

Oskar Gusgård

Application development for the Apple Watch

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Thesis

14 May 2018

 Abstract

Author
Title

Number of Pages
Date

Oskar Gusgård
Application development for the Apple Watch

36 pages + 2 appendices
14 May 2018

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major Software Engineering

Instructors

Peter Hjort, Senior Lecturer

The thesis was conducted as a project for a Finnish startup company, with the goal of
creating a supporting Apple Watch application for an iOS map and voice guidance-based
route application. The Apple Watch application’s goal was to make the Route Pepper
application more user-friendly during exercise.

For the project to succeed, the most important features of the iOS application had to be
created for the Apple Watch application, utilizing the watchOS’s WatchKit framework, the
Core Location framework and the Watch Connectivity framework for establishing the
connection between the applications; all while avoiding the limitation of the watchOS.

The start of the project focused on studying the Apple Watch technology, architecture and
its features. Studying the communication establishment between the iOS and the watchOS
application was one of the key subjects for creating a Watch application. After the study,
the connection was established for sharing data between the applications and to send Pep
Point coordinates for the iOS application to be processed. A notification system was
created for sending map images generated by the iOS application to be shown to the user
upon entering a Pep Point location. The images contain the route line and a marker for the
Pep Point coordinate.

During the project, several restrictions were encountered with the watchOS operating
system, which hindered the creation of some of the planned features. Problems were
faced with the WatchKit framework’s WKInterfaceMap class’ limitations, which meant that
a map interface could not be created. A compromise was made by generating map images
on the iOS application which were sent to the Watch application. WatchKit did not provide
support for the Firebase API, which meant that all Firebase functionality had to be
executed on the iOS application.

Project results were found satisfying and the created Watch application was published in
the Apple App Store to support the iOS application. The project was a great learning
experience for all parties involved.

Keywords wearable technology, location-based applications, iOS,
watchOS

Tekijä
Otsikko

Sivumäärä
Aika

Oskar Gusgård
Sovelluskehitys Apple Watchille

36 sivua + 2 liitettä
14.6.2018

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Software Engineering

Ohjaaja

Lehtori Peter Hjort

Insinöörityö toteutettiin projektina suomalaiselle start-up-yritykselle, ja tavoitteena oli luoda
kehityksen alla olleelle kartta- ja ääniohjeistuspohjaiselle reittiopastus-iOS-sovellukselle
sitä tukeva Apple Watch -sovellus. Toteutettavan sovelluksen tavoitteena oli tehdä
sovelluksesta käyttäjäystävällisempi liikunnan yhteydessä.

Projektin onnistumiseksi sovellukseen tuli luoda tärkeimmät iOS-sovelluksen
toiminnollisuuksista käyttäen watchOS:n WatchKit-kehystä, Core Location -kehystä ja
Watch Connectivity -kehystä sovellusten keskinäisen viestinnän toteuttamiseksi. Apple
Watchin rajoitteita tuli kiertää toiminnollisuuksien toteuttamiseksi.

Projektin alussa perehdyttiin Apple Watchin teknologiaan, arkkitehtuuriin ja tärkeimpiin
ominaisuuksiin. iOS- ja watchOS-sovellusten yhteiseen kommunikaatioon tutustuminen oli
yksi tärkeimmistä osa-alueista Watch-sovelluksen luonnissa. Tutustumisen jälkeen
sovellusten välille luotiin kommunikaatioyhteys sovellusten yhteisen datan jakamiselle ja
Pep Point -koordinaattipisteiden lähettämiselle iOS-sovelluksen käsiteltäväksi. Sovellusten
välille luotiin ilmoitusjärjestelmä, jonka avulla iOS-sovellukselta lähetettiin reittiviivan ja Pep
Point -koordinaatinpisteen sisältämiä karttakuvia Watch-sovellukselle käyttäjälle
näytettäväksi.

Projektin aikana watchOS-käyttöjärjestelmässä havaittiin useita rajoituksia, jotka
vaikeuttivat toivottujen ominaisuuksien luontia. Ongelmia aiheutti WatchKit-kehyksen
WKInterfaceMap-luokan rajallisuus, jonka takia toivottua karttanäkymää ei voitu luoda.
Tämä kierrettiin luomalla karttakuvia iOS-sovelluksella ja lähettämällä ne Watch-
sovellukselle. WatchKit ei myöskään tarjonnut tukea Firebase-ohjelmointirajapinnalle,
minkä seurauksena kaikki Firebase-toiminnallisuus suoritettiin iOS-sovelluksessa.

Projektin tuloksiin oltiin tyytyväisiä, ja toteutettu Watch-sovellus julkaistiin Apple-kauppaan
iOS-sovelluksen tueksi. Projekti oli erittäin opettavainen niin tilaajalle kuin työn
toteuttajalle.

ko

Tulokset

Avainsanat puettava teknologia, paikkatietosovellukset, iOS, watchOS

Contents

List of Abbreviations

1 Introduction 1

2 Route Pepper 1

3 Apple Watch and watchOS 4

3.1 Apple Watch interaction 4

3.2 Notifications 5

3.2.1 Notification appearance rules 6

3.2.2 Apple Watch notifications 6

3.3 Complications 8

4 Watch application architecture 9

4.1 iOS application 10

4.2 Watch App 11

4.3 WatchKit Extension 11

4.4 WatchKit 11

4.4.1 Application states 11

4.4.2 Background tasks 13

4.4.3 Snapshots 14

4.5 Watch Connectivity 14

4.5.1 WCSession 14

4.5.2 Sending data 15

4.5.3 Receiving data 16

5 The project 17

5.1 Development tools 18

5.1.1 Swift 18

5.1.2 Xcode 18

5.1.3 Google Firebase 20

5.2 Communication model 22

5.3 The application 23

5.3.1 Pep Point notifications 25

5.3.2 Adding a Pep Point 28

5.4 Sharing data between the applications 31

5.5 Testing 31

5.6 The encountered problems 32

5.7 Further development 35

6 Conclusion 35

References 37

Appendices

Appendix 1. MapSnapshotManager class

Appendix 2. Add Pep Point method on Watch Application

List of Abbreviations

iOS Apple iPhone’s operating system.

watchOS Apple Watch’s operating system.

macOS Apple Mac’s operating system.

tvOS Apple Tv’s operating system.

LTE Long-Term Evolution. Telecommunications standard for high-speed

wireless communication for mobile devices.

APN Apple Push Notification service.

WCSession Watch Connectivity session for establishing two-way communication

between the devices.

WKExtension Apple Watch extension for performing app-level tasks.

IDE Integrated development environment.

UIKit Framework for constructing user interfaces for the iOS and tvOS.

GPS Global positioning system.

GPX GPS exchange format. XML format for exchanging GPS data.

HTTP Hypertext transfer protocol.

MVP Minimum viable product.

1

1 Introduction

As technology becomes smaller and smarter, it has become possible to actually wear it.

One of today’s biggest tech trends is wearable technology and its market is predicted to

double by the end of 2021, the most popular categories being smart watches and

wristbands [1].

This Bachelor’s Thesis explores wearable technology through the study of Apple Watch

and watchOS development. The thesis project was conducted for a Finnish start-up

company Appsipaja Oy, with the goal of developing an Apple Watch application for Route

Pepper, which is a map and voice guidance application for iOS.

The requirements for the project was to create an Apple Watch application to serve as

an extension to the iOS application, with the convenience of using the Route Pepper

application directly from the watch while exercising. From the Watch application, the user

had to be able to change the application settings, add Pep Point coordinates to the

current location, see the trail on a map and to be able to start routes directly from the

watch. Some of the goals could not be reached during the project timespan, but

compromises where made to reach a satisfying product.

The thesis covers basics of Apple Watch technology, Watch application architecture and

hierarchy, communication between the iOS and Watch applications, the development

tools and the project itself.

2 Route Pepper

Route Pepper is a map and guidance application designed for outdoor activities, mainly

running, walking and cycling, but can be used for other activities that could require

location guidance. Route Pepper tackles a problem that many have when designing new

routes and try them for their first time: the worry of going off route and the constant

glances on the phone’s map application.

Route Pepper offers a solution: an application which will guide the user on their route by

providing notification and audio guidance. The routes are created online via Route

2

Pepper Planner -tool (see Figure 1). The tool allows the creation of routes with a trail

path and Pep Point markers. Pep Points are markers that contain a user provided

message, which will be read to the user upon reaching the coordinate location. Figure 1

displays the information a Pep Point contains.

Figure 1. Route Pepper Planner web tool for creating routes.

The newly created route can be seen on the Route Pepper iOS application’s route list.

After the user has selected a route, the route can be started, and the user can care freely

test out the route, while keeping their phone in the pocket. Figure 2 displays the route

screen after the it has been selected from a list of all the available routes.

3

Figure 2. iOS application’s route screen.

Route Pepper can be used for much more than to discover new routes. The application

could be used for marathon training or similar sports events. Remembering long routes

can be quite tough, and the user could also place Pep Points along the route to remind

about hydration and supplements. Route Pepper could also be used for hikers or

sightseeing to notify of points of interest.

The application also features a tool for route sharing. User can import shared routes to

get instant access to a new route. The user can export routes to make the routes public

for the rest of the community.

Due to the rising popularity of wearable technology, Route Pepper has also been

developed for the Apple Watch. Creating a Watch application makes the application

more convenient for the user. The routes can be launched directly from the watch without

the need of interacting with the phone, and the Pep Point notification will be displayed

on the watch, containing a map image of the Pep Point location. New points can

conveniently be created with the Watch application while exercising.

4

3 Apple Watch and watchOS

The original Apple Watch was released April 24th of 2015, becoming the best-selling

wearable of the year with 4,2 million devices sold during the 2nd quarter of 2015; beating

its Android competitors such as Fitbit and Xiaomi [2].

Since the original release of the Apple Watch, the device has rapidly been improved with

updated versions. Apple Watch Series 1 and Series 2 were both released during 2016

and Series 3 in 2017. Each one of the Series featured updates to the previous model,

such as upgraded processing power, improved memory and storage and Bluetooth

connectivity. The Series 3 also featured a model with its own LTE cellular network, which

gives the opportunity to use the watch applications without using the phone’s network.

[3.]

The watchOS was released along with the original Apple Watch in 2015 and it is based

on the iOS operating system; having many similar features [4]. As new versions of the

watchOS were released, more access for the developers was granted; watchOS 2

featured support for native third-party apps [5]. The newest version of the operating

system, watchOS 4, was released along with the Series 3 in September 19th of 2017 [6].

3.1 Apple Watch interaction

Due to the small size of the device, the interaction is much more limited compared to the

iOS. The gestures are very limited, only supporting vertical and horizontal swipes and

taps. The Apple Watch does not support multi-touch gestures. [7, p. 62.] To make up for

the limited on-screen interaction, the watch introduces the force touch and the digital

crown.

The watch has tiny electrodes on the display to determine if a tap is light or if it has more

pressure applied to it. A force touch is triggered by forcefully pressing the screen which

will open a context menu (see Figure 3). Context menus are not mandatory, but they are

featured in most applications.

5

Figure 3. Force touch menu on the watch [8].

The digital crown lets the user scroll the screen or its elements without obstructing the

screen. The watch screen can also be scrolled with a finger gesture, just as on the iOS,

but most of the time the user’s finger would hide the element being scrolled and the user

would lose track of how far to scroll. The digital crown allows the user to scroll elements

without any obstruction. The digital crown can be pressed down to exit the application

and access the application menu.

3.2 Notifications

Notifications are mainly used to communicate with the user while the application is not

in the foreground. Scheduled notifications are provided with a specific set of content and

are triggered by a time or location value. Notifications can contain text, images, video or

audio. Notifications mostly function the same way on watchOS, as they do on the iOS

but comes with a set of new scheduling and display rules. Notifications can either be

scheduled remotely from a server or locally on the device. Local notifications are

scheduled and handled using the User Notifications framework. [9.]

Remote notifications can be scheduled using the Apple Push Notification service (APN).

The remote notifications can be established by setting up an automatic IP connection

between the application and the APN, and between a server and the APN [10]. Remote

notifications are supported by iOS, tvOS, watchOS and macOS [9].

Local notifications are commonly used for alerting the user of new data the application

has downloaded in the background from a server. The local notifications are also useful

for calendar, to-do list and map applications that trigger when the user reaches a certain

6

location. Local notifications can be scheduled from either the iPhone or the Apple Watch

[9].

3.2.1 Notification appearance rules

Pairing an Apple Watch with an iPhone significantly changes the way notifications are

displayed for the user (see Figure 4). Remote and local (scheduled from the iOS

application) notification will be displayed either on the iOS or the watchOS device

depending on which one is being actively used. If the iPhone is in an unlocked state

when the scheduled notification would appear, it will be displayed on the iPhone. If the

iPhone is in a locked state, the notification will automatically be displayed on the Apple

Watch. The notification will be displayed on the locked iPhone if the Apple Watch is not

in a reachable mode, meaning that it cannot be reached via Bluetooth or Wi-Fi. Local

notifications scheduled on the Apple Watch will only be displayed on the watch.

Figure 4. Notification rules when an iPhone is paired with an Apple Watch [11].

3.2.2 Apple Watch notifications

The Apple Watch has a unique way of displaying notifications. When a notification first

arrives to the watch, the device will slightly vibrate and emit an alert sound. When the

user raises their wrist to look at the notification, the watch displays a short-look view of

the notification. [11.]

The short-look is a view that only displays a very bare version of the notification (see

Figure 5). The short-look is designed to give the user a quick glimpse of the notification’s

contents. The look displays the application icon along with the title and the application

name. Short-looks are automatically generated by the system and the elements cannot

7

be customized by the developer. The notification title string can be customized when the

notification is being created.

Figure 5. Short-look view of a watch notification [11].

If the user continues to look at the notification after the short-look interface has been

displayed, the interface will quickly transition into a long-look view (see Figure 6). Long-

look views are scrollable interfaces that display the notification content and any action

buttons configured for it. Long-looks are divided into three different parts: the sash, the

content area and the bottom area.

Figure 6. Long-look view of a Watch application’s notification [11].

8

The sash is an overlay that contains the application’s name and logo. The content area

displays the information attached to the notification, such as images and text. The bottom

area contains any action buttons that have been configured for the notification type. [11.]

Pressing one of the action buttons will deliver the action either to the iOS application or

the Watch application. Foreground actions will always be delivered to the Watch

application. Background actions for local notifications will be delivered to the Watch

application, whereas background actions for remote notifications will be delivered to the

iOS application. The dismiss button is provided by the system and cannot be customized;

it will always be included in every notification. [11.]

Custom long-look interfaces consist of two interfaces: static and dynamic. Dynamic

interfaces are highly customizable while the static is not. A long-look view will fall back

into the static interface if the customization takes too long to process or when there has

been an error. Static interfaces are predefined during design and will only display the

sash, an alert message (containing the notification message string) and the dismiss

button. [11.]

3.3 Complications

Compilations are small elements on the watch face (the main screen of the Apple Watch)

that provide quick access to information provided by the corresponding application.

Complications are created with the ClockKit framework. Complications can be designed

for an application and they can be attached to the watch face by the user.

At minimum, complications show the application icon, but they can also display data

generated by the application. A calendar application could show the current date, and an

activity tracker the status of the day’s goal. Tapping the complication launches the

application. Complications feature a variety of different templates called the complication

family (see Figure 7). There are six different types of complications: circular, modular

small/large, utility small/large and extra-large. The complication templates can display

either text, an image or both. [12.]

9

Figure 7. Watch complications and different complication families [7, p. 300].

Applications are not required to provide complications, but Apple highly recommends

having at least one to act as a launcher for the application. There are several benefits

for having the application’s complication on the user’s watch face: the application can

conveniently show useful data to the user without starting the application, the application

will be kept suspended in memory which lets the system rapidly wake it up when the

complication is tapped, and it also gives the application a bigger budget for background

tasks. [12.]

Because the user’s interaction with the watch face occurs quick and does not last for

long, the ClockKit framework must process the complications in advance so that they

can always display the newest information to the user. When complication data is needed

by the ClockKit, it runs the application’s WatchKit extension and calls the methods for

the complication data source object. The object conforms to the

CLKComplicationDataSource protocol, which provides the background task methods for

updating the complications. [12.] Due to power usage restrictions, the Apple Watch only

allows 50 complication data pushed per day [7, p. 297].

4 Watch application architecture

A Watch application cannot be installed on the Apple Watch on its own; it always has to

have a paired iPhone with the application installed on it. For the Watch application to

function, the watch has to be connected to the paired iPhone via Bluetooth or Wi-Fi. The

communication and the connection session are established with the Watch Connectivity

10

framework. The watch architecture consists of three main elements: iOS application,

Watch application and the WatchKit Extension (see Figure 8) [13].

Figure 8. The Watch application architecture [13].

4.1 iOS application

The application installed on the user’s iPhone is called the parent application. iOS

application installed on the iPhone that has a Watch application, will automatically be

installed on the Apple Watch as well. The Watch application installed on the Apple Watch

is completely dependent on the iOS application. Some processes of the Watch

application are often delegated over to the parent application, and sometimes the

application only acts as a display for the data that has been generated over at the parent

application. Some processes have to be delegated over to the parent applications since

the watchOS does not have all of the same frameworks as iOS. During the project, one

of the frameworks that was lacking from the watchOS was Firebase support, which

meant that Firebase related work had to be conducted on the iOS application instead.

The parent application shares data with the Watch application through the WatchKit

Extension. By creating a WCSession utilizing the Watch Connectivity framework, the

applications can create a connection for transferring data such as user settings and

application states.

11

4.2 Watch App

The Watch App is a bundle of resources that resides on the parent application and are

installed on the Apple Watch. These resources include the application storyboard, image

and audio files and any localization files used for the Watch application. Within the Watch

App bundle resides the WatchKit Extension. [7, p.65.]

4.3 WatchKit Extension

The WatchKit Extension is the area of the application hierarchy that connects the Watch

and the parent applications together. The extension contains the code written for the

Watch application. The extension uses the WatchKit framework to manipulate the

interface of a Watch application: it uses the classes of the framework to configure the

Watch App’s elements and create responses to the user interactions.

4.4 WatchKit

WatchKit is the framework for third-party developers for creating applications for the

watchOS. WatchKit is watchOS’s equivalent to the iOS’s UIKit framework, as they both

are used to create interfaces and interaction for the application [14]. A Watch application

includes one or more interfaces which contain buttons, sliders, tables and many other

visual elements. WatchKit uses the classes of the framework to configure these elements

and to establish connection to the user interactions. The WatchKit framework provides a

WKExtensionDelegate protocol which is a collection of methods that can be implemented

to manage app-level behavior of the WatchKit Extension. The protocol mainly handles

application states, snapshots and background tasks. [15.]

4.4.1 Application states

WatchKit notifies changes in the application’s execution state to the extension delegate

object. The state changes are triggered by major events in the lifetime of the application.

Table 1 describes the different application states.

12

State Description

Not running The application has not been launched or has been terminated

Inactive The application is running in the foreground but will not receive

events. This state will occur before the application enters background

or the device receives an interruption such as a phone call or a

message

Active The application is in the foreground and will receive events

Background The application has been given background execution time to fetch

updates

Suspended The application is in memory but is not executing any code. The

system suspends applications that are in the background which do

not have any pending background processes

Table 1. Watch application states [16].

The WKExtensionDelegate can respond to state transition events by implementing the

delegate’s application lifecycle methods. These methods can, for example, be used to

preload resources, configure initial user interfaces and save application states and user

data. [16.] Figure 9 displays the flow between the application states and the lifecycle

methods.

13

Figure 9. Interaction between different states of a Watch application [16].

The WatchKit calls the applicationDidFinishLaunching(_:) method after finishing to

launch the application, but before the application’s interface is visible (See A of Figure

9). The method can be used to setup configurations and to initialize which view controller

will be shown to the user at launch. [17.] The applicationDidBecomeActive() method tells

the delegate that the Watch application is now visible and the processes can be

continued, whereas the applicationWillResignActive() will signal the opposite (See B of

Figure 9) [18]. These methods are for pausing and resuming tasks.

The applicationWillEnterBackground() method will tell the delegate that the application

is about to enter the background. The method can be used to store the application state

and information to ensure that the right state is loaded after the application re-enters the

foreground (see C of Figure 9). [19.] The applicationWillEnterForeground() method is

called when the application is re-entering foreground after being backgrounded (see C

of Figure 9). The method is used to reload the state which the

applicationWillEnterBackgroud() has stored. [20.]

4.4.2 Background tasks

Background tasks give the application a small amount of time to run in the background.

Several different handler types are provided for the background tasks, each for a specific

type of activity. Some of these tasks can be manually scheduled by the application, while

some are automatically scheduled by the system. [21.] Each background task is

processed by the delegate’s handle(_:) method, which determines the type of the task.

The user interface can be updated to a snapshot which has been received by the

WKSnapshotRefreshBackgroundTask. When the application receives data from the iOS

application via the Watch Connectivity framework, it is handled by the

WKWatchConnectivityRefreshBackgroundTask. Background NSURLSession transfers

are handled by the WKUrlSessionRefreshBackgroundTask. The task is triggered when

a background transfer requires authorization or after a background transfer is completed.

[21.]

14

4.4.3 Snapshots

Snapshots are glimpses of the application state that are displayed in the dock when the

watch’s side button is pressed. The system keeps the most recently used apps in the

dock so that they can be resumed quickly. These apps receive priority for background

tasks. The dock can hold up to 10 applications at the same time. [21.] Pressing the

watch’s side button behaves similarly as double-pressing the home button on an iPhone.

Using the methods of the WKSnapshotRefreshBackgroundTask class, the snapshot can

be updated, and updates can be manually scheduled. Snapshots will also be scheduled

by the watchOS automatically in certain application states such as when the app enters

foreground or background. [21.]

4.5 Watch Connectivity

Watch Connectivity is a framework for establishing a two-way communication between

the applications. The communication is used for data sharing. [22.] The shared data can

be just small pieces of data, such as dictionaries, or entire files. The framework is an

essential part for making a Watch application. The framework can also be used to update

the watch’s complications. The data can be sent instantly or as background transfers.

4.5.1 WCSession

To initiate communication between the applications, both the Watch and the iOS

applications have to establish communication using the WCSession class. Both

applications have to setup their own sessions at some point of their execution. Listing 1

displays the methods required to establish the connection. To configure the session, a

delegate has to be assigned to the default WCSession object, after which the session’s

activate() method has to be called to make the connection. [23].

if WCSession.isSupported(){

 let session = WCSession.default

 session.delegate = self

 session.activate()

}

Listing 1. Establishing a two-way connection with the counterpart application.

15

The isSupported() method can be used to determine whether the paired iOS device

supports the Watch Connectivity framework; only devices with iOS version 9.0+ are

supported [23]. Default session object is used for the activation. After the device has

established its part of the connection, the device can use data transfer methods. Only

background transfer methods can be used if the other device cannot be reached at the

time.

Before transferring data, it is recommended to check whether the data can reach its

destination. Session’s isPaired() method is used to check whether the Apple Watch is

paired to an iPhone and vice versa. On the iPhone, the isWatchAppInstalled() method

can be called to check whether the Watch App has been installed on the paired device.

For instant messaging, the session’s isReachable() method must return true, or else the

messages cannot reach the counterpart device.

4.5.2 Sending data

Most of the time, data is sent to the counterpart device as a dictionary, most commonly

in the form of [String:Any]; an exception to this being the transfer of files which include a

URL path to the file. Many of the data transfer methods send the data in the background,

but the data can also be sent instantly if necessary.

To send regular dictionaries in the background, transferUserInfo(_:) and

updateApplicationContext(_:) are used. Each dictionary sent by the former one is queued

in the sending order to ensure that all of them are handled by the counterpart application

[24]. The dictionaries sent by the latter, however, will replace themselves if a new one is

sent [25]. Listing 2 displays the use of updateApplicationContext(_:); transferUserInfo(_:)

is used in the same manner.

if WCSession.isSupported(){

 let session = WCSession.default

 if session.isWatchAppInstalled {

 let dictionary : [String : Any] = [“key”:value]

 do {

 try session.updateApplicationContext(dictionary)

 } catch {

 print(“Error: \(error)”)

 }

 }

}

Listing 2. Sending a dictionary as a background transfer using updateApplicationContext(_:).

16

TransferUserInfo(_:) method is useful when sending data that has to be received

regardless of any new data that will come afterwards. The method would be useful for a

chat application whereas updateApplicationContext(_:) would be more suitable for

sending application settings, since only the latest ones are needed. Complication data

can be updated with transferCurrentComplicationUserInfo(_:).

Background file transfer can be done with the transferFile(_:metadata:) method. The

method requires a reference to the file URL to identify the file. The file has to be local to

the sending device to be reachable. The meta data can hold a dictionary for additional

information on the file. [26.]

Instant data transfers can only be created using the

sendMessage(_:replyHandler:errorHandler:) method. Listing 3 displays the use of the

method. The sent dictionary will reach the counterpart application as soon as possible

and return a dictionary as a reply. Calling this method from the Watch application will

wake up the iOS device and make it reachable. Calling the method from the iOS

application will not have the same effect. If the counterpart application is unreachable,

the errorHandler will be executed. [27.]

let session = WCSession.default

session.sendMessage(["key" : value], replyHandler:

 { (dictionary : [String : Any]) in

 //The reply was received, handle the received dictionary of data

 }, errorHandler: { error in

 //Handle the error

})

Listing 3. Sending an instant message from the watch to the iOS application.

4.5.3 Receiving data

When the Watch application receives background data from the parent application, it is

not guaranteed that it will wake up and handle the incoming data right away. Most of the

time, the application will postpone the data handling to preserve battery usage. On

watchOS 4 the application will immediately handle the data if it is the frontmost

application and within 10 minutes for all other applications. For older watchOS’s, there

is no guarantee to when the data will be processed; sometimes it will not be processed

till the application is launched. [28.]

17

To receive data from the counterpart application, the application has to have a class that

conforms to the WCSessionDelegate protocol. The delegate object has to be configured

for the WCSession object at the time of making the connection. To handle incoming data,

the class has to implement a ‘didReceive’ function for each method of sending data.

Each of the data transferring methods have their own receiver method. Listing 4 displays

the ‘didReceive’ function of the updateApplicationContext(_:) background transfer

method. Only the sendMessage(_:replyHandler:errorHandler:) can send a reply to the

sender application.

If an application uses the same method of sending data in different use cases, the sent

data has to be made identifiable by the receiving application, since each of them will be

received by the same method. As Listing 4 illustrates, a good way of identification is to

place a descriptive string as the first key of the dictionary, and have it refer to the actual

dictionary of data [“descriptiveTag” : [“key” : value, “key” : value]].

func session(_ session: WCSession, didReceiveApplicationContext

 applicationContext : [String:Any]) {

//A good way of distinguishing different data is to have a descriptive

key for identification

 if(applicationContext.keys.first == “description”){

 //Handle received data

 } else if … {

 //Handle received data

 }

…

}

Listing 4. Receiving a dictionary sent by updateApplicationContext(_:) method.

5 The project

The scope of the project was to create a Watch application for the Route Pepper

application. The application serves as an extension to the iOS application which offers

the user a more convenient way of using the application; the user can easily interact

with the application while exercising. The project details will focus on the Watch

application but will mention the iOS application when appropriate. Some of the feature

goals could not be reached during the time allocated for the project; those features are

discussed in this chapter’s Future Development section.

18

5.1 Development tools

Several development tools were utilized to accomplish the project goals. The project was

developed using Apple’s Xcode IDE, which is designed for application development for

Apple’s devices. Swift was used as the project’s programming language, since it was

used for the iOS application. Route Pepper is a serverless application built using the

Google Firebase service. The Watch application indirectly connects itself to Firebase via

the parent application.

5.1.1 Swift

Since the early days of Apple Development, Objective-C programming language has

been used as the main language for most of Apple’s products. The language was based

on the C-programming language and was first used for the NeXTSTEP operating system

released in 1988. [29]. June of 2014, at Apple’s WWDC (Worldwide Developers

Conference), Apple announced a new modernized programming language for their

products: The Swift programming language [30].

Swift is an opensource programming language that was created to replace Objective-C

for Apple’s products. Both of the languages can still be coded side-by-side, which helps

the transition to the new language [31]. Swift was designed to be faster, safer, easier to

read and maintain [32]. Objective-C can still be used to code Apple products and is

supported by the Xcode IDE.

5.1.2 Xcode

Xcode is an Apple developed IDE for macOS released in 2003. Xcode is designed for

application development for Apple’s operating systems but includes a wide support for

multiple different programming languages.

Application scenes are designed in Xcode’s storyboard window. The storyboards were

first introduced with the iOS 5 [33]. Each application has their own storyboard file which

describes the layout of the application. When creating a Watch application, both of the

applications have their own storyboard files. The storyboard is a visual representation of

19

the application’s scenes where new scenes and connections can be easily made without

writing any code. Figure 10 displays an example of an application’s storyboard.

Figure 10. Storyboard window of the Route Pepper iOS application.

Simulators are a good way to test code without real devices. Xcode provides a wide

variety of devices that can be simulated. Provided simulators are for iOS, watchOS and

tvOS. Notifications can be simulated by providing a PushNotificationPayload.apns file,

which includes the notification message, title and the notification category [7, p. 282-

283]. Simulating locations and a walking courses is also possible, but is quite

cumbersome to setup; a GPX file has to be created on a third-party website and given

to Xcode to simulate [34].

Testing the application with real devices is always recommended, since it guarantees

that the application actually works. When testing with real devices, permission has to be

granted from the connected device. During the project, Xcode quite often had trouble

recognizing the paired Apple Watch. Unplugging the iPhone and reattaching the cable

usually solved the problem, but occasionally the devices or Xcode had to be booted.

Xcode offers a playground environment for the Swift programming language. The Swift

playground is a way to experiment with code without creating an actual application. With

just a few clicks, code can be tested without creating a project for it. Lines of code can

20

be written with the result immediately given without running any code. The result of each

line is shown in the sidebar. Swift playground is useful for new developers learning the

Swift language and for developers quickly want to experiment a piece of code or an

algorithm outside of their application. [35.]

Xcode provides a built-in tool for GitHub integration via the Source Control tab. GitHub

account can be linked to the project to give access to the remote repository. I personally

liked to use git from the Mac console, but occasionally had difficulties with merging the

Xcode project and its storyboard files. Some files got corrupted by missing lines. Using

the Xcode’s own source control might be a better option.

5.1.3 Google Firebase

Route Pepper runs as a serverless application utilizing Google Firebase. Google

Firebase is a cloud service that offers real-time database, authentication, cloud functions

and many other features [36]. The goal of Google Firebase is to allow the developers to

focus on their products instead of worrying about deploying and managing servers.

Google Firebase has a wide range of support, including web applications, iOS and

Android [36]. For the Firebase to be used on an iOS application, the iOS project has to

be added to the Firebase project through the Firebase Console, the necessary pod-files

installed and the GoogleService-Info.plist file downloaded and added to the project. [37.]

The Firebase documentation provides a good tutorial for doing so.

Real-time database

The Firebase Realtime Database is a cloud-hosted NoSQL JSON-document database

used for storing and synchronization of data between the users in real-time [38.] The

database is designed to synchronize data instantly between devices in real-time. The

data is transferred via a WebSocket instead of traditional HTTP requests, allowing fast

data synchronization. The synchronized data is also available offline via an on-device

database. [39.] This means that the data is always available to the user even when the

user loses connectivity. The offline mode is currently only available for Web, iOS and

Android applications [38].

21

Authentication

Firebase Authentication provides secure user registration and authentication services.

The service supports email and password accounts, Google, Twitter, Facebook and

GitHub login with many more. [40.] Creating authentication services from scratch can be

quite tedious. Using services like Firebase Authentication is a good way to provide

secure authentication and lessen the project workload. Route Pepper uses email and

password accounts on the web and the iOS application. Listing 5 displays how the

Firebase Authentication service is used for Route Pepper. Authentication is not

necessary for the Watch application since the user will be authenticated on the Route

Pepper iOS application.

//User sign-in on iOS application

Auth.auth().signIn(with: credential) {(user,error) in

 if let error = error {

 //Handle error

 }

 //The user has signed in

 // ...

}

//User sign-out on iOS application

let firebaseAuth = Auth.auth()

do {

 try firebaseAuth.signOut()

} catch let sigOutError as NSError {

 //Handle error

}

//User registration on iOS application

Alamofire.request(http, method: .post, parameters: parametersFromUserInput,

encoding: JSONEncoding.default). response { response in

 if (response.response?.statusCode == 200 {

 //Successfully created the user

 } else {

 //Handle error

 }

}

//JavaScript code written for the Firebase Cloud Functions -service

admin.auth().createUser({

 email : emailFromJSON,

 password : passwordFromJSON

})

. then(function (userRecord) {

 //Successfully created the user

//Handle the new user record by, for example, sending email or adding new

data rows for the user

}

Listing 5. Using the Firebase Authentication on the iOS application.

22

Google Firebase has made authentication and user registration fairly simple after the

necessary procedures have been made. The registration will be remembered even if the

application is being used in offline-mode. For the user creation, the iOS application sends

the user input to the Firebase Cloud Functions service where the data is handled, and

the user record added to the user database. The request is made with Alamofire, which

is a Swift-based HTTP-library.

Cloud Functions

Google Cloud Functions is a service that can host single-purpose JavaScript functions

that are executed in a Node.js environment. The scripts written for the Cloud Functions

will automatically run in response to Firebase features or HTTPS requests sent to the

server. Automatic triggers will be emitted by Firebase features such as by the Realtime

database, Firebase Authentication and Crashlytics. [41.] An application backend can

simply be created using the Cloud Functions.

The benefits of using the Cloud Functions is that there is no need to setup and run

servers. The Google application server automatically be scaled to fit the need and only

the executed code will be billed [42]. The Cloud Functions are designed to be used

alongside Firebase’s other services.

To use the Cloud Functions, Node.js has to be installed. After the installation, the

Firebase Client has to be installed using npm and a sign-in with the Google account is

required. After the installation and login, a local Firebase project has to be initialized. The

code written for the Cloud Functions can be easily be deployed by running the ‘firebase

deploy --only hosting’ command. [43.]

5.2 Communication model

The most important part of the project was the establishment of the connection between

the Watch and iOS applications. The same data transfer and receive logic was used for

each of the main features, excluding the Pep Point notifications. The data was received

and sent by the AppDelegate on the iOS application and by the ExtensionDelegate on

the Watch application.

23

The received data is first stored in public variables, after which the to-be-affected class

was informed about the received data via the NotificationCenter class’ observer structure

created earlier in the application’s lifecycle. The same logic was used for sending data

to the other application but in reverse. When data was changed, the

AppDelegate/ExtensionDelegate was informed by the change via an observer created

during the launch of the application. The logic pattern is shown in Figure 11. The figure

uses pseudocode to remain simple and generic.

Figure 11. Communication logic for receiving and sending data between the applications.

5.3 The application

The application was made fairly simple both in its features and visual style. The

application was meant to be more complex with a feature to start a route directly from

the watch. This feature would have meant that the routes would have needed to be sent

from the iOS application over to the Watch application, the routes displayed for the user

and that the location services could have been started from the iOS application when a

route was started. Starting the routes from the watch turned out to be too complex for

our iOS application to handle. The feature was tested but the solution could not be

implemented during the time allocated for the project, which lead us to postpone this

24

feature for later development. The feature is discussed more in the Future Development

section of this chapter.

The first published version of the Watch application includes most of the main features

of the iOS application: the changing of user settings, Pep Point creation and a unique

way of displaying Pep Point notifications. The storyboard layout of the application is

shown in the Figure 12.

Figure 12. Storyboard of the finished Route Pepper Watch application.

The main screen of the application is divided into two groups, nonRunningGroup and

runningGroup (see Figure 12). The nonRunningGroup is shown when the Watch

application has not received information of a started route from the iOS application.

When a dictionary containing the route name and a Boolean value of true is received by

the ExtensionDelegate, the nonRunningGroup will be hidden, whereas the runningGroup

is made visible. The runningGroup displays the name of the started route, a label

instructing the user to wait for Pep notifications and two action buttons: ‘Add Pep Point’

and ‘Settings’.

25

5.3.1 Pep Point notifications

The purpose of the Route Pepper application is to display the messages written for the

Pep Point markers that the user has added to a route created with the Route Planner -

tool. The Pep Point messages are voice dictated to the user upon entering a Pep Point

location and a notification is also displayed.

If the user has an Apple Watch paired with the iPhone, all local iOS notifications will be

displayed on the watch by default. When a notification scheduled by an iOS application

is being displayed, it will automatically be forwarded to the Watch and processed by a

class inheriting the WKUserNotificationInterfaceController class. The class can be used

to customize the notification that will be shown to the user. The notifications shown on

the iOS application only show the Pep Point message, whereas the notifications

displayed on the watch additionally contain a map image, along with the Pep Point

marker and the route line. Figure 13 displays the Pep Point notification received by the

Watch application.

Figure 13. Pep Point notification on the Watch application.

Map Image

The image is generated by the iOS application when the user reaches the Pep Point

location; just before scheduling the notification. The image creation is called using the

createSnapshot(pepCoordinate:course:) method of MapSnapshotManager helper class

(see Appendix 1). The method utilizes the MKMapSnapshotter class to take a snapshot

of the area surrounding the Pep Point. The angle of the taken snapshot is determined by

the user’s current location’s course. The course is the direction in which the device is

traveling measured in degrees [44]. Options such as image size, span, scale and region

26

are also provided for the MKMapSnapshotter object. After the options are set, the

snapshot is taken and forwarded to

drawMarkers(snapshot:color:linewidth:pepCoordinate:) method for drawing the Pep

Point marker and the route line on the taken snapshot image.

Drawing the marker and polyline

The drawing process on the snapshot image is declared by calling

UIGraphicsBeginImageContent() method of the UIKit framework, which initiates the

creation of graphical content. To draw on the image, the canvas area for the drawing has

to be defined and the drawing started on the snapshot.

UIGraphicsBeginImageContext(snapshot.image.size) //start creation of graphics

let rectForImage = CGRect(x : 0, y : 0, width: snapshot.image.size.width,

height: snapshot.image.size.height) //canvas area

snapshot.image.draw(in :rectForImage) //start drawing on the image

The polyline is drawn based on the MKPolyline object received from the

RouteViewController, the polyline-object is created from the trail’s location. The trail-

coordinates are iterated to align the coordinates with points on the snapshot image

coordinates (see Appendix 1). After the exact points are determined, the route line width

is set, and the determined points connected with a red line. The Pep Point marker is

drawn with the drawAnnotation(snapshot:coordinates:context:) method (see Appendix

1). The reference to the context started earlier has to be provided so that the same

graphics content will be drawn on. The method draws a blue ellipse on the location of

the Pep Point. After both the Pep Point marker and the polyline has been drawn on the

snapshot image, the new image will be fetched from the graphics content, the drawing

process ended and the image returned back to the

createSnapshot(pepCoordinate:course:) method for further processing.

let image = UIGraphicsGetImageFromCurrentImageContext()//the image is fetched

from the graphics context

UIGraphicsEndImageContext() //drawing process is ended

return image //the completed image is returned

The returned UIImage-object is turned into a JPEG Data-object with the

UIImageJPEGRepresentation(_:_:) method. The result is returned back to the

RouteViewController to be attached to the notification that will be scheduled.

27

Scheduling the notification

After the JPEG image has been created and returned by the MapSnapshotManager

class, the returned image is attached to a local notification scheduled by the

sendNotification(message:zone:imageData:) method. Listing 6 displays how the created

image is attached to the notification payload. The created image Data object is put into

the userInfo dictionary.

func sendNotification(message: String, zone: Int, imageData : Data? = nil) {

 ...

 let content = UNMutableNotificationContent() //Class for modifying the

local notification content

 ... //Add content such as title, message, sound, category

 if imageData != nil {

 content.userInfo = [“image” : imageData!]

 }

 ... //Schedule notification

}

Listing 6. Attaching the image to the notification payload.

The imageData variable is specified as optional since the same method is used for

regular notifications (when the Watch application is not installed). Local notifications can

be modified with the UNMutableNotificationContent class. The modified properties for

the notification are the notification message, title, sound, notification category and the

user info.

Displaying the notification on the Watch application

When the scheduled notification triggers while the user has a paired Apple Watch, the

notification will automatically be displayed by the Watch. The notification will be received

by the NotificationController, which will process the data in the notification payload (see

Listing 7).

override func didReceive(notification: UNNotification, withCompletion

completionHandler : @escaping (WKUserNotificationInterfaceType) -> Void){

28

 let notificationBody = notification.request.content.body //message

 let dictionary = notification.request.content.userInfo

 if let imageData = dictionary[“image”] as? Data {

 let imageUIImage : UIImage = UIImage(data : imageData)! //turn

received image into an UIImage that can be displayed in the UI

 image.setImage(imageUIImage)//display Pep Point -image

 }

 messageLabel.setText(notificationBody)//Display Pep Point -message

 completion(.custom)

}

Listing 7. Handling the received notification to display the content to the user.

The received notification is stripped of off its contents, the Pep Point message set to the

message label and the Data object is turned back into a UIImage that can be included in

the long-look view of the notification. Finally, the notification is set to be shown as a

custom notification. If the handling of the received notification takes too long to process,

the notification will fall back to the static notification and the image will not be displayed

in the notification.

5.3.2 Adding a Pep Point

Pep points are the main aspect of the Route Pepper application. Pep points are map

coordinates that are created either on the Route Pepper Planner – web tool, on the iOS

application or now on the Watch application. During application use, the points are added

from the iOS application’s map screen but doing so while exercising was found to be too

inconvenient, which is why the feature was added to the Watch application.

Location services

Adding Pep Points on the applications require location services to be available. The Pep

Point coordinate is based on the user’s current location. Core Location is a framework

used to obtain information on geographical location. To start the location services, the

Watch application has to declare a CLLocationManager object and start the location

services (see Listing 8). The interface controller has to conform to the

CLLocationManagerDelegate. Classes conforming to the delegate have to implement

the delegate methods.

29

class StartMenuInterfaceController: WKInterfaceController,

CLLocationManagerDelegate {

 ...

 let locationManager = CLLocationManager()

 override func awake(withContext context: Any?) {

 super.awake(withContext: context)

 locationManager.delegate = self //assigning the delegate

locationManager.requestWhenInUseAuthorization() //request

permission to use location services

 locationManager.desiredAccuracy = kCLLocationAccuracyBest //The

highest level of accuracy will be assigned

 ...

 }

 //Delegate methods that have to be implemented

 func locationManager(_ manager: CLLocationManager, didUpdateLocations

 locations: [CLLocation]) {

 //Handle updates

 }

 func locationManager(_ manager: CLLocationManager, didFailWithError

 error: Error) {

 //Handle errors

 }

Listing 8. Creation and activation of the CLLocationManager object.

The location manager object is created when the application is launched. When defining

the location manager object, the authorization level and accuracy have to be provided.

The user’s location is only needed when the Pep Point is about to be created, which

means that the requestWhenInUseAuthorization() is enough for the purpose.

requestAlwaysAuthorization() can be used to regularly update the location while the

application is running, but this would be unnecessary. Location accuracy is set to

kCLLocationAccuracyBest which is the highest level of GPS accuracy.

Creating and sending the Pep Point

When the user presses the interface controller’s ‘Add Pep Point’-button, the method asks

the initiated location manager for the user’s current location. After the location has been

determined, the method proceeds to a dialogue for adding the text for the Pep Point

message using the

pushTextInputController(withSuggestions:allowedInputMode:completion:) method (see

Appendix 2).

30

The method presents a modal dialogue which allows the user to create the text input via

voice dictation. The text could also be input via scribble (‘drawing’ the characters) or

chosen from a set of suggested strings, but these are not used for the application. After

the user is satisfied with the text, the text and the location data are stored inside a

dictionary and sent to the iOS application via transferUserInfo(pepPoint:) for further

processing (see Appendix 2). When the modal closes, an alert will be presented with

presentAlert(withTitle:message:preferredStyle:actions:) method (see Appendix 2). The

alert will notify the user whether the Pep Point creation succeeded or failed.

Receiving and pushing the Pep Point to Firebase

The Pep Point is received by the iOS application’s AppDelegate’s

session(_:didReceiveUserInfo:) method. The Pep Point is stored in a public variable and

the RouteViewController is notified of the received data. When the view controller’s

observer receives the post, the controller’s createPepPoint(_message:_location:)

method will be called, including the received Pep Point’s message and location data.

Listing 9 displays how the Pep Point is pushed to Firebase and the annotation added to

the iOS application’s map view.

func createPepPoint(_ message : String, _ location : CLLocationCoordinate2D){

 var pepfirref : DatabaseReference! //database reference

 pepfirref = self.ref.child(pepref).childByAutoId()//reference path to

a new child (id is auto generated)

 pepfirref.setValue(["message" : message, "language" : "fi_fi",

"speakOnEnter" : -2]) //set values for the new pep point

 pepfirref.child("location").setValue(["latitude": location.latitude,

"longitude" : location.longitude]) //set values for the new pep point

 let point = PepPointAnnotation(coordinate: location, name: message,

triggerradius: 50) //create annotation object

 self.mapView.addAnnotation(point)//add annotation to the mapView

 }

Listing 9. Pushing the Pep Point into Firebase and adding the annotation to the map view.

Calling self.ref.child(pepref).childByAutoId() creates the database reference to the new

Pep Point and returns the reference (see Listing 9). After the creation, the message,

coordinates and additional data is provided for the database reference. Finally, the Pep

Point is added to the mapView object to be displayed on the user’s route map.

31

5.4 Sharing data between the applications

The application offers several settings for the user to customize their experience with the

application. These settings include options for toggling voice guidance and notifications,

option for the zone value (meters/feet) to determine at which distance the Pep Points are

triggered, and options for the voice dictation: volume, speed and voice pitch. When the

user has the Watch application installed, there will be a setting for changing the zoom

level of the Pep Point map images sent to the watch via the notifications.

When a setting is changed on either one of the applications, the new value of the setting

is stored in the device’s user’s defaults database. The database is a key-value database

persistent across application launches. The new value is set using the UserDefaults

class, with the help of a UserDefaultsManager struct [45].

After the value has been stored, a dictionary of the device’s user defaults will be sent to

the counterpart application via updateApplicationContext(dictionary) method. The

dictionary contains all of the Route Pepper’s application settings. This method is used

since it only keeps the latest dictionary of values, overwriting the previous dictionary in

the queue.

When the counterpart application receives the settings dictionary, the dictionary is

forwarded to the SharedSettings class by calling it’s setSettingsDictionary(dictionary:)

method. The method iterates through the dictionary and adds the new application

settings to the device’s user’s defaults database.

5.5 Testing

There was not much testing conducted for the Watch application, since it is heavily based

on the features that have been tested for the iOS application. The iOS application has

been tested by beta users, who have provided us with valuable feedback. The initial

Watch application was created as an MVP, to see if there is demand for the application

since we do not know how many of the iOS application’s user will have an Apple Watch

(both applications are released at the same time).

32

The Watch application was, however, tested in real-world use, with real devices, to see

that it actually behaves as well as the iOS application. The ‘add Pep Point’ feature was

tested to see if the Apple Watch’s GPS was accurate enough, and that the notifications

arrive correctly (that it arrives on time and that the snapshot angle is rotated correctly).

The Pep Point notifications needed the most testing since the correct zoom level for the

map snapshots was difficult to determine. The correct level had to be manually found

through testing. The level had to be just right for the map image to be of any use. Through

testing, it was found that a low zoom level was better in city environment, whereas a

more zoomed out image was better in suburbs. The user needs more detailed

information of the Pep Point surroundings in complex environments. Due to testing

results, an option for adjusting the zoom level was added to the application.

5.6 The encountered problems

During the Watch application development several problems where encountered, some

of which lead to compromises with the planned features. Most of these problems were

due to the restrictions of the watchOS and the lack or restriction of frameworks. Problems

encountered were with the understanding of the Watch Connectivity framework, sending

and attaching map images to the notifications, starting the route directly from the watch

and the creation of a map interface.

Application communication

Establishment of the communication between the applications was the most important

part of the project. The Watch Connectivity framework is essentially a simple framework

to learn and use, but there still were some obstacles that caused problems and

confusion. Problems were encountered with both the background and the instant

transfers.

While testing application communication with the background transfers, I somehow could

not figure out why the data was occasionally received immediately, while sometimes it

could take up to several minutes or till application launch. The cause for the issue was

of course that the data sent in the background will be handled when the device decides

that it has the time to process it.

33

When trying out a solution for the late handling of the background transfers, I tried out

the sendMessage(_:replyHandler:errorHandler:) method for instant transfers. The

method wakes up the counterpart application and the data will be handled immediately.

This did not work out however, since apparently the method behaves differently when

using it to send data from the iOS application to the Watch application. Sending an instant

message to the Watch application will not wake up the application.

Starting a route on the Watch application

We wanted to make a feature to start a route directly from the Watch application. The

feature was developed and tested, but the testing revealed serious problems. The

problems lead us to drop the feature from the initial launch of the application, but it is

scheduled for further development. This feature is discussed in the Further Development

section.

The problems were due to the iOS application being built without the knowledge of a

Watch application being added to the project in the future. The functions related to the

starting of a route were too confined into the iOS application’s view controllers to be

accessed from the outside. The tested method was to a loop through all the necessary

view controllers (to run the functions and start the location manager) when the message

to start a route was received by the iOS application’s AppDelegate. This did not work

however, since occasionally the execution would be slow or even crash the application.

The reason for the problem was not found, but it might have been related to the tested

method being too much for the application to handle; changing the application scenes

while the application was not even launched in the first place. The routes were supposed

to be able to be started even when the Route Pepper application was not running on the

iOS.

The map interface

We wanted to have an interface that showed a live map with the route trail and the Pep

Points for the user, which would have been good feature. When I was about to create

the interface using the MapKit framework, I encountered a problem with the framework’s

restrictions on the watchOS. The WKInterfaceMap element was restricted to only have

34

five annotations at the same time and the trail drawing was also impossible. The map

could only be used to show a specific region and to add a few annotations.

To be able to create a similar map view that the Route Pepper iOS application has, a

custom map view would have to be created from scratch. The SpriteKit framework could

be used to create such a view, but due to the complexness and the time restrictions, the

idea was postponed. The feature was dropped and replaced with the sending of Pep

Point map images with the notifications.

Pep Point notifications

The map interface feature was dropped and replaced with a feature of sending Pep Point

map images to the Watch application via notifications. Creating this feature as a

compromise did not work out without complications either.

To display the map snapshot images on the Watch application, I first tried to attach the

images to the notification payload via the UNMutableNotificationContent class’

attachment property. For the attachment to be shown in the notification, the image file

also had to be stored on the Watch application, which meant that the file had to be on

the device before the notification was received. This proved to be very problematic since

the images could only be sent to the Watch application via the transferFile(_:metadata:)

method, which sends it in the background and could take a while till it arrives. This also

meant that if a Pep Point image was sent to the watch too early, the image could not

have been rotated to match the user’s current direction.

To solve this problem, I realized that an image could actually be compressed into a Data-

object with the UIImageJPEGPresentation(_:_:) method. The object could then be stored

into a dictionary as any other variable types. The dictionary could then be included with

the notification in its userInfo content. This solution did not even cross my mind since

every tutorial and solution I saw online was related to attaching an actual image file onto

the notification.

35

5.7 Further development

During the application development, several obstacles where encountered, which

hindered the creation of some of the feature goals that were planned for the finished

application. Several features are scheduled for further development.

Starting a route from the watch

To fix the problems we had with starting a route from the Watch application, we would

have to detach the Firebase functions and location management from the view

controllers and move them to their own separate helper classes. This would mean that

the routes could be fetched from the database and the location services started from the

iOS application’s AppDelegate without accessing these functions from a view controller.

To start a route from the watch, the available routes would have to be listed for the user

to choose from. The routes would have to be sent from the iOS application.

Standalone Watch application

Apple Watch Series 3 introduced a model with a sim-card slot for establishing its own

cellular network. For Route Pepper, this would mean that the watch could make its own

Firebase connection to fetch routes and add Pep Points. For Route Pepper to be used

without the iPhone close by, the application has to be modified so that the watch can

connect to the Firebase by itself. The watchOS currently does not have Firebase support,

but the connection could still be established with the NSURLSession class by connecting

to the Firebase Database REST API [46, 47].

6 Conclusion

The Bachelor’s Thesis covered the basics of Apple Watch development by exploring its

features, application hierarchy and frameworks. The goal of the featured project was to

create a Watch application as an extension to the Route Pepper iOS application. The

application goals were to implement the iOS application’s main features to be accessed

from the Watch application: change of application settings, starting a route, adding Pep

Points and a map interface. Some of these features could not be completed during time

36

allocated for the project and on some features the team had to compromise to get around

the Apple Watch’s restrictions.

The features were created using the Core Location framework for the location services,

Watch Connectivity framework for communication between the applications, and the

WatchKit framework to create the actual Watch application. The establishment of the

communication became the key part of the project, since the two-way communication

was required for most of the features.

During the project, the author encountered several problems that hindered the creation

of some of the features. Implementing a similar map interface from the iOS application

was deemed impossible to be create during the project timespan; the map element

provided by the WatchKit framework proved to be too limited for our needs. A similar

view could possibly have been created with the SpriteKit framework, but that was

postponed for later development. The feature was however replaced by sending map

images of the Pep Point locations to the application via notifications.

The feature of starting the route directly from the watch also proved to be too

troublesome. The iOS application was developed in a way, that made it difficult to

integrate the Watch application into it. Some of the functionality was too confined into

the application’s views. The feature was left out from the initial release of the Watch

application but will definitely be developed in the future.

All of the parties involved in the project were satisfied with the project results. The Watch

application reached most of its feature goals and it was published in the Apple App Store

to be used as an extension to the iOS application. Both the author and the project

manager learned from the conducted project, and the Watch application will be further

developed in the future.

37

References

1 Lamkin, Paul. 2017. Wearable Tech Market To Double By 2021. Web Document.
Forbes. <https://www.forbes.com/sites/paullamkin/2017/06/22/wearable-tech-
market-to-double-by-2021/#1cd6a01ad8f3>. Accessed 18 April 2018.

2 Page, Carly. 2015. Apple Watch is ‘world’s best selling wearable’ with 4.2 million
shifted is Q2. Web Document. The Inquirer.
<https://www.theinquirer.net/inquirer/news/2418517/apple-watch-is-worlds-best-
selling-wearable-with-42-million-shifted-in-q2>. Accessed 2 April 2018.

3 Silbert, Sarah. 2018. Apple Watch: Everything You Need to Know. Web
Document. Lifewire. <https://www.lifewire.com/apple-watch-models-4151590>.
Accessed 2 April 2018.

4 Fingas, Roger. 2016. Apple Watch runs ‘most’ of iOS 8.2, may use A5-equivalent
processor. Web Document. AppleInsider.
<http://appleinsider.com/articles/15/04/23/apple-watch-runs-most-of-ios-82-may-
use-a5-equivalent-processor>. Accessed April 2 2018.

5 Horwitz, Jemery. 2015. Apple announces watchOS 2 with third-party Apple
Watch apps, new Timepieces, video playback, much more. Web Document.
9to5Mac. <https://9to5mac.com/2015/06/08/apple-announces-new-version-of-
watchos/>. Accessed April 2 2018.

6 Haslam, Karen. 2018. watchOS 4 latest update & new Apple Watch features.
Web Document. Macworld. <https://www.macworld.co.uk/news/apple/watchos-4-
latest-update-new-apple-watch-features-3640975/>. Accessed April 4 2018.

7 Amer, Ehab; Atkinson, Scott; Azarpour, Soheil; Morey, Matthew; Morrow, Ben;
Tam, Audrey & Wu, Jack. 2017. watchOS by Tutorials: Making Apple Watch apps
with watchOS 4 & Swift 4. E-book. raywenderlich.com Tutorial Team.

8 App Programming Guide for watchOS: Context Menus. 2015. Web Document.
Apple Developer.
<https://developer.apple.com/library/content/documentation/General/Conceptual/
WatchKitProgrammingGuide/Menus.html>. Updated 12 December 2016.
Accessed 6 April 2018.

9 Local and Remote Notifications Programming Guide: Local and Remote
Notifications Overview. 2009. Web Document. Apple Developer.
<https://developer.apple.com/library/content/documentation/NetworkingInternet/C
onceptual/RemoteNotificationsPG>. Updated 13 November 2017. Accessed 8
April 2018.

10 Local and Remote Notifications Programming Guide: APNs Overview. 2009. Web
Document. Apple Developer.
<https://developer.apple.com/library/content/documentation/NetworkingInternet/C

38

onceptual/RemoteNotificationsPG/APNSOverview.html>. Updated 13 November
2017. Accessed 8 April 2018.

11 App Programming Guide for watchOS: Notification Essentials. 2015. Web
Document. Apple Developer.
<https://developer.apple.com/library/content/documentation/General/Conceptual/
WatchKitProgrammingGuide/BasicSupport.html>. Updated 12 December 2016.
Accessed 10 April 2018.

12 App Programming Guide for watchOS: Complication Essentials. 2015. Web
Document. Apple Developer.
<https://developer.apple.com/library/content/documentation/General/Conceptual/
WatchKitProgrammingGuide/ComplicationEssentials.html>. Updated 12
December 2016. Accessed 26 April 2018.

13 App Programming Guide for watchOS: The Watch App Architecture. 2015. Web
Document. Apple Developer.
<https://developer.apple.com/library/content/documentation/General/Conceptual/
WatchKitProgrammingGuide/DesigningaWatchKitApp.html>. Updated 12
December 2016. Accessed 13 April 2018.

14 Baumgartner, Justin. WatchKit 101: Everything you need to know about the
anatomy of Apple WatchKit. Web Document. Solstice.
<https://www.solstice.com/blog/watchkit-101-everything-you-need-to-know-about-
the-anatomy-of-apple-watchkit>. Accessed 7 May 2018.

15 WatchKit. Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit>. Accessed 7 May 2018.

16 WKExtensionDelegate. Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextensiondelegate>.
Accessed 8 May 2018.

17 applicationDidFinishLaunching(). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextensiondelegate/1628
241-applicationdidfinishlaunching>. Accessed 8 May 2018.

18 applicationDidBecomeActive(). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextensiondelegate/1628
185-applicationdidbecomeactive>. Accessed 8 May 2018.

19 applicationDidEnterBackground(). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextensiondelegate/1650
865-applicationdidenterbackground>. Accessed 8 May 2018.

20 applicationWillEnterForeground(). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextensiondelegate/1650
868-applicationwillenterforeground>. Accessed 8 May 2018.

39

21 WKExtensionDelegate. Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextensiondelegate>.
Accessed 9 May 2018.

22 Watch Connectivity. Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchconnectivity>. Accessed 15
April 2018.

23 WCSession. Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchconnectivity/wcsession>.
Accessed 15 April 2018.

24 transferUserInfo(_:). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchconnectivity/wcsession/16156
71-transferuserinfo>. Accessed 16 April 2018.

25 updateApplicationContext(_:). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchconnectivity/wcsession/16156
21-updateapplicationcontext>. Accessed 16 April 2018.

26 transferFile(_:metadata:). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchconnectivity/wcsession/16156
67-transferfile>. Accessed 16 April 2018.

27 sendMessage(_:replyhandler:errorHandler:). Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchconnectivity/wcsession/16156
87-sendmessage>. Accessed 16 April 2018.

28 WKExtension. Web Document. Apple Developer.
<https://developer.apple.com/documentation/watchkit/wkextension>. Accessed
18 April 2018.

29 Singh, Amit. 2003. What is Mac OS X? Web Document. osxbook.com.
<http://osxbook.com/book/bonus/ancient/whatismacosx/history.html>. Accessed
22 April 2018.

30 Swift Has Reached 1.0. 2014. Web Document. Apple Developer.

<https://developer.apple.com/swift/blog/?id=14>. Accessed 22 April 2018.

31 Nyisztor, Károly. 2017. Why Learn Swift? The creation and evolution of a new
programming language. Web Document. Pluralsight.
<https://www.pluralsight.com/blog/software-development/swift-history>. Accessed
10 April 2018.

32 Solt, Paul. 2015. Swift vs. Objective-C: 10 reasons the future favors Swift. Web
Document. InfoWorld. <https://www.infoworld.com/article/2920333/mobile-
development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html>.
Accessed 22 April 2018.

40

33 Sakaimbo, Nicholas. 2017. Storyboards Tutorial for iOS: Part 1. Web Document.
raywenderlich.com. <https://www.raywenderlich.com/160521/storyboards-tutorial-
ios-11-part-1>. Accessed 23 April 2018.

34 Augusteo, Victor. 2017. How To Simulate GPS Movement in iOS. Web
Document. Medium. <https://medium.com/@augusteo/how-to-simulate-gps-
movement-in-ios-cca61907df2c>. Accessed 30 April 2018.

35 Elliott, Keith. 2016. Swift Playgrounds–Interactive Awesomeness. Web
Document. Medium. <https://medium.com/swift-programming/swift-playgrounds-
interactive-awesomeness-2a74143c233>. Accessed 23 April 2018.

36 Overview. Web Document. Firebase. <https://firebase.google.com/docs/>.

Accessed 7 May 2018.

37 Add Firebase to your iOS Project. Web Document. Firebase.
<https://firebase.google.com/docs/ios/setup>. Accessed 7 May 2018.

38 Dufetel, Alex. 2017. Introducing Cloud Firestore: Our New Document Database
for Apps. Web Document. Firebase.
<https://firebase.googleblog.com/2017/10/introducing-cloud-firestore.html>.
Accessed 7 May 2018.

39 Esplin, Chris. 2016. What is Firebase? Web Document. How To Firebase.
<https://howtofirebase.com/what-is-firebase-fcb8614ba442>. Accessed 7 May
2018.

40 Firebase Authentication. Web Document. Firebase.
<https://firebase.google.com/docs/auth/>. Accessed 8 May 2018.

41 Cloud Functions for Firebase. Web Document. Firebase.
<https://firebase.google.com/docs/functions/>. Accessed 8 May 2018.

42 Eschweiler, Sebastian. 2017. Introduction to Firebase Cloud Functions. Medium.
<https://medium.com/codingthesmartway-com-blog/introduction-to-firebase-
cloud-functions-c220613f0ef>. Accessed 8 May 2018.

43 Get Started: Write and Deploy Your First Functions. Web Document. Firebase.

<https://firebase.google.com/docs/functions/get-started>. Accessed 8 May 2018.

44 CLLocation. Web Document. Apple Developer.
<https://developer.apple.com/documentation/corelocation/cllocation>. Accessed
12 May 2018.

45 UserDefaults. Web Document. Apple Developer.
<https://developer.apple.com/documentation/foundation/userdefaults>. Accessed
12 May 2018.

41

46 NSURLSession. Web Document. Apple Developer.
<https://developer.apple.com/documentation/foundation/nsurlsession>. Accessed
13 May April 2018.

47 Firebase Database REST API. Web Document. Apple Developer.
<https://firebase.google.com/docs/reference/rest/database/>. Accessed 13 May
2018.

Appendix 1

 1 (2)

MapSnapshotManager class

import Foundation

import UIKit

import MapKit

import UserNotifications

import UserNotificationsUI

class MapSnapshotManager {

 var mapView : MKMapView? = nil

 var polyline : MKPolyline? = nil

 let si = SharedSettings.sharedInstance

 init(_ mapView : MKMapView, _ polyline : MKPolyline){

 self.mapView = mapView

 self.polyline = polyline

 }

 func createSnapshot(pepCoordinates : CLLocationCoordinate2D, course :

Double, result: @escaping (_ data : Data?) -> Void) {

 let options = MKMapSnapshotOptions()

 let span = Double(si.ud.imageZoomOption)

 options.region = MKCoordinateRegion(center: pepCoordinates, span:

MKCoordinateSpan(latitudeDelta: span, longitudeDelta: span))

 options.size = (self.mapView?.frame.size)!

 options.scale = 2.0

 options.camera.heading = course

 let snapshotter = MKMapSnapshotter(options: options)

 snapshotter.start { snapshot, error in

 guard let snapshot = snapshot else {

 result(nil)

 return

 }

 let image = self.drawMarkers(snapshot, UIColor.red, 10,

pepCoordinates)

 if let imageData = UIImageJPEGRepresentation(image, 1.0){

 result(imageData)

 }

 }

 }

 func drawMarkers(_ snapshot : MKMapSnapshot, _ color: UIColor, _

lineWidth: CGFloat, _ coordinates : CLLocationCoordinate2D) -> UIImage {

 UIGraphicsBeginImageContext(snapshot.image.size)

 let rectForImage = CGRect(x: 0, y: 0, width:

snapshot.image.size.width, height: snapshot.image.size.height)

 snapshot.image.draw(in: rectForImage)

 var pointsToDraw = [CGPoint]()

 let points = self.polyline!.points()

 var i = 0

 while (i < self.polyline!.pointCount) {

Appendix 1

 2 (2)

 let point = points[i]

 let pointCoord = MKCoordinateForMapPoint(point)

 let pointInSnapshot = snapshot.point(for: pointCoord)

 pointsToDraw.append(pointInSnapshot)

 i += 1

 }

 let context = UIGraphicsGetCurrentContext()

 context!.setLineWidth(lineWidth)

 for point in pointsToDraw {

 if (point == pointsToDraw.first) {

 context!.move(to: point)

 } else {

 context!.addLine(to: point)

 }

 }

 context?.setStrokeColor(color.cgColor)

 context?.strokePath()

 drawAnnotation(snapshot, coordinates, context: context!)

 let image = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 return image!

 }

 func drawAnnotation(_ snapshot : MKMapSnapshot, _ coordinates :

CLLocationCoordinate2D, context : CGContext!){

 let shapeSize = 40.0

 let point: CGPoint = snapshot.point(for: coordinates)

 let pointX = Double(point.x)

 let pointY = Double(point.y)

 let x = pointX - (shapeSize * 0.5)

 let y = pointY - (shapeSize - 10)

 let rect = CGRect(x: x, y: y, width: shapeSize, height: shapeSize)

 let blue = UIColor(red: 0.0/255.0, green: 100.0/255.0, blue:

207.0/255.0, alpha: 1.0)

 context.addEllipse(in: rect)

 context.setFillColor(blue.cgColor)

 context.fillPath()

 }

Appendix 2

1 (1)

Add Pep Point method on Watch Application

@IBAction func addPepPoint(){

 self.locationManager.requestLocation()

 var failure = false

 var errorMessage = "Couldn't add Pep Point"

 if let location = self.locationManager.location {

 var message : String = ""

 presentTextInputController(withSuggestions: nil, allowedInputMode:

WKTextInputMode.plain, completion: {(results) -> Void in

if results != nil && results!.count > 0 && (running["running"] as!

Bool == true){

 message = results?[0] as! String

 let pepPoint : [String : Any] = ["pepPoint" :

["message" : message, "location" : ["latitude" : location.coordinate.latitude

as Double, "longitude" : location.coordinate.longitude as Double]]]

 let session = WCSession.default

 session.transferUserInfo(pepPoint)

 } else {

 errorMessage = "Couldn't add Pep Point"

 failure = true

 }

 if (failure == true) {

 let action = WKAlertAction(title: "Dismiss", style: .cancel) {}

 self.presentAlert(withTitle: "Error", message:

errorMessage, preferredStyle: .alert, actions: [action])

 } else {

 let action = WKAlertAction(title: "Dismiss", style:

.cancel) {}

 self.presentAlert(withTitle: "Success", message: "Pep

Point was added", preferredStyle: .alert, actions: [action])

 }

 })

 } else {

 let action = WKAlertAction(title: "Dismiss", style: .cancel) {}

 self.presentAlert(withTitle: "Error", message: "Couldn't find user

location", preferredStyle: .alert, actions: [action])

 }

	1 Introduction
	2 Route Pepper
	3 Apple Watch and watchOS
	3.1 Apple Watch interaction
	3.2 Notifications
	3.2.1 Notification appearance rules
	3.2.2 Apple Watch notifications

	3.3 Complications

	4 Watch application architecture
	4.1 iOS application
	4.2 Watch App
	4.3 WatchKit Extension
	4.4 WatchKit
	4.4.1 Application states
	4.4.2 Background tasks
	4.4.3 Snapshots

	4.5 Watch Connectivity
	4.5.1 WCSession
	4.5.2 Sending data
	4.5.3 Receiving data

	5 The project
	5.1 Development tools
	5.1.1 Swift
	5.1.2 Xcode
	5.1.3 Google Firebase

	5.2 Communication model
	5.3 The application
	5.3.1 Pep Point notifications
	5.3.2 Adding a Pep Point

	5.4 Sharing data between the applications
	5.5 Testing
	5.6 The encountered problems
	5.7 Further development

	6 Conclusion
	References

