

Sakari Ruotsalainen

Microsoft OS and Office patching proce-
dure in an enterprise environment

Bachelor’s Thesis
Information Technology

May 2018

Tekijä/Tekijät

Tutkinto

Aika

Sakari Ruotsalainen Insinööri (AMK) Maaliskuu 2018
Opinnäytetyön nimi

Microsoftin käyttöjärjestelmä ja Office päivitysprosessi enter-
prise ympäristössä.

58 sivua
10 liitesivua

Toimeksiantaja

Salainen
Ohjaaja

Martti Kettunen
Tiivistelmä

Microsoft käyttöjärjestelmien ja Office tuotteiden päivitysten hallinta loppukäyttäjien laittei-
den osalta on tärkeä osa modernia kyberturvallisuutta yritysympäristössä. Laitteiden pitämi-
nen ajan tasalla on tärkeää, mutta altistaa niiden järjestelmät ja sovellukset uusien päivitys-
ten aiheuttamille ongelmille. Riskien vähentämiseksi on mahdollista luoda testiympäristöjä,
joissa päivitykset testataan ennen niiden asentamista tuotantoon. Testiympäristö on toi-
miva ratkaisu päivitysten testaamiseen, mutta ei monessa tapauksessa tuota erillistä pa-
lautetta loppukäyttäjiltä. Palautteen puute voi aiheuttaa ongelmien pääsyn seulan läpi, joka
on tapahtunut useaan otteeseen uusien Microsoft päivitysten kanssa.

Tämä opinnäytetyö keskittyy päivitysprosessin kuvaamiseen Microsoft System Center Con-
figuration Managerin kanssa ja sen päätavoitteena on luoda prosessi, jossa loppukäyttäjä
tuodaan mukaan päivitysten testausprosessiin. Ympäristönä on suuri, kansainvälinen tuo-
tantotekniikkaa kehittävä ja valmistava yritys. Prosessin luontiin sisältyy lomakkeiden luo-
minen, joilla loppukäyttäjät voivat liittyä mukaan ja raportoida takaisin sekä applikaatio,
jonka avulla järjestelmänylläpitäjät voivat hallinnoida prosessia.

Lopputuloksena saavutettiin toimiva prosessi, jolla loppukäyttäjät voidaan tuoda mukaan
päivitysten testausprosessiin. Se mahdollistaa loppukäyttäjien liittymisen, raportoinnin sekä
prosessin hallinnoinnin. Prosessi on mahdollista ottaa käyttöön monissa eri ympäristöissä
ja auttaa vähentämään päivitysprosessin aiheuttamia ongelmia merkittävästi. Yrityksen
osalta suosituksena on prosessin käyttöönottaminen hieman muunneltuna versiona, joka
käyttää työkaluja, jotka eivät olleet saatavilla tähän opinnäytetyöhön.

Asiasanat

päivitykset, testaaminen, loppukäyttäjien integraatio, prosessin luominen, Microsoft SCCM,
PowerShell, InfoPath

Author (authors)

Degree

Time

Sakari Ruotsalainen

Bachelor of Enginee-
ring

March 2018

Thesis Title

Microsoft OS and Office patching procedure in an enterprise en-
vironment.

58 pages
10 pages of appendices

Commissioned by

Classified
Supervisor

Martti Kettunen
Abstract

Managing Microsoft operating system and Office updates for end user clients is an im-
portant part of modern cybersecurity in an enterprise environment. Keeping client systems
updated is extremely important, but this exposes them and their applications to issues that
the new updates themselves may cause. In order to reduce this risk, testing environments
can be implemented, and the updates are tested there before deployment into production.
While this system works on its own, it usually does not provide feedback from the end us-
ers. This can cause issues to slip through detection as has happened on many occasions
with new Microsoft updates.

This thesis is focused on the updates process using Microsoft System Center Configuration
Manager, with the main objective being the creation of a process to integrate end users to
the testing of new updates. The environment is a large, international industrial engineering
and manufacturing company. Ideally, the user base would cover the entire array of applica-
tions in use and as such would maximize the probability to expose any issues with the up-
dates before they are deployed onto the actual production environment. The creation of the
process for user reporting includes creating a form for users to join the testing group, form
for the users to report back information each month new updates are released and con-
structing an application for administrators to manage the process.

As an outcome of this thesis study, a working process to include end users in the testing of
new updates was constructed. It enables the users to join the group and report back any
issues, and the administrators to view the data created by the users and to manage the
process. The process can be implemented in its current form in most environments and
should yield results that significantly mitigate the problems caused by the updating process.
The recommendation for the company is to implement an altered version of this process
using different tools that were unavailable for this thesis.

Keywords

updates, testing, end user integration, process creation, Microsoft SCCM, PowerShell, Info-
Path

CONTENTS

TERMS AND ABBREVIATIONS .. 6

1 INTRODUCTION .. 8

1.1 Research problems and the scope and objectives of the thesis 8

1.2 The importance of updating systems .. 9

1.3 Including the end user in the update testing process .. 10

2 SYSTEM CENTER CONFIGURATION MANAGER ... 11

3 OPERATING SYSTEM AND OFFICE UPDATES IN SCCM 13

3.1 Prerequisites for software updates ... 13

3.1.1 Internal SCCM dependencies ... 13

3.1.2 Software dependencies .. 14

3.2 Configuration Manager Software Update Point .. 14

3.3 Deploying updates .. 17

3.3.1 Manual Update Deployment ... 20

3.3.2 Automatic Deployment Rules .. 22

3.4 Operating system and Office updates ... 23

3.5 Office 365 updates .. 24

3.5.1 Prerequisites for Office 365 ProPlus updates with Configuration Manager..... 24

3.5.2 Enable Office 365 updates in ConfigMgr .. 24

3.5.3 Office 365 Update Channels ... 28

3.6 Removing Updates ... 30

4 INTEGRATING THE END USER TO THE UPDATE PROCESS 34

4.1 InfoPath .. 36

4.2 User Join Form ... 37

4.3 User Report Form ... 41

4.4 Admin Application ... 44

4.4.1 Application User Interface ... 44

4.4.2 The Code Behind .. 46

4.4.3 Processing script .. 48

4.4.4 Functions for the Application Controls .. 49

5 FURTHER DEVELOPMENT .. 53

6 CONCLUSIONS ... 54

REFERENCES .. 56

6

APPENDICES

Appendix 1. Update Process Diagram with user integration.

Appendix 2. PowerShell script used to control AD Group membership.

Appendix 3. Application PowerShell code.

TERMS AND ABBREVIATIONS

Active Directory – Microsoft directory service for Windows Domain networks.

IIS – Internet Information Services, Microsoft developed web server for Win-

dows operating systems.

InfoPath – Microsoft software used to design forms with structured data.

PowerShell – A task automation and management framework, with a com-

mand shell and a scripting language.

Office 365 - A subscription based service for Microsoft Office products.

SCCM – System Center Configuration Manager is a Microsoft product for as-

set management and configuration of large groups of clients.

SharePoint – Microsoft collaboration platform which integrates with Office

products. Mainly used in document management and as storage.

Software Update Point – or SUP, an SCCM site role for software updates.

Wake-On-Lan – A technology that allows a server to “wake” dormant clients

using specific packets sent over a network.

WSUS – Windows Server Update Services, a Windows server role that han-

dles the delivery of updates to clients.

WUA – Windows Update Agent, an agent program that works with WSUS to

enable automated update delivery to clients.

7

WUSA – Windows Update Standalone Installer, an update package installer

that uses WUA API to install/uninstall operating system update packages.

8

1 INTRODUCTION

1.1 Research problems and the scope and objectives of the thesis

This thesis concerns Microsoft operating system and Office updates and their

effect before deployment to production environments. The end objective is to

create a process with which the updates can be appropriately tested before

deployment with the help of end user feedback. The process created here is

completely new, as only a small group of clients are currently used as a test-

ing environment with no established feedback functionality. The objective is

achieved by studying user reporting and inclusion in different tasks and pro-

cesses, and then applying the needed functionality into the process created in

this thesis. Finally, a proposition of how to implement this process in the most

efficient way will be made. Because the scope of this thesis is somewhat

large, it will be limited to end user devices and not servers.

The thesis is completed as a functional thesis, as I worked on the research

problem alone.

The client company is a global industrial engineering and manufacturing com-

pany that specializes in pumping solutions and services for rotating equip-

ment. It employs about 15500 people and has a turnover of about €3.1 billion.

Any information about company IT infrastructure, computer configurations and

systems has been altered for security purposes.

The idea for this thesis was suggested for me in 2017 when I worked at the

company as a summer intern and asked for possible topics for my thesis. My

instructor in the company with his peers had been concerned about the up-

date deployment process as being insufficient in terms of testing, and this

topic was given to me. This thesis is written in English because the client is an

international company.

There are other bachelor’s theses that are somewhat related to this, as they

were completed for the same company by students from the same university,

Application Request and Approval in Enterprise (2016) by Antti Hartikainen

and Application Deployment in an Enterprise (2016) by Samuli Laamanen.

9

These cover different aspects of SCCM and other processes and as such are

not referenced in this thesis.

The first part of this thesis is focused on the mechanics regarding how Mi-

crosoft updates are delivered to clients in a large enterprise environment, in-

cluding operating system updates and updates for Office products. It will also

cover the underlying infrastructure used in the process and is done for a client

company which will be referred to as the company.

The second part will examine integrating the end user to the updates process

patch testing to gather relevant information on update functionality and possi-

ble issues they may cause. Here, the methods for group maintenance and

user reporting are created. This part is completed only as a Proof of Concept.

1.2 The importance of updating systems

Patching as a process involves remedying discovered vulnerabilities or faults

in a system that has been released on the market. In the scope of this thesis,

the systems are Microsoft operating systems and Office products. However,

the patching process can be applied to any system supported by System Cen-

ter Configuration Manager.

Microsoft provides new update content on the first Tuesday of each month

which is known as “Patch Tuesday”.

The importance of patch management was highlighted in the summer of 2017

when WannaCry and Petya ransomware attacks were made possible by vul-

nerabilities in Windows operating systems. The attacks caused enormous

problems in cases where patching of critical systems was not up to date. The

WannaCry attack alone hit over 300,000 computers worldwide (Chappell,

2017).

This thesis only covers end user clients and their updating, not the server

side, although the process is similar in most ways.

10

1.3 Including the end user in the update testing process

It is extremely important to update systems as soon as possible, after the pub-

lisher releases new updates, especially in the case of security related up-

dates. This can, however, lead to updates being deployed to the production

environment, which can cause unforeseen issues with the software it is in-

tended for, or with other unconnected applications.

In order to avoid this, a testing environment is required. Here, a pre-selected

subsection of the company users would act as the testing environment where

users will receive patches early and report back with any issues using the

method provided, as will be described later in the thesis. Optimally, the num-

ber of devices in the testing group would be 5-10% of all clients. Therefore, if

a company has 15000 devices, a thousand should suffice as a base for testing

the updates. This was the requested number in the company where there are

approximately 15000 devices.

The objective is to have a live number of acceptance from the members of the

updates testing group, if users report about problems, and the number goes

down, under a pre-determined limit, action can be taken as fast as possible.

Reports from the updates testing group should expose any issues with the up-

dates as multiple reports should contain similar problem descriptions. This

process also reduces stress on the ticketing system in use as the update feed-

back exists as a separate process. In many cases, multiple tickets have been

created for an issue caused by a recent update, but it takes time for the tickets

to find the correct group to solve the problem. With the process created in this

thesis, the problems would be immediately visible for the correct department.

11

2 SYSTEM CENTER CONFIGURATION MANAGER

Because this thesis is focused on client updating, this section will cover SCCM

basics and describe the underlying infrastructure that enables the updating

process.

System Center Configuration Manager or ConfigMgr is Microsoft’s solution for

the administration of large number of client devices, including user devices,

servers and mobile devices. It is a part of Microsoft’s System Center product

family. Previously named Systems Management Server (SMS), ConfigMgr is

optimized for Windows environments but is very capable of managing for ex-

ample Mac or Linux devices. The most recent version of SCCM is the System

Center Configuration Manager Current Branch (SCCM CB) version 1711.

SCCM can be used to increase productivity by increasing automation of man-

ual tasks and simplifying the delivery of software to end users through soft-

ware center. SCCM offers a robust asset management of servers, mobile de-

vices and client computers (desktops and laptops). With SCCM, it is easy to

enforce client-side configuration and compliance on managed applications.

(Microsoft, 2016a)

Other Microsoft products can be integrated to run with ConfigMgr such as In-

tune (for mobile device management), WSUS, Certificate services, Exchange,

DNS, Group Policy and Remote desktop (Microsoft, 2016a).

An SCCM environment is based on sites and their roles. There are variations

on how an SCCM environment can be built, depending on the scope and re-

quired need for expansion. The first ConfigMgr site installed determines the

layout of the SCCM hierarchy. The site installed first must be a central admin-

istration site (CAS) or a stand-alone primary site (Microsoft, 2016b). It is possi-

ble to install a new CAS as a parent site to an existing stand-alone primary

site, so it is possible to support a more complex design. The central admin-

istration site is only used for reporting and management. Secondary sites can

be installed under primary sites which can exist as stand-alone primary sites

or under a CAS as regular primary sites. CAS is always the top-level site in a

hierarchy and can only have primary sites as child sites. A primary site can

12

have secondary sites as child sites and can exist as the top-level site when

configured as a stand-alone primary site. For example, a secondary site can

have multiple roles installed such as a distribution point, management point

and software update point, so a client under the secondary site can communi-

cate with a “local” site which then communicates with a parent site (stand-

alone primary or a CAS). This can reduce network traffic as clients under the

secondary site receive their content from a closer source. The more intricate

hierarchy configurations and considerations for different topologies are outside

the scope of this thesis.

ConfigMgr manages devices through a client that is installed on all managed

devices. The client then executes the tasks instructed to it from the ConfigMgr

side, such as software installations and task sequences. Data on clients and

their properties is stored in the ConfigMgr site database which is replicated

across the environment. The client discovery (and other asset discovery) is

achieved through Active Directory system discovery. ConfigMgr is tied to Ac-

tive Directory which gives it access to all specified AD data.

Figure 1: Configuration Manager Hierarchies.

13

3 OPERATING SYSTEM AND OFFICE UPDATES IN SCCM

3.1 Prerequisites for software updates

There are some prerequisites and requirements for implementing software up-

dates in ConfigMgr. Software updates are enabled for clients by default, but

the location of the software update point must be specified for the clients via

Group Policy. These specific Group Policy settings are used by Windows Up-

date Agent or WUA on the clients to connect to the WSUS running on the

SUP. When the software update point in configured for the site, a machine

policy is distributed to the clients that provides them with the software update

point server name and configures the “Specify intranet Microsoft update ser-

vice location” local policy on the clients (Microsoft, 2016c). Also, “Allow signed

content from intranet Microsoft update service location” Group Policy setting

must be enabled before the WUA on the clients scans for software updates

that have been published with System Center Updates Publisher.

Reporting services point site role can display reports on software updates.

While this role is optional, it is recommended that it is installed.

3.1.1 Internal SCCM dependencies

The following list comprises the internal dependencies that must exist in an

SCCM hierarchy in order for the software update process to function correctly.

 Management points. These transmit information between the ConfigMgr

site and the client devices.

 Software update point. This site system role is necessary to deploy up-

dates to clients.

 Distribution points. These store the content of the software updates for the

clients to access them more easily.

14

3.1.2 Software dependencies

The following external software are required for complete functionality of the

ConfigMgr update process.

 IIS (Internet Information Services) must be installed. IIS is a Microsoft web

server. IIS is also required to run management and distribution points. IIS

is required to run software update point, management point and distribu-

tion point roles.

 A WSUS (Windows Server Update Services) instance must be present, ei-

ther a fresh install or an existing one that has been cleaned up in prepara-

tion.

 When installing ConfigMgr, the latest version of WUA (Windows Update

Agent) is downloaded. Then, when the Configuration Manager client is in-

stalled, WUA is upgraded if necessary.

 WSUS administration console must be installed on the ConfigMgr site

server if the SUP is being installed on a remote site system server and no

WSUS installation is present.

3.2 Configuration Manager Software Update Point

The software update point (SUP) is the System Center Configuration Manager

role that is responsible for managing software updates and their deployment

to clients. The component is installed as a site system role via the Configura-

tion Manager console. A software update point role must be configured first on

the top-level site (stand-alone primary or a CAS).

A central administration site and primary sites are required to have the soft-

ware update point role to deploy software updates to clients and to enable

software updates compliance assessment. On secondary sites, the role is op-

tional. (Microsoft, 2017a). The clients on a secondary site can also connect di-

rectly to an active software update point further upstream, such as on a pri-

mary site.

15

SUP installation has the following prerequisites:

 64-bit Operating system

 Server Core not supported.

 After installation, the following cannot be changed:

o Domain name of the domain used in the installation.

o Domain membership of the computer.

o Computer name.

 Windows Server roles and features

o .NET framework 4.5.2

o Default IIS installation.

 If there are multiple SUPs at a site, it is important that they are all run-

ning the same version of WSUS (Microsoft, 2016d).

 KB3095113 must be installed before synchronizing the upgrades clas-

sification, otherwise the feature upgrades for Windows 10 will not dis-

play.

A software update point is required to be installed on the top-level site in the

hierarchy (central administration site/stand-alone primary site). It is also re-

quired on the primary sites to deploy software updates to clients and enable

the software updates compliance assessment as mentioned previously. The

first software update point that is installed is also configured as the synchroni-

zation source.

If a primary site uses multiple SUPs, they should use a shared WSUS data-

base. This can reduce network load when clients switch from one SUP to an-

other because the database remains the same. (Keränen, 2014, 71).

The software updates must be synchronized on the SUP on the top-level site.

In this process, software update metadata is retrieved from either Microsoft

Update or a WSUS server that is not included in the ConfigMgr hierarchy (if,

for example the CAS is not connected to the internet, it will synchronize from

an intranet WSUS server). It is also possible to use WSUSUtil tool to im-

port/export the necessary update metadata for the disconnected SUP. The

SUPs further down in the hierarchy then retrieve the update metadata from

16

the SUP that is defined as their upstream update source. (Microsoft, 2015).

Child sites can only synchronize updates from upstream sources in the Con-

figMgr hierarchy. The synchronization occurs on schedule or when the syn-

chronization process is manually started from the ConfigMgr console (Mi-

crosoft, 2017b).

It is also important to specify Supersedence Rules in the Software Update

Point Component properties. This can be set to immediately expire super-

seded updates, meaning they will not be deployed anymore, or to specify the

number of months one must wait before superseded updates are expired.

Figure 2: Supersedense rules.

17

3.3 Deploying updates

In the ConfigMgr console, updates are managed from the Software Library

workspace. All software updates that are available for products specified in

the SUP installation are shown there.

Figure 3: ConfigMgr Software Library.

In the search field, search criteria must be specified to list the updates that are

needed. There are many fields which can be defined. However, with software

updates the following are the most important:

 Date Released.

 Required. Displays updates that are applicable and required on the cli-

ents.

 Superseded. Specifies whether the update has been superseded by an-

other update.

 Update Classification. Selects desired classifications, most commonly

Critical Update, Security Updates and Update Rollups.

 Deployed. Specifies if the selected updates that are a part of any other

Software Update deployment.

 Product. Selects the products that are being updated, such as Windows 7,

Windows Server 2016 and Office 2013.

18

Figure 4: Criteria for updates

The search shows the specified updates, after which a Software Update

Group (SUG) can be created for the updates in question.

Figure 5: Software Update Group creation.

A name must be selected and a folder must be created for the deployment

package. The name should describe the Software Update Group, such as the

date deployed, the collection of devices it is deployed to (clients, servers) and

the contents of the SUG. Next, the created SUG must be selected and its

content downloaded using the download option. In the download Software

Updates wizard, a new deployment package must be created and named

(preferrably using the same naming convention as in the SUG). One must

select the desired distribution points the content should be deployed to

(normally all/distribution point group that contains all DPs) and set the

distribution priority (determines in which order packages are sent to other

19

sites). Next, deployment package properties must be specified, such as

package source (a network path to where the content is to be located) and the

download location from where updates are to be downloaded (an intranet

location or the Internet). After that, appropriate languages must be selected,

after which the summary of the process can be viewed. On the completion

page, it must be made certain that the content has been downloaded

succesfully, after which the wizard can be closed. A single update deployment

can contain up to a maximum of 1000 software updates (Microsoft, 2016e). As

a note, deployment packages contain the actual updates files and are not

related to deployments in other ways, they simply contain the source files for

distribution to the DPs. Also, updates are not duplicated if they occur in

different packages, they are only referenced from the deployment package

that contains them.

After a Software Update group has been successfully created and content

downloaded, the SUG can be deployed to clients. An update group must be

selected and selecting deploy will open the Deploy Software Updates wizard.

A name, description, SUG (verify it is correct), possible deployment template

and collection must be configured on the general page.

A collection represents a grouping of users or devices (never both) that

update deployments are targeted towards but can be used in many other

ways such as in application deployments, grouping resources, managing

client or power settings and maintenance windows. Collections can be created

in the Assets and Compliance workspace. On either user collections or device

collections, clicking create collection will open the Create Device Collection

wizard. On the general page, collection name, possible comments and a

limiting collection can be configured. The limiting collection defines a collection

from which all members of the collection being created can come from. On the

next page, the membership rules for the collection must be defined. The rules

can be based on:

20

 Direct rules, in which the members are manually defined/excluded.

 Include/Exclude collection(s) rule.

 Query rules, where a WMI query based on WQL (WMI Query

Language) defines include/exclude rules for the membership. These

can be created using the wizard UI or written in WQL.

Figure 6: Example WQL query that returns all Windows 7 machines.

To make queries based on AD properties like Group Membership or

Organizational Unit, ConfigMgr must be collecting information on all of the

desired properties (Jupe, 2015). AD discovery can be configured from

Administration -> Hierarchy Configuration -> Discovery methods.

After the membership rules have been defined, the collection is created

succesfully and can be used to deploy updates.

3.3.1 Manual Update Deployment

Updates are usually deployed some time after Microsoft releases them on

what is called “Patch Tuesday”, the second Tuesday of every month. New

releases are made available to Microsoft update and are gathered into

software update groups. In order to deploy software updates to a collection,

one must select the collection and choose deploy -> software updates. In the

wizard, a deployment name must be input using the same naming convention

as when creating the software update group and the SUG must be specified

for the deployment. Next, the deployment type can be set to ‘required’, so all

clients will see the updates as mandatory as opposed to available which

would show the updates as available in the software center but would not

automatically install them. A detail level of the messages to the user must be

specified and a timeline for when the updates are available and the deadline

for installation must be selected. The deadline behaviour can be set to forced

installation and a forced restart if necessary. It is also possible to suppress

restart behaviour on servers, which is a good option as servers are normally

patched during their own maintenance window. In the choose deployment

21

options, “download software updates distribution point and install” option

should be selected. Fallback options and the need for BranchCache should be

specified, ticking the box will allow clients to share content with each other on

the same subnet. Using BranchCache can heavily reduce network traffic in

locations without its own DP. If clients are offline, they can be permitted to

download update content from Microsoft Update. Next specify the correct

deployment package for the update group and select the the dowload location

for your site, an intranet location or the internet. Last select the languages that

the updates should be available in in your environment. It is also possible to

use Wake-On-Lan setting to start dormant clients to install updates to them,

however this requires that Wake-On-Lan is already configured on the clients

and on the network.

After a deployment is created, an associated software update policy is also

sent to client computers. Content for the software updates is downloaded from

the distribution point to the local cache on the clients, after which the updates

are available for installation. (Microsoft, 2016f). For internet-based clients, the

download location can be set to Microsoft Update as this is a faster way com-

pared to speeds over a standard VPN (Virtual Private Network) connection to

the company intranet. WUA sees the state of the updates and sends infor-

mation on compliance back to its Management Point.

22

3.3.2 Automatic Deployment Rules

Automatic Deployment Rules or ADRs can also be used in ConfigMgr to de-

ploy updates automatically. When rules are created, the software updates that

should be included in the deployment and running frequency must be speci-

fied. It is also important to specify whether the updates are included in a new

SUG or added to an existing one. It is important to note that if an existing SUG

is chosen, all updates in it will be removed and new ones matching the rule

criteria will be added to it. It is not possible to create a SUG manually and then

have an ADR add new updates to it, instead the ADR will always create a new

SUG when the rule first runs (Smpyrakis, 2012). When an ADR runs, software

updates meeting the previously set criteria are added to a SUG and source in-

staller files are downloaded and copied to selected DPs (Rimmerman et al.

2015, 48-49). A target collection or collections must be specified and after the

rule is enabled, the updates contained in the SUG are deployed to clients in

the target collection automatically. If new clients are added to the target collec-

tion, updates are automatically deployed to them. When new updates are

added to the SUG via the ruleset in the ADR, they are also deployed to the cli-

ents in the collection automatically. It must be specified whether the deploy-

ment is enabled when the rule runs. If the deployment is enabled, the updates

are deployed in the manner as described. Otherwise, the SUG is created, and

the software update policy configured, but the updates are not deployed. Of

course, the same deployment characteristics apply to ADRs as other deploy-

ments such as user experience and deadline behavior. Also, the same Wake-

On-Lan settings are required for clients and network if the technology is to be

used.

In the company, ADRs are currently not used in operating system or Office up-

date deployment as the rules add new updates and fixes to deployment pack-

ages, which then grow and become more difficult to distribute to DPs all over

the world. As an exception, the SCEP (System Center Endpoint Protection)

definition updates are deployed using ADRs, as the definitions are updated

frequently and need to be deployed to almost all systems. Also, they are much

smaller in size than application or OS updates so the SUG size for SCEP defi-

nition updates never becomes too large.

23

3.4 Operating system and Office updates

Operating system update categories include:

 Critical Updates: Wide release update for a specific problem addressing a

critical, nonsecurity-related bug.

 Definition Updates: Update to virus or other definition files.

 Feature Packs: New product features that are distributed outside of a

product release and that are normally included in the next full product re-

lease.

 Security Updates: A broadly distributed update for a product-specific se-

curity issue.

 Service Packs: A set of hotfixes concerning an application. These hotfixes

can include: security updates, critical updates, software updates, and oth-

ers.

 Tools: A utility or feature that helps to complete one or more tasks.

 Update Rollups: A cumulative set of hotfixes that are packaged together.

These hotfixes can include security updates, critical updates and others.

These normally address a specific area, like a security or a product com-

ponent.

 Updates: An update to a currently installed application or file.

 Upgrade: Upgrade for Windows 10 features and functionality. Software

update points and sites must run a minimum of WSUS 4.0 with the hotfix

3095113 to get the Upgrade classification.

Office product updates such as hotfixes for Word, Excel and PowerPoint are

included in the product search criteria when the software update groups are

created for the client base. In the company, the Office 2010/2016 updates are

deployed in the same software update groups as the operating system up-

dates, so there are no specific Office update deployments. The clients receive

their OS and Office patches through the same channel. This is a good solu-

tion, as separating the two update categories would needlessly create more

SUGs and therefore more work.

24

3.5 Office 365 updates

Office 365 is a subscription based service for Microsoft Office products, which

is not a set version but a constantly changing one with Microsoft delivering up-

dates and feature upgrades on a steady schedule.

Office 365 patching process in SCCM is separated from the normal security

updates and standard Office updates method. Clients using O365 have an

O365 client installed, which in turn updates and manages the features availa-

ble to the user.

3.5.1 Prerequisites for Office 365 ProPlus updates with Configuration

Manager

Updating and managing O365 with ConfigMgr requires the following features:

 Configuration Manager version 1602 or later to deploy O365 updates

through ConfigMgr

 Working Software Update Point

 Enabled O365 updates in ConfigMgr.

 Supported Office 365 Client.

 Clients enabled to receive O365 updates from ConfigMgr.

3.5.2 Enable Office 365 updates in ConfigMgr

In ConfigMgr software update point properties, the Office 365 client must be

selected from the products list in the SUP component properties, and classifi-

cations must be included such as security and definition updates.

25

Figure 7: SUP Component configuration for O365.

Office 365 Client cannot be directly deployed using WSUS, so ConfigMgr

must be used for the task. The O365 update packages are numbered as for

example 1701 and increment with new releases.

Clients can be enabled to receive O365 patches from SCCM in three ways:

 Group Policy setting:

“Computer Configuration\Policies\Administrative Templates\Microsoft
Office 2016 (Machine)\Updates\Office 365 Client Management = Enable”

 Office Deployment Tool: Xml-configuration file

“HKLM\SOFTWARE\Microsoft\Office\ClickToRun\Configuration\OfficeMgmtC
OM = (REG_SZ) True”

 Modify client registry manually with configuration item, script, task

sequence etc.

“HKLM\SOFTWARE\Microsoft\Office\ClickToRun\Configuration\OfficeMgmtC
OM = (REG_SZ) True”

Then, an update channel must be configured by modifying the following regis-

try key.

 “HKLM\SOFTWARE\Microsoft\Office\ClickToRun\Configuration\CDNBaseUr

l (REG_SZ)”

26

This can be done via Group Policy Preference, Script, Configuration Item or

manually with registry modifications. The CDNBaseURL value specifies the

update channel URL as one of the available channels. An example of a

CDNBaseURL http://officecdn.microsoft.com/pr/7ffbc6bf-bc32-4f92-8982-

f9dd17fd3114. This URL corresponds to the Monthly Channel.

Figure 8: Registry values for Office365 deployment.

Here, the UpdatesEnabled value is set to False as this only affects the way

users see available updates. The updates are still delivered to clients from

ConfigMgr even if this is set to False (Fors, 2017).

27

Office Deployment Tool is used to deploy Office 365 and its features in large

scale and to repackage O365 content. An example of the content of an .xml

configuration file for ODT is presented below.

<Configuration>

<Add OfficeClientEdition=”32″ Channel=”Current” OfficeMgmtCOM=”TRUE

” Version=”16.0.7571.2072″>

<Product ID=”O365ProPlusRetail”>

<Language ID=”en-us”/>

<Language ID=”fi-fi”/>

<ExcludeApp ID=”PowerPoint”/>

<ExcludeApp ID=”OneDrive”/>

<ExcludeApp ID=”Outlook”/>

<ExcludeApp ID=”OneNote”/>

<ExcludeApp ID=”Lync”/>

<ExcludeApp ID=”Groove”/>

<ExcludeApp ID=”Excel”/>

<ExcludeApp ID=”Access”/>

<ExcludeApp ID=”Publisher”/>

</Product>

</Add>

<Updates Enabled=”TRUE” />

<Display Level=”Full” AcceptEULA=”TRUE”/>

</Configuration>

The above configuration file specifies all necessary information mentioned

previously and information that can be modified such as language. It is also

possible to create and deploy either a legacy package or a script application

for clients to install Office 365 applications.

28

3.5.3 Office 365 Update Channels

There are currently three different update channels for O365 updates, Monthly

channel, Semi-Annual channel and Semi-Annual (Targeted) channel.

Monthly Channel (formerly Current Channel) provides users with the newest

features as soon as they are released. This is the default update channel for

Visio Pro for Office 365, Project Online Desktop Client and Office 365 Busi-

ness.

There is no set schedule for new feature releases, but the Monthly Channel

provides them as they are released. The releases might also contain non-se-

curity related updates, such as quality-of-life improvements that affect stability

or performance.

Security updates for this channel are released on Patch Tuesday, the second

Tuesday of every month. If a critical non-security related fix needs to be re-

leased, Microsoft will provide a separate Monthly channel release for this.

Releases for the Monthly Channel are cumulative. The most recent release

contains all features such as security- and non-security updates from previous

Monthly releases.

A Monthly Channel release is only supported until the next Monthly Channel

update is released. New security updates will not be provided for previous

Monthly Channel releases.

Semi-Annual Channel provides users with new features twice a year, in Jan-

uary and July. This is the default channel for Office 365 ProPlus.

The Semi-Annual channel releases are normally provided on the second

Tuesday on January and July. If an organization has many business applica-

tions, office macros or other similar products in use that need to be tested

thoroughly with new features and releases, the Semi-Annual channel makes

this possible. As new features are provided only twice a year, here is more

time for problems to arise and be fixed, in comparison to the Monthly Channel.

Microsoft provides builds of the next release in the four months before the new

Semi-Annual Channel feature release, so that pilot users and compatibility

testers are able to work with the new release. Microsoft (2018a). Additional

29

security updates and critical updates will be added to the Semi-Annual Chan-

nel if needed, after the main releases in January and July.

Semi-Annual Channel (Targeted) provides pilot users and application com-

patibility testers with early opportunity to test the next Semi-Annual channel.

Releases for this channel are made in March and September. While this chan-

nel is intended for testing purposes, it is a fully functional version of Office

365.

New content for the Semi-Annual Channel (Targeted) is only released twice in

a year, March and September. The Semi-Annual Channel (Targeted) will re-

ceive no new content at other times. The included features in the Semi-Annual

Channel (Targeted) are the same features that have already been released in

the Monthly Channel. Microsoft (2018a).

The Semi-Annual Channel (Targeted) acts as a testing channel for enterprises

with strong requirements towards application functionality. Semi-Annual Chan-

nel (Targeted) will also be updated with all the latest security and critical up-

dates as they become available.

If an organization has a large enough testing platform and personnel to moni-

tor the deployment of O365 and other updates, the Monthly channel can also

be utilized for testing purposes. When new updates are made available on Of-

fice CDN, they can be deployed to a test group, which then screens for possi-

ble problems the updates create. If no problems arise, the updates can be de-

ployed into the production environment.

In most cases, it is easier and more reliable to use the Semi-Annual channels,

either for one’s own testing or simply deploying the updates that have been in

use for monthly channel users. Any issues they might cause should have

been resolved and patched at this point.

This must be evaluated on the grounds whether it is desirable to have the

newest updates and thus the most security and possibly compatibility issues

with versions elsewhere.

30

3.6 Removing Updates

There are times when an update causes severe enough issues that it must be

removed from the clients it was deployed to.

In the case of operating system updates, this can be done by using WUSA,

Windows Update Standalone Installer. WUSA uses the WUA (Windows Up-

date Agent) API to install/uninstall update packages.

Here are examples of an install- and an uninstallstring:

Install:

wusa.exe d:\934307\Windows6.0-KB934307-x86.msu

Uninstall:

wusa.exe /kb:updateID /uninstall /quiet /norestart

The commands can be delivered to clients via a ConfigMgr task sequence set

to run a command line. This can execute the uninstallation silently with no

user interaction specified with the switches in the example. It is important to

note that before the uninstallation is implemented, it must be made sure that

the update in question is not a part of an active deployment. Otherwise the re-

sult is an install/uninstall loop.

The target operating system must be taken into consideration as ConfigMgr is

a 32-bit application and calls a 32-bit version of the WUSA.exe. This will fail

on 64-clients, so a 64-redirection must be specified in the task sequence. The

redirection should be made when needed on a client, but as most task se-

quences in this scope are delivered to a mostly uniform client base, the com-

mand can be set to a constant.

Office updates, however, cannot be uninstalled using WUSA. However, all Of-

fice updates are provided with an uninstall string that can be found in the reg-

istry.

31

 Native applications:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninst

all

 32-bit applications on 64-operating system:

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVe

rsion\Uninstall

Registry keys in question have a complex GUID which is constructed from Of-

fice version and other parameters, and the uninstallation string is contained as

a sub key in the ‘uninstallstring’ value. The GUID can vary from client to client

depending on configuration. The first part of the GUID refers to the Office

product and is based on properties such as version and build. The second

part of the GUID is related to the specific update. Thereby, the same uninstall

string cannot be automatically used in a task sequence on all affected clients.

In order to locate the uninstall string for a certain update on each client, each

sub key in the correct uninstall key location must be examined. This can be

done with PowerShell.

$Patchnumber = 'ExampleKB'
$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey('LocalMa-
chine', $env:COMPUTERNAME)
$software = $reg.OpenSubKey("Software\Wow6432Node\Microsoft\Win-
dows\CurrentVersion\Uninstall").GetSubKeyNames() |
? {$reg.OpenSubKey("Software\Wow6432Node\Microsoft\Windows\Cur-
rentVersion\Uninstall\" + $_).getvalue('DisplayName') -like "*$Patch-
number*"} |
% {$reg.OpenSubKey("Software\Wow6432Node\Microsoft\Windows\Cur-
rentVersion\Uninstall\" + $_).getvalue('UninstallString')}
$reg.close()

The code opens the LocalMachine base key on the client registry and

searches sub keys of ‘Software\Wow6432Node\Microsoft\Windows\Cur-

rentVersion\Uninstall’ for a match to the provided patch number and returns

the uninstallstring value for the ones that match. This is for 32-bit Office prod-

ucts running on 64-bit operating systems.

Example of an uninstallstring:

"C:\Program Files (x86)\Common Files\Microsoft Shared\OFFICE15\Oarp
many.exe" /removereleaseinpatch "{90150000-0011-0000-0000-0000000FF
1CE}" "{53EA601B-E127-4D6B-9093-3B2797A6B773}" "1033" "0"

32

Running the command retrieved from registry on remote clients will require

manual intervention as a popup will be shown during the uninstall. The com-

mand must be converted to a quiet form such as:

msiexec /uninstall /package {90150000-0011-0000-0000-0000000FF1CE
} MSIPATCHREMOVE={53EA601B-E127-4D6B-9093-3B2797A6B773}/qb /noresta
rt /l+ C:\Windows\CCM\Logs\KB3172519_uninstall.txt

Here are the msiexec parameters.

/uninstall [/quiet][/passive][/q{n|b|r|f}]

The /q parameter specifies the User interaction level. In the example, com-

mand /qb means basic UI. The /qn parameter means no UI while the separate

/quiet parameter also means no UI. Using the /passive parameter shows only

a progress bar. Also, the logging specifics and /norestart parameter are

shown.

The uninstallstring retrieved from the registry can be converted to the

msiexec- format using PowerShell:

$Patchnumber = 'ExampleKB'
$uistring = '"C:\Program Files (x86)\Common Files\Microsoft
Shared\OFFICE15\Oarpmany.exe" /removereleaseinpatch
"{90150000-0011-0000-0000-0000000FF1CE}" "{53EA601B-E127-4D6B-9093-
3B2797A6B773}" "1033" "0"'
$GUID1 = $uistring.Split('"')[3]
$GUID2= $uistring.Split('"')[5]
$MsiString = "msiexec.exe /uninstall /package $GUID1 MSIPATCHRE-
MOVE=$GUID2 /qb /norestart /l+ c:\windows\system32\ccm\logs\$Patch-
number" + "_uninstall.txt"

The code splits the uninstallstring with a “, locates the GUIDs and returns a

new uninstall string which also logs the process to a text file in a specified

path.

A script/command such as this can be delivered with a task sequence and run

on individual clients, so the uninstallstring is always obtained from the client

the update is being uninstalled from, ensuring that the correct patch GUID is

used. The patch being removed should also be removed from any active de-

ployments in order to avoid an install/uninstall loop.

In some cases, when the user base is not using a singular version of Office, it

may be necessary to determine which version of Office the client has. This is

33

because Office 365 updates are not removed in the same manner as the pre-

vious versions.

The Office version in use can be determined with a PowerShell script that

looks at the keys in ‘HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office’

and returns the Office version based on the sub keys that are present. The op-

erating system is not relevant when uninstalling Office updates in versions

2013 and 2016 as the updates would be removed either by a script that is de-

ployed to a collection of devices which usually contain only clients with a cer-

tain OS. As mentioned earlier, Office 365 updates must be removed by revert-

ing the deployed version of the O365 client. The Office version in use can also

be obtained using PowerShell.

$reg = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey('LocalMa-
chine', $env:COMPUTERNAME)
$regkey = $reg.OpenSubKey("SOFTWARE\Microsoft\Office").GetSubKey-
Names()
if($regkey -contains '14.0' -and $regkey -notcontains ('15.0' -or
'16.0' -or 'ClickToRun')){$OfficeVersion = 'Office 2010'}
if($regkey -contains '15.0' -and $regkey -notcontains ('16.0' -or
'ClickToRun')){$OfficeVersion = 'Office 2013'}
if($regkey -contains '16.0' -and $regkey -notcontains
'ClickToRun'){$OfficeVersion = 'Office 2016'}
if($regkey -contains 'ClickToRun'){$OfficeVersion = 'Office 365'}
$reg.close()

The code opens the LocalMachine base key on the client registry and then the

subkey for ‘SOFTWARE\Microsoft\Office’ where the presence of the different

Office version subkeys can be used to determine the Office version on the cli-

ent. The $OfficeVersion variable will then contain the Office version of the cli-

ent. It is also easy to run this for a remote client by simply switching the

$env:COMPUTERNAME to the targeted client. In this way, it is possible to as-

certain the versions of Office in use.

34

4 INTEGRATING THE END USER TO THE UPDATE PROCESS

This part of the thesis will focus on creating the functionality to integrate end

users to the update process via an Active Directory group which contains user

devices that will receive Microsoft updates early for testing purposes.

The objective is to gather end user feedback from a pool of test users that will

optimally contain users for all important applications to find any negative im-

pacts the new updates may cause. The procedure is to send all test group

members an email which contains a link to an intranet form used to report

back any issues shortly after new updates have been deployed to the group.

From the received data, it can be determined whether the updates are safe to

deploy to the production environment. The process relies on active feedback

on the part of the end users. The testing group would ideally contain up to

1000 devices/users (from 15000 devices in the company), to maximize the

probability to detect any possible issues with the updates before deploying

them into production.

The end users are allowed to join the group, using a form which adds the user

and their client to a list. Administrators will have the option to add any user

and their device to the group, so people that use important applications are in-

cluded in the update testing.

There were other possible candidates for the software that could have been

used to build the forms/applications, such as K2 Blackpearl. At first, it was in-

tended that the K2 platform would be used to construct the forms and logic for

the process, but the scope of the process kept growing, so it was decided that

it would be best if this part of the thesis would be done as a Proof of Concept

using Microsoft InfoPath and SharePoint as the platform.

In the process, SharePoint lists act as the backend databases from which the

end users are added to the AD Test Group and where the reports from the

end users are sent. The forms are constructed with InfoPath and the manage-

ment application is coded with PowerShell, while Windows Presentation Foun-

dation (WPF) is used for the GUI which is created in Visual Studio. XAML (Ex-

tensible Application Markup Language) allows PowerShell to interact with the

35

GUI objects and run the code. XAML is a part of the WPF, and WPF in turn is

the category of features in .NET Framework 3.5, which enables the visual

presentation of Windows applications and browser-based client applications

(Microsoft, 2018b).

The Active Directory group is managed via the SharePoint list that contains all

the members and their clients. When a member is added to the SharePoint

list, a script running as a scheduled task will read the list and add all clients to

the AD group if they are not already there. Each entry on the SharePoint list

has a property ‘member’ which is set to true when the client/user are added to

the list and set to false when an admin “removes” user from the AD group.

The admin is only setting the user’s ‘member’ property to false, and a script

executes the actual task of removing the client from the AD group and the

SharePoint list.

In this thesis, the user/device connection is made through a SharePoint list

which contains a list of users and their devices. In an actual implementation,

the data would come from ConfigMgr and a method called User Device Affinity

which creates a connection between user and device. In the end, the resulting

functionality is the same.

36

4.1 InfoPath

Microsoft InfoPath is a software application used to design, submit and fill

forms. The forms can contain data from various sources. Data connections

can be made to SharePoint, SQL and Access databases. The forms can then

be used to update, create and delete data. InfoPath can also capture data

from sources such as web services, XML and other forms.

The forms are based on controls, views, rules and bindings. It is possible to

construct very complicated forms using these methods to interact with multiple

different systems simultaneously.

Figure 9: InfoPath Designer.

It is easy to implement InfoPath forms to any SharePoint list as the form that is

presented when clicking the add item can be opened and modified in InfoPath

designer and then published back on the SharePoint site for use.

37

4.2 User Join Form

The form which will be used to join the testing group for Microsoft updates is

based on a SharePoint list “Test Group Members”. The list contains the follow-

ing properties: ‘username’, ‘client’, ‘member’ and ‘manualclient’ for each entry.

The ‘manualclient’ property is defined only if the user enters a device that is

not found in the dropdown menu for personal devices. The properties on this

list are all single lines of text, but the data type can be for various others. The

form contains a data connection to another SharePoint list Clients to present

the users a list of their own clients for ease of use.

Figure 10:Data connection to 'Clients' SharePoint list.

The SharePoint list add-item form can be modified and opened in InfoPath de-

signer from the list in SharePoint, in the top ribbon.

Figure 11: Access SharePoint form in InfoPath.

38

Figure 12: User join form in InfoPath.

The form was created using the controls for the different data columns on the

SharePoint list it is based on. The user control on the form is populated by an

InfoPath function that retrieves the username of the user accessing the form,

so an end user can only add clients assigned to them to the testing group.

Figure 13: User control information.

The device dropdown menu control is populated by data from an external

source, the ‘Clients’ SharePoint list. The data is filtered in such a way that only

items shown on the dropdown menu will be items on the ‘Clients’ list where

the user matches the content of the username control.

39

Figure 14:Clients data filter.

Rules are set in such a way that the ‘Submit’ button will be displayed if the

‘User Agreement’ box is ticked. On the ‘Submit’ button, the form will not be

submitted unless either the client dropdown menu control is not empty and the

manual client control is empty or vice versa. If the conditions are met, clicking

the ‘Submit’ button will submit the form and add an item to the SharePoint list

‘Test Group Members’.

40

Figure 15:Form rules.

Figure 16:The join form as shown to end users.

41

4.3 User Report Form

The user report form is based on a SharePoint list “Report DB” which contains

data for user, client, attachment, description, status and date for each entry.

The attachment column data type allows for files to be attached to the list, so

users can attach a screenshot of a problem situation. The description column

data type is set multiple lines of text, so users can write as much as is needed

for the description of the problem. The date contains the date of the item sub-

mission and will be used later to monitor the status of new updates.

The only external data connection made in this form was to the original ‘Test

Group Members’ list, to retrieve the client name of the user who is submitting

the report.

Figure 17:Data connection to 'Test Group Members'.

42

Figure 18:The user report form in InfoPath.

The report form is divided into two sections. The upper section contains the

username of the user who has opened the form using the same InfoPath func-

tion as in the join form, the client name associated with the username from the

‘Test Group Members’ list and a dropdown menu where the user specifies the

state of the recent updates (On the form: ‘Issues’/’No issues’, on the list:

‘Yes’/’No’, No means no issues). The lower section contains the controls with

which the user can specify the issues affecting their computer. The attach-

ment control will allow the user to attach a file (such as a screenshot of the

problem) and the description control will allow for text description of the issue

to be submitted.

The rules implemented on this form specify that if the status dropdown is

empty, the submit button will be hidden. If the status dropdown is selected as

‘Issues’, the lower section and the Submit button will become visible, and if

status is selected as ’No issues’, only the ‘Submit’ button will become visible.

The submit button will submit the form fields to the ‘Report DB’ list and close

the form when clicked.

43

Figure 19:Report form rules.

Figure 20:Reporting form as shown to the end user.

44

4.4 Admin Application

The application created here is used to manage the SharePoint list “Test

Group Members” and obtain data from the reporting list “Report DB”.

4.4.1 Application User Interface

The GUI for the application was created using Visual Studio. Creating a new

project and selecting .NET Framework based WPF application is somewhat

simple.

Figure 21:Application UI in Visual Studio.

All the controls that are needed can be added from the toolbox to the applica-

tion. Controls that are used in this application include TabControl, TextBox,

RichTextBox, Button, RadioButton, Label, TextBlock and Image. After the UI

design is complete, the XAML code can be copied from Visual Studio to Pow-

erShell. The XAML is saved as a here-string which allows for multiple lines of

text and saves the formatting, so the code is properly indented and more read-

able.

Some of the XAML code must be modified so PowerShell can read it properly

and load the XAML objects.

$inputXML = $inputXML.replace('mc:Ignorable="d"','').re-
place("x:N",'N').replace('^<Win.*','<Window')

Here the XAML is put into an xml variable and then read using the [Win-

dows.Markup.XamlReader] class and its load method.

45

[xml]$XAML = $inputXML
$reader=(New-Object System.Xml.XmlNodeReader $XAML)
$Form=[Windows.Markup.XamlReader]::Load($reader)

The following converts the objects in the XAML code to interactable variables

in PowerShell (FoxDeploy, 2015).

$XAML.SelectNodes("//*[@Name]") | % {Set-Variable -Name
"WPF$($_.Name)" -Value $Form.FindName($_.Name)}

Function Get-FormVariables{
if ($global:ReadmeDisplay -ne $true){Write-host "If you need to ref-
erence this display again, run Get-FormVariables" -ForegroundColor
Yellow;$global:ReadmeDisplay=$true}
write-host "Found the following interactable elements from our form"
-ForegroundColor Cyan
get-variable WPF*
}
Get-FormVariables

The function returns all objects in the XAML as variables that can then be

used in the application. An added ‘WPF’ prefix is added to the objects. As

shown in Figure 23, $Form.ShowDialog() | out-null will run the form.

Figure 22: Variables in the WPF application.

After the objects are made into variables, PowerShell code can be added to

enable the required functionality. Version 5.1 of PowerShell was used in the

construction of this application.

46

4.4.2 The Code Behind

The application interactions with the SharePoint lists are based on New-Web-

ServiceProxy cmdlet from the Microsoft.PowerShell.Management module.

This cmdlet creates a web service proxy object that enables the use and man-

agement of a web service (Microsoft PowerShell Team, 2010).

The path of the service description, e.g. the .asmx page of the
site
$URI = "http://test.test.com/si-
tes/sakke/Lists/testi/_vti_bin/Lists.asmx?WSDL"

If the web service used was created using ASP.NET, “?WSDL” must be ap-

pended to the end of the URL of the web service (Microsoft, 2017c).

#Creates the service
$Service = New-WebServiceProxy -Uri $URI -Namespace SpWs -UseDe-
faultCredential

#The name of the SharePoint list
$List = "Test Group Members"

#Create XML query to retrieve the contents of the list.
$XmlDoc = new-object System.Xml.XmlDocument
$Query = $XmlDoc.CreateElement("Query")
$ViewFields = $XmlDoc.CreateElement("ViewFields")
$QueryOptions = $XmlDoc.CreateElement("QueryOptions")
$Query.set_InnerXml("FieldRef Name='Full Name'")
$RowLimit = "10"

try{
 $List = $Service.GetListItems($List, "", $Query, $ViewFields,
$RowLimit, $QueryOptions, "")
}
catch{
 Write-Error $_ -ErrorAction SilentlyContinue
}

The $List variable contains all information from the queried list and can be

viewed by accessing $List.data.row where the list items can be found. The

next example would print all items where the username is Sakari.

$List.data.row | ? {$_.ows_User -eq 'Sakari'}

Updating list items or creating/deleting them requires that that account used

has the necessary permissions for the list on SharePoint (Microsoft Pow-

erShell Team, 2010). In this part, permissions to modify the lists in question

were only set for the author and people testing the application.

47

In the $List variable, the name attribute values or GUIDs for the list and the

view can be found and set in other variables.

$ndlistview = $Service.getlistandview($List, "")
$strlistid = $ndlistview.childnodes.item(0).name
$strviewid = $ndlistview.childnodes.item(1).name

These are necessary when modifying SharePoint lists. In order to modify the

content of a list, an xmldocument object and an associated batch element

must be created.

Create the xmldocument object
$xmldoc = new-object system.xml.xmldocument

#The batch element. An empty viewname parameter causes the method to
use the default view.
$batchelement = $xmldoc.createelement("Batch")
$batchelement.setattribute("Onerror", "Continue")
$batchelement.setattribute("Listversion", "1")
$batchelement.setattribute("Viewname", $strviewid)

#Create the xml content for the batch element.
$xml = ""
$xml += "<Method ID='1' Cmd='Update'>" +
 "<Field Name='ID'>$item</Field>" +
 "<Field Name='Member'>false</Field>" +
 "</Method>"

The ID of the item that is updated can be retrieved using the previous meth-

ods of obtaining list content and locating the ID of the desired item. For exam-

ple, the ID of all items where the username is ‘sakari’ can be retrieved using

the following code.

$UserData = $List.data.row | ? {$_.ows_User -eq 'sakari'}
[array]$IDList = $UserData | % {$_.ows_ID}

The returned array would contain all the ID of the items that have ‘sakari’ as

the username.

After all necessary information is gathered, the xml content can be added to

the batch element.

#Add the xml content to the batch element.
$batchelement.innerxml = $xml

Now the list can be updated using the updatelistitems method.

$ndreturn = $Service.UpdateListItems($List, $batchelement)

The New-WebServiceProxy is specific about case sensitivity, especially in the

batch element. Modification of the lists failed numerous times before succeed-

ing.

48

Deleting an item from a list:

#The ID must be known and Cmd in the xml must be set to delete.
$xml = ""
$xml += "<Method ID='$id' Cmd='Delete'>" +
 "<Field Name='ID'>$RowID</Field>" +
 "</Method>"

Creating a new item works almost in the same manner. The ‘Cmd’ in the xml

is specified as New and no ID number for the item is needed as it is created

automatically for new items. The desired content for the item is specified in the

xml.

#New item xml content.
$xml = ""
$xml += "<Method ID='1' Cmd='New'>" +
 "<Field Name='User'>$User</Field>" +
 "<Field Name='Client'>$Client</Field>" +
 "<Field Name='Member'>true</Field>" +
 "</Method>"

4.4.3 Processing script

The process is run by a PowerShell script that runs as a scheduled task on a

server. The script goes through the items in the ‘Test Group Members’ Share-

Point list and adds computers to the Active Directory group that are not mem-

bers of the group already.

The lists ‘member’ property determines the membership to the AD group and

is set to ‘true’ when a new item is added. The script skips an item and contin-

ues to the next one if the computer is already present in the AD group. If the

computer is not yet a member, it is added to the group and an email is sent to

the user the computer is bound to on the list. The user email is retrieved from

AD.

An administrator can set the member property to false using the application

(on the application it is stated as ‘remove from group’). When the property is

set to ‘false’, the script first removes the computer from the AD group and then

deletes the item from the SharePoint list.

The processing script code can be found in Appendix 2.

49

4.4.4 Functions for the Application Controls

All the controls are now defined as variables in the PowerShell/WPF applica-

tion and functionality can be added to them. There is much more that can be

done regarding this portion, but as a Proof of Concept project, the main func-

tionality was the priority.

Code and conditions are applied to six controls:

 Button that retrieves the group members and displays them on a list view

($WPFShow).

 Button that adds user/client to the group ($WPFAdd).

 Button that removes user/client to the group ($WPFRemove).

 Exit button ($WPFExit).

 Button that sends the report form email to all members ($WPFSendEmail).

 Reporting data radio buttons ($WPFReportDate(1|7|30) Day) and Show

button ($WPFShowStats).

 Clear the statusbox button ($WPFClear).

Using the Add_Click method, it is possible insert a script block into the () over-

load (FoxDeploy, 2015). Using this, the PowerShell code that interacts with

the SharePoint lists can be added to the buttons and other controls.

#List Users Button
$WPFShow.Add_Click({$ListContent = Get-SPList -Listname "Test Group
Members"
[array]$ListInfo = @()
$ListContent.data.row | % {$TempObject = New-Object psobject -Prop-
erty @{'User' = $_.ows_User;'Client' = $_.ows_Client}; $ListInfo +=
$TempObject}
$WPFlistView.Items.Clear()
$ListInfo | % {$WPFlistView.AddChild($_)}})

By clicking the button, the list of information is retrieved using the custom Get-

SPList function that returns the list data as a variable. From the variable,

user/client objects are created and shown on the list view ($WPFListView). In

order to refresh the information, the list view content is cleared with each but-

ton click.

50

#Add User Button
if($WPFUserName2.Text -ne $Null -and $WPFClientName2.Text -ne $Null){
 $WPFAdd.Add_Click({

try{Add-ToSPList -User $WPFUserName2.Text -Client $WPFCli-
entName2.Text

 Write-ToTextBox -RichTextBox $WPFStatusBox -Text "User
$($WPFUserName2.Text) with client $($WPFClientName2.Text) has been
added to the group." -TextColor Green}

 catch {Write-ToTextBox -RichTextBox $WPFStatusBox -Text
"An error occurred!" -TextColor Red}
$WPFUserName2.clear();$WPFClientName2.clear()})
}

The add user button is set to only function if the controls with the username

and client name are not empty. If content is present, a click of the button at-

tempts to add a new item to the SharePoint members list using the custom

Add-ToSPList function which takes the username and clientname from the as-

sociated controls as input. If successful, a new item is added, and a message

confirming this is printed on the statusbox. If an error occurs, a message "An

error occurred!" is printed. Additional error messages with more information

would be added in a production version.

#Remove User Button
if($WPFUserName3.Text -ne $Null){

$WPFRemove.Add_Click({Write-ToTextBox -RichTextBox $WPF-
StatusBox -Text "Removing $($WPFUserName3.Text) from the
test group." -TextColor Green

 try{Set-SPListMember -User $($WPFUserName3.Text)
Write-ToTextBox -RichTextBox $WPFStatusBox -Text "User
$($WPFUserName3.Text) has been removed from the group." -
TextColor Green

 }

catch {Write-ToTextBox -RichTextBox $WPFStatusBox -Text "An er
ror occurred!" -TextColor Red}

 $WPFUserName3.Clear()})
}

The ‘remove user’ button functions in the same way as the ‘add user’ one, ex-

cept that it uses the Set-SPListMember function that changes the previously

mentioned ‘member’ property to ‘false’, after which the control script removes

the list item and the client from the AD Group.

#Exit button
$WPFExit.Add_Click({$Form.Close()})

The exit button closes the application.

#Send Email with a link to the reporting form.
$WPFSendEmail.Add_Click({Write-ToTextBox -RichTextBox $WPFStatusBox -
Text "Sending Email to Test Group Members." -TextColor Green

try{Send-ReportEmail;Write-ToTextBox -RichTextBox $WPFSta-
tusBox -Text "Emails successfully sent." -TextColor Green}

catch{Write-ToTextBox -RichTextBox $WPFStatusBox -Text "An
error occurred!" -TextColor Red}

})

51

The ‘Send email’ button is set to send emails with a link to the reporting form

to all user in the ‘Test Group Members’ SharePoint list using custom Send-Re-

portMail function that uses another custom function New-ReportEmail that in

turn does a singular email, whereas Send-ReportMail uses New-ReportEmail

to loop over the members list.

#Clear textbox
$WPFClear.Add_Click({Clear-TextBox -RichTextBox $WPFStatusBox})

The clear button clears the contents of the statusbox.

#Show report stats for 1,7 and 30 day windows.
$WPFShowStats.Add_Click({
 Clear-TextBox -RichTextBox $WPFStatsBox

 $Stats = Get-ReportDBStats
 $1D = $Stats[0]
 $7D = $Stats[1]
 $30D = $Stats[2]

 $1DMessage = @"
 Statistics for 1 Day period:

 Number of reports: $($1D.Count)
 Issues reported: $($1D.Issue)
 No Problems for: $($1D.Percentage) %
"@
 $7DMessage = @"
 Statistics for 7 Day period:

 Number of reports: $($7D.Count)
 Issues reported: $($7D.Issue)
 No Problems for: $($7D.Percentage) %
"@
 $30DMessage = @"
 Statistics for 30 Day period:

 Number of reports: $($30D.Count)
 Issues reported: $($30D.Issue)
 No Problems for: $($30D.Percentage) %
"@

if($WPFReportDate1Day.IsChecked){Write-ToTextBox -RichTextBox $WPF-
StatsBox -text $1DMessage -textcolor Black}
elseif($WPFReportDate7Day.IsChecked){Write-ToTextBox -RichTextBox
$WPFStatsBox -text $7DMessage -textcolor Black}
elseif($WPFReportDate30Day.IsChecked){Write-ToTextBox -RichTextBox
$WPFStatsBox -text $30DMessage -textcolor Black}

})

The button ‘Show’ in the User Responses tab retrieves information using the

Get-ReportDBStats function that returns three items containing the relevant in-

formation on each timespan (1 day, 7 days and 30 days). The timespans are

chosen as an example and can be altered easily in the function. When using

the Write-ToTextBox function, a string containing the information is printed on

the statistics richtextbox.

52

The application is contained in the .ps1 file but using a shortcut and specifying

a ’-WindowStyle Hidden’ parameter in the target, the application is shown

without the background PowerShell window while PowerShell is still executing

the application.

This is an example shortcut target field:

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -NoProfile -

WindowStyle Hidden -file "C:\MyScripts\WpfAppendix.ps1"

The functions Set-SPListMember and Add-ToSPList contain regular expres-

sion pattern validation. Set-SPListMember only accepts combinations of 8-

word characters for its $User parameter and Add-ToSPList $Client parameter

must begin with a A, B or C followed by 6 numbers due to the company nam-

ing convention in place.

All the functions can be found in the application code in Appendix 3.

Figure 23:Management application screenshot showing statistics.

53

5 FURTHER DEVELOPMENT

The process created in this thesis can be equated to an alpha version as there

are many aspects that can be improved.

First, while SharePoint lists work well, they are not an optimal database for a

larger implementation with thousands of reports flowing into a constantly

growing database. A SQL database is much more suited towards this. Info-

Path can easily work with and update a SQL database, so the functionality re-

mains unchanged.

Second, there has been some discussion in the company of whether the self-

signup for the end users is needed. IT managers would manage the entire op-

eration and the membership of the testing group. Arguably, if there is a tool or

a process that can keep track of the user devices and their owners, the option

for the users to join the group voluntarily is very positive. This would further

improve user commitment to the process and improve its accuracy for detect-

ing issues.

Another platform could be used to build the required components used in this

thesis study. For example, K2 Blackpearl is a process automation platform

that would dramatically decrease the parts needed for the same functionality

as achieved in this thesis study. K2 would eliminate the need for InfoPath,

SharePoint (although an external database is still needed) and some of the

scripting as it can tie directly into services such as SQL, AD and Azure AD.

The forms created with K2 would have all the functionality built in them as the

services would be tied together by K2. Originally the process was supposed to

be created using K2, but after it was decided that the thesis was to be com-

pleted as a Proof of Concept, InfoPath/SharePoint was the easier choice.

These are aspects of the process that can be improved, but if the process is

developed further in the future, the entire technical structure would likely

change in some way.

54

6 CONCLUSIONS

The beginning of this thesis study was not easy as the scope of the implemen-

tation and my role in the development was constantly changing. Originally, the

process presented in this thesis was supposed to be implemented into use at

the company, but due to various reasons, it was decided that the reporting

process section of this thesis would be done as a Proof of Concept.

Update management is extremely important in any enterprise, large or small,

as new updates can wreak havoc on a range of vital business applications.

While the delivery of the updates is easier to monitor, their effects are not.

New updates deployed to production environments can cause problems as

they interact with different applications in different. In many environments, up-

dates are deployed to testing environments first but lack the user feedback

and rely on tickets submitted to helpdesk. This method is functional but lacks

the real-time feedback from the testing environment. Also, the connection be-

tween problem and cause can be more difficult to ascertain when tickets for

problems regarding testing of updates are mixed with other tickets. Using a

separate system for testing environment data (users, devices, feedback), the

problems can be identified much faster. This, of course, relies on active user

participation which should be made as simple as possible. Ideally, clicking a

link in an email for an ‘all clear’ signal would suffice on the part of the user.

The study of the inner layers of System Center Configuration Manager was

also quite enlightening. While the operation and finer details of the many as-

pects of ConfigMgr are still unclear to me, I feel that I have a good grasp on

the updating process in ConfigMgr. The process description in the first part of

the thesis covers the subject well and gives some insight into the update pro-

cess when operating with ConfigMgr.

Different platforms used in this thesis such as InfoPath, SharePoint and Pow-

erShell also required quite some research. Originally, the platform discussed

in the creation of the end user reporting functionality was K2, which I studied

in quite some detail but unfortunately was unable to use. Using K2 could have

eliminated some aspects of the project as it has extensive integration to ser-

vices, such as Active Directory. InfoPath forms took some time to study and

55

create but were eventually quite simple. More complex creations are certainly

possible with InfoPath. They simply were not required in this thesis, as simple

database connections, forms and logic were sufficient. With SharePoint there

was much less to study as the lists used were simple and many of the fea-

tures in SharePoint were not relevant to this thesis. PowerShell scripting has

become something I have tried to constantly develop in, starting last summer

when I was working in the local IT support at the company. It has proven to be

quite useful as understanding a little coding is a great help in in many in-

stances. The application to control the content of the SharePoint lists is done

entirely in PowerShell and while it would have been possible to implement the

management functionality on a SharePoint/InfoPath form or make it HTML-

based, it was extremely useful as a further learning experience on PowerShell

scripting to construct the application. Also, it is easier to include many different

functionalities into an application instead of a form.

It is recommended that a process such as this would be in place in any large

environment that relies on the functionality of various applications, but at the

same time systems must be constantly kept up to date with the newest

patches. In order to gather a reliable sample data each month, a significant

portion of the client base should be involved a process like this. A number

somewhere between 5-10% has been recommended by experts inside the

company.

Finally, the task to include the end user to the update process is functionally

sound and could be implemented into any environment. Of course, in its cur-

rent form the process is unrefined and should be examined more closely be-

fore implementation. Also, as mentioned earlier, better tools exist for this task

such as K2 and should be considered instead of the tools used in this thesis.

For the commissioner company it is recommended that the process be imple-

mented using K2 as a platform as its integration with other services far ex-

ceeds the capabilities of InfoPath.

Creating this process in this thesis study was very interesting and quite the

learning experience on enterprise environment mechanics and development

tools. In the future, this process is hopefully implemented in some form to the

company infrastructure, adding a layer of protection to the updates process.

56

REFERENCES

Chappell, B. 2017. WannaCry Ransomware: What We Know Monday. [Online]
Available at: https://www.npr.org/sections/thetwo-
way/2017/05/15/528451534/wannacry-ransomware-what-we-know-monday
[Accessed 6 February 2018].

Fors, M. 2017. Deploy and Troubleshoot Office 365 ProPlus Updates with
ConfigMgr. [Online]
Available at: https://deploywindows.info/2017/03/03/deploy-and-troubleshoot-
office-365-proplus-updates-with-configmgr-12/
[Accessed 14 December 2017].

FoxDeploy. 2015. Deploying PowerShell GUIs in Minutes using Visual Studio.
[Online]
Available at: https://foxdeploy.com/2015/04/16/part-ii-deploying-powershell-
guis-in-minutes-using-visual-studio/
[Accessed 7 February 2018].

Jupe, H. 2015. SCCM Collections – The basics. [Online]
Available at: http://www.hayesjupe.com/sccm-collections-the-basics/
[Accessed 29 November 2017].

Keränen, J. 2014. Centralized IT management using SCCM in a large multina-
tional company.
Available at: https://www.doria.fi/bitstream/handle/10024/101925/MasterThe-
sis_Keranen_Jesse.pdf?sequence=2
[Accessed 7 February 2018].

Microsoft. 2018a. Overview of update channels for Office 365 ProPlus.
[Online]
Available at: https://docs.microsoft.com/en-us/deployoffice/overview-of-up-
date-channels-for-office-365-proplus
[Accessed 7 February 2018].

Microsoft. 2018b. What is XAML. [Online]
Available at: https://msdn.microsoft.com/en-us/library/cc295302.aspx
[Accessed 7 February 2018].

Microsoft. 2017a. Install and configure a software update point. [Online]
Available at: https://docs.microsoft.com/en-us/sccm/sum/get-started/install-a-
software-update-point
[Accessed 24 November 2017].

Microsoft. 2017b. Introduction to software updates in System Center Configu-
ration Manager. [Online]

57

Available at: https://docs.microsoft.com/en-us/sccm/sum/understand/software-
updates-introduction
[Accessed 7 February 2018].

Microsoft. 2017c. New-WebServiceProxy. [Online]
Available at: https://docs.microsoft.com/en-us/powershell/module/mi-
crosoft.powershell.management/new-webserviceproxy?view=powershell-5.1
[Accessed 8 February 2018].

Microsoft. 2016a. Introduction to System Center Configuration Manager.
[Online]
Available at: https://docs.microsoft.com/en-us/sccm/core/understand/introduc-
tion
[Accessed 20 October 2017].

Microsoft. 2016b. Fundamentals of sites and hierarchies for System Center
Configuration Manager. [Online]
Available at: https://docs.microsoft.com/en-us/sccm/core/understand/funda-
mentals-of-sites-and-hierarchies
[Accessed 23 November 2017].

Microsoft. 2016c. Prerequisites for software updates in System Center Config-
uration Manager. [Online]
Available at: https://docs.microsoft.com/en-us/sccm/sum/plan-design/prerequi-
sites-for-software-updates
[Accessed 27 November 2017].

Microsoft. 2016d. Prerequisites for Software Updates in Configuration Man-
ager. [Online]
Available at: https://technet.microsoft.com/fi-fi/library/hh237372.aspx
[Accessed 29 November 2017].

Microsoft. 2016e. Manually deploy software updates. [Online]
Available at: https://docs.microsoft.com/en-us/sccm/sum/deploy-use/manually-
deploy-software-updates
[Accessed 29 November 2017].

Microsoft. 2016f. Deploy software updates. [Online]
Available at: https://docs.microsoft.com/en-us/sccm/sum/deploy-use/deploy-
software-updates
[Accessed 4 December 2017].

Microsoft. 2015. Configuring Software Updates in Configuration Manager.
[Online]
Available at: https://technet.microsoft.com/en-us/library/gg712312.aspx
[Accessed 27 November 2017].

58

Microsoft PowerShell Team. 2010. Using New-WebServiceProxy to get, mod-
ify, and add items to a list in SharePoint 2007. [Online]
Available at: https://blogs.msdn.microsoft.com/powershell/2010/06/24/using-
new-webserviceproxy-to-get-modify-and-add-items-to-a-list-in-sharepoint-
2007/
[Accessed 7 February 2018].

Rimmerman, Shilt, Della Monica, Faldu. 2015. Microsoft System Center Soft-
ware Update Management Field Experience.
Available at: https://mva.microsoft.com/ebooks#9780735695849

Smpyrakis, G. 2012. ConfigMgr 2012 Automatic Deployment Rules. [Online]
Available at: https://blogs.technet.microsoft.com/con-
figmgrdogs/2012/05/07/configmgr-2012-automatic-deployment-rules/
[Accessed 20 October 2017].

Appendix 1/3

Appendix 2/3

#This script manages the membership of an Active Directory group related to Microsoft updates
#testing. It retrieves information from a SharePoint list and adds/removes group members
#accordingly.

#Import active directory module
Import-Module ActiveDirectory

#Function to send email to added groupmembers.
Function New-JoinEmail (){

 Param([parameter(Mandatory=$true)]
 [string]$User,
 [parameter(Mandatory=$true)]
 [string]$Client)

 $SmtpServer = "mail.test.com"
 $EmailFrom = "sakari.ruotsalainen@test.com"
 $EmailTo = (Get-ADUser $User -properties *).mail
 $MailMessage = New-Object System.Net.Mail.MailMessage $EmailFrom, $EmailTo
 $MailMessage.Subject = "Microsoft Updates Test Group Membership."
 $MailMessage.IsBodyHTML = $True
 $MailMessage.Body = "<body style='font-family:arial; font-size: 13px; font-style: nor-
mal'>Dear Recipient,<p><p>Computer $Client, has been added to the testing group
for Microsoft updates. You will receive a link to report any problems you may encounter as a re-
sult and are expected to report back.<p><p><p>Best Regards,<p> GROUP IT</body>"
 $NewMessage = New-Object Net.Mail.SmtpClient($SmtpServer)
 $NewMessage.Send($MailMessage)

}

$ADTestGroup = "ADTESTGROUP"
$GroupMembers = Get-AdGroupMember -Identity $ADTestGroup | select name
$ListName = "Test Group Members"

#Uses Get-SPList function that returns the data for a specified list.
$SPListData = Get-SPList -Listname $ListName

#Go through the items in the SharePoint List
$SPListData | % {

 $Client = $_.ows_Client
 $Member = $_.ows_Member
 $ManualClient = $_.ows_ManualClient
 $RowID = $_.ows_ID
 $User = $_.ows_User

 #Use ManualClient property if client has been added manually.
 if($ManualClient -ne $null -and $ManualClient.length -eq 8){

 try { Get-ADComputer $ManualClient

 #If the computer is already in the AD group, continue to next item.
 if($GroupMembers -like $ManualClient){
 Write-Output "Client $ManualClient is already in the group.";continue
 }

 #If the computer is not in the AD group, add it and send an email to the user.
 else {
 Write-Output "Client $ManualClient is not in the group. Adding to
$ADTestGroup."
 Add-ADGroupMember $Group -Members $Client
 New-JoinEmail -User $User -Client $ManualClient

 }
 }

 catch {Write-Error $_}

 }

 #Else use the $Client property
 else{
 #If the computer is already in the AD group, continue to next item.
 if($GroupMembers -like $Client){
 Write-Output "Client $Client is already in the group.";continue
 }
 #If the computer is not in the AD group, add it and send an email to the user.
 else {
 Write-Output "Client $Client is not in the group. Adding to $ADTestGroup."
 Add-ADGroupMember $Group -Members $Client

 New-JoinEmail -User $User -Client $ManualClient
 }

 }

 #If Member property has been set to false, remove client from AD Group and SP list.
 #This property is set by administrators using the application.
 if($Member -eq 'false'){
 Remove-ADGroupMember -Identity $Group -Member $Client
 $xml = ""
 $xml +=
 "<Method ID='$id' Cmd='Delete'>" +
 "<Field Name='ID'>$RowID</Field>" +
 "</Method>"

 $ndreturn = $null

 #Modify the batchelement content with the $xml variable
 $batchelement.innerxml = $xml

 #Implement the modifications to the SharePoint list.
 try {
 $ndreturn = $Service.UpdateListItems($ListName,$batchelement)
 }
 catch {
 write-error $_ -ErrorAction 'SilentlyContinue'
 }

 }
}

Appendix 3/3

#The Entire code for the application to interact with SharePoint lists used in the thesis.

#The URI of the SharePoint lists has been changed to a generic one.

#XAML content set to a here string.
$inputXML = @"
<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfApplication1"
 mc:Ignorable="d"
 Title="SharePoint List Manager" ResizeMode="NoResize" Height="485.39" Width="539.918">
 <Grid Margin="0,0,-0.333,3.333" Background="#FFE5E5E5">
 <TabControl x:Name="tabControl" Height="314" Margin="0,0,-0.333,0" VerticalAlign-
ment="Top">
 <TabItem Header="Member List">
 <Grid Background="#FFE5E5E5">
 <Image x:Name="image" HorizontalAlignment="Left" Height="49" Mar-
gin="10,10,0,0" VerticalAlignment="Top" Width="53" Source="C:\Users\ruotsak\Desktop\icon.jpg"/>
 <TextBlock x:Name="textBlock" HorizontalAlignment="Left" Margin="125,26,0,0"
TextWrapping="Wrap" VerticalAlignment="Top" Width="260" Height="33"><Run Text="This tool is used
to manage the SharePoint list for the early adopters Windows Update Group"/><Run
Text="."/></TextBlock>
 <ListView x:Name="listView" HorizontalAlignment="Left" Height="139" Mar-
gin="24,116,0,0" VerticalAlignment="Top" Width="330">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="User" DisplayMemberBinding ="{Binding
'User'}" Width="165"/>
 <GridViewColumn Header="Client" DisplayMemberBinding ="{Binding
'Client'}" Width="165"/>
 </GridView>
 </ListView.View>
 </ListView>
 <Button x:Name="Show" Content="Show Members" HorizontalAlignment="Left" Mar-
gin="399,174,0,0" VerticalAlignment="Top" Width="101" RenderTransformOrigin="-0.409,0.777"/>
 </Grid>
 </TabItem>
 <TabItem Header="Add Members" Margin="0">
 <Grid Background="#FFE5E5E5" >
 <Image x:Name="image2" HorizontalAlignment="Left" Height="49" Mar-
gin="10,10,0,0" VerticalAlignment="Top" Width="53" Source="C:\Users\ruotsak\Desktop\icon.jpg"/>
 <TextBox x:Name="UserName2" HorizontalAlignment="Left" Height="23" Mar-
gin="108,96,0,0" TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="112"/>
 <TextBox x:Name="ClientName2" HorizontalAlignment="Left" Height="23" Mar-
gin="108,141,0,0" TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="111"/>
 <Button x:Name="Add" Content="Add to Group" HorizontalAlignment="Left" Mar-
gin="381,187,0,0" VerticalAlignment="Top" Width="99" Height="25" RenderTrans-
formOrigin="0.309,0.441"/>
 <TextBlock x:Name="textBlock1" HorizontalAlignment="Left" Mar-
gin="108,29,0,0" TextWrapping="Wrap" VerticalAlignment="Top" Height="15" Width="298"><Run
Text="Add "/><Run Text="a "/><Run Text="member to the "/><Run Text="Windows Update test
group."/></TextBlock>
 <Label Content="Username" HorizontalAlignment="Left" Margin="28,93,0,0" Ver-
ticalAlignment="Top" RenderTransformOrigin="-0.906,-0.157" FontWeight="Bold"/>
 <Label Content="Clientname" HorizontalAlignment="Left" Margin="28,138,0,0"
VerticalAlignment="Top" FontWeight="Bold"/>
 </Grid>
 </TabItem>
 <TabItem Header="Remove Members" Margin="0">
 <Grid Background="#FFE5E5E5">
 <Image x:Name="image3" HorizontalAlignment="Left" Height="49" Mar-
gin="10,10,0,0" VerticalAlignment="Top" Width="53" Source="C:\Users\ruotsak\Desktop\icon.jpg"/>
 <TextBox x:Name="UserName3" HorizontalAlignment="Left" Height="23" Mar-
gin="94,129,0,0" TextWrapping="Wrap" Text="" VerticalAlignment="Top" Width="120"/>
 <TextBlock x:Name="textBlock2" HorizontalAlignment="Left" Margin="94,19,0,0"
TextWrapping="Wrap" VerticalAlignment="Top" Height="40" Width="228"><Run Text="Input the
username you wish to remove from the "/><Run Text="Windows Update tes"/><Run Text="t "/><Run
Text="group"/><Run Text="."/></TextBlock>
 <Button x:Name="Remove" Content="Remove from Group" HorizontalAlign-
ment="Left" Margin="350,129,0,0" VerticalAlignment="Top" Width="123" Height="23" RenderTrans-
formOrigin="0.158,0.46"/>
 <Label Content="Username" HorizontalAlignment="Left" Margin="25,126,0,0"
VerticalAlignment="Top" FontWeight="Bold"/>
 </Grid>
 </TabItem>
 <TabItem Header="User Responses" Margin="0">
 <Grid Background="#FFE5E5E5">

 <Image x:Name="image4" HorizontalAlignment="Left" Height="49" Mar-
gin="10,10,0,0" VerticalAlignment="Top" Width="53" Source="C:\Users\ruotsak\Desktop\icon.jpg"/>
 <Button x:Name="SendEmail" Content="Send Email" HorizontalAlignment="Left"
Margin="406,244,0,0" VerticalAlignment="Top" Width="105"/>
 <TextBlock HorizontalAlignment="Left" Margin="15,231,0,0" TextWrap-
ping="Wrap" Text="After new Updates are deployed, use this to send groupmembers an email with a
link to the response form." VerticalAlignment="Top" Height="33" Width="311"/>
 <RadioButton x:Name="ReportDate1Day" Content="1 Day" GroupName="ReportDate"
IsChecked="True" HorizontalAlignment="Left" Margin="15,105,0,0" VerticalAlignment="Top"/>
 <RadioButton x:Name="ReportDate7Day" Content="7 Days" GroupName="ReportDate"
HorizontalAlignment="Left" Margin="15,125,0,0" VerticalAlignment="Top"/>
 <RadioButton x:Name="ReportDate30Day" Content="30 Days" GroupName="Re-
portDate" HorizontalAlignment="Left" Margin="15,145,0,0" VerticalAlignment="Top"/>
 <RichTextBox x:Name="StatsBox" IsReadOnly="True" HorizontalAlignment="Left"
Height="94" Margin="123,103,0,0" VerticalAlignment="Top" Width="373">
 <FlowDocument>
 <Paragraph>
 <Run Text=""/>
 </Paragraph>
 </FlowDocument>
 </RichTextBox>
 <Label Content="Status" HorizontalAlignment="Left" Margin="123,72,0,0" Ver-
ticalAlignment="Top" RenderTransformOrigin="0.079,0.561"/>
 <Button x:Name="ShowStats" Content="Show" HorizontalAlignment="Left" Mar-
gin="15,184,0,0" VerticalAlignment="Top" Width="75"/>
 </Grid>
 </TabItem>
 </TabControl>
 <Button x:Name="Exit" Content="Exit" HorizontalAlignment="Left" Margin="429,421,0,0"
VerticalAlignment="Top" Width="75"/>
 <Label Content="Status" HorizontalAlignment="Left" Margin="10,319,0,0" VerticalAlign-
ment="Top"/>
 <RichTextBox x:Name="StatusBox" IsReadOnly="True" Grid.Column="1" HorizontalAlign-
ment="Left" Height="66" Margin="10,350,0,0" VerticalAlignment="Top" Width="373" Grid.Col-
umnSpan="2">
 <FlowDocument>
 <Paragraph>
 <Run Text=""/>
 </Paragraph>
 </FlowDocument>
 </RichTextBox>
 <Button x:Name="Clear" Content="Clear" HorizontalAlignment="Left" Margin="10,421,0,0"
VerticalAlignment="Top" Width="75"/>

 </Grid>
</Window>

"@

$inputXML = $inputXML -replace 'mc:Ignorable="d"','' -replace "x:N",'N' -replace '^<Win.*',
'<Window'

[void][System.Reflection.Assembly]::LoadWithPartialName('presentationframework')
[xml]$XAML = $inputXML
#Read XAML

$reader=(New-Object System.Xml.XmlNodeReader $xaml)

try{$Form=[Windows.Markup.XamlReader]::Load($reader)}
catch{Write-Host "Unable to load Windows.Markup.XamlReader. Double-check syntax and ensure .net
is installed."}

#===
Load XAML Objects In PowerShell
#===

$xaml.SelectNodes("//*[@Name]") | % {Set-Variable -Name "WPF$($_.Name)" -Value $Form.Find-
Name($_.Name)}

Function Get-FormVariables{
if ($global:ReadmeDisplay -ne $true){Write-host "If you need to reference this display again,
run Get-FormVariables" -ForegroundColor Yellow;$global:ReadmeDisplay=$true}
write-host "Found the following interactable elements from our form" -ForegroundColor Cyan
get-variable WPF*
}
Get-FormVariables

#Function to add new item to the SharePoint list manually.
Function Add-ToSPList(){

 Param([Parameter(Mandatory=$true)]
 [string]$User,
 [Parameter(Mandatory=$true)]
 [ValidatePattern("^[abcABC]{1}\d{6}$")]

 [string]$Client)

 $Uri = "http://test.test.com/sites/sakke/_vti_bin/Lists.asmx?WSDL"
 $Service = New-WebServiceProxy -Uri $Uri -Namespace SpWs -UseDefaultCredential
 $List = "Test Group Members"

 $ndlistview = $Service.getlistandview($List, "")
 $strlistid = $ndlistview.childnodes.item(0).name
 $strviewid = $ndlistview.childnodes.item(1).name

 #Create xml object for list modification with batchelement attributes.
 $xmldoc = new-object system.xml.xmldocument
 $batchelement = $xmldoc.createelement("Batch")
 $batchelement.setattribute("Onerror", "Continue")
 $batchelement.setattribute("Listversion", "1")
 $batchelement.setattribute("Viewname", $strviewid)

 $xml = ""
 $xml += "<Method ID='1' Cmd='New'>" +
 "<Field Name='User'>$User</Field>" +
 "<Field Name='Client'>$Client</Field>" +
 "<Field Name='Member'>true</Field>" +
 "</Method>"

 #Modify the batchelement content with the $xml variable
 $batchelement.innerxml = $xml

 #Implement the modifications to the SharePoint serviceobject defined at the start.
 try {
 $ndreturn = $service.UpdateListItems($List, $batchelement)
 }
 catch {
 write-error $_
 }

}

#Function to set the member property to false on a SharePoint list item. Used in the management
of the Active Directory group.
Function Set-SPListMember() {

 Param([Parameter(Mandatory=$true)]
 [ValidatePattern("^\w{8}$")]
 [string]$User)

 $Uri = "http://test.test.com/sites/sakke/_vti_bin/Lists.asmx?WSDL"
 $List = "Test Group Members"
 $Service = New-WebServiceProxy -Uri $Uri -Namespace SpWs -UseDefaultCredential

 $ndlistview = $Service.getlistandview($List, "")
 $strlistid = $ndlistview.childnodes.item(0).name
 $strviewid = $ndlistview.childnodes.item(1).name

 #Create xml object for list modification with batchelement attributes.
 $xmldoc = new-object system.xml.xmldocument
 $batchelement = $xmldoc.createelement("Batch")
 $batchelement.setattribute("Onerror", "Continue")
 $batchelement.setattribute("Listversion", "1")
 $batchelement.setattribute("Viewname", $strviewid)

 $UserInfo = Get-SPList -Listname $List
 $UserData = $UserInfo.data.row | ? {$_.ows_User -eq $User}
 [array]$IDList = $UserData | % {$_.ows_ID}

 foreach ($item in $IDList) {

 $ndreturn = $null
 $batchelement.innerxml = $null

 $xml = ""
 $xml += "<Method ID='1' Cmd='Update'>" +
 "<Field Name='ID'>$item</Field>" +
 "<Field Name='Member'>false</Field>" +
 "</Method>"

 #Modify the batchelement content with the $xml variable
 $batchelement.innerxml = $xml

 #Implement the modifications to the SharePoint serviceobject defined at the start.

 $ndreturn = $service.UpdateListItems($List, $batchelement)

 }

}

#Function to retrieve SharePoint list data.
Function Get-SPList (){

 Param([Parameter(Mandatory=$true)]
 [string]$Listname)

 $Uri = "http://test.test.com/sites/sakke/_vti_bin/Lists.asmx?WSDL"
 $Service = New-WebServiceProxy -Uri $Uri -Namespace SpWs -UseDefaultCredential

 #Create xml object for the list query.
 $xmlDoc = new-object System.Xml.XmlDocument
 $Query = $xmlDoc.CreateElement("Query")
 $ViewFields = $xmlDoc.CreateElement("ViewFields")
 $QueryOptions = $xmlDoc.CreateElement("QueryOptions")
 $Query.set_InnerXml("FieldRef Name='Full Name'")
 $RowLimit = "0"

 $SPList = $Service.GetListItems($Listname, "", $Query, $ViewFields, $RowLimit, $QueryOp-
tions, "")

 return $SPList

}

#Function to write text to the richtextboxes in the application.
Function Write-ToTextBox
{
 Param(
 $RichTextBox,
 $Text,
 $TextColor,
 $TextFontWeight = "Normal"
)

 $NewParagraph = New-Object System.Windows.Documents.Paragraph
 $NewParagraph.Margin = 0

 $NewParagraph.AddText("$Text")

 $NewParagraph.Foreground = $TextColor
 $RichTextBox.Document.Blocks.Add($NewParagraph)
 $NewParagraph.FontWeight = $TextFontWeight
 $RichTextBox.ScrollToEnd()
}

#Clear the contents of a richtextbox.
Function Clear-TextBox
{
 Param($RichTextBox)
 $RichTextBox.Document.Blocks.Clear()
}

#Function to generate an email to a user containing a link to the reporting form.
Function New-ReportEmail (){

 Param([parameter(Mandatory=$true)]
 [string]$User)

 $SmtpServer = "mail.test.com"
 $EmailFrom = "sakari.ruotsalainen@test.com"
 $EmailTo = (Get-ADUser $User -properties *).mail
 $MailMessage = New-Object System.Net.Mail.MailMessage $EmailFrom, $EmailTo
 $MailMessage.Subject = "Microsoft Updates Test Group Membership."
 [string]$Body = @"
 <body style='font-family:arial; font-size: 13px; font-style: normal'>Dear Recipi-
ent,<p><p>As a member of the Microsoft Updates testing group you are requested to report
back any problems you may have encountered or to just report nothing is wrong. You will find a
link to the reporting form below.<p><p><p>Best Regards,<p> GROUP IT</body>
 <a href="http://test.test.com/sites/sakke/_layouts/listform.aspx?PageType=8&Lis-
tId={D5142E11-2683-48A0-95E4-09FD6E3D84AB}&RootFolder=">Reporting Form
"@
 $MailMessage.IsBodyHTML = $True
 $MailMessage.Body = $Body
 $NewMessage = New-Object Net.Mail.SmtpClient($SmtpServer)
 $NewMessage.Send($MailMessage)

}

#Function to send report emails to all list member, uses the New-ReportEmail function.
function Send-ReportEmail (){

 $a = Get-SPList -Listname "Test Group Members"
 $Users = $a.data.row.ows_User

 $SmtpServer = "mail.test.com"
 $EmailFrom = "sakari.ruotsalainen@test.com"

 $Users | % {New-ReportEmail -User $_}

}

#Function to get the statistics from the reports SharePoint list and output relevant data.
Timespans are just examples and easy to modify.
function Get-ReportDBStats () {
 #Get list data
 $Stats = Get-SPList -Listname "Report DB"

 $Date = (get-date).Date

 #Separate into diffrent variables by timespan.
 $1days = $Stats.data.row | ? {[datetime]$_.ows_Created -ge $date.AddDays(-1)}
 $7days = $Stats.data.row | ? {[datetime]$_.ows_Created -ge $date.AddDays(-7)}
 $30days = $Stats.data.row | ? {[datetime]$_.ows_Created -ge $date.AddDays(-30)}

 #Create objects containing information of the reports during the diffrent timespans.

 #1 Day
 if($1days.count -gt 0){
 [array]$1daysOK = $1days | ? {($_.ows_Status -eq 0)}
 [array]$1daysIssue = $1days | ? {($_.ows_Status -eq 1)}

 $1daypercentage = [math]::Round(($1daysOK.Count / $1days.Count)*100)
 $1DayStats = New-Object psobject -Property @{'ID' = '1Days'
 'Count' = $1days.count
 'OK' = $1daysOK.count
 'Issue' = $1daysIssue.count
 'Percentage' = $1daypercentage}
 }
 else{ $1DayStats = New-Object psobject -Property @{'ID' = '1Days'
 'Count' = 'N/A'
 'OK' = 'N/A'
 'Issue' = 'N/A'
 'Percentage' = 'N/A'}}
 #7 Days
 if($7days.count -gt 0){
 [array]$7daysOK = $7days | ? {($_.ows_Status -eq 0)}
 [array]$7daysIssue = $7days | ? {($_.ows_Status -eq 1)}

 $7DayPercentage = [math]::Round(($7daysOK.Count / $7days.Count)*100)
 $7DayStats = New-Object psobject -Property @{'ID' = '7Days'
 'Count' = $7days.count
 'OK' = $7daysOK.count
 'Issue' = $7daysIssue.count
 'Percentage' = $7DayPercentage}
 }

 else{ $7DayStats = New-Object psobject -Property @{'ID' = '7Days'
 'Count' = 'N/A'
 'OK' = 'N/A'
 'Issue' = 'N/A'
 'Percentage' = 'N/A'}}
 #30 Days
 if($30Days.count -gt 0){
 [array]$30daysOK = $30days | ? {($_.ows_Status -eq 0)}
 [array]$30daysIssue = $30days | ? {($_.ows_Status -eq 1)}

 $30DayPercentage = [math]::Round(($30daysOK.Count / $30days.Count)*100)
 $30DayStats = New-Object psobject -Property @{'ID' = '30Days'
 'Count' = $30days.count
 'OK' = $30daysOK.count
 'Issue' = $30daysIssue.count
 'Percentage' = $30DayPercentage}
 }

 else{ $30DayStats = New-Object psobject -Property @{'ID' = '30Days'
 'Count' = 'N/A'
 'OK' = 'N/A'
 'Issue' = 'N/A'
 'Percentage' = 'N/A'}}
 #Output data
 $1DayStats
 $7DayStats
 $30DayStats
}

#===
Make the objects work
#===

#List users tab
#---------------

#Get user list Button
$WPFShow.Add_Click({$ListContent = Get-SPList -Listname "Test Group Members"
 [array]$ListInfo = @()
 $ListContent.data.row | % {$TempObject = New-Object psobject -Property
@{'User' = $_.ows_User;'Client' = $_.ows_Client}; $ListInfo += $TempObject}
 $WPFlistView.Items.Clear();$ListInfo | % {$WPFlistView.AddChild($_)}})

#Add user tab
#---------------

#Add User Button
if($WPFUserName2.Text -ne $Null -and $WPFClientName2.Text -ne $Null){
$WPFAdd.Add_Click({
 try{
 Add-ToSPList -User $WPFUserName2.Text -Client $WPFClientName2.Text
 Write-ToTextBox -RichTextBox $WPFStatusBox -Text "User $($WPFUserName2.Text)
with client $($WPFClientName2.Text) has been added to the group." -TextColor Green}

 catch {Write-ToTextBox -RichTextBox $WPFStatusBox -Text "An error occurred!"
-TextColor Red}
 $WPFUserName2.clear();$WPFClientName2.clear()})
}

#Remove user tab
#---------------

#Remove user Button
if($WPFUserName3.Text -ne $Null){
 $WPFRemove.Add_Click({Write-ToTextBox -RichTextBox $WPFStatusBox -Text
"Removing $($WPFUserName3.Text) from the test group." -TextColor Green
 try{#Set-SPListMember -User $($WPFUserName3.Text)
 Write-ToTextBox -RichTextBox $WPFStatusBox -Text "User
$($WPFUserName3.Text) has been removed from the group." -TextColor Green
 }
 catch {Write-ToTextBox -RichTextBox $WPFStatusBox -Text "An error oc-
curred!" -TextColor Red}
 $WPFUserName3.Clear()})
}

#Exit button
$WPFExit.Add_Click({$Form.Close()})

#User responses tab
#---------------

#Send Email with a link to the reporting form.
$WPFSendEmail.Add_Click({Write-ToTextBox -RichTextBox $WPFStatusBox -Text "Sending Email to Test
Group Members." -TextColor Green
 try{Send-ReportEmail}

 catch{Write-ToTextBox -RichTextBox $WPFStatusBox -Text "An error oc-
curred!" -TextColor Red}
 })

#Show report stats for 1,7 and 30 day windows.
$WPFShowStats.Add_Click({
 Clear-TextBox -RichTextBox $WPFStatsBox

 $Stats = Get-ReportDBStats
 $1D = $Stats[0]
 $7D = $Stats[1]
 $30D = $Stats[2]

 $1DMessage = @"
 Statistics for 1 Day period:

 Number of reports: $($1D.Count)
 Issues reported: $($1D.Issue)
 No Problems for: $($1D.Percentage) %
"@
 $7DMessage = @"
 Statistics for 7 Day period:

 Number of reports: $($7D.Count)
 Issues reported: $($7D.Issue)
 No Problems for: $($7D.Percentage) %

"@
 $30DMessage = @"
 Statistics for 30 Day period:

 Number of reports: $($30D.Count)
 Issues reported: $($30D.Issue)
 No Problems for: $($30D.Percentage) %
"@

if($WPFReportDate1Day.IsChecked){Write-ToTextBox -RichTextBox $WPFStatsBox -text $1DMessage -
textcolor Black}
elseif($WPFReportDate7Day.IsChecked){Write-ToTextBox -RichTextBox $WPFStatsBox -text $7DMessage
-textcolor Black}
elseif($WPFReportDate30Day.IsChecked){Write-ToTextBox -RichTextBox $WPFStatsBox -text $30DMes-
sage -textcolor Black}

})

#Clear statusbox button
$WPFClear.Add_Click({Clear-TextBox -RichTextBox $WPFStatusBox})

#===
Shows the form
#===
write-host "To show the form, run the following" -ForegroundColor Cyan
'$Form.ShowDialog() | out-null'
$run = $Form.ShowDialog() | out-null

