Qt Versions. Select the SDK installed in the pre-

vious steps in the Default Qt Version field. Press Apply to save the settings.

Now all necessary components to build a Qt application have been installed. This

environment can be tested by building a sample application. This can be done by

the following steps: Open Qt creation application. Go to File - > Open File or Pro-

ject. Browse to your qt installation directory and select examples directory. Select

an application of your choice and open the .pro file of that application. A .pro file is

the project file for Qt. It is similar to the mmp file in Symbian. Now click on the edit

tab on the left panel of the Qt creator. The source code of the application selected

can be seen. In order to build this example, go to the Projects tab on the left pane

of Qt creator. Here the default build configurations can be seen. To build the appli-

cation for the S60 Emulator, change the tool chain from GCCE to WINSCW. This

can be done by clicking on the “show details” tab of the general build settings sec-

tion. Also to run the example application on the S60 Emulator, add the “Run the

application on the Symbian Emulator “option in the Run settings section of the pro-

jects window. Now hit on the Green arrow in the left panel .This will compile and

run the test application. Any build errors can be seen by selecting the Build issues

20

tab on the bottom panel. A successfully compiled application will not show any

build issues in the build output and the last line would be Exited with code 0. The

Qt creator Project settings window for this application is illustrated in Appendix C.

4.2 Phase 2: Development.

Our aim is to develop an mp3 player application capable of playing mp3 files. In Qt

the multimedia framework is called phonon. It provides functionality to playback

most of the common media formats. We will use the built in Qt widgets to provide

controls to the user. Phonon provides its own widgets for volume slider, seek slider

etc. The application we develop will be able to queue up music files and play them

from the queue. More functionality can be added to this application but our pur-

pose is to understand the Qt port on Symbian so only minimal functionality is de-

veloped. The S60 emulator can be used in the development phase to test the UI

functionality only. Mp3 playback is not supported in emulator because there is no

audio codec support in the emulator. Once the application has been developed

testing will be done on the device using the App Trk tool.

4.2.1 Creating a New Application in Qt Creator.

Qt creator is a very useful tool to create applications in Qt. Its main features are

smart code completion and navigation, error and warning indicators as we type

and build in context sensitive help and integrated debugger, which was used heav-

ily to create this application. The process of creating a new application is pretty

straight forward. Select file ->new project or file - >Qt4 Gui application. Select a

suitable name and location for your project. Then it asks for the modules to be se-

lected. By default Qt core and Qt Gui modules are selected, the functionalities of

which have been discussed in section 2.3. As we are developing a phonon based

application we include the phonon module. Then an option to select the class

names and file names for the project is given which can be left as such if you are

ok with the default names. There is an option to generate form with the project. If

this option is selected the GUI can be easily made by dragging and dropping con-

trols on to the form using the Qt designer tool of the Qt creator. We do not select

this option as we want to create our own widgets so that the signals and slots of

21

the widgets can be used in the application. We now have a new application cre-

ated successfully. The main function of the application will be in a separate file

typically named main.cpp. The functionality implementation will be done in main-

window.cpp

4.2.2 Creating the UI.

The Ui design for the application will be as follows.

Figure 6. Experiment Application UI in S60 Emulator

Volume Slider

This is built using the Phonon::VolumeSlider widget. This slider also provides an

icon to indicate if the audio is muted. It is possible to set the maximum value of the

slider. By default, the minimum and maximum values of the slider are 0.0 (no

sound) to 1.0 (the maximum volume the audio output can produce).

File selector.

The file selector consists of 2 parts - the icon and the process. The icon is created

using the QPushButton widget of Qt. Push buttons display a textual label, and op-

tionally a small icon. These can be set using the constructors and changed later

using setText() and setIcon(). In our case we use the

Volume Slider

File selector

Play button

Seek Slider

22

QStyle::SP_DialogOpenButton pixmap.The functionality of this button is provided

to the QFileDialog class.The QFileDialog class provides a dialog that allow users

to select files or directories. The QFileDialog class enables a user to traverse the

file system in order to select one or many files or a directory. The button is con-

nected to the QFileDialog functionality using a Qt mechanism called signals and

slots. Signals and slots are used for communication between objects. A signal is

emitted when a particular event occurs in our case when the Open button of the

file selector is clicked. Qt's widgets have many pre-defined signals so we use the

clicked() signal of the Open button widget. A slot is a function that is called in re-

sponse to a particular signal. Qt's widgets have many pre-defined slots, but it is

common practice to add your own slots so that you can handle the signals that you

are interested in. In our case we have created our own slot for file selection pur-

poses called the addFiles().

The signals and slots mechanism is type safe: the signature of a signal must

match the signature of the receiving slot (in fact a slot may have a shorter signa-

ture than the signal it receives because it can ignore extra arguments.) Since the

signatures are compatible, the compiler can help us detect type mismatches. Sig-

nals and slots are loosely coupled: a class which emits a signal neither knows nor

cares which slots receive the signal. Qt's signals and slots mechanism ensure that

if you connect a signal to a slot, the slot will be called with the signal's parameters

at the right time. Signals and slots can take any number of arguments of any type.

Qt has a tool named moc (Meta-Object Compiler). Meta-Object Compiler reads

C++ header files. If it finds a class declaration that contains the Q_OBJECT

macro, it produces C++ source code containing the meta-object code for those

classes. MOC generates automatically loose coupling connections used between

signals and slots

All classes that inherit from QObject or one of its subclasses (e.g. QWidget) can

contain signals and slots. Signals are emitted by objects when they change their

state in a way that may be interesting to the outside world. This is all the object

does to communicate. It does not know or care whether anything is receiving the

signals it emits. This is true information encapsulation, and ensures that the object

23

can be used as a software component.

Play Button

The play button consists of 2 parts, the icon and the process. The icon is created

using the QPushButton widget of Qt. The icon of the button is set using setText()

and passing the QStyle::SP_MediaPlay parameter to the function. The button is

connected to the Phonon::MediaObject using the signal and slot mechanism. In

this case it is connected to the predefined Play() slot of the Phonon::MediaObject

that we created.

Seek Slider

The seek slider is built using the Phonon::SeekSlider widget. The SeekSlider class

provides a slider for seeking to positions in media streams. The SeekSlider con-

nects to a MediaObject, and controls the seek position in the object's media

stream. The slider will connect to the necessary signals to keep track of the slider's

maximum, minimum, and current values. It will also disable itself for non-seekable

streams, and update the media object when the current value of the slider

changes.

Layouts

Qt includes a set of layout management classes that are used to describe how

widgets are laid out in an application's user interface. These layouts automatically

position and resize widgets when the amount of space available for them changes,

ensuring that they are consistently arranged and that the user interface as a whole

remains usable. In our case we used 2 of Qs’s layout classes: QHBoxLayout to

horizontally layout the file selector, play , forward, backward and stop buttons and

QVBoxLayout to vertically layout the volume slider, horizontal layout discussed

previously and the seek slider. Finally we created a widget consisting of this whole

layout and made it to be initialized in the constructor function of the application.

Player setup

The Qt media player consists of a media object class and an audio output class.

The state of play (play, pause, stop, seek) of an audio file is controlled by the me-

24

dia object. It keeps track of the playback position in the media stream, and emits

the tick() signal when the current position in the stream changes. The AudioOutput

class is used to send data to audio output devices. The AudioOutput class plays

sound over a sound device. The audio output needs to be connected to a Me-

diaObject using createPath(). To start playback, you call play() on the media ob-

ject. This is done by connecting the play() slot to the play button. Similarly the stop

button of the player is connected to the stop() slot of the media object. These con-

nections are made using the connect() function during the initialization of the ap-

plication. The current media source to be played is selected using the Me-

dia::Object currentSource () function. In order to enable the player to continue to

play the next music file after one file has ended we use the aboutToFinish() signal

of the media object. This signal is emitted before the playback of the currently

playing audio file ends. We connect this signal to the slot implemented by the ap-

plication of the same name. In this slot we call the MediaObject::enqueue function

to set a new source. One observation of this implementation is that the aboutTo-

Finish() signal will be emitted only if the previously playing file was played fully. If it

was advanced using the seek slider, the aboutToFinish() signal is not emitted.

Another debugging technique that was used during the application development

was to enable traces on to the Application panel of the Qt creator. This was done

by using the qDebug object. The QDebug class provides an output stream for de-

bugging information to the console, which in our case is the Application output

window in the Qt creator.

4.3 Phase 3: Deployment

As mentioned in the previous section, it is not possible to test audio play back in

the S60 emulator due to missing codec support. So the only option left for testing

and debugging is the actual device itself. The Qt creator communicates with the

device through a tool called App TRK. The App TRK tool is a small application

which you install on your phone. It makes it possible to run and debug applications

directly from Qt creator. It communicates with Qt creator over a serial port, either

using USB cable or Bluetooth. The App TRK tool supports important debug fea-

25

tures such as setting breakpoints, monitoring variables etc. To install the TRK to

the phone the following steps are performed

To install TRK:

• Install the TRK to your phone from the link given in the appendix. There are

TRK’s available for each version of S60. So the TRK corresponding to S60

version 3.1 corresponding to the S60 of the test device was installed. The

link provided in the appendix also has TRK installation files for older Sym-

bian/S60 platforms.

• Connect your device in PC Suite mode using a USB cable.

• Launch TRK on your phone. If the connection has been successfully estab-

lished you should see Status: Connected in the TRK application.

• Make sure that the connection mode is USB, by going to options -> set-

tings-> connection and changing it to USB.

Now change the “Run configuration” of the developed project to enable the appli-

cation to run on the device.

• Select the projects icon in the left panel.

• Select the Projects icon in the Qt Creator sidebar. In the Run Settings sec-

tion, press Add and choose the Project Name in Symbian Device option.

This should create a run configuration for building a Symbian installation file

(SIS file) and deploying it to a device. For deploying to a device the applica-

tion should be compiled using GCCE.

• Set the new run configuration active: you can do this by selecting the blue

link to make it active (below the newly created configuration) or by selecting

it in the Active Build and Run Configurations are at the top of the project

settings.

Now we can deploy the application by pressing the Run button. This will cause the

application to be built and launched. The output of the Application out put tab will

look as Appendix D. Effectively the following operations are being formed for us by

the Qt Creator which are

26

• Running qmake and make release-gcce tools to create mplayer.exe

• Running make sis tool to create mplayer_gcce_udeb.sis

• Running signsis tool with a self signed certificate to create create

mplayer_gcce_udeb.sisx file.

• Copying this mplayer_gcce_udeb.sisx file to the device

• Installing the mplayer_gcce_udeb.sisx file

• Starting the application

An advanced installer from Nokia called the Nokia Smart Installer is now available.

When the user now installs his own sis file on the phone, the Smart Installer will go

on-line and get all the dependencies that his Qt application requires, typically Qt

and QtWebkit + Open C. If these packages are already installed on the phone, the

Smart Installer does nothing. So, it is a little bit like an “apt-get for Symbian”.

Snapshots of the application on the device can be seen in Appendix B. First select

an mp3 file to be played using the file browser of the application. For the first time

it would be needed to browse to the location of your choice. But the path is then

cached by Qt and next time when you want to select a song the path will be visible

in the file browser. It is possible to select more than one song using the shift key of

the phone. After selecting press the play button and the song begins to play. It is

possible to seek a particular position in the song play back using the seek slider.

The Volume Slider can be used to adjust the volume of the file being played and

by default it is at maximum.

27

5 ANALYSIS

In this chapter the developed application will be analyzed based on the objectives

defined in section 2. The design and implementation analysis includes experi-

ences gathered during application development and real device based testing. We

will divide this section into 2 parts – how Qt was ported on to the Symbian frame-

work and how the Qt audio framework, in particular, was ported to the Symbian

framework.

5.1 Qt Porting to the Symbian Framework.

The Qt port for Symbian uses the POSIX APIs provided by Open C .Qt for Sym-

bian GUI applications are statically linked against S60Main library as shown in the

figure below. S60Main implements the Symbian OS entry point E32Main() for Qt

for Symbian applications. This is similar to the Open C libcrt0 in a sense that it ini-

tializes the environment and calls the standard main() entry point used by Qt. The

difference between the libcrt0 and S60Main is that the S60Main initializes the

standard Symbian application UI framework whereas libcrt0 only initializes the

services needed by non-GUI applications. In essence it means that whenever the

‘main’ entry point of Qt GUI application gets called, the standard Symbian applica-

tion UI framework classes such as CAknApplication, CAknDocument and

CAknAppUI are already instantiated. This further means that control environment

(CCoeEnv) and active scheduler (CActiveScheduler) for the main thread also ex-

ist. The control environment availability makes it possible to integrate the top-level

QWidgets to native controls and it enables Qt widgets to utilize the native input

methods also known as Front End Processors (FEPs). Note that the non-GUI Qt

applications are still linked against the Open C libcrt0 instead of S60Main.

28

Figure 7. Qt for Symbian architecture [11]

Some modules of Qt had to be rewritten when ported to Symbian due to various

reasons. QtCore implements process handling, the file system watcher and the

event dispatcher in a Symbian specific way. Due to the limitations of the Open C

libraries the process handler had to be written again. Also due to performance is-

sues the file system watcher had to be rewritten. The Symbian active scheduler

and POSIX based event dispatchers have been included in QT by rewriting the Qt

event dispatcher. Qt core uses the Symbian OS file server library which means

that the native Symbian file system is being used by the Qt libraries for Symbian.

Qt supports threading by linking against the Open C thread library. Qt has its own

network interface implemented for Symbian because of limited support in Open C.

Qt uses the insock and esock Symbian OS libraries to implement its network inter-

face adaptation. Libssl and libcrypto libraries from Open C are used to implement

the SSL support in Qt for Symbian.

Qt GUI has been implemented differently in the case of Symbian. QtGui module

has dependencies to the following Symbian OS libraries: bafl, estor, fntstr, ecom,

aknicon, aknskins, aknskinsrv, fontutils, fepbase, directorylocalizer, efsrv, fbscli,

bitgdi, hal, gdi, ws32, apgrfx, cone, eikcore, sendui, platformenv, commonui, etext,

apmime, avkon, eikcoctl. The module also has dependency to the libpthread

29

OpenC library.

Qt separates the platform specific implementations from its own using private im-

plementations. As a result of this separation the application developer does not

see any difference in the APIS used on different platforms. As mentioned in the

beginning of this section the Symbian application UI framework is already instanti-

ated in the "Main" entry point. When the application creates an instance of QAppli-

cation from the entry point, the object of S60Data class is initialized. This object

contains cached pointers to the native UI related objects created by the S60Main.

The cached objects are such as RWsSession, RWindowGroup and CCoeAppUI.

Figure 8. Qt for Symbian GUI Integration [11]

Each top-level widget creates a native control (CCoeControl) by using QSymbian-

Control. The widget receives different events through this class and forwards them

to the correct alien or sub widget. QSymbianControl acts also as a proxy between

the native FEP and Qt specific input context. Widgets draw themselves to a Sym-

bian platform-specific widget surface, which essentially is CFbsBitmap but access

30

to it is provided via QImage interface. In Qt terms the CFbsBitmap represents the

paint device of backing store. When necessary, the QS60WindowSurface requests

QSymbianControl to paint relevant parts of the backing store to the screen. Be-

cause paint device is represented as a CFbsBitmap the drawing is simple bitblit

operation to window graphics context (CWindowGC) provided by CCoeControl.

5.1.1 Qt and Symbian Build Integration

Building a Qt for Symbian project is different to building a standard Symbian pro-

ject. The underlying Symbian tool chain remains the same but the standard Qt

build tools are used as a wrapper around the Symbian tools. In other words, a Qt

for Symbian application uses the standard Qt project files, i.e. .pro and .prj and is

built the same way as a standard Qt application, i.e. using qmake and make.

Figure 9. Qt for Symbian Tool Chain [11]

qmake is a tool that helps simplify the build process for development project

across different platforms. qmake automates the generation of Makefiles so that

only a few lines of information are needed to create each Makefile. qmake can be

used for any software project, whether it is written in Qt or not. qmake generates a

Makefile based on the information in a project file. Project files are created by the

developer, and are usually simple, but more sophisticated project files can be cre-

ated for complex projects. qmake contains additional features to support develop-

ment with Qt, automatically including build rules for moc and uic. qmake can also

generate projects for Microsoft Visual studio without requiring the developer to

31

change the project file. Also, a default project file can be created with the qmake –

project command. This finds files with known extensions (.h, .cpp, .ui, etc.) from

the current directory and lists them in a .pro file.

Based on information in the .pro project file, the qmake command produces the

following standard Symbian build items: bld.inf file, .mmp file, default registration

file (_reg.rss), extension makefiles (.mk), and package files (.pkg). The extension

makefiles are used to integrate Qt-specific tools (i.e. moc, uic, and rcc) with the

Symbian toolchain, in a manner similar to the way that mifconv integrates the

building of svg icons with the Symbian build chain. A Makefile is also generated by

qmake. This works as a wrapper around the standard Symbian build commands,

i.e. running the make command calls bldmake and abld to build the Qt application.

The Qt for Symbian has support for the new Symbian Build System (SBS v2).

However, the new Symbian Build System is only available for Symbian OS 9.5

based SDKs which are not yet available.

5.1.2 Qt on Symbian Memory Management

The Qt classes are implemented in such a way that the cleanupstack is not

needed for them. If there is not enough memory, when running the Qt application,

the application will simply be closed. When implementing an application with Qt in

the Symbian environment, the cleanupstack should be used with Symbian code.

The QObject class does not have the initialization of members that the CBase

class has. At the moment there are no plans to make a Symbian platform-specific

implementation of QObject to provide such a feature.

Qt stores objects into an object tree when they are created. The object tree en-

ables automatic deletion of child objects that have a parent. For example, when a

widget is created with another object as a parent, it is added to the parent’s child

list and deleted automatically when the parent is deleted. If an object with a parent

is created with new on the heap, the deletion of the object removes it automatically

from the parent. If the deleted object has children, they are automatically deleted

when the object is deleted. The same behavior applies to objects created on the

32

stack. The only objects that have to be explicitly deleted are the objects created

with new and that have no parent. A good example of taking care that all objects

get deleted when the application is closed is using layouts. If a widget gets the

parent information when it is created, adding the widget to a layout changes the

parent and the widget is deleted when the layout is deleted. In the following exam-

ple the parent (this) refers to the widget, which shows the layout and label.

QVBoxLayout *layout = new QVBoxLayout;

QLabel *timeLabel = new QLabel("Time", this);

layout->addWidget(timeLabel);

If the parent is not in the constructor of the widget, the ownership of the widget is

not transferred correctly.

5.1.3 Qt on Symbian Platform Security

Qt is not an interpreted language and so does not have its own security model.

Instead Qt applications inherit their security from the underlying platform they are

installed on. Platform security provides a platform with the ability to defend itself

against malware or badly implemented programs. Symbian devices are running

many different servers. There are public S60 API’s (Application Programming In-

terface) to connect those servers. Using those API’s may need platform security

capabilities. Symbian security architecture provides a number of different capabili-

ties, such as access to the phone stack or to the complete file system. To access

a system resource, a client program must hold the appropriate capability. In Sym-

bian OS, the ‘unit’ or base level of protection between any two entities is the proc-

ess. Thus, under platform security, each process is assigned a set of capabilities.

When a process makes a request of another process, the servicing process is able

to examine the capabilities of the requestors’ process and determine whether the

request should proceed. Qt applications in S60 environment don't need any capa-

bilities for them but if some S60 specific API’s are used then application signing is

needed. User grantable capabilities are listed in the “Basic set”. If “Extended set”

capabilities are needed those SIS-packages must be signed with Symbian Signed

signing. “Phone manufacturer approved set” capabilities must be signed with

33

manufacturer certificate. If the capabilities and UID are not correctly set for a pro-

gram that is going be installed in the phone then the package does not work or

install correctly.

5.2 Qt Audio Framework Porting to the Symbian Frame work.

As we saw in section 2.3, playing of a media file is done by using the Phonon::

Media object class. Phonon has three basic concepts: media objects, sinks, and

paths.

Figure 9. Phonon Architecture [7]

A media object manages a media source, for instance, a music file; it provides

simple playback control, such as starting, stopping, and pausing the playback. A

sink outputs the media from Phonon, e.g., by rendering video on a widget, or by

sending audio to a sound card. Paths are used to connect Phonon objects, i.e., a

media object and a sink, in a graph - called a media graph in Phonon. The play-

back is started and managed by the media object, which sends the media stream

to any sinks connected to it by a path. The sink then plays the stream back, usu-

ally through a sound card.

Qt provides a backend for Qt's Phonon module, which supports video and sound

playback through Symbian's Multimedia Framework, MMF. The audio and video

formats that Phonon supports depend on what support the platform provides for

MMF. The emulator is known to have limited codec support. The multimedia func-

tionality is not implemented by Phonon itself, but by a back end - often also re-

ferred to as an engine. This includes connecting to, managing, and driving the un-

MediaObject Audio Sink

Media Source Audio Device

Path

34

derlying hardware or intermediate technology. For the programmer, this implies

that the media nodes, e.g., media objects, processors, and sinks, are produced by

the back end. Also, it is responsible for building the graph, i.e., connecting the

nodes. The backend’s of Qt use the media systems DirectShow (which requires

DirectX) on Windows, QuickTime on Mac, and GStreamer on Linux. The function-

ality provided on the different platforms are dependent on these underlying sys-

tems and may vary somewhat, e.g., in the media formats supported.

Backend’s expose information about the underlying system. It can tell which media

formats are supported, e.g., AVI, mp3, or OGG. The Symbian audio backend is

based on the CMdaAudioPlayerUtility and CDrmPlayerUtility API. This API allows

audio data to be transferred to the current default audio output device, or from the

current default audio input device. For example, these may be the back speaker

and on-board microphone respectively. A Symbian device may, however, have

more than one audio output or input device available for use at any given time. For

example, if a wired headset is plugged in, it may be available for audio output. The

platform provides APIs to allow clients (a) to be notified when devices become

(un)available and (b) to route audio to / from a given device. At present, the Sym-

bian audio backend does not allow the user to choose audio device; it simply ex-

poses a single QAudioDeviceInfo called "default". The backend should be modi-

fied to make use of the Symbian audio routing APIs. The following diagram illus-

trates the flow of the control for audio playback from Qt to Symbian.

35

Figure 10. Audio playback on Qt for Symbian

Phonon MediaObject

Media Node

Factory

Ds9 Gstreamer

Helix

Abstract media
player

QuickTime7

MMF media object

MMF (Symbian)

Native Player

CMdaAudioPlayerUtil-
ity

Codec Plugins

36

The path of execution of Phonon::Media object class was traced by applying break

points using TRK. Qt has a generic implementation of Phonon::Media object class.

This implementation calls the corresponding backend object implementation using

a helper class to cast the backend object to the correct version of the interface

called IFace. Backends are loaded as plugins in to the Qt framework. Plugins are

mostly in the form of DLL’s which can be loaded at run time. Right now the various

backends present are ds9, gstreamer, Symbian mmf and qucktime7. Symbian

mmf is the backend used by Qt to play audio on the Symbian device. Plugins are

loaded using Qt’s QPluginLoader object. On Symbian OS there are two plugins

that are supposed to be present, one which uses Symbian MMF framework ("pho-

non_mmf"), and one which uses Real Networks's Helix("hxphonon"). Helix is pre-

ferred because it's more sophisticated. So Helix backend is attempted to be

loaded first, and the MMF backend is used for backup. Right now Helix plugin is

not being shipped along with QT for Symbian releases.

The Symbian MMF provides the Multimedia capabilities of Symbian OS. These

include audio recording/playback, video recording/playback, still image conversion

and camera control, where present. Not all of these capabilities are necessarily

present but frameworks exist in each case to support them. Ultimately, in some

cases, the functionality provided is at the discretion of the licensee. The following

figure gives an overview of the Symbian MMF.

37

Figure11. Symbian MMF components [17]

The audio interface provides functionality to play back, record and convert audio

clips. Supported formats include MP3, WAV and AMR. The MMF controller

framework implements some of the client side functionality. It provides the base

classes to help licensees implement the plugins. Controller classes implement

standard multimedia operations such as play, stop, pause, etc. and can handle

multiple formats internally or through format plugins. The source and sink classes

act as suppliers and consumers of data. (File, descriptor, and Audio I/O implemen-

tations are provided by the framework). Format base classes allow licensees to

provide objects that identify and process the format of a multimedia clip and Codec

base classes allow licensees to provide objects which perform the conversion of

multimedia data in software. The DevSound provides the hardware abstraction

layer for digital audio hardware acceleration. It consists of a client API and a plug-

in API whereby all requests go through the client API and the client layer takes

care of audio policy (managing contention between requests) and data type

matching to load the correct plugin. Plugins correspond to a particular accelerated

function such as MP3 decoding. The codec plugins are Symbian OS ECom

plugins intended for derivation by a specific codec. The derived codec should

process source data of a certain datatype and convert it to destination data of a

38

different data type. An example of a source data type might be say ‘mp3’ and a

destination data type ‘pcm16’. This would correspond to a codec that takes mp3

as its source and decodes the data into pcm16.

5.3 Qt Bugs

In the process of the application development a few bugs were discovered in Qt.

One bug was in the Qt framework and another was in the Qt Creator

5.3.1 Seek Slider Bug

The Phonon::Media object provides an aboutToFinish() signal which can be

used by applications to enque the next file to be played. This signal was not

working in my case. After days of debugging the issue was discovered. The

issue was that the aboutToFinish() signal will be emitted only if the currently

playing file is played completely. During my development the play of the file

was being forwarded using the seek slider to the end. This was causing the

aboutToFinish() signal to be not emitted. Due to this, it was not able to

queue the next file for playback. The issue was reported in the Qt mailing

list [14]. It was asked to raise a bug in the Qt bug tracker. Qt bug tracker is

the public Qt bug tracking system. There you can track existing bugs in Qt

and related products, and can register for an account to report new bugs,

discuss existing bugs with Qt developers and make suggestions for Qt fea-

ture improvements [15]. The bug Id is QTBUG-9368.

5.3.2 Waiting for App Trk to Start on Port x Bug

APP TRK was used along with Qt to port the experimental application to the

device for testing as S60 emulator does not have support for audio codec’s.

After the initial setup of the tool it was possible to use the App Trk for many

days. But finally one day it showed the following error “Waiting for App Trk

to start on Port 20”. Reconnecting the USB, restarting the Trk, restarting the

IDE and even restarting the PC didn’t help. In fact the development PC had

been used for other development purposes and new devices had been

connected to different USB ports in the mean time. After some testing and

39

looking up in the net the following bug was found - Qt Creator Bug – 568. It

says that QtCreator would wait for an AppTRK connection although it al-

ready is connected to a higher COM port. So the number of the COM port

through which the phone gets connected on my PC was lowered. This can

be done by the following steps.

• Go to device Manager of your pc

• Select the COM port on which the phone is connected.

• Go to properties -> port settings -> advanced -> COM port number.

• Assign the COM port to a port below 10 preferably below 4.

• Restart the Qt IDE.

Appendix E provides the screenshot of the port modification window in

Windows XP. You will be able to see that all COM ports up to 20 are shown

as “In use”. This could be due to devices connected earlier and actually not

being used. COM port 4 was assigned which was shown as “In use”. Then

restart the Qt creator IDE. This was an important step without which the

change would not take effect. When trying to run the Trk again it can be

seen that the IDE is using a lower COM port and the IDE is able to copy the

sis package to the phone, install it and run it. Appendix B

40

6 DISCUSSION AND CONCLUSION

As we have seen from this study, portability of Qt on top of Symbian OS was quite

feasible due to the fact that Symbian OS had inherent support for Open C. This

feature of Symbian will in fact enable it to support much more software on top of it

as long as it is Open C compliant. The major modifications that Qt had to make

were in the areas of integrating the build systems and GUI modifications.

The phonon port on top of Symbian is still under development. A few bugs were

found during the development process. So it will be a while before a mature pho-

non module will be available. Also as discussed in section 5.2, using Helix as a

backend for Symbian will be much more advantageous because of its features. It

is expected that the Helix backend will be available in future Qt for Symbian re-

leases.

Implementing applications with Qt is much faster than in s60 due to the various

advanced code development tools and inbuilt features in Qt. Some examples

would be tools like Qt designer and Qt assistant. It is possible to get the entire

documentation of a Qt datatype for example by just pointing the cursor on top the

data type and pressing “F1” while using Qt creator which has Qt assistant inte-

grated. Also the use of automatic memory management and multipurpose data

types like QVariant reduces a lot of programming efforts. Qt exposes intuitive and

high level APIs that address the needs of most developers. The signals and slots

mechanism make it easy to connect user actions to application logic, and indeed

any objects to arbitrary other objects. Most C++ memory management issues are

handled by Qt, leaving application developers to focus on application structure and

behavior. Qt applications

follow the native look and feel of the platform. However designers can radically

modify the appearance of a user interface, from a single widget to a complete ap-

plication, using style sheets or custom styles.

Qt itself does not have any features to support platform or device specific features.

41

There is no built-in support for phone features, telephony or SMS messaging.

Forum Nokia has released Mobile Extensions for Qt for S60 package as technol-

ogy preview. That package has wrapper classes for using already implemented,

native S60 classes. Those extensions provide easy to use methods to S60 specific

API's. One thing lacking in those extensions is that all of the features don’t work

exactly like in S60. Good thing in using those extensions is that they make soft-

ware development easier and also reduce the number of possible buffer overflow

cases. S60 generally uses manual allocation of memory. Allocation is usually done

with pushing and popping data in the cleanup stack. Qt's way is to do this alloca-

tion automatically and that is the reason why the number of human errors is

smaller.

Since Qt has a long history in desktop usage some of its features are not opti-

mized for mobile usage. In desktop computers there is usually more computation

power for graphical output. During the research lack in graphical performance was

visible.

The full advantage of platform independence will be available only if all the Qt

modules are ported to the Symbian platform. Currently this is a work in progress.

In the licensing area Nokia has used the LPL license for the Qt releases which

means that companies can build using Qt and release code using an open-source

model without having to subscribe to GPL, while also avoiding to become tied into

a single company through the terms of Qt's commercial license. This will help to

woo more development using Qt. Nokia wants to establish Qt as a framework that

spans desktop and mobile application development, while also making it easier to

write applications for different mobile devices using a single development frame-

work and code base.

Qt promises to be a very widely accepted platform for application development

once its initial bugs are fixed and it gets matured. There is a wide and active de-

veloper community which is quite evident from its mailing lists. The success of Qt

comes down once again to its easy portability to platforms which we can expect to

provide tough competition to the existing GUI frameworks like iPhones and RIM.

42

7 REFERENCES

[1] Wikipedia (2010) [WWW] Smartphone.

http://en.wikipedia.org/wiki/Smartphone (Accessed Mar 22, 2010)

[2] Wikipedia (2010) [WWW] Symbian OS:

http://en.wikipedia.org/wiki/Symbian_OS (Accessed Mar 22, 2010)

[3] Wikipedia (2010) [WWW] S60(Software Platform):

http://en.wikipedia.org/wiki/S60_(software_platform) (Accessed Mar 22, 2010)

[4] Alan Ezust and Paul Ezust (2009) An Introduction To Design Patterns in

C++ With Qt 4 Canada: Prentice Hall

[5] Qt Home (2010) [WWW] Qt on the Symbian Platform

http://qt.nokia.com/products/platform/symbian (Accessed Mar 22, 2010)

[6] Trolltech Documents (2009) [WWW] Qt Reference Documentation

http://doc.trolltech.com/4.6-snapshot/index.html (Accessed Mar 22, 2010)

[7] Trolltech Documents (2009) [WWW] Phonon Overview (2009)

http://doc.trolltech.com/4.6-snapshot/phonon-overview.html (Accessed Mar 22,

2010)

[8] Qt Labs (2009) [WWW] Qt for Symbian and the Nokia Smart Installer

http://labs.trolltech.com/blogs/2010/02/15/qt-for-symbian-and-the-nokia-smart-

installer-beta/ (Accessed Mar 22, 2010)

[9] Forum Nokia (2009) [WWW] Qt Tutorial Lesson 1 – Installation

http://wiki.forum.nokia.com/index.php/Qt_Tutorial_Lesson_1:_Installation#Inst

43

all_Open_C.2FC.2B.2B_Plugin_and_Qt_for_S60 (Accessed Mar 22, 2010)

[10] Youtube (December 2009) Qt for Symbian – developing in Qt Creator

http://www.youtube.com/watch?v=Rb43gnZI1A0 (Accessed Mar 22, 2010)

[11] Symbian Developer (March 2010) [WWW] Qt quick start

http://developer.symbian.org/wiki/index.php/Qt_Quick_Start (Accessed Mar

22, 2010)

[12] Trolltech Documents (2009) Platform Notes - Symbian (2009)

http://doc.trolltech.com/4.6/platform-notes-symbian.html (Accessed Mar 22,

2010)

[13] Jane Sales(2005) Symbian OS Internals West Sussex England: John

Wiley & Sons, Ltd

[14] Trolltech Mailing Lists (2008) [WWW] Qt Creator Info page (2008)

http://lists.trolltech.com/mailman/listinfo/qt-creator (Accessed Mar 18, 2010)

[15] System Dashboard [WWW] – Qt Bug Tracker (2009)

http://bugreports.qt.nokia.com/secure/Dashboard.jspa (Accessed Mar 18,

2010)

[16] Jo Stichbury (2005) Symbian OS Explained: Effective C++ programming

for Smartphones West Sussex England: John Wiley & Sons, Ltd

[17] Symbian Software Ltd (2006) Symbian OS Library for Device Creators

Documentation set version: 9.3/2007-45-00

[18] Symbian Developer [WWW] (2009) A Guide To P.I.P.S (2009)

http://developer.symbian.org/wiki/index.php/A_Guide_To_P.I.P.S.

[19] Forum.Nokia.Com [WWW] (2009) The E-learning Curriculum (2010)

http://www.forum.nokia.com/Learning_and_Events/E-learning.xhtml

44

8 APPENDIX A

A.1 Perl Installation Link - http://www.activestate.com/activeperl/

A.2 S60 SDK download link -

http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Platforms/
S60_Platform_SDKs/

A.3 Open C/C++ download link -

http://www.forum.nokia.com/info/sw.nokia.com/id/91d89929-fb8c-
4d66-bea0-227e42df9053/Open_C_SDK_Plug-In.html

A.4 Qt for Symbian Windows installer - http://qt.nokia.com/downloads

45

9 APPENDIX B

46

10 APPENDIX C

47

11 APPENNDIX D

48

12 APPENDIX E

