TAMPEREEN AMMATTIKORKEAKOULU
Sähköteknikan koulutusohjelma
Sähköinen talotekniikka

Opinnäytetyö

Jarno Mäkelä
SÄHKÖPÄTEVYYSTUTKINNON TEHTÄVÄKOKOELMA

Työn ohjaaja Sähköisen talotekniikan yliopettaja Pirkko Harsia
Työn teettäjä Tampereen ammattikorkeakoulu ja VirtuaaliAMK
Tampere 2010
Työn aiheena oli sähköpätevyystutkinnon tehtäväkokoelman laadinta. Työn alussa selvitetään, mitä eri sähköpätevyyskiä on ja mihin niillä saa pätevyyden. Työssä kerotaan yleisesti sähköturvallisuustutkinnosta ja sen osallistumisesta.

Työssä keskitytään turvallisuustutkintojen 1 ja 2 materiaaliin, joten hissiturvallisuustutkinto ei kuulu tämän työn piiriin. Työssä analysoidaan ajan tasalle saatettuja vuosien 2002 - 2008 sähköturvallisuustutkintojen tehtäviä ja niiden ratkaisuja.

Työn tuloksena laaditaan tehtäväkokoelma opiskelijoiden käyttöön VirtuaaliAMK:n materiaalipankkiin. Työssä annetaan vielä vinkkejä tutkintoon osallistuville ja kerrotaan, mistä aiheesta kiinnostuneet saavat lisätietoa.
ABSTRACT

The subject of this thesis is creating a repertory of quizzes in order to prepare for an electric safety exam. The exam is required to pass when one pleads for competency to head electric installations or operation of electric systems.

The base material for this thesis are actual exams from years 2002-2008, 27 altogether. The questions of these exams are first to be processed in order to have them correspond to current law, standards and requirements. Processed questions are then to be sorted to appropriate categories. These categorised questions will also be used as teaching material in TAMK. Finally, a reportary of quizzes will be made to a computer software from processed and categorised questions.

In this thesis these questions and the whole creation process is being analyzed. The meaning and use of electric competency is also clarified and there will be information about the exams. In addition, this thesis will give some hints to exam candidates.

The reportary of quizzes will benefit students preparing for electric safety exam as it is the first of it’s kind. Processed questions will also benefit TAMK as learning material. The objective is to publish the reportary to the material bank in VirtuaaliAMK network.
Kiitokset työni ohjaajalle Pirkko Harsialle.

Jarno Mäkelä 6/2010 Tampere
SISÄLLYSLUETTELO

TIIVISTELMÄ... 2
ABSTRACT ... 3
ALKUSANAT.. 4
1 JOHDANTO.. 6
2 SÄHKÖTURVALLISUUSTUTKINTO... 7
 2.1 Sähköpätevyys .. 7
 2.2 Sähköturvallisuustutkinnot .. 7
 2.2.1 Sähköturvallisuustutkinto 1 ... 8
 2.2.2 Sähköturvallisuustutkinto 2 ... 8
 2.2.3 Sähköturvallisuustutkinto 3 ... 9
 2.3. Tutkintojen järjestäminen ja tutkintotilaisuudet ... 9
 2.4 Tutkintojen rakenne ja hyväksymisraja .. 10
 2.4 Kirjallisuusvaatimukset eri tutkintoihin .. 10
 2.4.1 Kirjallisuusvaatimukset sähköturvallisuustutkintoon 1 11
 2.4.2 Kirjallisuusvaatimukset sähköturvallisuustutkintoon 2 12
 2.4.3 Kirjallisuusvaatimukset sähköturvallisuustutkintoon 3 13
 2.5 Kirjallisuuden hankkiminen ... 14
3 TEHTÄVIEN ANALYOINTI.. 15
 3.1 Tehtävien käsittely .. 15
 3.2 Usein esiintyvät tehtävät ... 16
 3.3 Suurimmat muutokset vuodesta 2002 .. 17
4 TEHTÄVÄKOKOELMAN LUOMINEN.. 19
 4.1 Jako aihealueittain .. 19
 4.2 Tehtävien luominen ... 20
5 TULOSTEN TARKASTELU .. 29
 5.1 Työn tavoitteiden toteutuminen ... 29
 5.2 Harjoittelut tehtävien avulla .. 30
LÄHTEET.. 32
 Painutet ... 32
 Turvallisuustutkinnot ... 32
 Lähdemateriaali ... 33
 Sähköiset ... 34
LIITTEET .. 35
LIITE 1 - SÄHKÖTURVALLISUUSTUTKINTO 1 ... 35
1 J OHDANTO

2 SÄHKÖTURVALLISUUSTUTKINTO

2.1 Sähköpätevyys

Sähköpätevyyksistä saa lisätietoja Turvatekniikan keskuksen (Tukes) siivulta ja Tukes-ohjeesta S5. Vaadittavien koulutuksien sisällöistä on kerrottu kattavasti Henkilö- ja yritysarviointi SETI OY:n sivuilla:

2.2 Sähköturvallisuustutkinnot

Turvallisuustutkinnolla osoitetaan sähkötöiden tai hissitöiden turvallisuuteen liittyvien säädösten, määräysten ja ohjeiden tuntemus. Turvallisuustutkinnon suorittamisen lisäksi tarvitaan sähköpätevyyteen koulutusta ja työkokemusta.

Henkilö, joka täyttää koulutus- ja työkokemusvaatimuksen, voi saada todistuksen sähköpätevyydestä taulukon 1 mukaisesti, kun
hän on suorittanut turvallisuustutkinnon.

Taulukko 1 - Tutkinnot ja pätevyydet

<table>
<thead>
<tr>
<th>TUTKINTO</th>
<th>PÄTEVYYYS, joka voi saada, kun koulutus- ja työkokemusvaatimukset täyttyvät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähköturvallisuustutkinto 1</td>
<td>Sähköpätevyys 1</td>
</tr>
<tr>
<td></td>
<td>Rajoitettu sähköpätevyys 1</td>
</tr>
<tr>
<td></td>
<td>Sähköpätevyys 2</td>
</tr>
<tr>
<td></td>
<td>Sähköpätevyys 3</td>
</tr>
<tr>
<td>Sähköturvallisuustutkinto 2</td>
<td>Sähköpätevyys 2</td>
</tr>
<tr>
<td></td>
<td>Sähköpätevyys 3</td>
</tr>
<tr>
<td>Sähköturvallisuustutkinto 3</td>
<td>Sähköpätevyys 3</td>
</tr>
</tbody>
</table>

2.2.1 Sähköturvallisuustutkinto 1

Sähköturvallisuustutkinto 1 on ns. yleistutkinto ja sähköpätevyys 1 todistus oikeuttaa toimimaan sähkötöiden johtajan ja käytön johtajan tehtävissä kaikkien sähkölaitteistojen sähkötöissä, lukuun ottamatta hissien asennus-, korjaus- ja huoltotöitä. (http://www.seti.fi/Sahkopatevyys3.aspx)

2.2.2 Sähköturvallisuustutkinto 2

Sähköturvallisuustutkinto 2 on enintään 1000 V:n sähkölaitteistojen asennustöitä koskeva tutkinto. Sähköpätevyys 2 -todistus oikeuttaa toimimaan sähkötöiden johtajan ja käytön johtajan tehtävissä nimellisjännitteeltään enintään 1 kV:n vaihtojännitteisten ja 1,5 kV:n tasajännitteisten sähkölaitteistojen sähkötöissä, lukuun ottamatta hissien asennus- korjaus ja huoltotöitä. (http://www.seti.fi/Sahkopatevyys3.aspx)
2.2.3 Sähköturvallisuustutkinto 3

Sähköturvallisuustutkinto 3 on enintään 1000 V:n sähkölaitteiden korjaustöitä koskeva tutkinto. Sähköpätevyys 3 -todistus oikeuttaa toimimaan sähkötöiden johtajan tehtävissä enintään 1 kV:n vaihtojännitteeseen ja 1,5 kV:n tasajännitteeseen verkkoon liitettävää tarkoitetujen sähkölaitteiden ja niihin verrattavien sähkölaitteistojen korjaustöissä, lukuun ottamatta hissitöitä. (http://www.seti.fi/Sahkopatevyys3.aspx)

2.3. Tutkintojen järjestäminen ja tutkintotilaisuudet

Tutkintotilaisuus kestää kolme tuntia. Jos tutkintoon osallistujan äidinkieli on muu kuin suomi tai ruotsi, tutkinnon suorittamiseen voi saada lisääikaa yhden tunnin. Myös henkilö, jolla on todistettavasti lukihäiriö, voi saada yhden tunnin lisääjänt tutkinnon suorittamiseen. Lisääjan tarve on ilmoitetava oppilaitokselle tutkintoon ilmoittautumisen yhteydessä. (Tukes-ohje S5).
Tutkinnossa saavat olla esillä tutkintovaatimuksiin sisältyvät julkaisut. Lisäksi esillä saa olla alaa koskevaa kirjallisuutta tai muuta aineistoa, ei kuitenkaan laskennallisia esimerkkejä tai aikaisempien tutkintojen tehtäväsarjoja. Tutkinnossa ei saa käyttää tietokonetta. (Tukes-ohje S5).

2.4 Tutkintojen rakenne ja hyväksymisraja

Sähköturvallisuustutkinnon ensimmäisen osan sisältö on seuraava:

– sähkötöihin liittyvät hallinnolliset määräykset
– sähkötööturvallisuus.

Sähköturvallisuustutkinnon toiseen osaan kuuluvat muut sähköturvallisuuteen liittyvät määräykset ja ohjeet. Tutkintovaatimusten lisäksi tutkinnoissa edellytetään yleistä sähköteknikan osaamista.

Sähköturvallisuustutkinnon hyväksytyt suorittaminen edellyttää molemmista osista erikseen noin kahden kolmasosan pistemäärää maksimipistemäärästä. Tukes päätää tutkinnon tarkan hyväksymisrajan. (Tukes-ohje S5).

2.4 Kirjallisuusvaatimukset eri tutkintoihin

Eri turvallisuustutkintoihin vaadittavat materiaalit on lueteltu alla. Nämä löytyvät Tukes-ohjeesta S5.
2.4.1 Kirjallisuusvaatimukset sähköturvallisuustutkintoon 1

Lait, asetukset ja kauppa- ja teollisuusministeriön päätökset:

- Valtioneuvoston asetus sähkölaitteiden ja -laitteistojen sähkömagneettisesta yhteensopivuudesta (1466/2007)
- Kauppa- ja teollisuusministeriön päätös sähkölaitteistojen turvallisuudesta (1193/1999)

Turvatekniikan keskuksen ohjeet:

- S4-2004 Sähkölaitteistot
- S7-98 Sähkötöitä koskeva toimintailmoitus
- S10-2007 Sähkölaitteistojen turvallisuutta ja sähkötönturvallisuutta koskevat standardit

Standardit:

- SFS 6000 (2007) Pienjännitesähköasennukset
- SFS 6002 (2. painos 2005) Sähkötönturvallisuus

Muut julkaisut:

- Sähkötarkastuskeskuksen julkaisu:
 A 4-93 Vahvavirtailmajohtomääryykset
- Suomen sähkö- ja teleurakoitsijaliitto STUL ry:n julkaisu:
 D 1-2009 Käsikirja rakennusten sähköasennuksista
- Sähkötieto ry:n julkaisu: Sähkölaitteitekijaan opas (2007)
2.4.2 Kirjallisuusvaatimukset sähköturvallisuustutkintoon 2

Lait, asetukset ja kauppa- ja teollisuusministeriön päätökset:

- Valtioneuvoston asetus sähkölaitteiden ja -laitteistojen sähkömagneettisesta yhteensopivuudesta (1466/2007)
- Kauppa- ja teollisuusministeriön päätös sähkölaitteistojen turvallisuudesta (1193/1999)

Turvatehtävien keskuksen ohjeet:

- S4-2004 Sähkölaitteistot
- S7-98 Sähkötöitä koskeva toimintailmoitus
- S10-2007 Sähkölaitteistojen turvallisuutta ja sähkötyöturvallisuutta koskevat standardit

Standardit:

- SFS 6000 (2007)
- Pienjännitesähköasennukset
- SFS 6002 (2. painos) Sähkötyöturvallisuus

Muut julkaisut:

- Sähkötarkastuskeskuksen julkaisu:
 A 4-93 Vahvavirtailmohtomääräykset (enintään 1000 V:n asennukset)
- Suomen sähkö- ja teleurakoitsijaliitto STUL ry:n julkaisu:
 D 1-2009 Käsikirja rakennusten sähköasennuksista
- Sähkötieto ry:n julkaisu: Sähkölaitteekorjaajan opas (2007)
2.4.3 Kirjallisuusvaatimukset sähköturvallisuustutkintoon 3

Lait, asetukset ja kauppa- ja teollisuusministeriön päätökset:
- Valtioneuvoston asetus sähkölaitteiden ja -laitteistojen sähkömagneettisesta yhteensopivudesta (1466/2007)

Turvatekniikan keskuksen ohjeet:
- S7-98 Sähkötöitä koskeva toimintailmoitus
- S10-2007 Sähkölaitteistojen turvallisuutta ja sähkötyöturvallisuutta koskevat standardit

Standardit:
- SFS 6002 (2. painos) Sähkötyöturvallisuus

Muut julkaisut:
- Suomen sähkö- ja teleurakoitsijaliitto STUL ry:n julkaisu:
- D 1–2009 Käsikirja rakennusten sähköasennuksista (perussuojaus, vikasuojauks-suojauksenmäärä, erottaminen ja kytkentä, johdon mitoitus ja suojaus, kytkinlaitteet, pistokytkimet ja jatkojohdot sekä käyttöönototarkastus)
- Sähkötieko ry:n julkaisu: Sähkölaitteekorjaajan opas (2007)
2.5 Kirjallisuuden hankkiminen

Kirjallisuuden hankkiminen on ensimmäinen tehtävä sähköturvallisuustutkintoon valmistauduttaessa. Tutkintoihin tarvittava materiaalia voi hankkia seuraavilta toimittajilta:

Muutkin tarvittavat lait, asetukset ja päätökset löytyvät Tukesin säädöstietopalvelusta. Tukesin ohjeet S4, S7 ja S10 löytyvät myös Tukesin Internet-sivuilta. Ainakin Tukes-ohjeesta S7 oli käsitellyissä tutkintoissa joitain kysymyksiä.

Sähköturvallisuustutkintoihin 1, 2 ja 3 kuuluvat julkaisut voi tilata myös täydellisinä tutkintopaketteina Sähköinfo Oy:stä tai Opiks-Tiimi Oy:stä. Opiks-Tiimi Oy:n Tutkintopaketteihin sekä tutkintoon kuuluvaan kirjallisuuteen voi tutustua osoitteessa:
3 TEHTÄVIEN ANALYSOINTI

Työn tavoitteena oli käydä läpi vuosien 2002 - 2008 sähköturvallisuustutkintojen 1 ja 2 tehtävät. Ne piti saattaa ajan tasalle vastaamaan nykyisiä lakeja, standardeja ja vaatimuksia. Käsitellyt tehtävät piti lajitella ja lopulta luoda tehtäväsarja itseopiskeluun varten.

Käsiteltäviä tutkintoja oli 27 kpl, joissa jokaisessa noin 40 tarkastettavaa kohtaa. Tehtäviä oli siis yli 1000 kpl. Pohja-aineistona käytettiin turvallisuustutkinnon 1 kirjallisuutta. Esimerkkinä tutkinnoista on tämän työn liitteissä 1 vuoden 2008 huhtikuun sähköturvallisuustutkinto 1 oikeine vastauksineen. Vastauksia laadittaessa käytettiin seuraavia teoksia:

SFS 600 (2007):
- Lait, asetukset ja Kauppa- ja teollisuusministeriön päätökset
 (Paisi KTMp 1694/1993 ja sen muutokset)
- SFS 6000 (2007): Pienjännitesähköasennukset
- SFS 6002 (2005): Sähkötyöturvallisuus

SFS 601 (2009)
- SFS 6001 (2009): Suurjänniteasennukset

D1 (2009) Käsikirja rakennusten sähköasennuksista
A4 (1994) Vahvavirtailmajohtomääräykset
KTMp 1694/1993 ja sen muutokset

3.1 Tehtävien käsittely

Tehtävien korjaaminen oli hyvin mekaanista työtä. Jokainen vastaus, jonka lähdemateriaali oli vanhentunut, oli tarkistettava muutosten varalta. Varsinainen virheellisiä vastauksia, eli sellaisia kysymyksiä, joiden osalta määräykset ovat täysin muuttuneet, oli jonkin verran, mutta niihin löytyi yleensä uusi oikea vastaus. Suurimman työn tehtävien korjaamisessa aihe-
utti se, että standardien rakennetta on muutettu ja uusia painoksia lähdemateriaalista on ilmestynyt. Vastaus oli saattanut siirtyä aivan uuteen paikkaan tai se oli voitu kokonaan poistaa uudesta painoksesta. Jotkin kysymykset olivat myös muuttuneet epäoleellisiksi ja menettäneet merkityksenä standardien muutosten takia. Joitain kysymyksiä pitkin hylätä juuri näistä syistä.

Suurin osa kysymyksistä oli kuitenkin pysynyt muuttumattomina ainakin vastausosalta, vaikka vastauksen sijainti lähdemateriaalissaan olisikin voinut muuttua. Korjattuja kysymyksiä tulikin runsaasti.

3.2 Usein esiintyvät tehtävät

Kuviossa 1 luetellut aihealueet vastaavat useimmiten esitettyjen kysymysten aihealueita hyvin, koska luettelo on tehtävien korjaamisen ja lajittelun helpottamiseksi.
3.3 Suurimmat muutokset vuodesta 2002

Joidenkin kysymysten vastaukset olivat perusteellisesti muuttuneet, ja näiden tunnistaminen ja osaaminen onkin sähköalalla työskentelevälle tärkeää sähköturvallisuuden varmistamiseksi. Myös ennen vuotta 2002 tapahtuneet muutokset määräysissä on tärkeää osata varsinkin, jos ollaan tekemisissä vanhojen asennusten kanssa esim. saneauksen yhteydessä.

Suurimmat lähdemateriaaliin tehdyt muutokset ovat standardikokoelmassa SFS 6000. Siinä on lukuisten oleellisten standardimuutosten lisäksi myös poistettu joitain standardeja ja lisätty uusia. Muissa lähdemateriaaleissa ylimääräistä työtä aiheuttivat lähinnä pienet uudistukset ja teoksen rakenneet muutokset, joiden takia vastaukset saattoivat olla aivan eri päästään edellisessä painoksessa. Seuraavassa listassa on lueteltu suurimmat muutokset standardikokoelmassa SFS 6000 ne määräykset, joihin

<table>
<thead>
<tr>
<th>Kuvio 1. Kysymysten aihealueet</th>
</tr>
</thead>
</table>

1. Sähkäsennusten turvallisuutta koskevat säädökset
 1.1 Sähköläitteistön haltija
 1.2 Tarkastukset
 1.3 Muut säädökset
2. SFS 6000 Pienjännitesähkösennukset
 2.1 Sähkösennukset yleensä
 2.2 Mitottaminen
 2.3 Maadoittaminen ja suojajohdutimet
 2.4 Erkoistilojen vaatimukset
2.5 Eräitä asennuksia koskevat täydentävät vaatimukset
 2.5.1 Korjaus- muutos ja laajennustyöt
 2.5.2 Jaksokeskukset
3. SFS 6002 Sähköyöturvallisuus
4. SFS 6001 Suurjännitesähkösennukset
 4.1 Maadoitusjärjestelmät
 4.2 Muut
5. Ilmajohtoasennukset
on tehty suurimmat muutokset, jotka tulivat vastaan vuoden 2002 - 2008 sähköturvallisuustutkintojen 1 ja 2 kysymyksiä tarkistaessa:

- Vikavirtasuojan käyttö pistorasioissa
 (SFS 6000/ Liite 41X)
- Vikavirtasuojan käyttö erikoistiloissa ja -asennuksissa, esim. suihkutiloissa, saunassa, leirintäalueilla, pienvenesatamissa, rakennustyömaiden pistorasioissa ja lämmitysjärjestelmien syötöissä. (SFS 6000/ 7)
- Lääkärikeskusta koskevat määräykset (SFS 6000/ 710)
- Eristysresistanssin pienin sallittu arvo enintään 500 V:n asennuksissa (SFS 6000/ 61.3.3)
- Kylpy- ja suihkutilojen aluejako (SFS 6000/ 701)
4 TEHTÄVÄKOKOELMAN LUOMINEN

4.1 Jako aihealueittain

D1 - Käsikirja rakennusten sähköasennuksista perustuu SFS 6000-standardiin, joten siihen perustuvat kysymykset olivat lajiteltu luettelon kohtaan 2.

Laeista, standardeista ja päätöksistä eniten kysymyksiä olivat sähkölaitteiston haltijan velvollisuuksista. Tästä oli ainakin yksi kysymys jokaisessa tutkinossa. Myös tarkastuksista oli usein kysymyksiä.

SFS 6000 -standardeihin ja D1-käsikirjaan perustuvat kysymykset jakautuivat tavallisten pienjännitesähköasennusten lisäksi selkeästi mitoittamiseen, maadoittamiseen, suojahtimiin ja erikoistilojen vaatimuksiin liittyviin tehtäviin. Näiden lisäksi SFS 6000 -standardikokoelmassa on erikseen kohta, jossa käsitellään erääitä asennuksia koskevia täydentäviä vaatimuksia. Myös tästä aiheuudeesta oli tutkinnoissa runsaasti tehtäviä, jotka liittyivät korjaus- muutos- ja laajennustoihin sekä jakokeskuksiin liittyen.

Sähköasennusten turvallisuutta koskevat säädökset
1.1 Sähkölaitteiston haltija
1.2 Tarkastukset
1.3 Muut säädökset
2. Sähköasennuksen yleensä
2.2 Mitoittaminen
2.3 Maadoittaminen ja suojajohditimet
2.4 Erikoistolajien vaatimukset
2.5 Eräitä asennuksia koskevat täydentävät vaatimukset
3. Sähkötyöturvallisuus
4. Sähköasennusten säätämistä
4.1 Maadoitusjärjestelmät
4.2 Muut
5. Ilmajohtoasennukset

<table>
<thead>
<tr>
<th>Aihe</th>
<th>Kysymyksiä/kpl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sähköasennusten turvallisuutta koskevat säädökset</td>
<td>94</td>
</tr>
<tr>
<td>1.1 Sähkölaitteiston haltija</td>
<td>15</td>
</tr>
<tr>
<td>1.2 Tarkastukset</td>
<td>52</td>
</tr>
<tr>
<td>1.3 Muut säädökset</td>
<td>27</td>
</tr>
<tr>
<td>2. SFS 6000 Pienjännitesähköasennukset</td>
<td>193</td>
</tr>
<tr>
<td>2.1 Sähköasennukset yleensä</td>
<td>45</td>
</tr>
<tr>
<td>2.2 Mitoittaminen</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Maadoittaminen ja suojajohditimet</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Erikoistolajien vaatimukset</td>
<td>65</td>
</tr>
<tr>
<td>2.5 Eräitä asennuksia koskevat täydentävät vaatimukset</td>
<td>44</td>
</tr>
<tr>
<td>3. SFS 6002 Sähkötyöturvallisuus</td>
<td>102</td>
</tr>
<tr>
<td>4. SFS 6001 Suurjännitesähköasennukset</td>
<td>62</td>
</tr>
<tr>
<td>4.1 Maadoitusjärjestelmät</td>
<td>30</td>
</tr>
<tr>
<td>4.2 Muut</td>
<td>32</td>
</tr>
<tr>
<td>5. Ilmajohtoasennukset</td>
<td>19</td>
</tr>
<tr>
<td>yht</td>
<td>470</td>
</tr>
</tbody>
</table>

4.2 Tehtävien luominen

Tehtäväsarjan luomisessa käytettiin Question Writer 3.5 -ohjelmaa. Ohjelma antoi omat rajoituksensa tehtävien luomiseen, koska luotavia tehtävätyypejä oli rajoitetut määrä, eivätkä valmiit mallit aina täysin vastanneet tutkinnossa olleita tehtäväasetteluja ja malleja. Tehtävien luonnissa pyrittiin ensisijaisesti säilyttämään alkuperäinen ulkoasu ja pisteytys. Yleisenä mallina tehtäviä luotessa oli se, että vastattaessa tehtävään väärien saadaan palaute, josta näkee oikean vastauksen ja tiedon siitä, mistä oikea vastaus lähdemateriaalissa löytyy. Ohjelman asetuksia ja ulkoasua pääsee

Sanallisissa tehtäviä pisteyttäessä on usein käytetty omaa harkintaa. Niitä joutui joissakin tapauksissa muokkaamaan paljon ja esimerkiksi pilkkoimaan useaksi eri tehtäväksi. Tärkeimpänä asiana näissä tapauksissa pidettiin sitä, että tehtävän merkitys säilyy kuitenkin samana ja asia, jota tutkinnossa kysyttiin, tulee myös luotavassa tehtäväsarjassa kysyttyä.

"oikein vai väärin" -tehtävissä pisteetys oikean kysymyksen kohdalla on säilytetty alkuperäisenä eli oikeasta vastauksesta saa joko kaksi tai kolme pistettä. Suurin osa SFS 6002:een liittyvistä tehtävistä oli alkuperäisissä tutkinoissa kolmen pisteen arvoisia ja näiden tehtävien kohdalla päädyttiin sen takia antamaan oikeasta vastauksesta kolme pistettä. Väärrä vaihtoehto puolestaan tuo luodussa tehtävävälkokoelmassa yhden virhepisteen. Ero alkuperäisiin tutkintoihin on siis se, että väärrän vaihtoehton tunnistamisesta ei saa erikseen pisteitä, sillä voi vain välttää virhepisteet.

Yksi tehtävätyyppi tutkinoissa on laskentaa ja taulukoiden käyttöä vaativat tehtävät. Näiden alkuperäinen arvostelu perustui välituloksien pisteetyykseen, joka ei Question Writer 3.5:llä ollut mahdollista. Tällaiset tehtävät on luotu tehtäväasarjaan siten, että tyhjään kohtaan merkitään satantu lopputulos ja pistetse määrätyvät sen mukaan, onko vastaus oikein. Pisteetyys on erilaisesta arvostelutavasta huolimatta säilytetty alkuperäisenä. Tehtävän arvostelu perustuu luodussa tehtävävälkokoelmassa siis vain lopputuloksen oikeellisuuteen. Oikeasta vastauksesta saadaan se pistemäärä, joka oli alun perin jaettu koko tehtävälle välituloksineen. Tällä on pyritty korostamaan laskentatehtävien tärkeyttä sekä sitä, että myös tutkinoissa näistä tehtävistä saa paljon pisteitä suhteessa muihin tehtäviin. Kun vastaa tällaiseen tehtävään väärin, saa tarkasteltavaksi oikeita laskutoimituksia. Kuvio 4 on esimerkki tällaisesta tehtävästä. Siinä on tehtävään vastattu...
väärin, joten ohjelma esittää oikean laskentatavan ja laskennan perusteena olevat kohdat lähdekirjallisuudessa.

Kuva 4 – Laskentaava tehtävä, johon on vastattu väärin

Kuva 5 – Tehtävä, jossa joku kohta tekstistä on löydettävä lähdekirjallisuudesta

Jotkin sanalliset kysymykset on muutettu sellaisiksi, joissa täytetään jokin tyhjä kohta. Tällöin tehtävän tarkoitus täyttyy, kun kyseessä oleva pykälä tai standardin kohta joudutaan etsimään lähdekirjallisuudesta. Sellaisissa tapauksissa, joissa tämä keino ei ole järkevä esimerkiksi helpon pääteltävyyden takia, on tehtävä luotu siten, että on kysytty suoraan sitä pykälää tai kohtaa lähdemateriaalista, josta vastaus löytyy. Esimerkki tehtävästä, jossa täytetään tyhjä kohta, on esitetty kuviossa 6.
Joissain tehtävissä vastaus oli pitkä luettelo, jonka kysyminen ”Täytä tyhjä kohta” -menetelmällä olisi ollut vaikeaa, koska vastaukset olisivat olleet liian pitkiä, niissä olisi käytetty erilaisia sanamuotoja ja niihin olisi varmasti tullut myös kirjoitusvirheitä. Tällaisissa tehtävissä päädyttiin kysymään sitä kohtaa lähdemateriaalista, josta vastaus löytyy. Kuvio 7 esittää tällaista tilannetta.

Kuvio 6 – ”Täytä tyhjä kohta” -tehtävä

Kuvio 7 – Tehtävä, jossa kysytään kohtaa lähdekirjallisuudessa

Kuvio 7

Your Answer:

Vastaus: KTMp 516/11

Vastaus:

Käytännönoton tarkastuspyyntökirjasta tulee käydyllä ilmi:

-kohteen yksilönä työ
-kohteen yksilöntä toiminnan

KTMp 517/96/48

Allowable Answers: 517/96-4, 517-4, 517/4, 517/96/4
Taulukoiden käyttöä vaativat tehtävät sopivat erityisen hyvin ”Täytä tyhjä kohta”-tehtäviksi. Esimerkkinä tästä kuvio 8.

Sanallisista tehtävistä on joissain tapauksissa myös muokattu sellaisia, että kysymysosion teksti merkitään joko oikeaksi tai vääräksi. Kuviossa 9 on tällainen tehtävä. Kuviossa olevaan tehtävään ei ole vielä vastattu, kuten aikaisemmissa kuvioissa.

Jotkin tehtävät vaativat havainnollistavaa kuvaa minkä voi toteuttaa myös myös Question Writer 3.5:lla. Tällaisesta tehtävästä on esimerkki kuviossa 10.
Ohjelmassa sai luottaa myös sellaisia tehtäviä, joissa piti valita joku vaihtoehto. Kuviossa 11 on tällainen tehtävä. Siitä näkyy myös, kuinka ohjelma ilmoittaa, kun kysymykseen on vastattu oikein.

Kuva 12 – Tehtävä, jossa työn eri vaiheet on järjestettävä kronologisesti
5 TULOSTEN TARKASTELU

5.1 Työn tavoitteiden toteutuminen

Suurin haaste työssä oli sen laajuuden tuoman työmäärän lisäksi se, että jotkin tehtävät saattoivat viedä runsaasti aikaa, ja aikataulussa pysyminen oli väärä erittäin haastavaa. Muita haasteita aiheuttivat mm. kysymysten toistuvuus, jolloin suurella käsitellyssä määrässä tehtäviä piti lajitella kahta kertaa.

Tehtävien analysointi tuntui ennen työn tekemistä ensivilkaisun jälkeen melko mahdollomalta ajatukselta niiden määrän takia, mutta käsitelyyn ja lajitteleen jälkeen oli analysointi helpompaa. Yksittäisiä kysymyksiä ei tässä työssä lähdetty analysoimaan ja erittelemään, koska sähköturvalisuudesta ei voi poimia vain tiettyjä, tärkeimpiä asioita. Tällainen menettely saattaisi olla sitä uskoa, ettei muihin asioihin tarvitsisi perehtyä samalla vakavuudella. Tehtävien analysoinnissa yksilöinti on siis jätetty pois, ja lueteltu vain tehtävien aihealueittaiseen ryhmittelyyn perustuvat aihealueet kuviossa 1.

Tehtäväkokoelmaan mahdollisesti eksyneitä kirjoitusvirheitä ja inhimillisiä lapsahduksia pyritään poistamaan testaattamalla se Tampereen ammat-
Jarno Mäkelä

5.2 Harjoittelu tehtävien avulla

Harjoiteltaessa tehtävien avulla on hyvä muistaa, että turvallisuustutkinnossa on kysymyksiä kattavasti koko lähdemateriaalista. Siksi ei riitä, että hallitsee vain jonkin aihealueista, vaan kannattaa harjoitella löytämään vastaukset kaikkiin kysymyksiin. Tutkinnossa on myös yleensä lopuksi yksi mitoitus- tai laskentatehtävä, joka edellyttää taulukkkojen käyttön ja mitoituslaskujen hallintaa, eli myös näitä asioita kannattaa harjoitella.

Tutkintoon osallistuvan ei ole tärkeää osata jokaista asiaa ulkoa, vaan hänellä pitää olla taitoa löytää vastaukset lähdemateriaalista. Siksi julkaisujen rakenteeseen on tutustuttava etukäteen niin, että osaa automaattisesti hakea tietoa oikealta suunnalta.

Kohdassa 4.3 on lueteltu vuoden 2002 jälkeen tehdyt suurimmat muutokset, jotka kannattaakin kerrata, koska tällaiset muutokset ovat tietysti potentiaalisia tulevien tutkintotehtävien aiheita. Tämän työn luvun 5.1 kuviossa 1 on lueteltu turvallisuustutkinnon eri aihealueet lähdemateriaalien
mukaan, sillä perusteella, miten ne jakautuvat tutkinnoissa. Tätä luetteloa
voi käyttää esim. muistilistana kysymyksiä harjoitellessa. Tämän työn liit-
teessä 1 on harjoittelua varten esimerkkinä vuoden 2008 sähköturvalli-
suustutkinto oikeine vastuksineen.

Tämän työn liitteissä on esimerkkinä vuoden 2008 sähköturvallisuustut-
kinto 1. Lisätietoa sähköpätevyykistä ja turvallisuustutkinnoista löytyy
Tukesin ohjeesta S5 ja osoitteesta www.tukes.fi. Tietoa sähköpätevyykis-
tä löytyy myös SETI:n sivuilta osoitteesta
pätevyyksiin vaadittavan koulutuksen rakenteesta.

Tämän työn tuloksena laadittua turvallisuustutkintoon valmistavaa tehtä-
väesarjaa pääsee harjoittelemaan VirtuaaliAMKin materiaalipankista.
LÄHTEET

Painetut

Turvallisuustutkinnot

Tukes, 25.4.2002, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 25.4.2002, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 21.11.2002, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 21.11.2002, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 24.4.2003, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 24.4.2003, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 20.11.2003, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 20.11.2003, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 22.4.2004, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 22.4.2004, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 18.11.2004, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 18.11.2004, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 21.4.2005, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 21.4.2005, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 24.11.2005, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 20.4.2006, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 20.4.2006, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 23.11.2006, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 23.11.2006, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 19.4.2007, Sähköturvallisuustutkinto 1, vastaussarja
Tukes, 19.4.2007, Sähköturvallisuustutkinto 2, vastaussarja
Tukes, 22.11.2007, Sähköturvallisuustutkinto 1, vastaussarja
Lähdimateriaali

Suomen Standardoimisliitto SFS ry, 2007, SFS Käsikirja 600 – pienjännitesähköasennukset ja sähkötyöturvallisuus

Suomen Standardoimisliitto SFS ry, 2009, SFS Käsikirja 601 – Suurjännitesähköasennukset ja ilmajohdot

Sähkö- ja teleurakotsijaliitto STUL ry, 2009, D1 - Käsikirja rakennusten sähköasennuksista

Sähkötarkastuskeskus, 1993, A4 – Vahvavirtailmajohtomääräykset

Valtioneuvoston asetus sähkölaitteiden ja -laitteistojen sähkömagneettisesta yhteensovivuudesta (1466/2007)

Kauppa- ja teollisuusministeriön päätös sähkölaitteistojen turvallisuudesta (1193/1999)

Turvatekniikan keskuksen julkaisu, 2008, Tukes-ohje S4

Turvatekniikan keskuksen julkaisu, 2008, Tukes-ohje S5
Sähköiset

Turvatekniikan keskus, sähköpätevyyksistä, www.tukes.fi

SETI OY, tietoa sähköpätevyyksiin vaadittavien koulutusten sisällöstä,
http://www.seti.fi/Sahkopatevyydet.aspx

Tukesin säädöstietopalvelu, KTMp 1694/1993 ja sen muutokset

Opiks-Tiimi Oy, turvallisuustutkinnon materiaalipaketeista
http://www.opiks.fi/julkaisut.htm#tutkintop
LIITTEET

LIITE 1 - SÄHKÖTURVALLISUUSTUTKINTO 1

VASTAUSSARJA 20.11.2008

Tutkinto on kaksiosainen.

Tutkinnon läpäisy edellyttää molemmista osista erikseen noin 2/3 pistemäärrää maksimipistemäärrästä.

Vastaa vaihtoehtokysymyksiin merkitsemällä

+ oikeana pidetyn väitteen kohdalle ja

- vääränä pidetyn väitteen kohdalle tai

jätä viiva tyhjäksi, ellet ole varma väitteen paikkansa pitävyydestä.

Vaihtoehtotehtävät ja täydennettävät tehtävät arvostellaan siten, että oikeasta vastauksesta saat 2 - 3 pistettä/väite riippuen väitteen tärkeydestä. Vastatessasi väärin väitteeseen tai vaihtoehto-tehtävään saat yhden virhe-pisteen. Tyhjästä viivasta saat 0 pistettä.

Kirjallisista ja laskennallisista tehtävistä saat täysin oikeasta vastauksesta pistemäärä, joka on merkitty kysymyksen kohdalle sulkuin.

Kirjallisissa tehtävissä ei riitä pelkkä viitata johonkin säädosten pykälään.

Tutkintokysymykset on laadittu siitä lähtökohdasta, että niihin vastataan tutkintovaatimusjulkaisujen vaatimuksia noudattaen. On syytä kiinnittää huomiota sellaasiin sanoihin kuin aina ja vääntään, jotka saattavat muuttaa väitteen sisällöä.

Kaikki muu materiaali saa olla esillä, paitsi julkaistujin kuulumattomia laskennallisia esimerkkejä ja aikaisempien tutkintojen tehtäväsarjoja.

Nimi teksten
Syntymäaika
O soite ja puhelin

Allekirjoitus
OSA I: Tehtävät 1 – 8 (maksimipistemäärä 60 pistettä, hyväksymisraja on 40 pistettä)

1. Sähköpätevyys 1 oikeuttaa toimimaan

 sähkötöiden johtajana pienjännitteisen sähkölaitteiston kokoonpanotyössä.
 (2 pistettä)

 käytönjohtajana luokan 2c sähkölaitteistossa. (2 pistettä)

 työnaikaisesta sähköturvallisuudesta vastaavana henkilönä
 saneerustyömaalla, kunhan henkilöllä on tietoa ja kokemusta
 vastaavista töistä. (2 pistettä)
 (KTMp 516 §§12 ja 29 c, KTM p 517 §2, SFS 6002 liite X .4)

2. Sähkölaitteiston haltijan on

 huolehdittava siitä, että sähkölaitteistossa havaitut puutteet ja viat
 poistetaan riittävän nopeasti.
 (2 pistettä)

 - huolehdittava siitä, että laitteistolle tehdään määräaikaistarkastus 15
 vuoden vällein, kun on kyseessä enintään 1000 V nimellisjännitteinen
 sähkölaitteisto teollisuuskiinteistössä, jonka liittymisteho on yli 1600
 kVA. (2 pistettä)
 (KTKp 517/12§)

 nimettävä käytön johtaja, jonka on oltava sähkölaitteiston haltijan
 palveluksessa, kun on kyseessä enintään 1000 V sähkölaitteisto teollis-
 isuuskiinteistössä, jonka liittymisteho on yli 1600 kVA. (2 pistettä)
 (KTM p 516 / 2 §)

3. Varmennustarkastuksen

 - saa aina korvata sähkölaitteiston rakentaneen sellaisen
 sähköurakoitsijan varmennustarkastuksella, jolla on siiven oikeus. (2
 pistettä)

 - voi tehdä aina kolmen kuukauden kuluessa käyttöönotosta.(2
 pistettä)

 + saa tehdä valtuutettu tarkastaja, jos on kyseessä luokan 3 b-
 laitteisto.(2 pistettä) (KTM p 517/ §§2, 7 ja 8§)
4. Mitä vaatimuksia on esitetty sähkööötvallisuusstandardissa sulakkeen vaihdolle sellaisessa varokekytkimessä (ns. uuninluukkukytkin), josta kokemuksen mukaan voi aiheutua valokaarivaara? (6 pistettä)

Vastaus:
Sulakkeen vaihdon saa tehdä vain sähkö alan ammattihenkilö, arokekytkimen saa avata noudattaen erityistä ohjetta ja käyttäen riittävää suojainta sekä riittävän hyviä valokaarta kestävää käsinettä. (SFS 6002/7.4.1)

5. Mitä suositteita ja velvoitteita on sähkööötvallisuusstandardissa määritelty työnantajalle jännitetöitä tekevien työntekijöiden pätevyyden ylläpitämiseksi? (6 pistettä)

Vastaus:
Henkilöstön koulutuksen ajan tasalla oleminen ja soveltuvuus nykyisiin tehtäviin suositellaan tarkistettavaksi vuosittain. Jännitetyökoulutus pitää kerrata siten, että kertauskoulutusten välä on enintään viisi vuotta. Kertaus sessa voidaan ottaa huomioon henkilöiden kokemus jännitetöistä.

Jos henkilö ei ole tehnyt jännitetöitä kolmen vuoden aikana, jännitetyökoulutus pitää kerrata ennen kuin jännitetöiden tekeminen aloitetaan. (SFS 6002/ liite Y/Y3)
6. Käyttöjännitteestä erotettu laitoksen osa on työmaadoitettava työn ajaksi aina, kun on kyseessä

- jakokeskuksen kiskostoon kohdistuva työ, kun keskuksen pääkytkimen nimellisvirta on 600 A. (3 pistettä)

+ 400 V avojohtoon kohdistuva työ. (3 pistettä)

+ 20 kV avojohtoon kohdistuva työ. (3 pistettä)

+ yli 1000 V sähkölaiteistoön kohdistuva työ. (3 pistettä)

(KTM p 1194/1999 § 29f ja SFS 6002/6.2.4.1 ja 6.2.4.2)

7. Vastaa seuraaviin väittämiin etusivun ohjeiden mukaisesti.

- Työskentelysuojan kosketussuojaamattomaan jännitteiseen laitteistoon saa laittaa paikalleen tehtävänä opastettu henkilö, jolla ei ole sähköalan koulutusta ja työkokemusta. (3 pistettä)

(SFS 6002/taulukko Y.2)

+ Avojohdoilla tehtäviä jännitetöitä pitää aina olla tekemässä vähintään

(SFS 6002/taulukko Y.3 ja sen esimerkit)

+ Suurjännitelaiteistoissa tapahtuva jännitetyön tekeminen vaatii aina

työryhmän, jossa on vähintään kaksi jännitetyökoulutuksen saanutta

sähköalan ammattihenkilöä. (3 pistettä)

(SFS 6002/Y.10)

8. Mikä on jännitetyöalueen ulkorajan mita

pienjännitelaiteistoilla sellaisissa kohteissa, joissa on laajoja paljaita

jännitteisiä osia? (3 pistettä) V astaus: 0,2 m (SFS 6002/taulukko Y.1)

pienjänniteilmajojohdoilla? (3 pistettä) V astaus: 0,5 m (SFS 6002/taulukko Y.1)

20 kV ilmajojohdoilla suoraan jännitteisen osan alapuolella? (3 pistettä)

V astaus: 1,0 m (SFS 6002/taulukko Y.1)
OSA II: Tehtävät 9 – 18 (maksimipistemäärä 60 pistettä, hyväksymisraja on 40 pistettä)

9. Milloin suihkutilaan ei vaadita suojavaavaa potentiaalintasauta? (3 pistettä)
Jos rakennuksessa, jossa suihkutila sijaitsee, on tehty pääpotentiaalintasaus, suojavaava lisäpotentiaalintasauta ei tarvitse käyttää. (SF S 6000/ 701.415.2)

10. Vanhan asennuksen pinnallisessa jakorasiassa on harmaa johdin. Se voi toimia

+ PEN-johtimena. (2 pistettä)

+ vaihejohtimena. (2 pistettä)

+ nollajohtimena. (2 pistettä)
(SF S 6000/ liite 802C)

11. Vastaa seuraaviin väittämiin etusivun ohjeiden mukaisesti.

+ Jos kosketeltavissa olevan metallisen asennusputken sisällä on vain peruseristettyjä johtimia, asennusputki pitää suojavaadoittaa. (2 pistettä)

- Edellisen kohdan suojavaadoittaminen voidaan suorittaa pelkästään rasioissa. (2 pistettä)

+ Muoviasennusputkea ei ole tarkoitettu sijoitettavaksi kuumaan tilaan, jossa putken käyttölämpötila - huomioon ottaen myös putkessa olevien johtimien kehittämä lämpöteho - on pitkäaikaisesti yli 60 ºC. (2 pistettä)
(D 1/ 522.11 sivut 187, 188, 186)
12. Olemassa olevaan sähköasennukseen on lisätty pistorasia, jonka asennuksessa on tehty yllä olevan kuvan mukainen kytkentävirhe jakorasiassa.
 a) Mitä vaaraa asennusvirhe aiheuttaa ja miksi? (2 pistettä)
 b) Asennusvirhetettä ei ole havaittu aistinvaraisessa tarkastuksessa, mutta miten se on havaittavissa luotettavasti standardin SFS 6000 osan 6 mittauksin kuvan tilanteessa? Perustele vastauksesi. (3 pistettä)

Vastaus: (SFS 6000 / 61)
 a) Sähköiskun vaaraa, koska pistorasian suojakoskettimet tulevat jännitteeseen kytkimen ollessa l-asennossa. (2 pistettä)
 b) Kuvan tilanteessa kytkin on siis auki asennossa. V aloon tai ääneen perustuva sukko-testeri tai ns. summeri tai on/off-tietoon perustuva testeri ei ole luotettava sellaisenaan eikä myöskään mitattua jännittenkottimella. Vaihtoehto A) => ns. PE-mittaus
 1) edellyttää tehtäväksi lukeman antamalla mittalaitteella (SFS 6000/6C.61.3.2)
 2) laajennettaessa olemassa olevaa asennusta on todettava, että lisäys hekkenä olemassa olevan asennuksen turvallisuutta 61.15, joten PE-mittaus on tehtävä mahdollisimman etäältä vanhasta asennuksesta, esim. ryhmäkeskuksesta PEN-kiskon ja uuden pistorasian suojakoskettimen välistä
 3) 60 W lamppu lisää mitattavan (PE -piirin vastustaa huomattavasti/ monikymmenkertaiseksi suositeltavan muutaman ohmin arvoon verrattuna (3 pistettä)
Vaihtoehto B) => ns. oikosulkuvirta-tai ns. silmukkaimpedanssimittaus (vikaapirin impedanssin mittaus) pistorasian vaiheen ja PE väliltä. ks. edellä kohta 3, mikä johtaa pienen oikosulkuvirta-arvoon tai suureen impedanssiarvoon. (3 pistettä)
13. Puupylväseen rakennetaan uusi käsien ohjattava pylväserotinasema. Tällöin

+pylväällä alas tuleva maadoitusjohdin on aina suojattava koskettamiselta ja mekaaniselta vahingoittumiselta eristävästä materiaalista tehdyllä suojalla, joka ulottuu vähintään 2,3 m korkeudelle ja vähintään 0,2 m syvyydelle maahan.

(SFS 6001/ Liite F 4)

-pylväserotinasema on maadoitettava aina maadoitusjärjestelmällä, jonka muodostaa vähintään potentialinhajauksia 0,5 m syvyteen ja 1 m pähän pylvästä asennettuna ja pylvään perustuksissa oleva elektrodi.

(SFS 6001/ Liite F 4)

+pylvään saa tietyillä ehdoilla asentaa myös paikalle, jossa usein oleskelee ihmisiä tai kotieläimitä.

(SFS 6001/ Liite F 4)

14. Ilmajohdoilla

-Jännitteelle alttiin suojamaadoittamattoman haruksen eristimen alaosan on oltava 20 kV avojohdolla normaalisissa asennossaan vähintään 4 m etäisyydellä maan pinnasta.

(A 4/ 5.2.2)

Tilapäislaitteiston pienjänniteriippujohtoa ei koskaan saa kiinnittää kasvavaan puuhun.

(A 4 / 5.3)

Laskettaessa varmentamattoman yli 1000 V johdon lämpenenemistä oikosulussa voidaan lähtökohtana pitää kaksivalheisen oikosulkuvirran arvoa.

(A 4/ 3.2.1.1)

Tien ylittävä ilmajohdon porttiharus rinnastetaan etäisyysvaatimusten kannalta riippujohtoon.
15. Yli 1000 V laitteistoissa

- on nestejäähdytteiset muuntajat varustettava sisäasennuksissa aina öljykuopalla tai yhdistelmällä, jossa on muuntajakohtaiset öljykuopat ja yhteinen keräilyläävä.
 (2 pistettä) (SFS 6001/7.7.1.1)

+ SF₆-asennustilojen alla olevien ja niihin liittyvien kotelojen, kanavien, syvennyksien tai kuilujen on oltava tuulettuvia. (2 pistettä) (SFS 6001/7.7.2.2)

+ sähkötiloihin on asennettava tilan ulkopuolelle ja kuhunkin sisäänkäyntioveen tilan tunnistetiedot ja merkinnät vaaroista. (2 pistettä) (SFS 6001/7.8.2)

16. Yli 1000 V asennuksissa

- sähköalueen aidan on oltava vähintään 2,5 m korkea. (2 pistettä) (SFS 6001/6.2.6)

+ aidan sisäpuolella olevissa avoimissa ulkoasennuksissa koskettusuojaaamattomien, paljaiden jännitteisten osien etäisyysta maan pinnasta on oltava vähintään N+2600 mm, kuitenkin vähintään 2,8 metriä. (2 pistettä) (SFS 6001/6.2)

+ sähkötilaan sijoitettun kytkinlaitoksen jännitteiset osat katsotaan luotettavasti erotetuksi muusta sähkötilasta, jos kytkinlaitos on kotelointiluokaltaan vähintään IP 2X. (2 pistettä) (SFS 6001/7.1.3.2)

+ kaikkei sisäänkäyntiovet sähkötiloihin on varustettava ulkopuolelta näkyvällä sähkön vaarallisuudesta varoittavalla kilvellä. (2 pistettä) (SFS 6001/7.8.3)

17. Yli 1000 V uudisasennuksissa

+ maadoituserottomen koskettimien asento on voitava tarkistaa joko suoraan näkyvän erotusvälin tai mekaanisen asennuksen avulla. (2 pistettä) (SFS 6001/5.2.1.1)

+ maadoituserottimet on asennettava siten, että ne eivät voi toimia tahattomasti käyttövivustoon manuaalisesti kohdistuvasta voimasta. (2 pistettä) (SFS 6001/5.2.1.2)

+ apuenergian avulla ohjatut maadoituserottimet on voitava sulkea ja avata paikallisesti. (2 pistettä) (SFS 6001/8.1.10)
18. Pistorasiaa (230 V) syöttävän kaapelin, M M J 3x1,5S, kuormitettavuus on korjauskertoimineen 12 A. Mitattu oikosulkuvirta pistorasiassa on 70 A. Minkä kokoisella ylivirtasuojalla johto on suojattava, kun

a) ylivirtasuojana on gG-sulake? (3 pistettä)

b) ylivirtasuojana on johdonsuojakatkaisija? (3 pistettä)

Perustele vastauksesi molemmissa kohdissa.

Vastaus:

a) Valitaan 6 A gG sulake, jolloin johdon sallittu kuormitus vähintään 8 A (taulukko B.52-1/ SFS-käsikirja 600))

\[V \text{ aadittu oikosulkuvirran mitattu arvo } 0,4 \text{ s poiskytkentäajalla } 6 \text{ A gG-sulak } \text{ on } 58,2 \text{ A} \]

(taulukko 41.4b/D1) → Suojaus toimii tarkoitetulla tavalla.

b) M ikäli ylivirtasuojana käytetään johdonsuojakatkaisijaa, voidaan sen nimellisvirta ottaa suoraan kaapelin kuormitettavuudesta. Tällöin päädytään 10 A nimellisvirtaan. (SFS-käsikirja/Liite 52B)

\[V \text{ oikosulkuvirran riittävyysen tark astelu taulukosta } 41.4a/D1 \text{ vaadittu mitattu arvo B-tyypin johdonsuojakatkaisijalle } 62,5 \text{ A} \rightarrow \text{ Suojaus toimii tarkoitetulla tavalla.} \]

C-tyypin johdonsuojakatkaisijalle ei täytä ehtoa taulukon mukaan.