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Recently developed smart parking mobile applications provide their users with valuable 

savings in time and money, however a significant portion of parking consumers cannot use 

these applications as they require a smartphone. In order to serve these user groups, a 

new smart parking system was designed to support a standalone client device. This device 

can be used to remotely make parking payments without the need for a smartphone, or to 

display the vehicle's arrival time in free parking areas that require a parking disc. The de-

vice can also detect movement and rest in order to automatically end parking when the 

user's vehicle departs and to activate or deactivate the display when the user's vehicle is 

parked or driving to conserve battery. 

 

This thesis documents the design and implementation of the embedded system software 

for the smart parking device and its interface to cloud-based services. Particular focus is 

given to discussion of secure and dependable service delivery and mobility detection and 

classification as core feature requirements of the device. Design choices, implementations, 

and challenges are explored and evaluated, including discussion of topics such as secure 

and dependable systems, embedded cryptosystems, remote firmware updates, and mobili-

ty detection and classification methods. 

 

The smart parking device is currently available and supported for use in all Helsinki city 

public parking areas. It is the only remote parking payment method currently supported by 

the city that does not require a smartphone. 
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1 Introduction 

Until recently, public parking in the capital city of Helsinki, Finland required users to 

locate a payment kiosk, retrieve a ticket, and return to their vehicle every time they 

needed to reserve or extend their paid parking time. The introduction of smartphone 

applications helped relieve these disruptions for many consumers, however a signifi-

cant proportion of parking users are unable to take advantage these new services as 

they do not own a smartphone or cannot procure one from their employer for making 

remote parking payments related to work. To bring the convenience of remote parking 

payments to these users, a new smart parking system was created. This thesis docu-

ments the process of designing and developing the embedded software for the sys-

tem's standalone client device focusing on two of its key feature requirements: 1) se-

cure and dependable service delivery, and; 2) mobility detection and classification. 

1.1 Project setting and overview 

In the past, users paying for public parking in Helsinki were generally required to make 

a cash or credit-card payment at a payment kiosk nearby their parking area. In return 

for their payment, the user would receive a paper ticket indicating their time of arrival 

and amount of parking time reserved. The user would then need to return to their vehi-

cle and place the ticket on their vehicle's dashboard. If the user needed to extend the 

amount of time purchased, they would need to return to the kiosk, make an additional 

payment, and place the new ticket in their vehicle. 

For a user, the physical journey to the kiosk and back to their vehicle can be an incon-

venience that becomes especially disruptive when it includes a return to the parking 

area from another place in order to extend parking time. As such, users often opt to 

pay extra and "overbook" their parking reservation in order to ensure that they will not 

need to return to the parking area before they are ready to depart. 

To help alleviate this burden on the public, Helsinki city opened its parking payment 

system to selected third-party service providers, allowing them to handle parking pay-

ments on behalf of users. This enabled the creation and use of smartphone applica-

tions for public parking payments. For users, the ability to pay for parking on their 

smartphone removed the need to travel to a payment kiosk. Furthermore, users were 
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able to avoid the need to overpay for parking, either by extending their parking time 

from the application as needed, or by overbooking a reservation and then shortening it 

retroactively to end at the time of departure. 

The introduction of smartphone applications for remote parking payments was well-

received. However, not all public parking users could take advantage of these new ser-

vices easily. Vehicle fleet managers such as rental car agencies and utility providers 

that use public parking services as part of their daily work may find it difficult to provi-

sion smartphones for all of their drivers. Furthermore, many individual public parking 

users do not have a smartphone. According to some research, 41-45% of Finns aged 

55 or older did not own a smartphone in 2015 [1] [2]. 

In order to serve these user groups, a new smart parking system was designed to sup-

port a standalone client device. This device can be used to remotely make payments 

for public parking in Helsinki with all of the aforementioned benefits of a smartphone 

application, but without the need for a smartphone. Additionally, since the device is 

designed to be left in the user's vehicle, it can be used as a parking disc to display the 

vehicle's arrival time in limited-time free parking areas that require it. 

The smart parking system as a whole consists of a cloud-based service and a 

standalone device as a client of that service. The cloud-based service consists of back-

end and front-end web applications, databases, and other cloud-hosted core infrastruc-

ture. The back-end web application is a service that responds to requests from devices 

through an application programming interface (API) following the representational state 

transfer (REST) model. The front-end web application services browser-based clients 

as a user interface (UI) for management of devices, accounts, and payment details, but 

is not used to make parking reservations. 

When a user wishes to reserve paid parking time, they use the device to start a "park-

ing event" of a set duration with the cloud-based service. When they are ready to de-

part, the user can change the duration of their parking event to last exactly as long as 

they have been parked by using the device to stop the parking event. This allows the 

user to pay only for the amount of time they have parked and to do so without needing 

to leave their vehicle or own a smartphone. 
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The cloud-based service utilizes an API provided by the city of Helsinki to reserve park-

ing time on behalf of users. City parking enforcers can check the cloud service to de-

termine if a vehicle has paid for parking and what time the vehicle must depart before 

issuing a penalty. 

The smart parking system's cloud-based services and device hardware and software 

were all designed and implemented simultaneously within a small start-up company 

focusing on smart parking solutions for the Finnish market. The company's engineering 

team at this time consisted of four people: an embedded software developer, a hard-

ware engineer, a senior backend web software developer, and a junior full-stack web 

software developer. No project manager, product manager, or product owner was em-

ployed, however the company CEO and a technical advisor fulfilled these roles where 

needed. Design of the interface and interrelated processes between the device and 

cloud-based services was shared between the embedded developer and the senior 

web developer, including the API, device registration process, and security procedures 

and protocols. 

1.2 Smart parking device requirements 

At the beginning of the planning and design process, formal and informal requirements 

for the smart parking device were given to the engineering team. The main require-

ments for the smart parking device related to its embedded software are summarized 

as follows: 

 Payment mode functionality: The device can act as a client of cloud-
based services to deliver core capabilities including starting and stopping 
paid parking events. 

 Disc mode functionality: The device can be used as a digital parking disc 
to display a time of arrival (rounded up to the nearest half-hour, per local 
legislation) for parking enforcers to inspect. 

 Secure and dependable service delivery: The device must ensure secure 
and dependable service delivery, including the ability to remotely update 
firmware in order to address bugs and enhance capabilities with little to 
no user interaction. 

 Mobility detection and classification: The device can automatically sense 
when it is moving or stationary in order to: A) stop paid parking events 
when the vehicle departs, and; B) activate/deactivate the display depend-
ing on the vehicle's mobility in order to conserve power when used as a 
parking disc. 
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 User interface: The device includes a UI with a display and buttons that 
can be used to deliver service to the user in an intuitive manner. 

 Power consumption: The device can be powered by a rechargeable bat-
tery with a typical full-charge operational lifetime of 1 week or longer 
when used as a parking disc, or 1 month or longer when not used as a 
parking disc. 

Further requirements were also given regarding the device's physicality and operating 

conditions, cost, development time, and manufacturing, which are not discussed in 

depth here. Specifications of the device requirements may be considered to be loosely 

defined; for example, while service delivery was required to be secure and dependable, 

no specification was given to define or measure the security or dependability of service 

delivery. Likewise, requirements validation and verification were often done on an in-

formal and ad hoc basis. 

Two of the above requirements are chosen here as the focal topics for this thesis: 1) 

secure and dependable service delivery including remote firmware updates, and; 2) 

mobility detection and classification. Further discussion of these topics will touch upon 

elements of other main requirements listed as well. Indeed, any combination of these 

requirements could have been chosen for review, but the selected topics were pre-

ferred as they offered both a breadth of relevant research and opportunities for reflec-

tion on design and implementation. 

The remainder of this thesis is presented as follows. First, the Background section ex-

plores the selected requirements with related research to familiarize the reader with 

relevant topics and available design choices. The Design and implementation section 

describes what design choices were made and how their implementations were real-

ized. The Results and analysis section reviews the challenges met during the project 

and critically examines the solutions employed. Finally, the Conclusions section com-

pletes the thesis with observations and recommendations for similar projects conduct-

ed in the future. 
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2 Background 

2.1 Secure and dependable service delivery 

This section discusses the selected device feature of secure and dependable delivery 

of the smart parking system's core services. For the case at hand, the core services 

being delivered by the device consist of starting and stopping parking events. As the 

terms "secure" and "dependable" were not extensively defined descriptively or meas-

urably as part of the device requirements, these terms need some further explanation. 

Therefore, a basic model for defining and integrating attributes of security and depend-

ability is introduced in the discussion below, followed by an evaluation of methods that 

can be employed to achieve these attributes. Other services provided by the device, 

e.g. mobility detection/classification and use as a digital parking disc, are related but 

not required for core service delivery, and thus are not discussed under the model ap-

plied here. 

2.1.1 Attributes of a secure and dependable system 

To help shape discussion here, an integrated conceptual model for secure and de-

pendable systems based on the work of Avižienis et al. [3] is employed to: 1) identify 

attributes as goals for the system and service delivery; 2) classify faults that lead to 

errors and possibly failures of the system, and; 3) identify suitable methods of fault tol-

erance and removal. The model uses the well-known "CIA triad" of information security 

[4] to specify primary attributes for the principle domain of security, and includes over-

lapping and additional primary attributes for the principle domain of dependability. 

These primary attributes of security and dependability are defined in Table 1. 

Table 1.  Primary attributes of secure and dependable systems, retrieved from [3]. 

Attribute Principle domain(s) 

Confidentiality – Absence of unauthorized disclosure of infor-

mation 

Security 

Integrity – Absence of improper system alterations Security,  
Dependability 

Availability – Readiness for correct service Security,  
Dependability 
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Attribute Principle domain(s) 

Reliability – Continuity of correct service Dependability 

Safety – Absence of catastrophic consequences to the user and 

the environment 

Dependability 

Maintainability – Ability to undergo modifications and repairs Dependability 

Some adaptations to the list of attributes above are required here. Firstly, since com-

munications between the device and cloud-based service initiate parking reservations 

on behalf of an authorized user, authenticity is required as a secondary attribute for 

service delivery to be secure. Authenticity here can be defined as a special form of 

integrity that also ensures the originator of a message is who or what they claim to be 

[3] [5]. Secondly, as this case does not include any safety-critical components, applica-

tions, or potential catastrophic failures, the attribute of safety is not of primary concern 

and will not be discussed further here.  

Further definitions according to the model are as follows. Dependability can be defined 

as a system's ability to deliver its core service in a trusted manner while avoiding unac-

ceptably frequent or severe service failures. A failure is defined as the inability of the 

system to provide its intended service. Failures are caused by errors, which are defined 

as deviations of the system from its correct state. An event that causes an error is de-

fined as a fault. In other words, a fault causes an error, which in turn can cause a fail-

ure. This failure may then result in a fault manifested in another part of the system 

through the mechanism of error propagation. It is important to note, however, that not 

all errors inevitably lead to failures. Furthermore, not all failures are service failures that 

result in incorrect service delivery to other systems or users. A failure of one compo-

nent of the system may propagate to other components, but this propagation may be 

stopped by intentional or unintentional system recovery. In short, the end result of a 

fault depends on how its resulting errors are detected and handed. Faults are classified 

and grouped in Table 2. 

Table 2.  Classification of elementary faults, retrieved from [3]. 

Viewpoint Classification 

Phase of crea-
tion or occur-

Development – Occurs during system development, maintenance during 
use, and generation of procedures to operate or maintain the system 
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Viewpoint Classification 

rence Operational – Occurs during service delivery of the use phase 

System 
boundaries 

Internal – Originates inside the system boundary 

External – Originates outside the system boundary and propagates er-
rors into the system by interaction or interference 

Phenomeno-
logical cause 

Natural – Caused by natural phenomena without human participation 

Human-made – Results from human actions 

Dimension 
Hardware – Originates in, or affects, hardware 

Software – Affects software, i.e. programs or data 

Objective 

Malicious – Introduced by a human with the malicious objective of caus-
ing harm to the system 

Non-malicious – Introduced without a malicious objective 

Intent 
Deliberate – Result of a harmful decision 

Non-deliberate – Introduced without awareness 

Capability 

Accidental – Introduced inadvertently 

Incompetence – Results from lack of professional competence or from 
inadequacy of the development organization 

Persistence 

Permanent – Presence is assumed to be continuous in time 

Transient – Presence is bounded in time 

For this case, some classifications of faults are of particular importance for specific 

attributes and contexts, while other classifications are generally irrelevant. The view is 

taken that any information security vulnerabilities (note: not exploits) existing in the 

interface between the device and cloud-based service may be classified as develop-

mental (introduced during design and/or implementation), internal or external (depend-

ing on where on the interface the vulnerability is), and permanent (predictably exploita-

ble until corrected). For faults related to dependability, both internal and external faults 

are significant as the device acts as a client for the external cloud-based service, and 

service failure could be caused by an internal fault of the device or an external fault in 

its connectivity to the cloud-based service or the service itself. Service availability is 

mostly affected by operational faults internal to the device such as system halts, while 

service reliability is susceptible to external operational faults such as loss of connectivi-

ty originating from a mobile network operator (MNO) as internet service provider. For 

all attributes of the service only software faults are deemed relevant, although this in-
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cludes faults originating in hardware as long as their resulting failures are manifested 

as faults in software. 

Further classification of faults for purposes of this discussion is unwarranted, despite 

their potential use for other goals. Failures and errors can also be classified extensive-

ly, however for the case at hand these classifications are not of primary importance and 

are thus excluded from discussion. 

Four conceptual methods for managing faults are identified by the applied model: pre-

vention, tolerance, removal, and forecasting. Fault prevention refers to processes for 

reducing the number and scope of faults introduced during design and development. 

Fault tolerance refers to methods for error detection and recovery to avoid system fail-

ure in the event of a fault. Fault removal refers to methods for verifying, diagnosing, 

and correcting faults through testing, maintenance, and software updates. Fault fore-

casting refers to qualitative and/or quantitative evaluation of the system's behaviour 

when activating or reacting to a fault. 

Depending on the system, certain fault management methods are more applicable to 

particular attributes than others. In this case, attributes of security are best attained 

through fault prevention by way of a secure design and implementation, availability and 

reliability can be served through fault tolerance with proper error detection and han-

dling, and maintainability can be seen as the system's ability to perform in-operation 

fault removal. Fault forecasting, while a useful and insightful tool, is omitted from this 

discussion. 

The immediately following discussion on secure and dependable service delivery is 

broken into two parts. The first focuses on the principle domain of dependability and 

how techniques of fault tolerance and fault removal can be used to attain availability, 

reliability, and maintainability of service. The second part focuses on ensuring attrib-

utes of confidentiality, integrity, and authenticity in the security domain, and reviews 

cryptographic methods for preventing malicious faults, i.e. attacks and exploits, that 

may erode these attributes. 
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2.1.2 Dependability 

2.1.2.1 Availability, reliability, and fault tolerance 

As the notions of availability and reliability often differ amongst relevant research [6] [7], 

some expansion on their definitions is warranted here. In this case, availability is de-

fined as the probability that the service delivered will be correct at any given time, often 

referred to as uptime. This is also known as inherent availability, and may be calculated 

as in Figure 1 using measured values for mean time before failure (MTBF) and mean 

time to repair (MTTR). Reliability is a related but separate concept referring to the 

probability that the service delivered will be correct up to a given time. In this case, reli-

ability as a function of time (t) may be simply expressed as the exponential distribution 

shown in Figure 1 below with a given MTBF, or its reciprocal failure rate (λ). [8] 

𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 

 

𝑅(𝑡) = 𝑒−𝑡/𝑀𝑇𝐵𝐹 = 𝑒−𝜆𝑡 

Figure 1.  Equations expressing availability (A) and reliability (R) 

The two attributes may diverge in certain cases. For example, a highly available but 

unreliable system may be correct 99% of the time but still fail for a short period every 

hour. A system of high reliability but low availability may be correct for a long and con-

tinuous period of time but, when it does fail, it fails spectacularly for an extended peri-

od. In this case, techniques for ensuring the system's dependability generally influence 

availability and reliability simultaneously and to equal effect. 

For the smart parking device, the principle method of avoiding breakdown of availability 

or reliability of service during operation is to use fault tolerance techniques to detect, 

handle, and recover from faults and errors before they propagate into service failures. 

Categorical definitions of these techniques are presented in Table 3. 
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Table 3.  Fault tolerance techniques of error detection and system recovery, retrieved from [3]. 

Strategy Technique 

Error detection – 

Identifies the 
presence of an 
error 

Concurrent detection – Takes place during normal service delivery 

Preemptive detection – Takes place while normal service delivery is 
suspended; checks the system for latent errors and dormant faults  

Error handling – 
Eliminates errors 

from the system 
state 

Rollback – Brings the system back to a saved state that existed prior 
to error occurrence 

Rollforward – State without detected errors is a new state 

Compensation – The erroneous state contains enough redundancy 
to enable error to be masked 

Fault handling – 
Prevents faults 

from being acti-
vated again 

Diagnosis – Identifies and records the cause of errors in terms of 
both location and type 

Isolation – Performs physical or logical exclusion of the fault compo-
nents from further participation in service delivery, i.e. makes the 

fault dormant 

Reconfiguration – Either switches in spare components or reassigns 

tasks among non-failed components 

Reinitialization – Checks, updates, and records the new configura-
tion and updates system tables and records 

As Table 3 shows, there are many strategies for detection and recovery available. A 

system reset can be described as rollback combined with reinitialization, whereby the 

system  is restored to its initial power-up state which in most cases can be assumed to 

be stable and error-free. Likewise, if multiple functional units provide the same service 

and a service failure occurs in one of these units, compensation can be employed by 

using another redundant unit for service. If the failure is not intermittent, isolation may 

also be employed by disabling the failed unit to prevent further errors. Handling of de-

tected internal faults is usually followed by corrective maintenance to remove the fault, 

which is discussed in the next section. 

2.1.2.2 Maintainability and fault removal 

Maintainability is an important means for improving other attributes by enabling fault 

removal during development or during active deployment of service. Fault removal dur-

ing development can generally be considered as validation and verification testing. 
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While testing is arguably the most powerful tool a software developer has for identifying 

and removing faults, it is an exceedingly broad topic that will not be covered here. 

Fault removal during use includes four general types of maintenance: preventative and 

corrective maintenance, which are further generalized as repairs, and adaptive and 

augmentative maintenance, which may be considered as modifications to the system's 

configuration. Preventative maintenance aims to identity and remove faults before they 

manifest as errors in use, while corrective maintenance isolates and removes known 

faults. Adaptive maintenance makes changes to the system to adjust to its environmen-

tal changes, and augmentative maintenance extends the system's functionality. For the 

case at hand, modification maintenance is sparingly employed and configuration op-

tions are too few to warrant further discussion. Also particular to this case is the unim-

portance of the division between corrective and preventative maintenance types, since 

the same procedure is used for both operations, namely a remote firmware update. 

Recall that as part of the system requirement for secure and dependable service deliv-

ery, the device must support a procedure for remote firmware updates in operation. 

The update procedure requires its own use of fault tolerance techniques in order to 

attain dependability. These and other strategies employed during software mainte-

nance updates are discussed in the Design and implementation section. 

2.1.3 Security 

The following section on the primary domain of security discusses cryptographic meth-

ods for ensuring confidentiality, integrity, and authenticity of information passed be-

tween the device and the cloud-based service. As opposed to the previous section on 

dependability, discussion here is focused on applied techniques rather than the con-

ceptual framework above, and is mainly drawn from additional research. 

In the security domain, attributes of confidentiality, integrity, and authenticity of data are 

often attained through the use of cryptography, including techniques of encryption, 

hashing, and message authentication codes (MACs) or digital signatures [9]. It is also 

often the case that two or more of these techniques are combined to achieve one or 

more attribute. The discussion that follows begins with a review of these techniques 

and ends with an overview of currently commonplace internet standards and protocols 

implementing the techniques covered. 
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2.1.3.1 Confidentiality 

Encryption algorithms are used to convert plaintext messages into ciphertext and vice 

versa to ensure confidentiality during storage and transport. They can generally be 

separated into two types: asymmetric and symmetric. Asymmetric algorithms use dif-

ferent keys for processes of encryption and decryption, while symmetric algorithms use 

the same key. Asymmetric cryptography is typically employed using a combination of 

public and private keys. The terms public and private here refer directly to the need for 

confidentiality of the keys themselves—public keys may be distributed without regard 

for confidentiality, while private keys must be kept secret in order to maintain their use. 

An important limitation to asymmetric encryption algorithms is that in practice only 

"one-way" encryption is supported. Assuming only one party holds the private key of a 

public-private key pair, anyone with the public key may encrypt their messages but the 

private key holder is the only one able to decrypt them. Where confidentiality or authen-

ticity is required for messages originating from and sent to all parties, multiple asym-

metric key pairs must be generated and their public keys distributed—one for each 

party—or another scheme must be used. Another important limitation especially in the 

context of embedded computing is that procedures of asymmetric encryption and de-

cryption (and sometimes key generation as well) can take orders of magnitude more 

processing cycles and therefore power consumption than their symmetric counterparts 

[10]. This greater resource use of asymmetric algorithms extends also into the amount 

of program memory required by their implementations, as is shown in later discussion 

in the Design and implementation section. 

For these reasons, asymmetric and symmetric algorithms are typically used in tandem 

via a hybrid scheme, whereby slower asymmetric algorithms are used only to ex-

change (and sometimes generate) symmetric keys, which in turn are used to achieve 

high-throughput, low-overhead encryption and decryption of following data. The ex-

change of symmetric keys typically uses one of two basic methods: asymmetric en-

cryption or Diffie-Hellman (DH) key exchange. In the first method, one party uses a 

second party's public key to encrypt a pre-generated symmetric key and sends it to the 

second party, who then uses their private key to decrypt it. In the second method, two 

parties use their own and the others' public keys to create a shared secret, which in 

turn is used to create a shared symmetric key. In this case, the symmetric key is never 
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sent over any medium. Both methods are supported for key exchange in the common-

place Transport Layer Security (TLS) internet protocol [11] [12] [13] used in HTTPS. 

2.1.3.2 Integrity and authenticity 

Encryption alone may ensure confidentiality, but additional methods are needed to en-

sure integrity in general and authenticity in particular. Integrity of data can be ensured 

by applying a cryptographic hash function to the data to create a compressed digest. 

Assuming the hash function is sufficiently resistant to collision and preimage attacks, 

the digest serves as a unique imprint of the original data that can be sent to the receiv-

er via a secure channel and independently verified by the receiver to confirm that the 

full-length data has not been altered. [14] [9] 

Authenticity builds upon integrity by ensuring the identity of a message's origin. Without 

this authentication of identity, a malicious party could perform a "man-in-the-middle" 

(MITM) attack by posing as a sender's intended destination. In practical terms, authen-

ticity is often realized by combining a hash function with a private key, whereby only a 

party in possession of the key could produce its output. This keyed hash function en-

sures integrity via hashing and identity via possession of the private key. While their 

implementations differ, the basic concept of combining a hash with a private key for 

authentication purposes is used both by symmetric cryptography in the form of MACs 

and asymmetric cryptography in the form of digital signatures. MACs can also be com-

bined with (typically symmetric) encryption to perform authenticated encryption (AE), 

which provides confidentiality, integrity, and authenticity, and is supported by TLS 1.2 

[11]. 

2.1.3.3 Trust 

As with encryption, asymmetric authentication methods are "one-way," since the holder 

of the private key is the only party capable of signing messages. As such, MACs are 

generally used to ensure authenticity of communications between two trusted parties, 

while digital signatures are used to help establish that trust by authenticating the public 

keys distributed during the hybrid key exchange process described above. 
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This establishment of trust is standardized as part of the common internet X.509 public 

key infrastructure (PKI) used by TLS and thus HTTPS [11]. X.509 certificates contain 

the public key and identity of a party, and are digitally signed either by the party itself or 

by another entity such as a trusted certificate authority (CA). By verifying this signature, 

authenticity of the certificate's public key and identity can be ensured as long as the 

verifier trusts the signing entity. For a public key user to support PKI, it must be initial-

ized with one or more "root" certificates containing the assured public key and identity 

of a CA. Trust in the CA allows the client to trust its own self-signed certificates, certifi-

cates of third parties signed by the CA, and further certificates signed by these third 

parties if the CA had deemed them trustworthy. This certification path enables the cli-

ent to establish authenticity of the public key and identity of any end-entity that is trust-

ed by a CA. [15] [16] 

While TLS and PKI are internet standards and nearly ubiquitously deployed, both pos-

sess a number of significant vulnerabilities. Notably, use of TLS 1.0 is currently not 

recommended due to the proven impact of attacks and increasing availability of ex-

ploits. [17] [18] [19] 

2.2 Mobility detection and classification 

In this section, the selected feature of mobility detection and classification is defined 

and discussed. Multiple methods for movement detection are identified and analysed 

according to risk and cost in order to distinguish the optimal set of solutions for the 

smart parking device. 

2.2.1 Mobility states 

Mobility detection and classification are used to: 1) automatically stop a parking event 

when the device's vehicle has driven away during an ongoing parking event in payment 

mode, 2) automatically turn off the device's display to conserve power when the user's 

vehicle has driven away in disc mode, and 3) automatically re-activate the device's 

display and restart the arrival time when the user's vehicle has parked in disc mode. It 

follows from these intentions that the device's method for detecting mobility should be 

able to classify between two mobility states: movement  and rest. 
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Using the rest state as a proxy for parking may seem naïve on its face, since a vehicle 

may be stationary while driving, for example when it is waiting at an intersection or 

stopped in traffic. However, in the case of the device's application, the only penalty for 

classifying a vehicle as stationary when it is actually driving is a temporary increase in 

power consumption due to activating the display in disc mode. This impact can be safe-

ly ignored as it is quite insignificant compared to the consequences of other types of 

classification errors. Such consequences are discussed further below as a part of risk 

analysis. 

Since the classification scheme required is binary, it follows that if the user's vehicle is 

not moving it must be at rest and vice versa. For the purposes of this application, it can 

also be assumed that any movement of the device is due to a movement of the vehicle 

it is in (see the Design and implementation section below for further details on this as-

sumption). Therefore, the method used for mobility detection and classification needs 

only to be able to reliably sense movement of the device to be able to distinguish be-

tween movement and rest. A selection of technologies and methods for achieving this 

goal is reviewed below. 

2.2.2 Movement detection 

Among the most common types of sensors used for detecting movement in consumer 

applications are inertial sensors, specifically accelerometers which measure transla-

tional acceleration, and gyroscopes which measure angular orientation. These sensor 

types may be combined in the form of an inertial measurement unit (IMU) to help ac-

count for errors experienced when using a single sensor type. Another type of sensor 

often included in IMUs is the magnetometer, which acts as a compass to provide head-

ing information. If interference and error are disregarded, any change in acceleration, 

angular orientation, or heading sensed on the device can be attributed to movement. 

Thus, accelerometers, gyroscopes, and magnetometers are all valid candidate meth-

ods for detecting and classifying mobility on the device. 

GSM and later generations (3G/LTE) of cellular networks can also be leveraged to es-

timate mobility. For example, research by Sohn et al. [20] demonstrates that classifica-

tion of a GSM modem user's mobility as stationary, walking, or driving can be inferred 

by comparing network trace data including received signal strength indicator (RSSI) 

values from multiple cell towers in a time series. As an alternative method to traditional 
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sensor-based approaches, using cellular network trace data is an enticing option as it 

would require no additional hardware since a 3G modem is already included on the 

device for internet connectivity. 

2.2.3 Risk and cost analysis 

2.2.3.1 Risk analysis 

Since multiple methods have been identified as potential solutions for detecting and 

classifying mobility, further comparison is needed to identify which solutions are optimal 

for the smart parking device. A simple qualitative model for risk assessment was used 

to identity risks associated with each method and to evaluate the likelihood and conse-

quences of each risk both separately and collectively [21]. In this case, risk events can 

be categorized as false negatives and false positives when detecting and classifying 

the mobility states of movement and rest. 

Table 4 lists different risk events and their consequences and assigned severity levels. 

Of all possible risk events, a false positive classification of movement when the vehicle 

is actually at rest is by far the most impactful. Firstly, it is the only risk event with a 

meaningful consequence that can occur without the user neglecting their personal re-

sponsibility as outlined in the smart parking system's terms of service. Secondly, this 

risk event could easily result in a penalty being issued to the user which would require 

additional resources from the user as well as the smart parking system's customer ser-

vice department to resolve. Following from this, it is clear that any successful mobility 

detection and classification solution for the device must be highly sensitive to false pos-

itive classifications of movement. 

Table 4.  Risk events and consequences of movement and rest classification errors 

Risk event Consequences Severity 

False negative 

movement 
classification 

Payment mode – Parking event will continue after the 

user has driven away unless it is stopped manually. This 
may result in over-payment by the user. Note: It is clearly 
stated in terms of service that it is user's responsibility to 

stop parking events when they are done parking. 
 
Disc mode – Display will not sleep and consume more 

power than necessary. 

Low 

(2) 
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Risk event Consequences Severity 

False positive 
movement 
classification 

Payment mode – Parking event will end prematurely 
without user interaction. This may result in a parking fine 
to the user and subsequent reconciliation process that is 

expensive for the service provider and highly inconven-
ient for the customer. 
 

Disc mode – Device will reset its arrival time once it 
senses and classifies itself as at rest. 

High 
(4) 

False negative 
rest classifica-
tion 

Payment mode – None 
 
Disc mode – Display will not automatically activate. May 

result in a parking fine for the user. Note: It is clearly stat-
ed in terms of service that it is user's responsibility to 
check that the correct arrival time is displayed before 

leaving the vehicle. 

Low 
(2) 

False positive 

rest classifica-
tion 

Payment mode – None 

 
Disc mode – Display will automatically activate and con-
sume more power than necessary. 

Very low 

(1) 

For the accelerometer and gyroscope sensors, a false positive error in movement clas-

sification may occur if the device experiences a shock or vibration when at rest. De-

pending on the sensitivity of the sensor, this error may be of high probability. The likeli-

hood of this error may be reduced substantially by filtering out low-frequency changes 

in the sensed phenomena and requiring a sustained period of change in sensed phe-

nomena for an event to be classified as movement. 

A magnetometer's ability to easily detect stray magnetic fields like the Earth's can also 

make the sensor susceptible to changes in its local electro-magnetic field. This results 

in a high likelihood of false positive classification of moving while at rest, especially for 

sensors that are highly sensitive to noise and interference. A vehicle's body/engine can 

be one such source of noise, but this can be compensated for with a user-initiated cali-

bration procedure. However, noise introduced by ambient sources like variable current 

power lines or nearby vehicles is highly unpredictable, and since the duration of such 

interference events cannot be assumed to be constrained, efforts to mitigate classifica-

tion errors by filtering out low-frequency changes or requiring a sustained period of 

change are not compelling. [22] 

Typical consumer-grade magnetometers used in positioning applications are based on 

the Hall effect and suffer from a higher noise floor than magnetic field sensors based 

on other technologies [23] [24]. However, within Hall-effect magnetometers as a group, 
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many designs are more resistive to interference than others. Thus, it is helpful to sepa-

rate this group into low-noise and high-noise variants for purposes of analysis. It is im-

portant to note that this noise resistance does come at a cost in terms of price and 

power consumption. These costs are discussed further in later sections. 

Assessment of the likelihood of classification errors using cellular network data relies 

on the work of Sohn et al. The authors' classification method using cellular network 

traces correctly detected periods of rest in 92.5% of ground truth events, with false pos-

itives in 4.6% of cases. Driving events were correctly identified for 81.7% of ground 

truth events, with false positives in 15.7% of cases. [20] 

 

Figure 2.  Risk matrix of selected sensor methods for detecting and classifying mobility  

Figure 2 presents the likelihoods and consequences of each method for detecting and 

classifying mobility. It is clear from this perspective that the high consequence of false 

positive movement classification is the most important determining factor, and the risk 

of using a high-noise magnetometer is deemed to too large for further consideration. 

The risk of false positive movement classification associated is also of some concern 

for all other methods except the high-noise magnetometer, thus use of any of these 
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methods will require careful planning and prevention approaches to reduce the likeli-

hood of this risk event from occurring. 

2.2.3.2 Cost analysis 

Many factors other than risk help determine the optimal method for fulfilling any re-

quirement, and in this case costs related to monetary price and power consumption are 

especially important. To further analyse methods on the basis of these costs, data on 

average prices and average active current draws were taken from available samples at 

various electronics parts distributors available to the Finnish market. 

 

Figure 3.  Average active current of selected methods for detecting and classifying mobility vs. 

target for smart parking device 

Figure 3 presents a comparison of selected methods based on average current draw of 

the method while actively detecting movement or rest. A target average active current 

draw of 1.02 mA was determined based on requirements for battery life, battery capaci-

ty, and current consumption of other device components. As Figure 3 shows, using the 

device's cellular modem or a low-noise magnetometer not designed for low power con-

sumption would require too much current to fulfil the device's requirement of performing 
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for at least a week on a full charge. Thus, these two methods cannot be considered 

further. 

 

Figure 4.  Additional price of selected methods for detecting and classifying mobility as a pro-

portion of total BOM vs. target for smart parking device 

Figure 4 presents a comparison of methods based on their average price as a propor-

tion of the total bill of materials (BOM) of the device. A related target price was deter-

mined based on sourcing and costs of other device components and a separate target 

total BOM for the device. The cost of using a low-noise, low-power magnetometer solu-

tion would be far higher in terms of price than any other solution, as it would raise the 

BOM of the device by 20-25% more than all other methods. As such, the low-noise, 

low-power magnetometer is not considered further. 

2.2.3.3 Outcome 

After careful consideration of multiple methods for detection and binary classification of 

mobility, risk and cost analysis resulted in two suitable solutions: a 3-axis accelerome-

ter and a 3-axis gyroscope. While the accelerometer and the gyroscope are similar in 

terms of risk assessment, the accelerometer clearly outperforms the gyroscope in 
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terms of cost in price and power consumption. Additionally, research in other applica-

tion areas shows that a single accelerometer at least performs similarly to, and often 

outperforms, a single gyroscope when used to detect and classify mobility [25] [26] 

[27]. 

3 Design and implementation 

 

Figure 5.  Block diagram of smart parking device software modules and hardware peripherals 
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Figure 5 shows the logical design and layout of the device's software modules, hard-

ware peripherals, and interfaces. Modules represent both interface implementations 

and MCU peripheral units, and are the highest-level software constituents of the sys-

tem. Within each module are lower-level abstractions termed here as components. A 

component may be an element as rudimentary as a hardware register or as sophisti-

cated as the composite state of a module, and may have its own state machines and 

constituent components. Table 5 lists each software module and describes their basic 

functions and components. Note that the software implementations of some modules 

are complex enough to warrant two levels of abstraction. 

Table 5.  Description of smart parking device software modules 

Module Description 

Battery Analog-to-digital converter (ADC) unit – Controls measurement of battery 

voltage as a proxy for remaining battery charge 

Battery abstraction – Manages state of battery and charging chip 

CRC Cyclical redundancy check (CRC) unit – Supports cryptography 

Crypto Cryptography utility – Handles keys and primitives, wraps and calls crypto-
graphic library functions 

Data Data utility – Handles user and configuration data storage as emulated 
electrically erasable programmable read-only memory (EEPROM) with 

reading, writing, and cycling of flash memory 

Flash Flash memory utility – Reads, writes, and erases program memory 

I2C I2C interface – Connects display and accelerometer peripherals to MCU 

GPIO General-purpose input/output (GPIO) unit – Controls external interrupts 
from all modules and external interfaces; Reads and debounces external 
input 

Input abstraction – Manages state of button input 

Mobility Accelerometer peripheral driver – Controls accelerometer functionality for 
mobility detection and classification 

Mobility abstraction – Manages state of mobility 

Modem 3G modem peripheral driver – Controls low-level connectivity processes 
like power-up, configuration, building commands, and parsing and handling 
responses 

Network communications abstraction – Controls high-level connectivity 
processes like network registration, IP address procurement, and service 

endpoint communication; Manages state of network/internet connectivity  
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Module Description 

Real time Real-time clock (RTC) unit – Controls independent timer with external 
32.768 kHz oscillator for timekeeping and wakeup functions 

Real time abstraction – Performs time conversions and manages state of 
time synchronization 

RNG Random number generator (RNG) unit – Supports cryptography 

System System abstraction – Controls core system functionality such as system 
boot and initialization, clock configuration, stop mode entry and exit, critical 
section entry and exit, system reset, and the main loop; Manages state of 

system 

Timer Timer unit – Controls general purpose timers and their callbacks  

UART UART interface – Connects modem to MCU and delivers serial output to 
external port (serial output active only in development) 

UI OLED display peripheral driver – Controls low-level display processes like 
power-up, configuration, and glyph drawing 

User interface (UI) abstraction – Controls high-level display processes 
based on model-view-controller (MVC) design pattern; Manages state of UI 

Watchdog Independent watchdog timer unit – Controls independent watchdog timer to 

detect and handle system halt failures by resetting the system 

The software design follows an event-driven model using finite state machines to rep-

resent modules and their constituent components. Events are generally interrupts gen-

erated by a module or user interaction whose properties affect the state of one or more 

components or modules. A resulting state change within one module may then cause a 

change in state of another module, and so on. Each software module at its highest lev-

el of abstraction is designed to operate within the same normalized set of finite states, 

although the states of their constituent components (e.g. modem network registration 

state, button press state, mobility classification state, scrolling display state, etc.) are 

not generally applicable to other components. Figure 6 shows the simplified nature of 

each module as a finite state machine. 
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Figure 6.  The normalized finite state machine model applied to all software modules 

The first time a module is activated, it is initialized in the LOAD state, transitions to the 

READY (active) state, and from there it shifts between READY and OFF (inactive, min-

imal power consumption) states. The ERROR state is entered during the fault handling 

process if a failure to recover from a fault results in a failure of the module to provide 

service. Fault tolerance techniques of detection and recovery as they apply to depend-

ability of the system are discussed below. 

3.1 Secure and dependable service delivery 

3.1.1 Dependability 

To ensure dependability of the service, multiple strategies of fault tolerance are em-

ployed. As a complex system with many modules and components, there are numer-

ous possible faults. Since exhaustive coverage of all possible faults in the system is 

impractical, efforts of detection and recovery of operational faults are focused on par-

ticular components and processes based on the likelihood and consequence of their 

faults and failures. 
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The system's approach to error detection is to make a best effort to check all inputs 

and outputs for errors in order to detect and handle them individually before propaga-

tion. All detected errors are logged in the device's user and configuration data space 

and uploaded to the cloud-based service regularly. Logs are also available on the de-

vice display via a special maintenance view in case they cannot be uploaded due to 

service failure. All boots are also logged with certain characteristics in case a system 

reset occurs before its contributing errors can be logged. 

Specific detected errors are handled depending on their context. The following sections 

on internal and external fault tolerance review a selection of operational faults related 

to dependability and detection and recovery methods implemented in order to manage 

them. 

3.1.1.1 Internal fault tolerance 

If a module encounters a fault or error that cannot be handled using programmed 

methods such as module reinitialization, it will typically shift to its error state as part of 

the fault handling process. This is detected as a service failure of the component by the 

system module, which is handled by rollback and reinitialization of the system itself to 

its initial state via system reset. A system reset can be a "soft reset" where no changes 

are made to the system configuration, or a "factory reset" where the base firmware 

image is used in place of an updated image in case the updated image contains a per-

sistent fault. Both reset types may be directly initiated by the user via a hardware but-

ton connected to the MCU's reset pin (a soft reset requires a single button press, while 

a factory reset requires a combination button press and hold). This externally-initiated 

recovery method is highly effective for correcting many kinds of faults and failures that 

the software does not detect or handle. 

One particular internal fault worth mentioning is the system halt. Also called a "hang" or 

"freeze," a system halt is a complete service failure characterized by a constant (i.e. 

unresponsive) external system state. Importantly, a system halt may prevent the sys-

tem from employing typical fault tolerance methods and requires special action for de-

tection and recovery. In this case, error detection and recovery are performed by an 

independent software watchdog timer. When the timer fails to be refreshed by the sys-

tem, it automatically handles the fault by performing a rollback to the system's initial 
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state in the form of a soft reset. Upon reset, the device log is updated to notify that the 

watchdog was activated. 

3.1.1.2 External fault tolerance 

Dependable service delivery relies on multiple external factors and therefore is suscep-

tible to multiple external faults. Communications with the service are especially im-

portant as they contain many potential external faults that can cause service failure, 

including failure to connect to a mobile network operator (MNO), DNS failure, or time 

desynchronization. 

Failure to connect to an MNO may come from a number of causes. Due to 100% 3G 

network coverage by MNOs in Finland [28], faults resulting from lack of geographical 

network coverage should be extremely rare. However, multi-level garages and under-

ground parking lots often create their own "dead zones" due to interference, and even 

the most reliable MNOs may experience unscheduled downtime. Such external faults 

are automatically detected and handled by the modem by reconfiguring and reconnect-

ing itself to the network, or by connecting to a new network when activated in roaming 

mode. Use of a roaming SIM subscription on the device also ensures that any support-

ed network may be used as a redundant link in a cost-effective manner. When the mo-

dem is unable to register to a network or obtain an IP address for contacting the ser-

vice, the error propagates to the device where error detection and recovery are activat-

ed. In such a case the error is assumed to be transient (i.e. service may resume at any 

time) and there is typically no special mitigation process, so the error is reported to the 

user and the modem module is rolled back to its initial ready state or rolled forward to 

its off state. 

Since the smart parking service uses dynamically allocated IP addresses for its load 

balancing servers, DNS is required for the device to connect to the service. Therefore, 

an external fault in one or more elements of the DNS infrastructure could result in ser-

vice failure. Such a fault would most likely be limited to a single service provider at 

once, thus a simple redundancy of DNS servers should suffice for recovery. Initial error 

detection is straightforward as the modem responds with a specific error code when 

DNS fails. The system attempts compensation by iterating through a hardcoded list of 

public DNS servers, configuring each one for use and requesting a domain name trans-
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lation. If the error cannot be compensated, the system recovers in the same manner as 

above by reporting the error and rolling the modem module back or forward. 

Service failure may also be caused by time desynchronization due to the inclusion of a 

timestamp-derived nonce in HMAC message authentication between the device and 

service. A timestamp-derived nonce was chosen since (epoch) timestamps both en-

sure against replay attacks and can never be repeated, and because the device has no 

other reliable way to provide or enforce uniqueness of a nonce. However, this feature 

of authenticity could affect availability of the service: if the device is unable to keep its 

RTC synchronized to the service's time within the required deviation period, the service 

will reject its messages and vice versa. 

 

Figure 7.  RTC drift error detection and compensation 
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Time desynchronization is a special case as its root cause is an internal fault of the 

device's RTC. As the RTC's oscillator drifts due to environmental factors, the device's 

time becomes out of sync with the service's time. RTC drift on the device was found to 

be fairly high, measuring an average of 333 PPM at room temperature, or about 1 sec-

ond every 50 minutes. 

RTC drift is handled systematically by first attempting compensation using two diverse-

ly redundant resources: the mobile network and the network time protocol (NTP). Fig-

ure 7 illustrates the procedure. First, the device requests the current network time from 

its MNO upon registration. While many MNOs support this feature, the service is not 

mandatory or guaranteed. If network registration succeeds but network time synchroni-

zation fails, the error is handled by attempting compensation again using the NTP ser-

vice. This requires not only registration on a mobile network, but also internet connec-

tivity and an IP address assignment. If this service fails at any stage, the final compen-

sation method is to simply correct the RTC's time for drift with the tested offset of 1 

second for every 50 minutes since the RTC was last synchronized. This recovery 

method is automatically employed if the RTC has not been synchronized for a certain 

period of time, which is checked for regularly during a generic alarm handling process. 

3.1.1.3 Fault removal and remote firmware updates 

The maintainability of the system is derived from its ability to remotely install firmware 

updates to enhance the service and remove faults. However, this ability brings with it 

many functions that include potential faults of high consequence, such as erasing ap-

plication program memory, and setting stack memory and interrupt vectors in opera-

tion. Therefore, the design and implementation of the firmware update process must be 

highly dependable in order to ensure against faults and service failures. 

As shown in Figure 8, the device memory is separated into two sections: one that is 

always write protected, and one that is re-writable. To ensure system resilience and 

minimize the potential of unrecoverable service failure, a bootloader as well as all func-

tionality required to update the firmware should always be available and write-protected 

on the device. In this particular case, such functionality includes the ability to register to 

an MNO, achieve internet connectivity, connect to cloud-based services, and download 

updates over the air. The resulting amount of program memory needed for this func-
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tionality was seen as large enough to warrant preserving a fully-functional application 

image for this purpose. 

 

Figure 8.  Device memory map 

Thus, the first partition in memory includes not only bootloader functionality, but also a 

fully-functional "base" application image. Although the bootloader and application are 
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logically separated, the combined memory space is treated as a single block that is 

always write-protected and never erased. Having two additional application partitions 

for updates enables the device to upgrade the firmware from a non-base application 

version as well as rollback to a non-base application version (if available). This allows 

for a smooth transition between upgrades and minimizes the likelihood of rollbacks to 

the base image, which may be several versions behind the most recent upgrade im-

age. 

An obvious drawback to having three partitions for application data is that their size is 

more limited compared to using a typical dual-partition implementation. To conserve 

available space, a dedicated read-only shared partition is used to store constant pro-

gram memory accessible to all applications. This conserves 30 kB of program memory, 

which accounts for a reduction of each application partition size by about 29%. The 

shared partition mostly contains string literals for the UI in 3 languages (Finnish, Swe-

dish, and English), UI font and animation glyphs, and shared library functions which 

can be used for future updates with no changes. 

The highest-address partition in the device memory holds user and configuration data 

as emulated EEPROM. Since the smallest erasable unit of flash memory on the MCU 

is a 2048 kB page, the partition is split into two single-page spaces which are swapped 

in order to safely copy memory before overwriting, as opposed to copying to RAM 

which would be lost in the event of a power failure. 

The update procedure also employs its own fault tolerance techniques in order to en-

sure dependability. When the firmware update image is downloaded from the service 

and staged on the modem, its size is checked for sanity and the inactive application 

memory block is erased. The image is then transferred to the MCU in chunks and each 

one is written to the inactive application memory block and verified. Once the entire 

image has been written to the device, its checksum is calculated and compared with an 

independently generated checksum sent by the service. Once the written image's 

checksum is validated, the system's configuration data is updated to set the new imag-

es partition as active and the system is reset. 

Upon reset, the bootloader partially initializes the system and performs a number of  

checks. First, a generic boot counter which persists across resets and power loss is 

incremented to record the boot. Once the system has completed all checks and before 



  

31 

  

jumping to an application image, the generic boot counter is reset. If this counter pass-

es a certain limit it is diagnosed as a persistent fault, a factory reset is performed, and 

the system and its configuration data are rolled back to using the base application im-

age and configuration. 

Assuming the generic boot counter check is passed, the bootloader next logs the 

cause of the boot, enables the user interface buttons, and checks if an interface button 

is actively pressed. As mentioned previously, if the user presses the dedicated reset 

button in combination with an interface button for a duration, the system will perform a 

factory reset. If no interface button press is registered or the button is not held down 

long enough, the bootloader continues by retrieving the active image configuration. 

At this point, a second boot counter is incremented to record the boot, this time specify-

ing the image being booted. Once the bootloader has jumped to the active application 

image and the system has completed all preliminary checks, this counter is reset by the 

application. If this counter passes a certain limit, it is diagnosed within the bootloader 

as a persistent fault specific to the active image, and instead of performing a factory 

reset, the system will void the image and rollback to the previous active image. 

Finally, any modules initialized during the boot are de-initialized, the stack pointer and 

interrupt vector table are set to the active partition's memory space, and the bootloader 

jumps to the new application. 

3.1.2 Security 

In the Background section, multiple techniques for attaining confidentiality, integrity, 

and authenticity were introduced, including the ubiquitous TLS and X.509 public key 

infrastructure internet standards. This section identifies important limitations on the 

device—namely that it cannot fully support PKI or a secure version of TLS—and fol-

lows the ad hoc design process of a supplementary embedded cryptosystem used to 

ensure security of communications between the device and the cloud-based service. 
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3.1.2.1 Limitations 

As discussed in the Background section, HTTPS using TLS 1.1 and above can provide 

confidentiality and authentication of communications between a client and server when 

properly used. This solution is also conducive to availability as an information security 

goal since it is widely used and supported, and unlikely to introduce complexities to the 

device software's implementation that might lead to a loss of service. 

While HTTPS would clearly be an optimal solution, unfortunately the modem chosen 

for the device—the SIMCom SIM808C—does not allow for its proper use. The modem 

officially supports TLS up to version 1.0, which, as discussed previously, suffers inher-

ent vulnerabilities to multiple attack vectors and as such has been abandoned. Fur-

thermore, testing during development found that there is no working method on the 

SIM808C to deny self-signed end-entity server certificates issued for the cloud-based 

service's servers, although the manufacturer's documentation implies that such an op-

tion is available. This essentially avoids the authenticity and trust provided by PKI and 

leaves HTTPS on the device vulnerable to MITM attacks from anyone with a self-

signed certificate claiming to be the cloud-based service. Thus, HTTPS on the device 

cannot be relied upon for confidentiality or authentication. [29] 

As a result of the aforementioned limitations, additional cryptographic functionality was 

required on the device to ensure confidentiality of messages containing sensitive in-

formation and to guarantee authenticity of all messages between the device and the 

cloud-based service to prevent fraud. 

3.1.2.2 Cryptography implementation 

Multiple third-party libraries were considered to provide a trusted cryptographic imple-

mentation for the device. Although full TLS protocol support was a valued goal, known 

available options such as mbedTLS (formerly PolarSSL), wolfSSL, and axTLS required 

more program memory than was available. The STM32 cryptography library from 

STMicroelectronics was chosen due to its memory footprint, availability, specified de-

sign and support for the device's MCU, and certification status of many of its algorithms 

with the US Cryptographic Algorithm Validation Program. The compiled library is opti-

mized for a minimal program memory footprint, and eventually required some 16 kB of 



  

33 

  

space. All other evaluated options required at least 30 kB of program memory even if 

they were built with minimal functional support. [30] [31] [32] [33] [34] 

3.1.2.3 Ad hoc design of an embedded cryptosystem 

While multiple cryptographic methods may be used for authentication, all require a se-

cret or private key. Furthermore, this key must be unique to each device so that if one 

key is compromised, the others may continue to be used. Also, the device must have 

the capability to generate and exchange new keys with the cloud-based service in or-

der to maintain availability if its original is compromised or lost by the service. 

A typical hybrid scheme of asymmetric cryptography for symmetric key exchange and 

symmetric cryptography for authentication and encryption of later messages was cho-

sen to reduce bandwidth and power consumption. First, asymmetric cryptography 

methods were examined. Although the device cryptographic library supports both 

Rivest-Shamir-Adleman (RSA) asymmetric encryption and elliptic curve (EC) cryptog-

raphy DH (ECDH) key exchange, ECDH was not considered due to the engineering 

team's lack of knowledge regarding EC cryptography in general and specific uncertain-

ty regarding if and how the service's web applications might support ECDH. The con-

sequences of this omission are discussed further in the Results and analysis section.  

RSA (2048-bit key size, PKCS #1 v1.5) was thus chosen as the asymmetric cryptog-

raphy method supported on the device. The device cryptography library supports RSA 

public-key encryption, private-key decryption, and digital signature generation and vali-

dation, but does not support public-private key pair generation. Besides encrypting the 

device key for key exchange, the service's public key can also be used by the device to 

verify the authenticity of messages originating from the service that are digitally signed 

with the service's private key. This is important if, for example, the device's symmetric 

key is lost by the service, as it allows a request to the device for a new device key to 

still be authenticated. The device's on-board random number generator (RNG) periph-

eral is used to create random number sequences for padding in RSA encryption and 

for the creation of random symmetric keys.  

To summarize thus far, the device must support: 

1. Generation of a private symmetric key unique to the device 
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2. A method of ensuring authenticity for messages sent from the device and 
the cloud-based service using a device-bound symmetric key 

3. Asymmetric encryption of messages containing sensitive information us-
ing the service's public key 

4. Digital signature verification of certain messages from the service using 
the service's public key 

5. Re-generation and distribution of a new device key upon an authenticated 
request from the service 

A related requirement not included above is that the device must be able to send its 

initial symmetric key to the cloud-based service in an authenticated and confidential 

manner to prevent exposure. While public-key encryption ensures confidentiality for the 

initial key exchange, it does not ensure authenticity. Instead, this requirement is satis-

fied by a preliminary key distribution procedure managed during the manufacturing and 

testing stage of the device production process. Furthermore, confidentiality of messag-

es from the service to the device is not presently a baseline requirement, since no sen-

sitive information needs to be sent in this direction. However, an optimal solution satis-

fying the above requirements would also include this functionality in order to support 

expansion of the device and service's functionality. 

Thus far, solutions for all requirements for security of service delivery have been dis-

cussed except the authentication method for messages to and from the device using 

the device key. Both MAC and AE solutions were considered, with AE initially preferred 

due to its support for encryption of messages originating from both the device and the 

cloud-based service. Specific methods of MAC and AE were evaluated based on their 

program memory footprint [35] compared to a target value representing the maximum 

amount of memory available for the algorithm and its support functions. The results of 

this analysis are shown in Figure 9. 
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Figure 9.  Program memory footprints of selected cryptographic methods vs. target for authen-

tication of messages from smart parking device and service 

As Figure 9 shows, HMAC is the only viable authentication method when taking pro-

gram memory footprint into account. Two suitably-sized HMAC hash variants are avail-

able using SHA-1 and SHA-256. Although HMAC does not require a collision-resistant 

hash function to operate effectively [36], SHA-256 is still recommended for new de-

signs and is the best choice here given that its memory footprint differs from SHA-1 by 

only 100 bytes. 

While the chosen methods for ensuring confidentiality and authenticity fulfil the device's 

baseline requirements, there are some important limitations to the final design. First, 

while asymmetric encryption is supported for messages originating from the device, the 

output size of these messages is fixed (in this case to 256 bytes) regardless of input 

size. Due to this overhead, messages not containing sensitive information do not un-

dergo additional encryption. As a compromise, HTTPS on the modem is still used "as 

is" for all messages despite its known vulnerabilities, as it is a simple and low-cost way 
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0

1000

2000

3000

4000

5000

6000

7000

B
y
te

s 

Footprint Target

MACs Authenticated encryption 



  

36 

  

offer encryption, and since the available amount of program memory prevents inclusion 

of an additional encryption method, the secrecy of messages originating from the 

cloud-based service cannot be guaranteed in the event of a MITM attack. While confi-

dentiality of these messages is presently deemed unnecessary, this limitation will affect 

what features the device can support in the future and how they are implemented. 

3.2 Mobility detection and classification 

In the Background section, the challenges of mobility detection and classification for a 

smart parking device were discussed, multiple solutions were evaluated with respect to 

risk and cost, and the conclusion was drawn that an accelerometer would be the opti-

mal solution. This section provides an overview of the accelerometer chosen and some 

details on how it is used by the application to detect and classify mobility of the device. 

3.2.1 Accelerometer and device mobility states 

The LIS2DH12 3-axis MEMS accelerometer was chosen due to factors such as availa-

bility, price, average active current consumption, and the ability to send an interrupt 

signal on a single line when either movement or absence of movement is detected. The 

LIS2DH12 is used in low-power mode with a full scale of ±2 g and a sampling frequen-

cy of 10 Hz, resulting in a nominal average active current draw of 3 µA. To filter out the 

gravitational component of acceleration data, the accelerometer's built-in high-pass 

filter is activated with a 0.2 Hz cutoff frequency for both movement and rest detection. 

[37] 

Since the device was provisioned a single interrupt line between the accelerometer and 

MCU, the device can only detect a single classification state of movement or rest at a 

time. The application was designed to shift the accelerometer's detection mode be-

tween three distinct states: off, movement detection, and rest detection. When the ac-

celerometer is in the movement detection state, the device's mobility state is at rest. 

Likewise, when the accelerometer is in the rest detection state, the device's mobility 

state is moving. When the accelerometer and its detection mode are in the off state, 

the device's mobility state is unknown and irrelevant. 
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Figure 10.  Simplified flow chart of motion detection and classification within smart parking de-

vice application context 

Figure 10 shows the basic flow of accelerometer motion detection and classification 

within the context of the application. The accelerometer is first activated in the move-

ment detection state when the application's disc mode is activated or a new parking 

event has started in payment mode. If disc mode is activated, the accelerometer will 

cycle between the two active detection states until another mode is entered. If move-

ment detection is used to automatically stop a parking event, the accelerometer and its 

detection mode will enter the off state after the movement interrupt signal is received. 
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3.2.2 Initial settings for mobility classification 

Initial threshold and duration settings for classification of mobility states were estab-

lished based on research and field testing. These settings are not dynamically configu-

rable at runtime, but can easily be changed within the source code and pushed to the 

device in a firmware update. 

In the movement detection state, the lower threshold for movement was set at 32 mil-

ligravities (mg) or 0.314 m/s2 sustained over any axis samples across a duration of 3 

seconds. In other words, if acceleration on the X, Y, or Z axis is above the threshold 

continuously for 3 seconds, the accelerometer will send an interrupt signal to the MCU. 

These values are derived from research on typical acceleration rates of vehicles [38] 

and field testing of ambient noise when a car is parked, and are set to minimize the 

likelihood of false positive movement classifications due to shock or noise. 

In the rest detection state, the upper threshold for rest detection was set at 64 mg or 

0.628 m/s2 sustained over all axis samples across a duration of 20 seconds. In other 

words, if acceleration on the X, Y, and Z axis are continuously below this threshold for 

20 seconds, the accelerometer will send an interrupt signal. These values are derived 

from field testing of ambient noise when a car is driving, and are set to minimize the 

likelihood of false negative rest classifications. 

4 Results and analysis 

Over 2,000 smart parking device units were manufactured, programmed, and tested in 

2017 to fulfil an initial order with additional manufacturing runs to follow according to 

demand. The smart parking system is, as of the time of writing, one of only three avail-

able service providers officially supported by Helsinki city for remote parking payments 

[39], and the only service provider that does not require a smartphone. 

Formal testing on key attributes related to the security and dependability of service 

delivery as well as motion detection and classification was unfortunately not possible 

as part of this project, as key employees working on the project (including the author) 

left the company between device manufacturing and distribution phases. However, 

informal testing related to these topics was done during the development and manufac-

turing phases. The following section includes the results of these tests, as well as a 
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critical analysis of the consequences of decisions made during the design and imple-

mentation process. 

4.1 Secure and dependable service delivery 

4.1.1 Dependability 

Informal testing with a non-representative sample size uncovered no complete service 

failures over a period of 6 months, not including early failures detected in the device 

manufacturing and testing phase. This weakly suggests that the device may exhibit an 

MTBF of at least 6 months. As there was no downtime experienced, actual availability 

is even more difficult to estimate. Regardless of the eventual measured outcomes, 

whether they will be considered satisfactory is impossible to predict as no measureable 

requirements for availability and reliability were given for the project. 

One particularly consequential early failure was experienced during the device manu-

facturing and testing phase in approximately 1 out of 10 devices. A hardware fault was 

identified that could potentially prevent the device from connecting to the cloud-based 

service, effectively blocking delivery of core functionality including remote firmware 

updates. The fault activated seemingly randomly even after days of proper functionali-

ty, and although the system detected the error and attempted fault handling procedures 

including modem rollback and soft reset as well as system factory reset, these methods 

did not lead to recovery. As the original hardware fault could not be removed, it fell to 

the system software to find and implement an effective recovery method that could be 

deployed as a firmware update. 

Fortunately, a bug was found in the system software that, when removed, resulted in 

full system recovery from the hardware fault. (While the original recovery method was 

designed to perform a factory reset of the modem if a soft reset failed, it did not perform 

its task as intended). This fix was included as part of a new firmware version, which 

was used as the base application image for those devices that had not already been 

programmed and assembled. However, some hundreds of devices had already left the 

factory with the dormant fault and no effective method of system recovery. Although the 

fault could be mitigated with an immediate remote firmware update to those devices, it 

could always be reactivated with no recovery method if the firmware was rolled back to 
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the base application image via factory reset. The decision was made to reprogram 

these devices with the new firmware update as their base application image. 

Unfortunately, the affected devices had already been assembled in their casings, which 

are very difficult to remove without damaging the OLED display elements. Thus, a spe-

cial update was remotely deployed to each affected device that, when activated, would 

overwrite its base image and bootloader with the next update. A second update would 

then be made using the new firmware update supporting recovery from the aforemen-

tioned hardware failure. While this method ran the risk of rendering devices unusable 

should an error or power loss occur during specific times in the update procedure, this 

consequence was of low severity since the devices had not yet been distributed to end-

users and could be manually reprogrammed as a last resort. 

Ultimately, the two-part firmware update worked as intended with no failures and all 

devices shipped with the new recovery method available within their base application. 

This episode illustrates the importance of fault tolerance as well as fault removal in a 

dependable system for ensuring availability and reliability of service. Without support 

for firmware updates, many devices would have been susceptible to complete service 

failure and thus unsuitable for distribution to end-users. 

 

Figure 11.  Device battery voltage over time in disc mode (0 hours = full charge) 

3400

3500

3600

3700

3800

3900

4000

4100

4200

0 24 48 72 96 120 144 168 192 216 240 264 288 312

B
a

tt
e

ry
 V

D
D
 [
m

V
] 

Hours 

Display active (1:3 duty cycle) Display inactive



  

41 

  

Finally, informal testing was performed to validate that the device's operational lifetime 

on a single full battery charge would be at least 1 week when used as a parking disc, or 

1 month or longer when not used as a parking disc. As Figure 11 shows, the opera-

tional lifetime of the device when used as a parking disc with a 1:3 active display duty 

cycle (i.e. the display blinks on for 1 second and off for 2 seconds) is around 8 full 

days. After battery voltage is reduced to 3450 mV, the device enters a low-power state 

where the display is completely inactive in order to conserve charge. Since the device's 

step-up converter requires 3400 mV in order to power the modem, this change to a 

low-power state maintains availability of the cloud-based service for some days. Addi-

tional informal testing of the device when not used as a parking disc showed a mini-

mum operational lifetime of over 1 month on a single full battery charge. 

4.1.2 Security 

As discussed previously, a major challenge to ensuring security of communications 

between the device and cloud-based services was introduced due to a failure of the 

modem chosen to fully support a secure version of TLS and to reject self-signed X.509 

certificates. Certainly, the first lesson illustrated here is that any system component 

should be properly tested and validated for key functionalities before being chosen and 

procured in quantity. Unfortunately, during the ad hoc design of a supplementary em-

bedded cryptosystem intended to mitigate this failure, another important oversight was 

made: the omission of ECDH-based algorithms from consideration among methods of 

symmetric key exchange. 

Figure 12 revisits a previous comparison of the program memory footprints of various 

MAC and AE methods, this time including target values based on use of Curve25519 

and ED25519 for symmetric key exchange. It should be noted that ED25519 is actually 

a digital signature and verification scheme, and thus its program memory footprint in-

cludes both ECDH and digital signature and verification functionality. 
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Figure 12.  Program memory footprints of selected cryptographic methods for message authen-

tication vs. targets based on choice of asymmetric cryptography 

Both implementations provide key exchange functionality while requiring far less pro-

gram memory than RSA, thus affording ample room for AE methods as well as MACs. 

Clearly, had these methods been properly understood and included for review during 

the design phase, authenticated encryption and secure key exchange could have been 

provided with less program memory than the chosen design. 

Nevertheless, in light of the preliminary results of informal dependability testing men-

tioned above, it can be inferred that the additional security measures undertaken at 

least did not reduce availability and reliability of service delivery. Regardless of its 

shortcomings, it is reminded here that the ad hoc design for ensuring confidentiality, 

integrity, and authenticity of communications between the device and the cloud-based 

service is implemented in addition to HTTPS with TLS 1.0, and is only provided in order 

to prevent malicious MITM attacks on the service by actors with the ability to spoof the 

cloud-based service or a device. 
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4.2 Mobility detection and classification 

Results from informal field testing of mobility detection and classification with a non-

representative sample size were generally encouraging. Most notably, no false positive 

movement classifications were reported. This is important as a false positive movement 

classification was the only potential risk event with a consequence of high severity. 

While some false negative movement classifications did occur, changes in the configu-

ration of movement detection and classification in order to prevent these events come 

with the risk of increasing the probability of false positive movement classifications, and 

thus are unlikely to be considered for future development unless new circumstances 

arise. Additionally, some false negatives and false positives in rest classifications were 

reported. These failings are not considered critical, but may be more amenable to im-

provement with further testing and configuration changes. 

An oversight similar to the one described above was also made during comparison of 

alternative methods for mobility detection whereby a suitable candidate was omitted 

from review. Although magnetometers based on the Hall effect were included, magne-

toresistive magnetometers were not studied as they were unknown to the engineering 

team at the time. In recent years, this low-noise, low-power technology has become 

more prevalent in mobility detection applications driven in part by reduced component 

costs. Revised risk and cost analyses illustrated in Figures 13, 14, and 15 show that a 

magnetoresistive magnetometer may be a better choice than an accelerometer for bi-

nary mobility classification applications in general, and particularly those that are sensi-

tive to false positives for movement detection. 
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Figure 13.  Revised risk matrix including magnetoresistive magnetometer 

 

Figure 14.  Revised price comparison including magnetoresistive magnetometer 
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Figure 15.  Revised active current comparison including magnetoresistive magnetometer 

Regardless of the potential benefits, changing the component and technology used for 

mobility detection and classification on the smart parking device is infeasible at this 

stage due to the additional resources required to prototype, test, and implement this 

design change in hardware and software. However, future projects may benefit from 

this review if the magnetoresistive magnetometer indeed proves to be a reliable tech-

nology for mobility detection and classification. 

5 Conclusions 
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Providing dependability of service was also shown to be demanding, although in this 

case the challenge was not due to improper design and planning but instead caused by 

an unforeseen transient fault that only affected certain devices. Here, investment in the 

system's maintainability proved to be essential to avoiding a very costly failure. 

Fulfilling the requirements of mobility detection and classification was perhaps a more 

straightforward case where careful and thorough analysis of potential solutions identi-

fied a clearly optimal choice that, when implemented, worked quite effectively. Even 

though this analysis was not as comprehensive as it could have been, the ultimate re-

sult is still perfectly satisfactory, achieving the required functionality while meeting con-

straints of power consumption, price, and risk acceptability. 

Yet, risk and cost analysis alone are not enough to determine if an optimal choice will 

actually result in a solution that satisfies project requirements. Thorough test implemen-

tations and prototyping of any proposed choice are also necessary to uncover discrep-

ancies between assumptions of how a solution is supposed to work and how it actually 

operates in practice. 

As with all applied software engineering projects, design and implementation of an em-

bedded system requires careful balancing of many requirements and restrictions. In 

this case, program memory, price, and power consumption were all deciding factors in 

many design decisions. Overprovisioning of low-cost, high-value resources such as 

program memory may result in the ability to choose more optimal solutions for satisfy-

ing project requirements while remaining within other constraints imposed by the sys-

tem in use. 

Clearly, the maintainability of a system is a key attribute that should be ensured and 

protected as a high priority. Desirable attributes such as confidentiality, integrity, au-

thenticity, availability, and reliability all contribute to a system's ability to provide service 

securely and dependably. However, as this case shows, maintainability is singularly 

vital to ensuring that these attributes are preserved in the face of latent faults and fail-

ures. 
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