

Midhat Hasan Raghib Abul Farah

Developing a Mobile Application for Ride Shar-

ing Service

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

May 2018

 Abstract

Author(s)
Title

Number of Pages
Date

Midhat Hasan Raghib Abul Farah
Developing a Mobile Application for Ride Sharing Service

55 pages
11 May 2018

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Patrick Ausderau, Principal Lecturer

Motor vehicle owners, on average travelling, have around 2-3 seats empty and utilising
them in exchange for money and time is where the ridesharing industry thrives. It would
also be beneficial by reducing problems such as traffic, pollution and could create safer
communities and improve the current transportation network industry.

The primary goal is to understand how ridesharing works and build a mobile application
prototype that helps passengers to find a driver from their current location to their destina-
tion.

This thesis describes the development process of the ridesharing application starting by
analysing similar application available, then using the Scrum methodology and brainstorm-
ing sessions getting a better understanding on how it works and gathering the require-
ments and specifications. Passengers can request a ride with its duration and fare and
also receive notification once a driver accepts it. The application provides the shortest
route for the driver to pick and drop passengers to their destination.

The prototype has been developed and tested successfully on two operating systems, An-
droid and iOS. It would, however, be beneficial for the application to include a payment
and feedback system. Further studies about matching algorithm could also help to improve
it.

Keywords RideSharing, Mobile Development, React-native, Expo, Fire-
base, Google-Maps API

Contents

1 Introduction 1

2 Project Specification 2

2.1 Current state analysis and specification 2
2.2 Materials and Methods 3

3 Theoretical Background 5

3.1 Ridesharing 5
3.2 Technologies 7

3.2.1 React-Native 8
3.2.2 React-Native packages 8
3.2.3 Expo 9
3.2.4 Firebase 9
3.2.5 Google Maps 10

4 Implementation 11

4.1 Bootstrap 11
4.2 Screens 13
4.3 Navigation 19
4.4 Authentication 21

4.4.1 Registration 21
4.4.2 Log in 24
4.4.3 Log out 25

4.5 MapView 25
4.6 Passenger 29

4.6.1 Ride request 29
4.6.2 Ride cancellation 33
4.6.3 Ride confirmation 34

4.7 Driver 35
4.7.1 Ride response 35
4.7.2 Ride routes 37

5 Results 43

5.1 Passengers ride request 43
5.2 Passengers ride cancellation 44

5.3 Passengers ride confirmation 45
5.4 Drivers ride response 46
5.5 Drivers ride routes 47

6 Discussion 50

6.1 Database 50
6.2 User Interface state 50
6.3 Authentication 51
6.4 Passenger 51
6.5 Driver 53

7 Conclusion 54

References 55

1

1 Introduction

In today's era, the majority of the people living in large cities have access to public

transportation which is not always optimal and affording a personalised motor vehicle

can be challenging. On the other hand, Forbes magazine estimates that by the year

2020, the vehicle manufacturing industry will assemble more cars which also includes

10 million self-driving cars [1]. In times of a developing economy, the future dedicates

towards a sharing economy which is a peer-to-peer (P2P) based online-platform ser-

vice that allowing the access and utilisation to goods and services supported by the

community [2].

On average travelling, motor vehicle owners have around 2-3 seats empty and utilising

them in exchange for money and time is where the ridesharing industry thrives. It not

only benefits the vehicle owner but also reduces problems such as traffic congestion,

environmental pollution and creating safer communities by improving the transportation

network industry [3]. Ridesharing is the topic in which the general public has recently

increased its interest and is searching for convenient ways of utilising its services in

complement of public transportation.

The primary goal of this thesis is to understand how ridesharing services work and

build a mobile application prototype upon the knowledge gathered. The application

should be easy to use and reach the quality level necessary to be published on the app

stores. The concept of Ridesharing is to allow passengers to request for a ride and

drivers to accept passengers ride request. To fulfil these requirements, the ride re-

quests and responses are collected, processed and presented to the end user on a

map. The application also needs to be cross-platforms available, such as Android and

iPhone Operating System (iOS), for reaching a maximum of users.

2

2 Project Specification

2.1 Current state analysis and specification

Numerous ridesharing related applications such as Uber [4] and Lyft [5] were studied to

get a better understanding of how ridesharing works and their services allowing pas-

sengers to share a ride with other passengers for a lower cost [6]. Open source project

such as icare [7] and carpooling [8] existed, however developing and implementing the

cross-platform application seemed beneficial in comparison to them. In addition, there

is the interest in learning how to develop such application from scratch.

The specification for building the application were gathered and the following features

below were required to build an efficient mobile app prototype:

• Cross-platform mobile application

• Authentication for different user roles

• Navigation between various screens

• MapView for passengers and drivers

• Passenger functionalities

• Driver functionalities

Based on the analysed features above user stories were created that are short, simple

descriptions of the features written from the perspective of an end user. The Connextra

user story template in figure 1 was used to create the user stories.

Figure 1: Connextra user story template (Reprinted from MISHKIN BERTEIG [9])

3

The following user stories below describes how various roles behave in the application:

• As a user, I can sign up with a driver role, so that I can accept passen-
gers ride requests

• As a user, I can sign up with a passenger role, so that I can request for a
ride

• As a user, I can log in with a driver account, so that I can accept passen-
gers ride requests.

• As a user, I can log in with a passenger account, so that I can request for
a ride

• As a driver, I can view my current location and all passengers ride re-
quest as markers on the map, so that I can pick nearby passengers

• As a driver, I can accept passengers ride requests so that I can make
money.

• As a driver, I can view direction routes before picking up passengers from
their origin, so that I can navigate and pick them up efficiently

• As a driver, I can view direction routes after picking up passengers to
their destination, so that I can navigate efficiently to right places

• As a driver, I can receive payment when successfully dropping off a pas-
senger to their destination, so that I get reward for offering a ride.

• As a passenger, I can view other passengers ride request from my cur-
rent location, so that I can know who to share the ride with.

• As a passenger, I can request for a ride entering my location and destina-
tion addresses, so that I can get a ride

• As a passenger, I can view the journey fare and duration before making a
ride request, so that I can decide if I request it.

• As a passenger, I can view the ride request as a marker on the map, so
that I can get feedback that the ride request has been made.

• As a passenger, I can cancel the ride request, so that I can enter a new
ride request or decide not to request the ride.

• As a passenger, I can make payment when reaching the destination, so
that I can remunerate the driver for the service

2.2 Materials and Methods

The thesis followed the Scrum development methodology with weekly sprints to make

the development fit the short time frame of the project. Wall Post-it notes were also

used on Kanban board to ensure the physical presence of the priorities and proper

levels of engagement with tasks. The implementations of the Project were performed

on Balsamiq for mocking, Visual Studio Code Editor for coding and Git for version con-

trol.

4

A brainstorming was carried out to generate ideas for the application. The tools used

were pen and paper, whiteboard, Post-its and a note-taking app Wunderlist. The Pin-

terest website was used to be inspired and create new ideas, and each session was

documented and would typically last an hour. Following prototyping was carried out

using different mediums such as A5-papers, mock tool Balsamiq and whiteboard to

sketch the prototype of the application.

Before implementing the prototype, several works were studied and gathered from

Google Scholars, Medium articles and YouTube Lectures. The studies provided the

necessary information of how ridesharing works, the design of the system and the best

practices required when developing a cross-platform mobile application. The Medium

articles and YouTube lectures seemed relevant to this project, and new frameworks

and tools were learned to help speed up the process.

5

3 Theoretical Background

3.1 Ridesharing

Ridesharing is not a brand-new concept, and it was discovered between 1914 -1918

known as the Jitney craze that allowed individuals to figure out an innovative and prof-

itable way to use their automobiles. In 1908, Henry Ford mass-produced the Model-T

automobile, which was relatively affordable to an average successful person. However,

by 1915 it reached a rapid downfall as there were concerns over the safety and liability

of the passengers. In 1942, the U.S government needed to figure out a solution to save

rubbers, and the most reasonable option was arranging ridesharing to workplaces. In

1973, the oil crisis caused an impact on the market price of gasoline [10;11]. By 1990s,

Kowshik predicted that ridesharing would exist with a better dynamic system which

includes a better matching technique [12].

Today's ridesharing revolution was made possible due to the technological advances

such as:

1. Global Positioning System(GPS) navigation used for creating the best driving
route, navigation assistance and arrangement for ridesharing.

2. Mobile phones for allowing the travellers to efficiently request a ride with itineraries
from their current location

3. Social network for establishing trust and accountability between the drivers and
passengers creating a safer community

4. An electronic payment system for allowing customers to make payments to the
driver as a reward for their service.

RideSharing is a means of transportation that allows multiple travellers to journey to the

same location [13]. It is a convenient way for travellers to commute and beneficial for

the environment such as reducing traffic congestion, fuel costs, time costs and the

stress of driving.

6

Figure 2: Ridesharing workflow between passenger and driver

The illustration presented in figure 2 describes the operation of how ridesharing plat-

form works between a driver and a passenger. Each of the following operations below

provides the detail explanation:

1. Passenger requests for a ride providing its origin and destination address.

2. Nearby drivers are alerted of the passenger's ride request. The ridesharing plat-
form selects the driver based on the distance to the passenger and rating. The
driver is provided with 10-15 seconds to accept the passenger ride request, or else
the next driver in the queue will be assigned.

3. The driver accepts the passenger ride request and receives the passenger's origin.

4. The passenger receives a notification that the ride request is accepted and also
gets the driver's details and the estimation time of arrival.

5. When the driver arrives at passenger’s origin, the driver receives passenger’s des-
tination address and starts the journey.

6. Once the journey completes, the ridesharing platform automatically charges the
passenger and pays the driver.

The ridesharing platforms, such as Uber and Lyft exists providing an app that allows

drivers and passengers to connect for a ride journey at an agreed price. The passenger

would use the app to request a ride at a particular time and location, and the app in

return provides an instruction including the journey fare, the location of the driver and

the estimation time of arrival. The application also keeps the personal information of

the passenger safe without disclosing it to the driver. The GPS on the app provides the

best optimal route for the driver to pick up the passenger and for the passenger to re-

quest a ride. It included benefits for the passengers such as the rating system for the

quality of the journey, an efficient payment system such as paying using a credit card

and a reward system.

7

The number of active drivers of the ridesharing platform Uber rose from a base of zero

in mid-2012 to 160,000 by the end of 2014. By 2017 the total number of drivers have

passed 1.5 million [14] of which the percentage of drivers: 14% being women, 19%

aged under 30, 25% over age 50 and 71% have living dependents [15]. However, the

ridesharing platforms provide services in exchange for a commission of the fares driv-

ers earn ranging between 0% to 25% as advertised. Despite the fact of offering low ride

fares for its customers, it does not benefit much from the drivers. Christian Perea pro-

vided an infographic displaying how the ridesharing platforms benefited from the de-

creased costs based on the random sample collection of 37 actual UBERX trips. Cities

such as Chicago collected a higher commission from the driver about 54% for a mini-

mum fare of $4.20 of which the driver gets $2.25 whereas in Houston collected 45%

commission for a minimum fare of $5.00 of which the driver receives $2.29. [16]

Nevertheless, the study conducted by Massachusetts Institute of Technology (MIT), it

explained how ridesharing impacted the economy with benefiting both the drivers and

passengers, reducing traffic congestion and decreasing the public health hazard. The

study shows congestion reduction by a factor of 3 for helping the same number of pas-

sengers compared to current ridesharing platforms serving a single passenger. The

drivers would have shorter work shifts by the reduction in the taken trips for the same

amount of fare and passengers would save time by waiting less [17]. Ian Hatha-way et

al. stated how ridesharing has emerged as a critical part of the monetary system in

phases of employment in which a majority of the employees are either part-timers or

self-employed, especially in large metropolitan regions [18]. Finally, the valuations of

leading companies such as Uber at $68B, Didi Chuxing at $34, Lyft at $5.5B, Ola at

$3.5B, Grab at $3B and Careem at $1B determines that it has an enormous market

potential all around the world [19].

3.2 Technologies

This section provides the details of the selected tools and libraries, which ensures that

users have the best possible experience and developers are productive when develop-

ing and maintaining the code.

8

3.2.1 React-Native

React Native [20] is a framework for building native mobile applications using JavaS-

cript and React. React [21] is a JavaScript library for building user interfaces. On March

2015 React Native was released as an open source project on GitHub and announced

during the Facebooks F8 conference [22]. React Native utilises JavaScript and applies

the same design principles used in React library, allowing to write rich declarative user

interface mobile components.

Applications written with React Native are the real mobile apps which use the same

fundamental UI building blocks of an Android or an iOS app. There is no time wasted

on the compilation as the app reloads instantly with a change in state. The Hot Reload-

ing option, helps in retaining the old application state while the new code is applied.

Inserting native code written in Objective-C, Java or Swift for specific optimisation of

the application can be included easily [23]. Moreover, React Native utilises a JavaS-

criptCore for code execution. JavaScriptCore is an optimising virtual machine which

renders JavaScript into native components [24].

3.2.2 React-Native packages

React-native-elements [25] is an open source library that provides cross-platform user

interface toolkit such as Button, Card and much more which works on Android and iOS.

The library is entirely built using JavaScript and is easily supported using Expo. Moreo-

ver, the components can be customizable easily.

React Navigation [26] is an open source library used for routing and navigation of Re-

act-native apps. It provides an easy to use built-in navigators and navigation compo-

nents which work seamlessly across platforms such as Android and iOS giving it plat-

form specific look and feel with smooth animations and gestures. Moreover, it is highly

customizable using JavaScript. Finally, it is extensible at every layer providing the abil-

ity to write custom navigators.

9

3.2.3 Expo

Expo is a set of tools, libraries and services that help building native mobile application

such as Android and iOS project using JavaScript. The application written in Expo are

React-Native apps which contain the Expo Software Development Kit (SDK). The SDK

is native, and the library provides access to the device's system functionality such as

camera, contacts, local storage. That means that the use of XCode or Android Studio

or writing any native code is required. Since the application is built entirely in JavaS-

cript, it can be ported and run on any native environment containing the Expo SDK.

Moreover, it also provides User Interface (UI) components which handle a variety of

use-cases that are not available in the React Native core such as the icon, blur view.

Finally, the Expo SDK provides access to services which are quite challenging to man-

age by majority app such as managing Assets, Push notification and building native

binaries that are ready to be deployed to the app store [27].

3.2.4 Firebase

Firebase [28] is a cloud service for mobile and web application development platform

that provides the necessary tools needed to develop a high-quality application, grow

user base, monetise on the business and focus on the users. It also provides SDK for

all major client platforms such as Android, iOS, Web, C++, and Unity.

The Firebase Realtime Database [29] is used to store and sync data with Non-Relation

Structured Query Language (NoSQL) cloud database. The data stored is synchronised

in Realtime across all devices and is also available when the application is offline. Im-

plementation of the database is effortless as pushing a JavaScript Object Notation

(JSON) representation of the information to the server, without the need of setting up a

backend Structured Query Language (SQL) structure. The JSON data pushed are

sorted by a unique ID which is automatically generated by Firebase.

The Firebase Authentication [30] provides a drop-in authentication solution with best

practices and ready-made library for authenticating users to the application, maximising

the sign-in and sign-up conversion. It supports all sorts of authentication such as

standard authentication (email and password), phone number and also Identity provid-

ers such as Google, Facebook, and Twitter. The Firebase Authentication provides easy

integration with other Firebase services such as Realtime Database and Cloud Func-

10

tions and leverages industry standards like Open Authorization (OAuth) 2.0 and

OpenID Connect. Finally, the Firebase console aids in configuring the Firebase setup

for application and hosts it on a container at Google Cloud Provider cloud infrastruc-

ture. Its free account currently allows creating maximum of five projects, and further

projects would require a project quota increase.

3.2.5 Google Maps

Google Maps [31] is a mapping service developed by Google that provides everything

required to build location-based apps. The Google Maps Application Programming In-

terface (API) [32] provides numerous integration API services for platforms such as

Android, iOS and web services. The following Google Maps API services are enabled:

Google Places API Web Service, Google Maps Directions API and Google Maps Dis-

tance Matrix API.

Google Places API [33] provides contextual information about user current location,

valuable information about local businesses and point of interest and an autocomplete

search feature for a type-ahead location-based prediction that are represented either in

Extensible Markup Language (XML) or JSON.

Google Maps Directions API [34] provides directions for modes of transport such as

driving, walking, cycling or transit and waypoints route up to 23 locations and an esti-

mation travel time based on historical and current traffic conditions that are represented

either in XML or JSON.

Google Maps Distance Matrix API [35] provides the travel distance and time for a ma-

trix of origins and destination based on the given start and end points that are repre-

sented either in XML or JSON.

11

4 Implementation

4.1 Bootstrap

In this subsection, will be discussing about bootstrapping the application using the Ex-

ponent Development Environment (XDE), Firebase and Google Maps API.

The Expo XDE tool provided by Expo is used for setting up a react-native project and

the listing 1 provides the required dependencies which are installed using a dependen-

cy manager such as Node Package Manager (Npm).

Listing 1: Project main and development dependencies required for the ridesharing application

Firebase is configured using the Firebase console, which aids in creating a firebase

project and also view different firebase services that are enabled. Upon successful

creation of the firebase application, three options are provided to choose from which

are iOS, Android, and Web app. Typically, an adapter such as React-native-Firebase

[36] is used to integrate Firebase into react-native efficiently. However starting from

version 3.1 Firebase provides a JavaScript SDK, which has almost full support for

React-native and including it is easy.

12

This application utilises the Firebase JavaScript SDK, and the configuration code from

the Firebase console [37] is copied and used in a Firebase singleton file which uses the

firebase as a dependency installed from the required dependencies in listing 1.The

singleton is a software design pattern that ensures that a single instance of the object

is created and can be accessed concurrently by individual components of the app [38].

The Firebase singleton file in the listing 2, initialises the application with firebase

configuration and exports instances of firebase, database, and auth.

Listing 2: Firebase singleton file exposing database, auth and google auth provider for the

ridesharing application

The Firebase Realtime Database Rules in listing 3 using a JavaScript-like syntax, is

used to configure users read and write access rights operations to the database. This

is achieved by checking if the user id obtained using Firebase Authentication matches

with the user id stored on the database. Database Rules can also be used to define

data validation rules and database indexes to support ordering and querying of

data.[39]

13

Listing 3: Database security rule for passengers and drivers

Finally, the Google Maps is configured using the Google API Console [40], which aids

with creating a Google Maps project, providing with an API KEY which is an

identification for the developer and its usage of the service when calling the API and a

place to enable numerous Google Map services. The following Google Map services

are enabled such as Google Places API Web Service, Google Maps Directions API

and Google Maps Distance Matrix API for the ridesharing application.

4.2 Screens

Screens are the building blocks of the application which presents the features and

functionalities separated to their specific task. The React-native packages such as Re-

act-Native elements is a UI toolkit that provides custom premade components, and the

Expo library offers the MapView component.

14

Figure 3: The Welcome Screen displaying an image logo and two buttons

The Welcome Screen in figure 3 will be the initial view that loads when the application

starts. It consists of an image logo and two buttons for Signing in and Signing Up. The

SignIn and SignUp button on press will navigate to the SignIn or SignUp Screen re-

spectively.

15

Figure 4: The SignUp Screen displaying four input fields, a toggle button and a button

The SignUp Screen in figure 4 is displayed when pressing the SignUp button on the

Welcome Screen from figure 3. It consists of four input fields with labels, allowing users

to fill in details such as full name, phone number, email, password and an option to

select a role using the toggle button. By default, the passenger role is selected and

toggling changes to driver role. The SignUp button on the SignUp Screen when

pressed will successfully create a user account redirect to the appropriate Home

Screen based on the selected role.

16

Figure 5: The SignIn Screen displaying two input fields and a button

The SignIn Screen in figure 5 is displayed when pressing the SignIn button on the Wel-

come Screen from figure 3. It consists of two input fields with labels allowing users to

enter their authentication details such as email and password and a button to sign-in

into the application. The SignIn button on the SignIn Screen when pressed will redirect

to the Home Screen based on their selected role when registering from figure 4.

17

Figure 6: The Profile Screen displaying an image logo, three input fields and a Button

The Profile Screen in figure 6 is displayed when the user is authenticated successfully

into the application either from the SignUp Screen in figure 4 or the SignIn Screen in

figure 5. It consists of an image logo of the user, three input fields displaying user’s

personal information such as email, phone number, current role and a sign out button

to log out from the application. The SignOut button on the Profile Screen when pressed

will redirect to the Welcome Screen in figure 3.

18

Figure 7: The Home Screen displaying different markers on the MapView based on user’s roles

The Home Screen in figure 7 is displayed when the user is authenticated successfully

into the application either from the SignIn Screen in figure 5 or the SignUp Screen in

figure 4. It will consist of a MapView and MapView coordinates. The MapView will dis-

play the MapView coordinates as markers based on their selected roles during the reg-

istration in figure 4. The MapView coordinate makers are made identifiable using differ-

ent images instead of the default icon on users. The car marker image will identify us-

ers with driver role, the passenger marker image will identify users with the passenger

role and the default marker icon will locate current users requesting a ride on the

MapView.

19

Figure 8 The Notification Screen displaying listview of notifications

The Notification Screen in figure 8 is displayed when the user’s ride request is either

being accepted or cancelled. It consists of a listview containing the notification details

of user’s ride request. It is also a useful way for notifying users about their ride status

when the user has not enabled the push notification services.

4.3 Navigation

Navigation is a vital part of the application that allows users to switch between screens.

The React Navigation library provides essentials components such as Tab and Stack

navigations required for the application. The screens depicted in figures 2 to 7 will be

separated into two different navigation states based on authentication which is the

signed in and signed out state.

20

The Signed-Out state will be the composition of the following screens that are Wel-

come Screen, SignIn Screen and SignUp Screen onto a StackNavigator when users

have not authenticated to the application. The StackNavigator is stack-based [41] navi-

gation which is conceptually similar to how web browser handle navigation, in which

the browser pushes and pops items from the navigation stack as the user interacts with

it and results into the viewing of different screens. The addition of StackNavigator to the

application in listing 4 is for the signed-out state of screens of unauthenticated users.

Listing 4: SignedOut navigation state using StackNavigator

The Signed-In state will be the composition of the following screens that are Profile

Screen, Home Screen and Notifications Screen onto a TabNavigator when users have

authenticated to the application. The TabNavigator is tab-based [42] navigation, which

is one of the most common styles of navigation in the mobile application that separates

different screens into tabs and results into the viewing a specific screen when pressing

the particular tab button. This navigation applies to authenticated users of the app, and

the listing 5 explains adding it to the application.

Listing 5: SignedIn navigation state using TabNavigator

When the user authenticates to the application based on the ordering of the screens,

the TabNavigator displays the first screen as the initial screen. However, selecting

which screen to display first can be set using the initialRoutName property provid-

ed. There is also an option for adding custom icons to the tabs using the tabBarOp-

21

tions property. The icons can either by creating custom icons or using premade icons

library provided by expo vector icons that include various vector icons such as FontA-

wesome, Material Icons and Entypo.

4.4 Authentication

Authentication creates identification for the users of the application. The database se-

curity rule for passengers and drivers configured in listing 3 ensures that correct pas-

senger can request a ride and the right drivers can accept the ride request. It also pro-

vides users with a personalised profile page including ride histories, discussed in sec-

tion 4.6 and 4.7. For simplicity of the application, the Email and password based au-

thentication provided by the Firebase Auth is used and can be enabled easily from the

Firebase console under the sign-in method tab. Authenticating successfully to the ap-

plication, stores the user details separately based on the user's chosen role using Fire-

base Realtime database. Nevertheless, the appropriate screen will be navigated based

on successfully updating of the user details. The following process takes place within

the authentication flow that are Registration, Login and Logout.

4.4.1 Registration

The users of the application enter the required fields, which are fullName, email,

phoneNumber and the selected role which are passenger or driver role into the form

presented on the Sign-Up screen from figure 4. The Firebase Auth handles the user's

email address and password in listing 6, and on successful handling, it creates a new

user in the Authentication table.

Listing 6: Firebase Auth creating a user with email and password in the Authentication table

On successful registration, Firebase returns a promise, which is an object that may

produce a single value over time in future. The value can either be a resolved value or

unresolved value due to a network error for example. The Firebase promise object in-

cludes user’s metadata, email, emailVerified, metadata and the authorisation

token as uid in figure 9.

22

Figure 9: Response output from firebase when registration is successful

The Firebase auth instance of the currentUser property contains the updatePro-

file property which is used for updating basic profile information such as the user’s

display name and a profile photo URL and for this application case the display name is

updated using the user object in listing 7.

Listing 7: Firebase Auth is updating current users profile display name

When the user's display name is updated successfully, the user’s details entered dur-

ing the registration process from figure 4 are stored based on the roles selected in the

using the Firebase Realtime Database. The user's details are stored under its cur-

rentUser id of either the drivers or passenger database references.

Listing 8: Storing user details under driver’s role with current user id

Selecting the driver role stores the user details under the currentUser id of the

driver database reference in listing 8 and selecting the passenger role stores the

user details under the currentUser of the passenger database reference in listing

9.

23

Listing 9: Storing user details under passenger’s role with current user id

The authorisation token from the Firebase response object in figure 9 helps in

identifying the user and will be used for persisting. With persistence, the user would not

require authenticating when using the application next time. Persisting the user is

achieved using the AsyncStorage which is provided by the React-native library.

Listing 10: Storing firebase response with Async storage

The AsyncStorage sets the firebase response to a key called userData in listing

10. When the authorisation token is successfully set, it will navigate to the SignedIn

state in listing 11 using the navigate property of React Navigation, that provides nav-

igating to the desired screen which is the Home Screen from listing 5.

 Listing 11: Navigation to Main Screen upon successful registration or log in

When an unsuccessful registration occurs, Firebase throws a validation error that is

caught and updated to an error state in listing 12. For example, when a user enters a

similar email address stored in the Authentication table, Firebase rejects creating the

user and returns a validation error.

Listing 12: Catching Firebase validation error for sign up and setting it to the error state

24

The catch block handles the Firebase validation error and updates the error state. The

error state then renders the error message to the user above the SignUp button on the

Sign-Up screen in figure 4.

4.4.2 Log in

The users of the application will enter the required fields, which are the email address

and password into the form presented on the Sign-In screen from figure 5. The Fire-

base Auth handles the user's email address and password in listing 13 and checks if

it is an existing user with the similar Authentication table used during the registration

process.

Listing 13: Handling user’s email and password with firebase auth

On successful login, Firebase returns a Promise data object from figure 9 which is per-

sisted using the setItem property provided by AsyncStorage with a key called

userData in listing 14.

Listing 14: Storing firebase response data to userData with Async storage

Successfully setting the authorisation token navigates to the Signed-in state from listing

11 and when an unsuccessful login occurs, Firebase will throw a validation error that is

caught and set to an error state in listing 15. For example, when a user enters an inva-

lid email address or an incorrect password for a valid email address stored in the Au-

thentication table, Firebase rejects logging in the user and returns a validation error.

Listing 15: Catching Firebase validation error for sign in and setting it to the error state

25

The catch block handles the validation error and sets it to an error state. The error state

then renders the error message to the user above the SignIn button on the Sign-In

screen from figure 5.

4.4.3 Log out

The users can log out successfully from the application using the sign out button on the

Profile screen from figure 6. The Firebase Auth handles the logging out process using

the signOut method on line 1 in listing 16.

Listing 16: The logging out process

Successfully logging out returns a Firebase promise of void which does not include any

Firebase response data. The userData key is removed using the removeItem prop-

erty of AsyncStorage on line 2 in listing 16 ensuring the removal of user persistence,

this causes the user to re-authenticate next time when using the application. Finally,

the removal of the authorisation token navigates to the Signed-out state on line 3 of

listing 16. The navigate property of React navigation navigates to the desired screen,

which is the Welcome Screen from figure 3.

4.5 MapView

When the passenger successfully authenticates to the application, the MapView com-

ponent is displayed. This MapView is a part of the react-native-maps library built by

Airbnb that uses Apple maps or Google maps on iOS and Google maps on Android.

The Expo library provides the Map component that can be easily imported into the pro-

ject and does not require any setup. However, when building a standalone application

some custom deployment configuration is required for Android but not iOS. The

MapView component is a part of the Home Screen in figure 7.

26

Listing 17: Setting driver role if user id exists in driver

The Home Screen from figure 7 contains the initial state of two roles which are pas-

senger and driver. The componentWillMount lifecycle method calls an asynchro-

nous listener attached to the Firebase Realtime Database references to passengers

and drivers. The once property listens to the database references once, and then

the hasChild property is used on the snapshot value to check if the currentUser id

matches the database references. If the drivers reference contains the curren-

tUser id as child reference then the driver role is updated in listing 17 and if the pas-

senger reference contains the currentUser id as child reference then the passenger

role is updated in listing 18.

Listing 18: Setting passenger role if user id exists in passenger

27

When the Home Screen from figure 7 mounts initially it loads a list of passenger’s ride

requests on the map. The loading is achieved using the componentWillMount

method which is available on the Home Screen lifecycle methods. The lifecycle method

contains an asynchronous listener attached to the Firebase Realtime Database refer-

ence ride-requests in listing 19.

Listing 19: Listening to passenger’s ride request from Firebase Realtime Database

The ride-requests reference is initially triggered once for the state of data and trig-

gered again when the data changes. This data is retrieved using the on method on the

ride-request reference and is assigned to a passenger’s variable. If the passen-

ger’s variable in listing 19 exists, the state of passengers is updated and rendered in

listing 20 as Map coordinates on the MapView.

Listing 20: Rendering passenger data as a marker on the Map

The key property in listing 21, is required for mapping over a state that is rendered. It

helps React to track changes of the element's id such that it requires rendering or not

thus an index will be provided. The image property is required for displaying the pas-

senger icon and adding of custom passenger icons to the application. Since there will

be multiple passenger's ride request marker on the map, they are separated into three

different sets of icons such as the passenger’s own ride request icon, other passen-

ger's ride requests icon and passenger ride request accepted icon when the ride re-

quest of the passenger has been accepted by the driver.

28

Listing 21: Mapping passenger’s markers coordinates to MapView Marker

The coordinate property requires exact marker position which are the latitude

and longitude of the passenger’s origin and destination addresses. The onPress

property triggers an event that displays a modal window with the current passenger

details.

Listing 22: MapView marker rendering driver’s location coordinates

The driver marker is displayed when the user authenticates with the driver role and

grants the permission is requested by the app to access the user's current location us-

ing the Permission module from the Expo module. Successfully granting allows the

application to access user's current location using the getCurrentPositionAsync

property on Location module from the Expo module and updating the location state.

The MapView marker coordinates property receives the location coordinates and

renders as MapView Marker coordinate in listing 22.

On unsuccessful granting of permission, the location result state updates with permis-

sion denied text, and the user will not be able to locate the marker on the MapView.

Last but not least, to avoid conflict in identifying the driver icon on the map, a condition

is used to render different icons such as the yellow car marker for the current driver

and random colour car marker for other drivers on the MapView.

29

4.6 Passenger

The Passenger role has the ability to create and cancel a ride request. In this section,

the passenger's functionalities are explained based on the chosen technologies dis-

cussed in subsection 3.5.

4.6.1 Ride request

The ride requests created by the passenger will ensure that both the passenger and

the driver has the correct ride request information. Passengers creating a successful

ride request requires the following values which are the origin address, destination ad-

dress, journey fare and duration. A payload object will be created containing the val-

ues, and then the Firebase Realtime database inserts the payload object under the

currentUser id of the ride-request reference.

The ride request process is broken down into three parts:

1. Address search

2. Ride duration and fare

3. Updating database reference

Figure 10: Search box searching for an address using google maps API

The correct address is obtained when inputting an address on the input fields in figure

10. The user types into the input search box, each keystroke updates the initial state of

users input. The updating of the initial state of user input is achieved using callbacks

with the method handleChange, which is bound to the input search boxes. Each us-

30

er’s keystroke calls setState, which is an asynchronous function for updating state

on the react component from its initial state within the handling method in listing 23.

Listing 23: Updating state of users input of address

The user input state when updating requires debouncing by one millisecond. Debounc-

ing is a way to limit the rate at which the function runs. When the debouncing and up-

dating the addresses state completes, an HTTP GET request is sent to the Google

Maps Places API using the fetch API. The fetch API provides an interface for fetch-

ing resources such as network resources and is similar to performing XMLHttpRe-

quest. The body of the request in listing 24 will contain the updated address state as

input parameters and the Google Maps API keys obtained from subsection 4.1.

Listing 24: Fetching Origin address from google places API

Once the HTTP request succeeds, an HTTP response is received which contains a list

of address predictions matching the input parameters requested in figure 11. The

HTTP response will update the addresses state and will be rendered into a list view.

Figure 11: Response out from google autocomplete API

31

The autocomplete component library called react-native-google-places-

autocomplete is used, which will encapsulate the functionalities when are searching

for an address, displaying address prediction on the listview, debouncing of the search

result and handling of XHR cancellation in listing 25.

Listing 25: The origin search box component using GooglePlacesAutoComplete

The passenger will have the ability to determine the journey price and duration before

creating a ride request, and this will ensure that the passenger receives correct amount

passenger for payment and the duration time the journey will take. With the help of

Google Distance Matrix API, it aids in calculation of the ride duration and fare. An

HTTP GET request is sent to Google Distance Matrix API with the updated state ad-

dresses as input parameters in listing 26.

Listing 26: Sending a request for calculating distance

Once the HTTP request succeeds, an HTTP response is received, it will contain the

destination_addresses, origin_addresses, rows and status matching the

input parameters requested.

32

Figure 12: The rows elements response by Google Maps Distance Matrix API showing the du-

ration and distance of the origin and destination entered

The distance value from the HTTP response available on the elements property from

figure 12 is used to calculate the journey fare with formula in listing 29 which requires a

base fare, time rate, distance rate, surge, distance and time.

Listing 27: The formula for calculating ride fare

Once the ride fare is calculated, the duration value from figure 12 and using the calcu-

lated fare updates the component state with rides fare and duration that is rendered

and shown when the passenger has entered the origin and destination addresses.

33

Listing 28: Pushing the ride request payload to ride-request and ride-history firebase database

references

Finally, in order to send the request successfully to the database references which are

ride-requests and ride-history the following are required in the payload which

are the currentUser id, displayName obtained from the Firebase auth function

from listing 2, the ride request itineraries such as the origin and destination ad-

dresses, journey fare, duration and status are required which are available from

the react component state, automatic timestamp ISOString generated with the

Date API in component state, and the status pending in listing 28.

4.6.2 Ride cancellation

The ride cancellation requested by the passenger will ensure that the passenger does

not require a ride, and the driver does not have to accept the passenger's ride request.

Passengers cancelling a ride request requires the following values which are the cur-

rentUser id and timestamp. A payload object will be created containing the values,

and then the Firebase Realtime database will check if the passenger's ride request

contained the accepted_by property and based on that appropriate payload object

will be inserted under the currentUser id of the ride-cancellation reference.

The ride cancellation process is broken down into two parts which are ride cancellation

payloads and updating of database references.

The ride cancellation payload requires the currentUser id, which can be obtained

from listing 2. The first payload will contain the passenger data, the status can-

celled, the timestamp of the cancelled journey and a cancellation fee in listing

29. This payload is executed if the passenger’s ride request contains an accepted_by

property, this property exists only if the driver has accepted the passenger’s ride re-

quest.

34

Listing 29: Payload one contains passenger Data, status, cancellation time and a fare cancella-

tion fee

The second payload will contain the passenger data, the status cancelled and the

timestamp of the cancelled journey in listing 30. This payload is executed by default

when the passenger’s ride request does not contain an accepted_by property, as this

property exists only if the driver has accepted the passenger's ride request.

Listing 30 Payload two contains passenger Data, status and cancellation time

The ride cancellation payloads from the listing 29 and 30 are updated to the ride-

cancellation and ride-history Firebase database references in sequence in

listing 31.

Listing 31: Pushing payload ride-cancellation and ride-history Firebase da-

tabase references

Once both ride-cancellation and ride-history Firebase database reference

are updated, the currentUser id of the ride-request reference will be set to 'null'

which causes removes the coordinate from the MapView.

4.6.3 Ride confirmation

35

The ride request confirmation will be received by the passenger as a notification when

their ride has been accepted by the driver, that can be viewed on the Notification

screen from figure 8.

Listing 32: Passengers ride request notifications

An asynchronous listener is attached to the ride-notification Firebase database

reference in listing 32 which checks if there are notification value for the currentUser

id exists and the state notificationAvailable is updated with notification value

which is the loaded as a list of notification on the Notification Screen from figure 8.

4.7 Driver

The Driver role has the ability to respond to ride request by filling the driver seats with

passenger’s ride request and drive towards to ride request route. In this section, the

driver’s functionalities are explained based on the chosen technologies discussed in

subsection 3.2.

4.7.1 Ride response

The ride response created by the driver will ensure that the passenger ride request has

been accepted and the driver has accepted the correct ride request. Passenger will be

notified which driver has accepted their ride request by checking the driver name on

the accepted_by field, viewing the latest notification on the notification screen and

displaying the colour change of their ride request icon to green.

The ride response process is broken down into three parts:

36

1. Adding the passenger to current ride

2. Updating the passenger ride information

3. Sending a notification of the ride status

When the driver authenticates successfully to the Home Screen from figure 7, from its

current location if there are any nearby ride request he will be able to view them on the

MapView as passenger markers. Upon clicking on them, the driver displays a modal

screen with the Passenger details along with an accept button. The accept button when

clicked allows the driver can fill the number of available seats with accepted passen-

gers. The number of available seats of the driver's car depends on the number of ac-

ceptance made by the driver. The passengers accepted data are available under the

drivers Firebase database reference child accepted in listing 33.

Listing 33: Passengers added under the drivers accepted reference

Upon successful addition of the passenger, the driver notifies the passenger by updat-

ing the accepted_by and status fields in listing 34. The accepted_by field will

include the driver's payload which is driver’s user id, displayName, email, phone

number and the current timestamp and the status as confirmed.

Listing 34: Updating passenger status from pending to confirmed and accepted by with driver

payload

The passenger’s ride request icon will have a colour change which occurs when the

icon state updates from pending to confirmed in listing 35.

37

Listing 35: Updating the current state of passenger data with status and accepted_by values

Upon successful updating of the passenger ride request information, the Notification

screen from figure 8, is also updated which displays the status passenger's ride re-

quest on its listview. The Notification update is achieved using the same payload infor-

mation which is the passenger data which the driver has accepted onto the notifi-

cations Firebase reference of the passenger's user id.

4.7.2 Ride routes

The ride routes ensure that the driver heads to the correct direction of the passenger's

current ride request. Drivers can view two ride routes which are the Pick-Up route and

the Drop Off route. The driver's routes are displayed when it is current location, and the

passenger's ride request pickup and drop off locations are available. The ride routes

process is broken down into two parts: Pick Up and Drop Off

As discussed in the subsection 4.5, the driver’s current location is obtained initially

when the MapView component loads and using the getCurrentPositionAsync

property on Location module provided by Expo that updates the driver’s location state

on the MapView on listing 36. When the driver departs from its current location, the

new updated location is obtained using the watchPositionAsync property on Loca-

tion module provided by Expo to detect the driver's current location. The options used

are maximumAge of a one-millisecond, timeout of two-milliseconds and enabling the

accuracy level on enableHighAccuracy, which updates the driver's location internal

state and the driver marker on the MapView.

38

Listing 36: Updating driver’s current location using watchPositionAsync

The driver will obtain a list of passenger’s locations from the accepted references

under its currentUser id of the drivers Firebase database reference. Each pas-

senger from the list includes an origin and destination key which contains the

formatted address in the address key and the latitude and longitude coordi-

nates in the coordinates key. The passenger's origin and destination values

are updated to the passengerLocations origin and destination state in listing 37.

Listing 37: Updating the passenger’s location from the driver’s accepted firebase reference

Upon receiving the driver's current location and passenger's origin addresses success-

fully, the passenger's origin addresses are sorted by the distance from the driver's cur-

rent location using the sort-by-distance library in listing 38.

39

Listing 38: Sorting passenger origin from driver’s origin by distance

The origin is the driver's current location coordinates, passengerOrigin is the list

of passenger’s origin location coordinates and opts is the options property which re-

ceives the lat and lng properties. Upon successful sorting of the location coordinates

in listing 38, the last location coordinate from the sorted result is assigned to a desti-

nation variable, and the remaining sorted result to a waypoints variable. The des-

tination variable is then assigned and updated to the pickUpOrigin state and the

waypoints variable assigned and updated to the pickUpWaypoints state in listing

39.

Listing 39: Collecting waypoint and origin from the sorted result and setting new pickup way-

points and origin states

The Direction component uses these values drivers, current location, passenger’s

waypoints and destination to draw routes between coordinates using the 'react-native-

maps-directions' library and Google Maps Direction API in listing 40.

Listing 40: Displaying pick up routes from the driver location

The origin is the start routing location from, destination is the from the starting

location to and the waypoints are an array of location coordinates between the origin

and destination and mode is the transportation mode. When the driver's location coor-

40

dinates are similar to the passenger location coordinates, the driver will apply the con-

firm button presented in the passenger details component. This confirmation removes

the passenger ride request from the map by setting the passenger's ride request data

to null on the accepted reference and moving the passengers ride request data under

confirmed reference of the currentUser id of the drivers Firebase database ref-

erence in listing 41. This ensures that no overlapping of the driver marker with the pas-

senger marker occurs and correct direction is rendered between the driver and pas-

senger.

Listing 41: Passenger’s ride confirmation and removal from Firebase database reference

Successfully picking up all the passengers and confirming their ride requests, the pas-

senger's destination location coordinates will be generated as markers on the MapView

of the Home Screen from figure 7. Using the driver's current location and the passen-

ger's destination addresses, they will be sorted by the distance from the driver's current

location and stored in a const variable called sorted using the sort-by-distance

library in listing 42.

Listing 42: Sorting passenger destinations from driver’s origin by distance

The origin is the driver's current location coordinates, passengerDestination is

the list of passenger’s destination location coordinates and opts is the options

property that accepts a lat and lng property. Upon successful sorting of the location

coordinates in listing 68, the last location coordinate from the sorted result is assigned

to a destination variable, and the remaining sorted result to a waypoints variable.

41

The destination variable is then assigned and updated to the dropOffDestina-

tion state and the waypoints variable assigned and updated to the dropOffWay-

points state in the listing 43.

Listing 43: Sorting passenger destinations from driver’s origin by distance

Using the available values such as the driver's current location, passenger’s waypoints

and destination values are passed onto the Direction component which uses the re-

act-native-maps-directions library to draw routes between two coordinates

using the Google Maps Directions API in the listing 44.

Listing 44: Displaying drop-off routes from the driver location

When the driver reaches the passenger's destination, the passenger makes an elec-

tronic payment to the driver. Upon receiving successful payment from the passenger,

the driver presses the complete button located in the passenger details component.

42

Listing 45: Passenger’s ride completion and removal from Firebase database reference

This removes the passenger's ride request from the map setting the passenger's ride

request data to null on the confirmed reference and adds the passengers ride re-

quest data under ride-completion reference of the currentUser id of the driv-

ers Firebase database reference in listing 45. This ensures the passenger journey has

completed and the driver receives the payment.

43

5 Results

5.1 Passengers ride request

The passenger when authenticating successfully to the application displays Screen A

of figure 13, which contains a MapView with a floating hand button.

44

Figure 13: The process of sending a ride request

When the floating hand button is clicked, a ride request modal is displayed on Screen
B containing two search input fields with labels as Origin and Destination and two

buttons with labels as Close and Request. The request button is disabled since it

requires the passenger to enter the origin and destination addresses in the input

field. When the passenger enters the required fields, a response with ride duration and

fare is displayed on Screen C. If the passenger agrees with the response duration time

and destination, the request is forwarded with clicking the request button on Screen D

which generates a ride request query entered to the database under the ride-

request database reference and closes the modal showing the passenger ride re-

quest origin coordinates on the MapView on Screen E.

5.2 Passengers ride cancellation

The passenger notices the ride requests as red icon on the MapView on Screen A in

figure 14.

45

Figure 14: The process of cancelling a ride.

The passenger coordinate pin when clicked opens the modal window attached onto the

icon on Screen B1, which displays the current ride details and a cancel button for can-

celling the current ride request. If the ride request has already been accepted it will

display the accepted_by property on Screen B2 included with the ride details and

cancelling the ride request will cause the passenger to pay a ride fare fine. If the ride

request has not been accepted by any driver, then the passenger can cancel the ride

request without paying a ride fare fine. When the user clicks the cancel button, the cur-

rent ride request data that is being cancelled is inserted into the ride-cancellation

and ride-history references and finally the currentUser id of the ride-

request is set to null which removes the ride request and renders the new set of

coordinates on the MapView on Screen C.

5.3 Passengers ride confirmation

The passenger creating the ride request successfully displays a passenger icon as red

colour on the MapView on Screen A in figure 15. When the passenger ride request is

accepted by the driver, the passenger icon turns from red to green on Screen B.

46

Figure 15: The process of ride notification

The passenger when clicks the green marker on Screen B, a modal attached to the

icon opens containing the ride details including the driver name on Screen C and also

notices a ride request notification in the notifications list on Screen D.

5.4 Drivers ride response

The driver notices the passengers ride request icon from its current location on the

MapView on Screen A of figure 16 and responds to the passenger icon by clicking it.

47

Figure 16: The process of responding to a ride request

The passenger icon when clicked opens a popup window attached with the icon on

Screen B showing the passengers ride details and an accept button for accepting the

ride request. The accept button when clicked, displays the driver's name on the ac-

cepted_by field in Screen C. The modal window is closed when clicked anywhere

within Screen C, the passenger icon turning from red to green in Screen D which dis-

plays that the ride has been accepted and finally the ride request details are notified to

the passenger in Screen E.

5.5 Drivers ride routes

The driving routes which are the pickup and drop off routes are explained with six

Screens A to B in figure 17. The Screen A is displayed when the user has authenticat-

ed with the driver role and has accepted passenger's ride requests.

48

49

Figure 17: The process of generating ride routes

When the driver clicks the car icon button located on the bottom right end corner, it

displays the modal window with containing the list of passengers on the ride and three

buttons which are PICK-UP, DROP-OFF and CLOSE on Screen B. The PICK-UP but-

ton when clicked generates the driving routes from the driver's location to the passen-

ger's origin location on Screen C. The passenger icons are automatically removed

when the driver reaches the passenger’s origin location and taps twice on the icon.

This removes the passenger icon automatically and are used when the driver's location

is similar to the passenger location on Screen D. When the driver again clicks again

onto the car icon in the bottom right corner, the DROP-OFF button from modal window

on Screen E generates new markers of passenger’s destinations location and the driv-

ing routes from the driver's location on the MapView on Screen F. When the driver

successfully drops the passengers to its destination on Screen G, the driver clicks on

the passenger's marker which opens a modal window showing passengers details and

a COMPLETE button on Screen H. When the passenger has made payment to the driv-

er, the driver clicks on the COMPLETE button which removes the passenger destination

icon from the MapView on Screen I and finally it is inserted to the ride-completion

reference.

50

6 Discussion

6.1 Database

The Firebase Realtime Database used for this project is sufficient for the application

use cases. However, developing further could be quite challenging to solve due to its

limitations [43] such as:

• Data stored as one large JSON tree

• Limited deep querying capabilities for sorting and filtering

• Sharding data required for scaling

• High pricing charged for bandwidth and storage

During the time of writing, Firebase released a new flagship database called the Fire-

base Cloud Firestore in beta. It solves all the limitation described above, and its fea-

tures include a better data model, which stores data in documents organised in collec-

tions, faster compound deep querying capability for sorting and filtering, automatic scal-

ing without the need to shard data and lower pricing charged for bandwidth and storage

[44]. Moreover, it can be extended with Firebase Cloud Functions [45], that can handle

event trigger changes made to the database.

6.2 User Interface state

The Reacts component state [46] used for this project was not an efficient solution for

the application use cases. There were numerous bugs encountered during develop-

ment and fixing often required misusing the setState method and the lifecycle methods

of the React component. Moreover, multiple application components needed to access

the Firebase Realtime Database for handling logic and rendering of data. It will be ben-

eficial if a single state tree known as a store, were used with Firebase database model,

of which the user interface can listen and render the data needed. State management

libraries such as Redux [47] allows managing the user interface state with a predictable

state container and can be integrated with React efficiently. Furthermore, it's minimalis-

tic API, strong ecosystem and rich developer tool such as Redux devtool [48] provide a

great developer experience.

51

6.3 Authentication

Although the Authentication described in subsection 4.4 supports the primary use cas-

es of the application, few use cases would improve the current implementation of the

system such as user email verification, resetting of password and authenticating with

different authentication providers.

The users can register with any [email name] @ [any domain], and since the

registered email does not involve an actual account process, which is a challenge to

identify if the users are real. The Email verification of user accounts can help with iden-

tifying the users. The Firebase Auth provides email verification for users and enabling

will allow the application to send an email containing a validation link to the address.

Thus, when users register on the application can receive a validation link and be veri-

fied by confirming it. However, if the user chooses not to confirm his verification, nec-

essary action can be taken to prevent the user from signing in such as blocking the

account.

Moreover, the users are not able to reset the password when password is forgotten.

The Firebase Auth provides password reset method that allows user to reset password

and also allow custom email templating using the Firebase console. It also provides the

possibility of resetting the password and redirecting within the application.

Furthermore, majority of the users would prefer simple authentication with well-known

auth providers such as Facebook, Google Auth and Phone number, that can be easier

to authenticate and also be a returning user of the application. The user can also skip

the registration process as the authentication identity providers would present the users

details to the application automatically.

6.4 Passenger

The current features and functionalities of the passengers were sufficient to the pas-

senger requirements discussed in subsection 2.1 user stories. However, features such

as passenger profile management, real-time tracking of driver’s location, communica-

tion with the driver, a dynamic matching algorithm with other passengers and drivers,

and a feedback system would improve the passengers ridesharing experience.

52

The Profile screen from figure 6 currently displays the passenger’s details and its ride

histories. The current implementation of the application does not allow profile man-

agement such as updating passenger's details, profile picture and switching role. The

Firebase Cloud Storage [49] can be used to store and update the passenger's profile

picture as it uses the Google Cloud Storage bucket. It allows uploading of rich content

such as images, video and documents and provides an API for creating image refer-

ences that can work along with the database. Furthermore, the updating of passenger's

details, profile picture and switching role can be achieved using the update method

available on the Firebase Realtime Database API.

The real-time tracking of the driver location assures the passengers about the driver

being nearby its current location and the estimation time of arrival. It allows the pas-

senger to locate the correct car without being lost and can be solved using the back-

ground geolocation feature. Unfortunately, the background geolocation [50] is in pro-

gress and hopefully will be available the upcoming year with easy integration to the

application.

The communication between the drivers and passengers is a necessity, as it allows the

driver and passenger to communicate in real-time in regard to their ride request. For

example, if the driver is unable to locate the passenger despite the correct location on

the map or the passenger not being able to recognise the driver's vehicle and also

helps in situations where the driver cannot arrive on the estimated time of arrival due to

traffic. It can be solved using a messaging and voice over IP (VoIP) services such as

WhatsApp and Viber provide an excellent medium for users to communicate in real-

time with sending text messages, voice calls, documents and user location. However,

integrating the messaging services isn't possible, and passengers wouldn't be comfort-

able sharing personal information with the driver thus there are two solutions. The first

solution is to create a real-time chat service using the Firebase Realtime Database,

which stores the messages between the driver and the passenger and displays them

concurrently in real-time. The second solution is to use a service such as Send Bird,

which provides a messaging SDK and Chat API that can be integrated easily into the

application in comparison to the creation of a real-time chat service [51].

The passengers can make a ride request but needs to wait for nearby drivers until the

request has been accepted. The application would be helpful if it provided a ride-

matching for passengers with other passengers located within the same area and with

53

drivers nearby. It currently calculates the driver routes manually based on the passen-

ger's origin and destination coordinates and displays the driving routes on a map view.

Masoud and Jayakrishnan [52] study on real-time algorithm solves the peer-to-peer

ride-matching problem, which can be further studied and integrated into the application.

The passenger when reaching its destination and completing the payment transaction

cannot rate or provide feedback for the service currently. The feedback system is an

integral part of the application that helps in improvement of the system and contribute

to a safer community. It can be solved using the Firebase Realtime database, which

stores the passengers and driver’s feedbacks under a feedback database reference.

6.5 Driver

The current features and functions of the drivers are sufficient to driver’s requirements

discussed in subsection 2.1 user stories. However, features such as a payment sys-

tem, better driving route and ride cancellation would improve the driver's ridesharing

experience.

The driver when successfully dropping the passenger to its destination receives a

payment either by cash or using an electronic payment system. However, it would be

useful if the payment was exchanged between the passenger and driver within the ap-

plication automatically when the journey completes using a payment service such as

Stripe, Apple Pay and Android Pay. The Payment SDK [53] available on the Expo Li-

brary, cannot be easily integrated as it currently supports react-native and can be in-

cluded through ExpoKit [54] which requires linking of Android and iOS dependencies.

Moreover, the driving routes to the origin and destination of passenger location are

manually calculated and generated upon picking up the passenger. A dynamic driving

routes created each time when accepting the passenger’s ride request would be useful

for the driver. Furthermore, when the driver accepts a passenger's ride request cannot

cancel the journey. For example, if the driver has an accident or stuck in traffic could

safely cancel the ride request allowing the next driver nearby to pick up the passenger.

The addition of cancellation feature to the application should work similar to the ride

acceptance in subsection 4.7.1, where the driver notifies the passenger about the can-

cellation of the journey on the map and notification screen.

54

7 Conclusion

Majority people in developed countries are looking for numerous ways of utilising exist-

ing resources being their car, where an average car is ridden by one to two persons.

Thus, the primary aim to create a mobile application prototype of ridesharing using the

modern tools and technologies was successful. The brainstorming and prototyping

session helped in gathering the main elements needs of the application before it devel-

oped.

The mobile app developed using Expo is at its early stage and does not support all

native features yet. The mobile app prototypes were quickly made using the Expo XDE.

This allowed me to focus on using JavaScript without the need to handle any native

code. The Expo client was used to test the application rapidly without the need to de-

ploy to the app-store. The Firebase services such as the Realtime database and Fire-

base Authentication helped in handling the application logic and authentication.

The mobile app offers numerous functionalities both for the driver and the passenger.

Passengers can send a ride request and view them on the map. Drivers can accept the

passenger's ride request on the map. The application notifies the passenger about their

ride-request acceptance in three places: by changing its icon colour and adding the

driver’s name in the attached pop-up window and updating the ride status on the notifi-

cation screen. When the driver successfully accepts all the passengers, the pickup and

drop off buttons generates the driving routes to their origin and destination locations

respectively. Finally, the exchange of payment is made between the passenger and the

driver when arriving at the passenger’s destination successfully.

Further improvements such as using a state management library, database model,

authentication features, profile management, Realtime tracking of driver’s location,

communication between the drivers and passenger, a matching algorithm, feedback

and a payment system would make it a better ridesharing application.

55

References

1 10 million self-driving cars will hit the road by 2020 here’s how to profit [Internet].
Forbes.com. 2018 [cited 21 March 2018]. Available from:
https://www.forbes.com/sites/oliviergarret/2017/03/03/10-million-self-driving-cars-
will-hit-the-road-by-2020-heres-how-to-profit/#623fcc7c7e50

2 Radcliffe B. Sharing Economy [Internet]. Investopedia. 2018 [cited 3 May 2018].
Available from: https://www.investopedia.com/terms/s/sharing-economy.asp

3 The Environmental Benefits of Ridesharing - The Official HyreCar Ridesharing
Blog [Internet]. The Official HyreCar Ridesharing Blog. 2018 [cited 8 May 2018].
Available from: https://hyrecar.com/blog/environmental-benefits-ridesharing/

4 Making career moves? Sign up to be an Uber Driver or get a ride to the airport |
Uber [Internet]. Uber.com. 2018 [cited 21 March 2018]. Available from:
https://www.uber.com/

5 Lyft. A Ride in Minutes [Internet]. Lyft. 2018 [cited 21 March 2018]. Available
from: https://www.lyft.com/

6 Evans A, Butler D, Butler D. Lyft Line Vs. UberPool: Which Budget Rideshare
Option Wins? [Internet]. Ridester.com. 2018 [cited 3 May 2018]. Available from:
https://www.ridester.com/lyft-line-vs-uberpool-differences/

7 diowa/icare [Internet]. GitHub. 2018 [cited 3 May 2018]. Available from:
https://github.com/diowa/icare

8 hsgr/carpooling [Internet]. GitHub. 2018 [cited 3 May 2018]. Available from:
https://github.com/hsgr/carpooling

9 Berteig M. User Stories and Story Splitting - Agile Advice [Internet]. Agile Advice.
2018 [cited 3 May 2018]. Available from:
http://www.agileadvice.com/2014/03/06/referenceinformation/user-stories-and-
story-splitting/

10 MIT "Realtime" Rideshare Research Rideshare History & Statistics [Internet].
Ridesharechoices.scripts.mit.edu.2018 [cited 21 March 2018]. Available from:
http://ridesharechoices.scripts.mit.edu/home/histstats/

11 Chan N, Shaheen S. Ridesharing in North America: Past, Present, and Future.
Transport Reviews. 2012;32(1):93-112.

12 Kowshik R, Gard J, Loo J, Jovanis P, Kitamura R. Development of User Needs
and Functional Requirements for a Realtime Ridesharing System. INSTITUTE

56

OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY.
1993;(UCB-ITS-PWP-93-22).

13 Carpool | Rideshare [Internet]. Rideshare.org. 2018 [cited 6 February 2018].
Available from: https://rideshare.org/modes/carpool/

14 Hall J, Krueger A. An Analysis of the Labour Market for Uber’s Driver-Partners in
the United States. ILR Review. 2017;001979391771722.

15 In the Driver’s Seat: A Closer Look at the Uber Partner Experience | Uber News-
room [Internet]. Uber Newsroom. 2018 [cited 22 March 2018]. Available from:
https://www.uber.com/newsroom/in-the-drivers-seat-understanding-the-uber-
partner-experience/

16 Perea C. What's the Real Commission That Uber Takes from Its Drivers? [Info-
graphic] [Internet]. The Rideshare Guy Blog and Podcast. 2018 [cited 21 March
2018]. Available from: https://therideshareguy.com/whats-the-real-commission-
that-uber-takes-from-its-drivers-infographic/

17 CSAIL A. How ridesharing can improve traffic, save money, and help the envi-
ronment [Internet]. MIT News. 2018 [cited 22 March 2018]. Available from:
http://news.mit.edu/2016/how-ridesharing-can-improve-traffic-save-money-and-
help-environment-0104

18 Muro I. Tracking the gig economy: New numbers [Internet]. Brookings. 2018 [cit-
ed 21 March 2018]. Available from: https://www.brookings.edu/research/tracking-
the-gig-economy-new-numbers/

19 Valuations of leading ride-hailing companies (April 2017) [Internet]. Atlas. 2018
[cited 22 March 2018]. Available from:
https://www.theatlas.com/charts/HJX3QMVTl

20 React Native: A framework for building native apps using React [Internet]. Face-
book.github.io. 2018 [cited 18 April 2018]. Available from:
https://facebook.github.io/react-native/

21 React - A JavaScript library for building user interfaces [Internet]. Reactjs.org.
2018 [cited 18 April 2018]. Available from: https://reactjs.org/

22 F8 2015 - React Native and Relay - Bringing Modern Web Techniques to Mobile
[Internet]. Facebook Code. 2018 [cited 18 April 2018]. Available from:
https://Code.facebook.com/videos/931163756933706/f8-2015-react-native-and-
relay-bringing-modern-web-techniques-to-mobile/

23 Introducing Hot Reloading • React Native [Internet]. Facebook.github.io. 2018
[cited 18 April 2018]. Available from: http://facebook.github.io/react-
native/blog/2016/03/24/introducing-hot-reloading.html

57

24 JavaScriptCore – WebKit [Internet]. Trac.webkit.org. 2018 [cited 18 April 2018].
Available from: https://trac.webkit.org/wiki/JavaScriptCore

25 React Native Elements • Cross Platform React Native UI Toolkit [Internet]. Re-
act-native-training.github.io. 2018 [cited 18 April 2018]. Available from:
https://react-native-training.github.io/react-native-elements/

26 React Navigation • Routing and navigation for your React Native apps [Internet].
Reactnavigation.org. 2018 [cited 18 April 2018]. Available from:
https://reactnavigation.org/

27 Expo [Internet]. Expo. 2018 [cited 18 April 2018]. Available from: https://expo.io/

28 Firebase. (2018). Firebase [online] [cited 18 Mar. 2018]. Available from:
https://firebase.google.com/

29 Firebase. (2018). Firebase Realtime Database | Firebase. [online] [cited 18 Mar.
2018] Available at: https://firebase.google.com/docs/database/

30 Firebase. (2018). Firebase Authentication | Firebase. [online] [cited 18 Mar. 2018]
Available at: https://firebase.google.com/docs/authentication

31 Google Maps [Internet]. Google.com. 2018 [cited 11 Mar 2018]. Available from:
https://www.google.com/maps

32 Google Maps APIs | Google Developers [Internet]. Google Developers. 2018 [cit-
ed 18 April 2018]. Available from: https://developers.google.com/maps/

33 Google Places API | Google Developers [Internet]. Google Developers. 2018
[cited 18 April 2018]. Available from: https://google-
developers.appspot.com/places/

34 Google Maps Directions API | Google Developers [Internet]. Google Developers.
2018 [cited 18 April 2018]. Available from: https://google-
developers.appspot.com/maps/documentation/directions/

35 Get Started | Google Maps Distance Matrix API | Google Developers [Internet].
Google Developers. 2018 [cited 18 April 2018]. Available from: https://google-
developers.appspot.com/maps/documentation/distance-matrix/start

36 invertase/react-native-firebase [Internet]. GitHub. 2018 [cited 26 March 2018].
Available from: https://github.com/invertase/react-native-firebase

37 Firebase Console [Internet]. Console.firebase.google.com. 2018 [cited 11 May
2018]. Available from: https://console.firebase.google.com/u/0/

58

38 Osmani A. Learning JavaScript Design Patterns [Internet]. Addyosmani.com.
2018 [cited 18 April 2018]. Available from:
https://addyosmani.com/resources/essentialjsdesignpatterns/book/#singletonpatt
ernjavascript

39 Understand Firebase Realtime Database Rules | Firebase Realtime Database
| Firebase [Internet]. Firebase. 2018 [cited 10 May 2018]. Available from:
https://firebase.google.com/docs/database/security/

40 Google Cloud Platform [Internet]. Console.developers.google.com. 2018 [cited 26
March 2018]. Available from: https://console.developers.google.com/

41 Data Structures/Stacks and Queues - Wikibooks, open books for an open world
[Internet]. En.wikibooks.org. 2018 [cited 9 April 2018]. Available from:
https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues#Stacks

42 US20130222272A1 - Touch-sensitive navigation in a tab-based application inter-
face - Google Patents [Internet]. Patents.google.com. 2018 [cited 9 April 2018].
Available from: https://patents.google.com/patent/US20130222272A1/en

43 Choose a Database: Cloud Firestore or Realtime Database | Firebase [Internet].
Firebase. 2018 [cited 11 April 2018]. Available from:
https://firebase.google.com/docs/firestore/rtdb-vs-firestore

44 Cloud Firestore | Firebase [Internet]. Firebase. 2018 [cited 19 April 2018]. Avail-
able from: https://firebase.google.com/docs/firestore/

45 Cloud Functions for Firebase | Firebase [Internet]. Firebase. 2018 [cited 19 April
2018]. Available from: https://firebase.google.com/docs/functions/

46 Component State - React [Internet]. Reactjs.org. 2018 [cited 10 May 2018].
Available from: https://reactjs.org/docs/faq-state.html

47 Introduction | Redux [Internet]. Redux.js.org. 2018 [cited 19 April 2018]. Available
from: https://redux.js.org/

48 reduxjs/redux-devtools [Internet]. GitHub. 2018 [cited 11 May 2018]. Available
from: https://github.com/reduxjs/redux-devtools

49 Cloud Storage | Firebase [Internet]. Firebase. 2018 [cited 19 April 2018]. Availa-
ble from: https://firebase.google.com/docs/storage/

50 Background location tracking [Internet]. Expo.canny.io. 2018 [cited 19 April
2018]. Available from: https://expo.canny.io/feature-requests/p/background-
location-tracking

59

51 Messaging SDK and Chat API for Mobile Apps and Websites | SendBird [Inter-
net]. SendBird. 2018 [cited 8 May 2018]. Available from: https://sendbird.com/

52 Masoud N, Jayakrishnan R. A Realtime algorithm to solve the peer-to-peer ride-
matching problem in a flexible ridesharing system. Transportation Research Part
B: Methodological. 2017; 106:218-236.

53 Payments - Expo Documentation [Internet]. Docs.expo.io. 2018 [cited 19 April
2018]. Available from: https://docs.expo.io/versions/latest/sdk/payment

54 Detaching to ExpoKit - Expo Documentation [Internet]. Docs.expo.io. 2018 [cited
19 April 2018]. Available from:
https://docs.expo.io/versions/v27.0.0/expokit/detach

