
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aleksandr Stepantsov 

 

DEVELOPMENT OF A CENTRALIZED 
DATABASE BACKUP MANAGEMENT 
SYSTEM WITH NODE.JS AND REACT 

Bachelor’s thesis 
Information Technology 

 
 

2018 
 



 
 
Author (authors) Degree 

 
Time 
 

Aleksandr Stepantsov Bachelor of 
Engineering 

May 2018 
 

Title 
 
Development of a Centralized Database Backup Management 
System with Node.js and React 

66 pages  
0 pages of appendices 

Commissioned by 
 
South-Eastern Finland University of Applied Sciences 
Supervisor  
 
Matti Juutilainen 
Abstract 
 
The purpose of this thesis was to show the importance of data security for databases, 
explain the related challenges and risks and to provide a solution for the discovered 
problems. Such a solution is needed because databases are used to store many kinds of 
data and both individuals and businesses cannot afford the critical information to be 
completely lost. 
 
The basics of cloud computing were described and it was shown how cloud solutions could 
be applied to the information security field. In the theoretical part, backup methods were 
studied for MySQL, PostgreSQL and MongoDB. Possible security measures and their 
implementations were also explored. The main tools that were used for building a solution 
were introduced. 
 
Based on the study, a software solution allowing performing and managing database 
backups in a centralized manner was developed using Node.js and React. The entire 
process and the methods of development were explained. The application was built in a 
modular way, so it could be easily altered. As a result, a working solution was presented 
and tested. Possibilities for the further development of the application, such as support for 
the additional database engines and storage providers, were listed and described. This 
thesis was closely related to a huge number of other topics in the information security field 
and could be used for researching many of them. 
Keywords 
 
Node.js, JavaScript, database, backup, MongoDB, MySQL, PostgreSQL, React, web, 
RDBMS, cloud 



 
CONTENTS 
 
1 INTRODUCTION .......................................................................................................... 5 

2 DATABASES ................................................................................................................ 6 

2.1 Database types and differences between them ...................................................... 6 

2.2 Relational databases .............................................................................................. 7 

2.2.1 Structured Query Language .............................................................................. 7 

2.2.2 MySQL .............................................................................................................. 8 

2.2.3 PostgreSQL ...................................................................................................... 8 

2.2.4 Other relational databases ................................................................................ 9 

2.3 Non-relational databases ........................................................................................ 9 

3 DATABASE BACKUP METHODS .............................................................................. 10 

3.1 MySQL .................................................................................................................. 10 

3.2 PostgreSQL .......................................................................................................... 12 

3.3 MongoDB .............................................................................................................. 13 

4 CLOUD SOLUTIONS ................................................................................................. 14 

4.1 Overview ............................................................................................................... 14 

4.2 Cloud-based storages ........................................................................................... 15 

4.2.1 Amazon S3 ..................................................................................................... 16 

4.2.2 Google Cloud Storage .................................................................................... 17 

5 SECURITY ................................................................................................................. 17 

5.1 Encryption ............................................................................................................. 17 

5.2 Hash functions ...................................................................................................... 19 

5.3 Security risks in web development ........................................................................ 20 

6 DEVELOPMENT TOOLS AND SERVICES ................................................................ 21 

6.1 HTML .................................................................................................................... 21 

6.2 CSS ...................................................................................................................... 22 



 
6.3 JavaScript ............................................................................................................. 23 

6.4 Node.js and Express ............................................................................................. 24 

6.5 React, Redux and Blueprint .................................................................................. 25 

6.6 Babel and Webpack .............................................................................................. 26 

7 IMPLEMENTATION .................................................................................................... 28 

7.1 Goals .................................................................................................................... 28 

7.2 Preparing the environment ................................................................................... 28 

7.2.1 Setting-up Babel and Webpack ...................................................................... 32 

7.2.2 Installing global packages and creating the scripts ......................................... 34 

7.2.3 Configuring the web server and main packages ............................................. 35 

7.3 Routing ................................................................................................................. 37 

7.4 Creating data models with Mongoose ................................................................... 39 

7.5 Implementing the authentication ........................................................................... 40 

7.6 Schema for database engines and storages ........................................................ 42 

7.7 Database and storage management ..................................................................... 45 

7.8 Performing backups .............................................................................................. 46 

7.9 Hash calculations and storage .............................................................................. 47 

7.10 Queue ................................................................................................................... 49 

7.11 Manual backup and scheduler .............................................................................. 49 

7.12 User interface ....................................................................................................... 51 

7.13 Results .................................................................................................................. 53 

8 CONCLUSIONS ......................................................................................................... 59 

REFERENCES .................................................................................................................. 61 



5 

1 INTRODUCTION 

We live in a world where information is an extremely valuable asset. Companies 

and individuals cannot afford to lose important data as such loss might cost them 

millions. Therefore, any enterprise with an IT infrastructure will eventually look 

into backup solutions. 

 

There are various ways to backup the data. Cloud services are widely used for 

that purpose nowadays. However, there is a need for an automated solution with 

visualisation capabilities when it comes to an enterprise level.  

 

A recent incident at GitLab.com is a great example of what could be caused by a 

simple negligence and insufficiency of backup procedures. An employee of 

GitLab Inc. had run a directory removal command on the wrong database cluster. 

The company had five database backup procedures set in place to be able to 

restore the data after such an emergency. However, none of them were reliably 

working. One of the employees of Gitlab Inc. happened to run a manual backup 

of that database cluster six hours prior to the incident. This coincidence allowed 

the company to restore most of the data. This emergency caused a few hours of 

downtime, loss of the data stored in the last six hours and probably cost the 

company a lot of money and customers. (GitLab Inc. 2017.) 

 

The unfortunate situation explained above could have been prevented, if 

adequate backup procedures would have been in place. If such situation can 

occur even in a large company, many small businesses may be vulnerable, too. 

Any company should be prepared for incidents and there should be free 

comprehensive software solutions to provide help in achieving business 

continuity. The purpose of this work is to introduce available database backup 

methods, to explain how a centralized database backup management solution 

can be built and what tools can be used for the development. 

 

I have been fascinated by software development since my childhood: building 

something new felt really interesting and important. I could easily forget about 

time and spend many hours in a row sitting and trying to solve a problem through 
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programming. Therefore, I would like to apply my skills to the solution of this 

unexpectedly common problem. 

 

2 DATABASES 

Types of databases, database engines and differences between them will be 

discussed in this section. It is not a comprehensive overview of the information 

about databases, as only the topics relevant to the project will be covered. 

 

2.1 Database types and differences between them 

In general, two types of databases can be distinguished: relational (SQL) and 

non-relational (NoSQL). These are very different concepts that have their own 

benefits and drawbacks. Relational databases are often referred to as SQL 

databases because all of them use Structured Query Language to work with the 

data. 

 

Relational databases have their roots in the 1970s and base on the relational 

model of data explained in a publication written by E. F. Codd. It was published in 

the Communications of the ACM magazine in 1970 (IBM 2018). In a relational 

model, the data is organized into tables that consist of columns and rows. Figure 

1 shows a possible structure of the tables and relationships between them. 

 

 
 Figure 1. Relationships between tables in a relational database (ntu.edu.sg 2010) 
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Each row must be uniquely identified. Therefore, every table has a column called 

primary key which contains a unique value for each row in that table. Relations 

can be created between tables using foreign keys. For instance, a table can refer 

to another table by making one of its rows a foreign key. In this case, the foreign 

key will be the primary key of another table. (ntu.edu.sg 2010.) 

 

Non-relational databases have existed since the late 1960s, but they weren’t very 

popular back in those days. Nowadays, the market started slowly moving towards 

the adoption of NoSQL databases, because they allow better scalability than 

normal relational databases. While there are many different types of non-

relational databases, they have one thing in common: they can efficiently work 

with unstructured data, which is a huge advantage. (Leavitt 2010.) 

 

2.2 Relational databases 

This section will provide a brief overview of certain details related to relational 

databases. 

 

2.2.1 Structured Query Language 

Structured Query Language (SQL) is a language designed to access or 

manipulate data in a relational database management system. SQL was 

developed in the 1970s by two employees of IBM: Donald D. Chamberlin and 

Raymond F. Boyce. It was initially created for use with IBM’s System R, a 

relational database management system. SQL was officially standardized by 

ANSI and ISO in 1986. (Chamberlin 2012.) 

 

Data retrieval and manipulation is done via statements that may contain multiple 

clauses. SQL supports predicates which are evaluated with three-valued logic. 

They are used to retrieve only a specific set of data that meets a provided 

condition. The three-valued logic has three truth values: true, false and unknown. 

(Chamberlin 2012.) 
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Several subsets can be distinguished within SQL: 

• Data Manipulation Language (DML) allows retrieving and altering data in a 
table using such statements as SELECT, INSERT, UPDATE, DELETE and more. 

• Data Definition Language (DDL) allows defining and altering data 
structures using such statements as CREATE, ALTER and DROP. 

• Data Control Language (DCL) allows setting access rights in a database 
using such statements as GRANT and REVOKE. 

These three subsets form the SQL language itself. (Lifewire 2017.) 

 

2.2.2 MySQL 

According to DB-Engines Ranking by solid IT (2018), MySQL is one of the most 

popular relational database management systems (RDBMS) in the world. It is 

currently owned by Oracle Corporation which is a parent company of MySQL AB. 

MySQL was initially released in 1995 by a Swedish company MySQL AB. There 

is a completely open-source version of it called MySQL Community Server which 

is released under the GNU General Public License and a commercial version, 

MySQL Enterprise Server. MySQL is well-documented and has a large 

community of supporters. (Data Science Central 2018.) 

 

MySQL was written in C and C++ and officially supports many platforms, 

including various versions of Windows and popular distributions of Linux (Black 

Duck Software, Inc. 2018). Some of the reasons why it became so popular 

include high reliability, capabilities for scaling and security. 

 

2.2.3 PostgreSQL 

PostgreSQL is a widely used object-relational database management system 

(ORDBMS) written in the C language. The main difference from a normal 

RDBMS is that it has an object-oriented model. It is completely free and open-

source under the PostgreSQL License. PostgreSQL is cross-platform and 

supports both Microsoft Windows and Unix-like systems. (The PostgreSQL 

Global Development Group 2018.) 

 

PostgreSQL was developed as a successor of the Ingres project at the University 

of California and its development started in 1985 under the name of POSTGRES. 
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This project was ended in 1994 and released under the MIT license. In 1994, two 

students from Berkeley created Postgres95 which was based on POSTGRES but 

used the SQL query language interpreter instead of the POSTQUEL one. The 

project was renamed to PostgreSQL and its initial production-ready version was 

released in 1996. PostgreSQL is currently being maintained by PostgreSQL 

Global Development Group which consists of many people and companies. (The 

PostgreSQL Global Development Group 2018.) 

 

Many people choose PostgreSQL over its competitors because it is open-source, 

supported by a diverse community, follows ACID principles and supports various 

replication methods (The PostgreSQL Global Development Group 2018). It is 

also one of the most advanced relational database management systems in 

terms of features. However, it is much less popular than MySQL and Microsoft 

SQL Server based on DB-Engines Ranking by solid IT (2018). 

 

2.2.4 Other relational databases 

There are many other relational database management systems that weren’t 

described above, but still have to be mentioned: 

• Microsoft SQL Server – a popular RDBMS by Microsoft 
• Oracle – the most popular RDBMS in the world as of April 2018 based on 

DB-Engines Ranking by solid IT (2018) 
• SQLite – a local RDBMS that is embedded into an application 
• MariaDB – a fork of MySQL made by its own creators 
• Firebird – a RDBMS maintained by Firebird Project 

These RDBMSs are widely used but will not be used for the implementation of 

this project. (solid IT 2018.) 

 

2.3 Non-relational databases 

Non-relational databases have started gaining popularity recently. Following 

Makris (2016), they can be classified into four categories: 

• Key-value stores: Each value has a corresponding key (Redis, 
MemCached, Dynamo). 

• Document stores: These consist of documents that represent compressed 
key-value pairs (MongoDB, CouchDB). 
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• Column family stores: These represent a sorted multidimensional map that 
allows to store key-value pairs (PNUTS, Cassandra). 

• Graph stores: Data is stored within the edges, nodes and properties of a 
graph structure (Neo4j, HyperGraphDB). 

However, the classification of NoSQL databases is not limited to these categories 

and each of them may be further divided into subcategories. 

 

MongoDB document store will be used during the implementation phase of this 

project. Therefore, certain details about it will be provided next. MongoDB is a 

highly scalable and flexible NoSQL database engine. It is the most popular 

document store in the world based on DB-Engines Ranking by solid IT (2018). 

The development of MongoDB was started in 2007 by 10gen software. The name 

of the company was changed to MongoDB Inc. in 2013. Initially, it was planned to 

release the product using the Platform as a Service model. However, the 

company leaned towards the open source model in 2009. (ByteScout 2014.) 

 

MongoDB stores data in JSON-like documents, so fields can be different in each 

document and it is not limited to a single model like RDBMSs. The document 

model can be mapped to objects in the application code. MongoDB has its own 

query language, which looks similar to JavaScript. Also, many advanced features 

are supported, such as aggregation, indexing and ad hoc queries. There are 

many different tools for each programming language that make it easy to work 

with MongoDB. (MongoDB, Inc. 2018.) 

 

3 DATABASE BACKUP METHODS 

This section will explain backup methods available for the databases covered in 

the project.  

 

3.1 MySQL 

According to Oracle Corporation’s documentation (2018), the following backup 

methods are available for MySQL: 

1) Backup using MySQL Enterprise Backup product (MySQL Enterprise 
Edition only) 
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This method allows performing physical backups of both entire database 
and selected tables. MySQL Enterprise Backup supports compressed and 
incremental backups. A huge advantage of this method is that restoring is 
much faster. Hot and warm backup methods are supported. Hot backup 
means that data can be modified while a backup is being performed. 
However, this backup technique is only supported if the InnoDB storage 
engine is used. Otherwise, a warm backup is performed which means that 
tables cannot be modified during the backup process. 
 

2) Backup using mysqldump utility 
 
This method provides capabilities for performing a logical backup of either 
entire database or selected tables. Logical backup means that generated 
output is a set of statements in SQL language that can be used to fully 
reproduce the database. It is possible to perform a hot backup for the 
InnoDB tables with this tool. Mysqldump is a command line utility. There 
are three main ways to invoke it as can be seen in the Figure 2. 
 

 
Figure 2. Invocation syntax of mysqldump (Oracle Corporation 2018) 
 
The first way is used to backup certain tables from one database, the 
second way is used to backup multiple databases and the third one is 
used to backup all databases. The mysqldump command also accepts many 
options. Only the options that will be used during the development of this 
project are going to be mentioned here. The list below shows these 
options: 

• --host 
IP address or hostname of the destination server. 

• --port 
Port where the destination server is running. 

• --user 
Username for connecting to the MySQL server. 

• --password 
Password for connecting to the MySQL server. 

• --all-databases 
Backup all tables. 

• --databases 
Allows to specify a list of tables to be backed up. 

• --single-transaction 
Performs a backup in a single transaction. 

 
Restoration of a backup is later possible by injecting a backup file into the 
database. 
 

3) Backup by copying the storage engine files 
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MySQL Server must be stopped for a backup to be consistent (or a lock 
must be placed for read operations). InnoDB tables cannot be backed up 
using this method. 
 

4) Delimited-text file backup 
 
There is a MySQL query which allows outputting the table’s data to a file. 
This method is not very practical and output can only be saved on the 
server’s host. 

 
5) Incremental backup using binary log 

 
6) Backup using replication slaves 

 
By using this method, data is replicated to the other server and then 
backed up from there (to avoid performance problems). 

 
7) Backup by making a file system snapshot 

The second method from the list above will be used in the practical part of this 

thesis. The other methods are mentioned but not explained in details for this 

reason. 

 

3.2 PostgreSQL 

There are three different approaches for backing up the data in PostgreSQL 

database. According to the The PostgreSQL Global Development Group’s 

documentation (2018), the following methods are available: 

1) Backup using pg_dump utility 
 
This utility allows performing a logical backup of PostgreSQL database 
(just like mysqldump for MySQL). It is possible to perform hot backups. 
This tool can be invoked in the following way: 
 
pg_dump [option…] [dbname] 
 
pg_dump command accepts many options, most important ones are listed 
below: 

• --host 
IP address or hostname of the destination server. 

• --port 
Port where the destination server is running. 

• --username 
Username for connecting to the PostgreSQL server. 

• --password 
Password for connecting to the PostgreSQL server. 
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• --table 
Specifies a table to be backed up, may be provided multiple times. 

• --dbname 
Specifies a database to be backed up, may be provided multiple 
times. 

• --format 
Specifies format of the output. Allowed values: plain, custom and 
tar. 

• --single-transaction 
Performs backup in a single transaction. 

 
pg_restore tool can be used to later restore the database. It accepts all the 
parameters that were explained for pg_dump above and has the following 
syntax: 
 
pg_restore [option…] [filename] 
 

2) File system level backup by making a file system snapshot 
 

3) Continuous archiving (similar to the binary log in MySQL) 
The first method will be used for the implementation of this project. The other 

methods are mentioned but not explained in details for this reason. 

 

3.3 MongoDB 

According to the documentation provided by MongoDB, Inc. (2018), the following 

backup methods are available for MongoDB: 

1) Direct copying of the files 
 

2) Backup by making a file system snapshot 
 

3) Backup using mongodump utility 
 
This utility creates a binary export of the data stored in a database. It has 
the following invocation syntax: 
 
mongodump [options] 
 
There are many options available and the list below provides an overview 
of the most important ones: 

• --uri 
This option is used to specify a connection string for the MongoDB 
database. This string has the following format: 
 
mongodb://[username:password@]host1[:port1][,host2[:port2],...
[,hostN[:portN]]][/[database][?options]] 
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• --gzip 
Compresses the output file(s). 

• --archive 
Used to write the output to a single archive. Option --out allows to 
specify output as well but writes everything to separate files. 

The mongodump utility will be used in the practical part of this thesis. The rest of 

the methods are not explained in details for this reason. 

 

4 CLOUD SOLUTIONS 

This section will give a brief overview of cloud technologies and, in particular, 

cloud-based storages. They will be widely used in the practical part of this 

project. 

 

4.1 Overview 

Certain initial concepts of what is currently called “cloud computing” were 

developed as early as in the 1960s. Back then, it was called Remote Job Entry 

(RJE). Tasks were sent to the mainframe computers remotely and then the 

output could be retrieved. In the 1970s many time-sharing solutions became 

available such as Multics and Cambridge CTSS. However, this approach wasn’t 

very popular. A lot of research related to time-sharing technologies was 

conducted in 1990s. However, the actual cloud computing only became available 

in 2006 when Amazon launched its Elastic Compute Cloud. Later on, more 

companies released their solutions: Google App Engine became available in 

2008, Microsoft Azure came into existence in 2010. (Mourghen, 2018.) 

 

Cloud solutions have many advantages over traditional approaches. 

Responsibility for the management and maintenance of the infrastructure lies with 

the cloud provider. It means that businesses can focus on the development of 

their own products and services instead of wasting time and resources on 

building an on-premises IT infrastructure. Moreover, cloud solutions provide high 

availability and have presence across multiple regions. If data center in one 

region will fail, then other data centers can temporarily compensate for the lost 

capacity. Cloud products also have outstanding scaling capabilities. It allows to 



15 

use just as much capacity as needed on-demand and only pay for what is 

actually used. (Amazon Web Services 2018.) 

 

In general, three types of cloud computing service models can be distinguished: 

• Infrastructure as a Service (IaaS) 
• Platform as a Service (PaaS) 
• Software as a Service (SaaS) 

Each of these models has its own benefits and use cases. IaaS is the lowest-

level solution out of three. Customer manages everything except for the hardware 

itself. Amazon EC2 is a good example of a service that uses such a model. Many 

IaaS providers also offer a library of images to make setup process easier for a 

customer. PaaS delivers an entire computing platform which may include 

operating system, development environment, databases and web servers. Users 

simply upload their applications to the platform and run them. However, there is 

less control from the user than in IaaS model. Google App Engine utilizes this 

approach. The last model is SaaS and it is very high-level. A user can subscribe 

to receive the access to a service offered by a provider. Everything is managed 

by the provider, user cannot manage underlying infrastructure or platform. This 

approach is widely used nowadays. (Amazon Web Services 2018.) 

 

4.2 Cloud-based storages 

Cloud-based storage is one of the services typically available from most cloud 

providers. This data storage model implies that users can upload their data into 

the logical pools without access to the underlying physical layer where the data is 

actually stored. It is widely adopted by many large companies. For instance, 

Netflix uses Amazon S3 for streaming the movies to their customers. There is no 

need to think about the security of the data yourself and the data can be 

replicated across many regions to ensure its safety. Moreover, storage space in 

object storage services, such as Amazon S3 and Google Cloud Storage, is 

usually billed on usage. While object storages are more business-oriented, there 

are many normal file storage services, too. Two object-oriented storage services 

will be covered in my work: Amazon S3 and Google Cloud Storage. (Amazon 

Web Services 2018.) 
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4.2.1 Amazon S3 

Amazon S3 is an object storage service by Amazon Web Services. S3 is an 

abbreviation for Simple Storage Service. It was officially launched in 2006 and 

quickly gained high popularity. There are two interfaces available for creating, 

retrieving and managing the objects: REST (Representational State Transfer) 

and SOAP (Simple Object Access Control). Additionally, an object can be 

retrieved using BitTorrent protocol or HTTP GET interface. There is also a web 

interface available for manual object management. Objects are stored in user-

created “buckets”. Each bucket must be given a unique name that will be used to 

identify it. (Amazon Web Services 2018.) 

 

Amazon S3 offers three different storage types: 

1) Amazon S3 Standard (S3 Standard) 
2) Amazon S3 Standard-Infrequent Access (S3 Standard-IA) 
3) Amazon S3 One Zone-Infrequent Access (S3 One Zone-IA) 

S3 Standard is designed to provide high levels of availability and durability for the 

frequently accessed data. Data is stored in three Availability Zones 

simultaneously and it is guaranteed to be safe even in case of destruction of one 

Availability Zone. S3 Standard-IA is designed for storing the infrequently 

accessed data. It has the same durability as S3 Standard but lower availability. 

Another difference is that S3 Standard-IA has minimum capacity (128KB) and 

minimum storage duration charge (30 days) set for the objects. Storage price and 

retrieval fee are reduced for this type of storage compared to the S3 Standard. 

S3 One Zone-IA is similar to the S3 Standard-IA, but data is only stored in one 

Availability Zone which results in a decreased redundancy. (Amazon Web 

Services 2018.) 

 

Amazon S3 has built-in encryption capabilities with both automatically assigned 

encryption keys and custom encryption keys provided by a user. This feature 

removes the need for manual encryption and saves time and resources. 

Additionally, data transfer can also be encrypted by using endpoints with a SSL 

(Secure Socket Layer) encryption. (Amazon Web Services 2018.) 
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4.2.2 Google Cloud Storage 

Google Cloud Storage is a direct competitor of Amazon S3 launched in 2010. It is 

an object storage service by Google aimed at enterprises. It follows the same 

principles as Amazon S3: objects are stored in buckets that have unique keys 

assigned by a user. Data can be stored, retrieved and managed using the REST 

API. 

 

There are four storage classes available: 

1) Multi-Regional 
2) Regional 
3) Nearline 
4) Coldline 

Multi-Regional storage is designed for the frequently accessed data that requires 

additional redundancy achieved by replicating the data across multiple regions. 

Regional storage is similar to the Multi-Regional one, but the data is stored in a 

single region. Nearline storage is designed for the data accessed less than once 

a month. Coldline storage is created for the data accessed less than once a year. 

(Google LLC 2018.) 

  

5 SECURITY 

Security should be a key consideration in any project. It is unacceptable to have 

data compromised or corrupted. Moreover, nowadays there are more dangers 

related to information security than ever. General information about common 

security measures will be given in this section. 

 

5.1 Encryption 

Encryption is a security measure aimed at the prevention of access by 

unauthorized parties through information encoding. Encryption itself doesn’t 

prevent the encoded data from being intercepted. However, this data will be 

useless unless decrypted with a valid key. In theory, any piece of encoded data 

can be decrypted without a key with enough computational resources. However, 

there is no such computational power currently available to crack the modern 
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algorithms that are considered secure. There are two types of encryption: 

symmetric-key and public-key. 

 

In symmetric-key method, the same shared key is used for both encryption and 

decryption. It means that if the encryption key is compromised, then the data can 

also be decrypted with it. However, this approach provides a couple of 

advantages: symmetric-key algorithms have a high protection level as long as the 

key is safe and they are inexpensive to process. The main problem of this 

method is in exchange of the shared key as it must be known by both parties. It 

can be solved with the use of the Diffie-Hellman key exchange algorithm. 

Implementations of symmetric-key algorithms include but are not limited to AES, 

Blowfish, 3DES. Figure 3 shows how symmetric-key encryption works. (IBM 

2018.) 

 

 
Figure 3. Symmetric-key encryption (IBM 2018) 
 

Public-key encryption utilizes two keys: public and private. A public key is known 

to everyone and a private key is secret. If data was encrypted with a public key, 

then it will only be possible to decrypt it with a private one. It also works the other 

way around. Public key algorithms require much more computational resources 

than symmetric-key algorithms. Most implementations of such algorithms are 

based on Rivest-Shamir-Adelman (RSA) cryptosystem created in 1978. Figure 4 

describes the principle used for public-key encryption. (IBM 2018.) 
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Figure 4. Public-key encryption (IBM 2018) 
 

Choice of the encryption type mostly depends on what it will be used for. 

However, symmetric-key encryption is usually preferred, unless there is no other 

choice but to use public key encryption, due to performance considerations. 

While encryption is not directly used for backups in the practical part of this 

thesis, it is important to understand the main concepts. For instance, Amazon S3 

provides built-in encryption capabilities for uploaded objects. 

 

5.2 Hash functions 

Hash functions allow to convert data of random size to data of a fixed size. Result 

of such conversion is a hash value. Original data cannot be reconstructed from a 

hash value. However, there are some exceptions when it comes to outdated 

hashing algorithms. Hash functions are widely used for verification of data 

integrity, message authentication and digital signatures. (SANS Technology 

Institute 2018.) 

 

However, two different pieces of data may sometimes produce the same hash 

value and form a collision. Perfect hash function means that such a collision 

cannot occur because hash function will map every input to a unique hash value. 

In practice, it is impossible to achieve such a result for a random input. Therefore, 

a collision will inevitably occur after some time. The probability of this event may 

be reduced by using stronger hashing algorithms. (SANS Technology Institute 

2018.) 

 

Certain widely used hash functions are listed below: 

1) MD5 is a 128-bit hash function that is no longer considered secure. Many 
vulnerabilities have been found over the years. This hash function is not 
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resistant to collision attacks. However, MD5 is still being used for the data 
integrity verification. 

2) SHA-1 is a 160-bit hash function that is not considered secure since 2005. 
Collisions have been found in 2017. However, it is still being used for the 
data integrity verification. 

3) SHA-2 is a family of 4 hash functions: SHA-224, SHA-256, SHA-384 and 
SHA-512. Each of them produces an output of 224, 256, 384 and 512 bits 
respectively. They are widely used and considered secure. 

4) SHA-3 is a relatively new family of hash functions which is considered 
secure. However, it is not widely used yet due to the fact that SHA-2 is still 
secure. 

Some of the outdated hash functions from the list above are still being used for 

the data integrity verification, because a collision is not very likely and these older 

functions are also less expensive in terms of consumption of computational 

resources. However, they should never be used for hashing critical information or 

passwords. Passwords should always be hashed with a strong algorithm and 

never be stored in plain text. 

 

5.3 Security risks in web development 

Security vulnerabilities are very common even in large projects. These flaws may 

affect the most critical systems even in such fields as medicine and finance. 

There are many well-known vulnerabilities that are still often present in modern 

applications. New security risks are being constantly discovered and a lot of them 

are still waiting to be found. Most common and publicly known vulnerabilities can 

be avoided by building an application using the best practices and continuous 

testing during the development process. (OWASP 2018.) 

 

Certain common security risks are listed below: 

1) Injection 
Possibility for SQL and NoSQL injections is a serious problem. The goal of 
this attack is to get access to the database or corrupt it. Such attacks can 
be mitigated by sanitizing user input and using escaping techniques. 
According to the OWASP’s research, it was the most critical vulnerability in 
2017. (OWASP 2018.) 

2) Cross-site scripting (XSS) 
XSS allows an attacker to execute any JavaScript code in the victim’s 
browser by adding a piece of code to a web page through some unsecure 
data input control. Filtering and escaping of raw input can be used to 
prevent that. (OWASP 2018.) 

3) Cross-site request forgery (CSRF) 
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CSRF is a commonly used technique for performing actions in an 
application where user is already authenticated. Third-party website may 
contain the code that will send a request to the web application. 
Functionality of a vulnerable application can be accessed by an attacker. 
(OWASP 2018.) 

 

These three risks should be avoided in every web application. However, this list 

is not comprehensive as there are many other security risks. They are usually 

obvious and can be easily avoided simply by having a good application 

architecture. Such risks include broken authentication, broken access control, 

security misconfiguration. There are tools and services available that allow to 

scan for security vulnerabilities. (OWASP 2018.) 

 

6 DEVELOPMENT TOOLS AND SERVICES 

The purpose of this section is to give an overview of the main technologies, 

frameworks, tools and services that weren’t mentioned in the previous chapters 

and will be used in the practical implementation of the project. 

 

6.1 HTML 

HTML (Hypertext Markup Language) is a markup language which is used to 

define the structure of a web page semantically. This markup is later retrieved 

from a web server and rendered by a web browser. It is the most important 

technology is web development. HTML is currently maintained by World Wide 

Web Consortium (W3C). 

 

The language implements a series of tags that can be used to wrap different 

parts of the content in order to change its representation. HTML tags also accept 

attributes that are used for customization. Most elements consist of opening and 

closing tags. However, some self-closing tags are also available. Figure 5 shows 

a structure of an HTML tag. (Mozilla Corporation 2018.) 
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Figure 5. Structure of an HTML element 
 

There were many versions of HTML specification created over the years. The 

history of HTML begins in 1993 when it was initially released (first specification). 

The latest version up to date is HTML5. It includes many new features which are 

absolutely necessary in the modern world, such as <video> and <audio> tags that 

allow embedding multimedia content into a web page natively. HTML5 is adopted 

by the latest versions of all modern web browsers. (W3C 2017.) 

 

6.2 CSS 

CSS (Cascading Style Sheets) is the second core technology in web 

development, and closely related to HTML. It allows to customize the style of 

HTML elements such as colors, fonts, and layout. CSS separates content of an 

HTML document from its presentation. CSS also makes it easier to maintain web 

pages. The latest specification is CSS3 and it is supported by all modern 

browsers. (W3C 2018.) 

 

Before CSS was taken into use, all styling was applied to HTML elements 

through attributes. Therefore, styling options were very limited, and it was hard to 

find anything. Everything changed after the initial release and standardization of 

CSS (first specification) in 1993. This version only provided basic customization 

capabilities and it greatly differs from the latest CSS3 standard.  

 

CSS represents a simple markup language. CSS stylesheet consists of a set of 

rules. Every rule includes one or more selectors (tag, class or id) and a 

declaration block itself. Declaration block is a set of properties with assigned 

values (declarations). Figure 6 gives a good overview of the structure of a CSS 

rule. (Wordpress.com 2018.) 
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Figure 6. Structure of a CSS rule (Wordpress.com 2018) 
 

CSS3 also provides strong capabilities for animation. It is now possible to 

implement many kinds of animations using pure CSS without JavaScript which 

makes developers’ life easier. 

 

6.3 JavaScript 

JavaScript is a dynamic, prototype-based, multi-paradigm, interpreted and an 

object-oriented programming language (Mozilla Corporation 2018). It is one of the 

core technologies of World Wide Web content production. JavaScript is usually 

used to make webpages more interactive and provide additional user 

experiences such as animations. Most websites use this technology, and all 

modern web browsers provide native support for it. There are many JavaScript 

engines (implementations). Each of them is based on ECMAScript specification, 

but some engines implement only part of the specifications and others have 

features beyond ECMA. (ECMAScript 2007.) 

 

Event-driven, functional and imperative (including object-oriented and prototype-

based) programming styles are supported by JavaScript. There are many 

advanced built-in features. JavaScript is often used in web development for the 

Document Object Model (DOM) manipulation. JavaScript engines were initially 

only implemented client-side in web browsers, but they are now embedded in 

many types of host software such as web servers and databases, and in non-web 

programs. (Mozilla Corporation 2018.) 

It is important to note that JavaScript and Java are totally different languages (in 

terms of design). There are many different frameworks/tools available for 

JavaScript to make development easier: Node.js, React.js, Angular.js and others. 
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6.4 Node.js and Express 

Node.js is an asynchronous event-driven JavaScript runtime which allows to build 

network applications at scale easily. In Node.js process never gets blocked as it 

is designed without threads. Therefore, it is a great choice for scalable systems. 

Moreover, Node.js provides many useful default libraries, such as HTTP which 

allows to create a webserver with just 2 lines of code. Nowadays, Node.js 

became very popular for backend programming in web. (Node.js Foundation 

2018.) 

 

Node.js provides the following command syntax for launching an application: 

 
node [options] [V8 options] [script.js | -e "script" | - ] [arguments] 

 

While most of the parameters are self-explanatory, V8 options requires further 

explanation. V8 is a JavaScript engine used by Node.js to run the code. 

Therefore, V8 options parameter specifies options for that engine.  

 

According to npm, Inc. (2018), npm is a package manager for JavaScript which is 

frequently used with Node.js. There are thousands of packages available for use 

and they can be easily installed with npm. Application’s configuration for npm is 

stored in a package.json file. This file may contain such information as application 

name, author’s name, license, version number, description, homepage, entry 

point, scripts and dependencies. The following command line syntax is being 

used by npm: 

 
npm <command> [args] 
 

Most commonly used commands for npm are listed below: 

• init: allows to create a package.json file interactively. 
• install: installs specified packages. If no arguments are provided, then it 

will install all the packages listed as dependencies in a package.json file. 
• uninstall: uninstalls specified packages. 
• run: runs a specified script. 
• start: executes a start script. 
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It is important to mention a few arguments for the install and uninstall 

commands: 

• -g or --global: installs/uninstalls a package globally. 
• --save: saves a package as a dependency or removes it. It will be 

added/removed in dependencies section of a package.json file. 
• --save-dev: saves a package as a development dependency or removes it. 

It will be added/removed in devDependencies section of a package.json file. 
 

Express is one of the most commonly used web frameworks for Node.js. It has 

many essential features such as routing, support for rendering engines and it is 

highly flexible with custom middlewares. Use of Express makes it easier for the 

developers to create backend and organize the code. 

 

6.5 React, Redux and Blueprint 

React is a framework for JavaScript that allows to easily build user interfaces. It is 

currently maintained (and also utilized) by such companies as Facebook and 

Instagram. MVC (Model-View-Controller) pattern is utilized in React. 

Simply said, React provides capabilities to create UI for highly scalable and 

complex web applications that can change content over time without the reload of 

the page. It manipulates DOM in order to update the page’s content. Browser’s 

DOM is updated very efficiently as React computes the differences between an 

old data structure and a new one before updating the actual DOM. This feature is 

called Virtual DOM. (Krill 2018.) 

 

State is an important concept in React. When the state is updated, React will re-

render the component using the new state. The state is supposed to be 

immutable. React is often used together with Redux which allows to store the 

state of the whole application in an object tree within a single store. The use of 

Redux makes development significantly easier, reduces the amount of code that 

has to be written and makes the code less cluttered. There are three main 

concepts in Redux: 

1) Actions: objects that are required to update the state in the store from the 
application. Action creators are functions that return actions. Actions can 
be easily dispatched using dispatch method. (Abramov 2018.) 
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2) Reducers: functions that change the state after the action is sent to the 
store (Abramov 2018). 

3) Store: an object where an entire application’s state is stored. Plus, it 
provides a couple of methods for manipulations with the store, such as 
getState, dispatch and subscribe. (Abramov 2018.) 

These concepts form the core of Redux. 

 

Another useful JavaScript library is called Blueprint. It is a React-based toolkit for 

UI development. Blueprint contains many commonly used components for React 

and provides a huge amount of customization options. React will be used in 

combination with Blueprint components during the implementation stage of this 

project.  

 

6.6 Babel and Webpack 

There are many versions of ECMAScript (ES) standard which forms the core of 

JavaScript. The latest versions make development significantly easier by adding 

new features. However, developers of modern web browsers are slow at 

adopting these standards. The latest version of ECMAScript standard is ES8. 

However, only ES5 is fully supported by all modern browsers at the moment. 

Babel makes it possible to use newer specifications even in browsers that don’t 

support them by transpiling the code to an older specification. Moreover, Babel 

supports presets and plugins that allow to perform custom manipulations with the 

code during the transpiling process. 

 

Plugins and presets can be added through .babelrc file. Figure 7 shows how this 

file looks. 

 

 
Figure 7. An example of .babelrc file contents 
 

There are two presets and no plugins added in the example shown in the figure 

above. They will be used during the transpiling process later. The following 

command can be used to start the transpiling: 
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babel src -d dest 

 

src is the directory where files to be transpiled are located and dest is a 

destination directory. 

 
Another useful tool for the JavaScript development is Webpack. It is a module 

bundler for JavaScript. It means that Webpack processes all the files and 

dependencies of an application and combines everything into one or more 

bundles. It is an extremely useful tool that allows to include just one file into a 

web page instead of having to worry about all the files and dependencies. 

Custom plugins and loaders are also supported. Loaders allow Webpack to 

process more types of files than just JavaScript. (webpack.js.org 2018.) 

 

Webpack’s configuration is stored in a webpack.config.js file. It allows to specify 

the entry point and output filename, add loaders/plugins and more. Figure 8 

shows the general structure of a Webpack configuration file. 

 

 
Figure 8. Structure of a Webpack configuration file 
 

In the figure above, entry is the entry point for Webpack, output is an object that 

contains path and filename properties that define where the bundle will be saved. 
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There are two arrays: rules and plugins. Each of these arrays may contain 

objects that define rules for the loaders or plugins to be used during the bundling.  

 

7 IMPLEMENTATION 

The project’s implementation was the most challenging aspect of this thesis. A 

web application had to be built that would satisfy basic requirements for a 

database backup management system. Development process is explained in this 

section. 

 

7.1 Goals 

It is very important for any project to have the goals defined early in development. 

The main goal of this project was to create an extensive web-based database 

backup management system. The application was created with Node.js and 

React. 

 

The following features were implemented: 

• Authentication 
• Database management 
• Scheduler 
• Backup monitoring 
• Manual backups 
• Data integrity verification 
• Compression 
• Modularity 
• Upload to cloud services 

Backup processing for MySQL, PostgreSQL and MongoDB was supported in this 

project. Amazon S3 and Google Cloud Storage were used as cloud storages. 

 

7.2 Preparing the environment 

Visual Studio Code was used for the development of this project. It is a free, 

cross-platform and open source code editor developed by Microsoft. There are 

many useful plugins available for it to speed up the development. When it comes 

to choosing a hosting solution, Amazon Web Services (AWS) offers a great 

amount of flexibility and even includes a year of free use for a t2.micro computing 
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instance. An Amazon EC2 instance was used for hosting a web server and 

Amazon S3 was used as a remote storage for backups. 

 

There was one t2.micro instance with a custom security group and Elastic IP 

assigned. This security group had all outbound connections allowed and inbound 

connections allowed on TCP ports 22 (SSH), 80 (HTTP) and 443 (HTTPS). 

Elastic IP is a static IP address that can be assigned to a resource on AWS. 

Ubuntu 16.04 was chosen as an operating system for the computing instance. An 

SSD volume with 30 GB of space was attached to the instance. A key pair was 

generated for authentication. 

 

The following software was installed on the instance: 

• Node.js 8.11.1 
• npm 5.6.0 
• nginx 1.10.3 
• certbot 0.22.2 
• mysqldump 10.13 (part of a mysql-client package) 
• mongodump r3.6.4 (part of a mongodb-org-tools package) 
• pg_dumpall 10.3 (part of a postgresql-client-10 package) 

All of these packages were installed using an APT package management tool. 

Some of the tools listed above require a description. Nginx is a web server and a 

reverse proxy. Mainly its reverse proxy functionality was used in the project. 

Certbot is a very useful tool for deploying SSL certificates from Let’s Encrypt. 

Let’s Encrypt is a free certificate authority. This tool also automatically configures 

the web server for use with a new certificate. The last three tools are used for 

performing backups on MySQL, MongoDB and PostgreSQL databases 

respectively. 

 

The next step was to setup the cloud storage and to obtain credentials for 

programmatic access. A bucket called db-backup-thesis was created on the 

Amazon S3 platform. Figure 9 shows the settings of the bucket. Afterwards, a 

new IAM user was created on AWS with full access to the Amazon S3 service. It 

is possible to restrict the user’s access to just one bucket. However, for the 

purposes of testing in this project, full access is a great fit. Summary and 

permissions of the new IAM account are shown in the Figure 10. Access key was 



30 

associated with the newly created IAM user. Access key ID and Secret key ID 

were recorded for the future use. Access key without Secret key ID is shown in 

the Figure 11. 

 

 
Figure 9. Amazon S3 bucket configuration 
 

 
Figure 10. IAM user permissions 
 

 
Figure 11. Access key for an IAM user account 
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Another bucket with the same name was created on Google Cloud Storage. 

Figure 12 shows the settings specified during the creation of the bucket. Google 

Cloud Platform uses service accounts for access management. Service account 

was created with full access to Google Cloud Storage and JSON key was 

generated and downloaded. This process is shown in the Figure 13. 

 

 
Figure 12. Creation of a Google Cloud Storage bucket 
 

 
Figure 13. Creation of a new service account and generation of a key 
 

A new directory was created for the project. The project was initialized with a npm 

init command. This command prompts the user input to receive general 

information about an application, such as name, version, description, author and 

license. Afterwards, it creates a new package.json file containing all this 

information. 
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7.2.1 Setting-up Babel and Webpack 

Babel and Webpack play a very important role in this project. First of all, a few 

npm packages were installed with the following command: 

 
npm install --save-dev babel-cli babel-core babel-loader babel-preset-env 

babel-preset-react babel-preset-stage-2 css-loader style-loader webpack 

webpack-cli 

 

The option save-dev specifies that the installed packages will be saved as 

development dependencies in the package.json file. The versions of the 

packages are listed below: 

• babel-cli 6.26.0 
• babel-core 6.26.0 
• babel-loader 7.1.4 
• babel-preset-env 1.6.1 
• babel-preset-react 6.24.1 
• babel-preset-stage-2 6.24.1 
• css-loader 0.28.10 
• style-loader 0.20.2 
• webpack 4.1.0 
• webpack-cli 2.0.10 

The packages installed with this command require a more detailed description. 

The command-line interface (CLI) for Babel is provided by a babel-cli package. 

The core functionality of Babel is provided by a babel-core package. Three 

presets for Babel were installed: babel-preset-react contains bindings for React, 

babel-preset-env is the main preset that automatically determines plugins based 

on the targeted environment, babel-preset-stage-2 provides some additional 

features that are in a draft stage and are not yet adopted by ECMAScript 

specification. Webpack and command-line interface for it are installed with 

webpack and webpack-cli packages. There are also three loaders for Webpack: 

babel-loader makes use of Babel while the code is being bundled, css-loader 

and style-loader allow loading CSS files within the code. 

 

Directory structure used for this project has to be explained before moving onto 

the configuration of Babel and Webpack. Figure 14 shows the directories that 

were used throughout this project. 
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Figure 14. Directory structure 
 

There were three autogenerated directories: .git created by Git, babel_cache 

created by Babel to store the cache and node_modules created by npm to store 

the packages. Source files of the project are located in a src directory, while 

public assets are stored in a public directory. Transpiled files will be stored in the 

dist directory. 

 

Babel and Webpack have to be configured once they are installed. The 

configuration for Babel is stored in a .babelrc file which should be located in the 

root directory. This project has a very simple Babel configuration which just 

specifies three presets. Code 1 shows how Babel was configured in this project. 

 

{ 
  "presets": ["env", "react", "stage-2"], 
  "plugins": [] 
} 
Code 1. Configuration in .babelrc file 
 

Webpack’s configuration can be stored in a webpack.config.js file in the root 

directory of the project. Code 2 shows the Webpack configuration used for this 

project.  
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const webpack = require('webpack'); 
const path = require('path'); 
 
module.exports = { 
  entry: path.join(__dirname, 'src', 'app-client.js'), 
  mode: "production", 
  output: { 
    path: path.join(__dirname, 'public', 'js'), 
    filename: 'bundle.js', 
  }, 
  module: { 
    rules: [ 
      { 
        test: path.join(__dirname, 'src'), 
        loader: 'babel-loader', 
        query: { 
          cacheDirectory: 'babel_cache', 
          presets: ['react', 'env', 'stage-2'] 
        } 
      }, 
      {  
        test: /\.css$/,  
        loader: "style-loader!css-loader"  
      } 
    ] 
  } 
}; 
Code 2. Configuration in the webpack.config.js file 
 
The entry point for the client part of the project is /src/app-client.js file. After 

going through three loaders, a bundle is saved as /public/js/bundle.js. 

 

7.2.2 Installing global packages and creating the scripts 

Two global npm packages were installed: forever and nodemon. The Forever utility 

automatically restarts the application in case of crashing. The Nodemon utility 

automatically restarts the application when any files are changed and it is very 

useful for testing purposes. The following command was executed: 

 
npm install -g forever nodemon 

 

Once the global packages were installed, four scripts were added to the 

package.json file. Code 3 shows these scripts. 
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"scripts": { 
  "dev": "nodemon ./src/server.js 4000 --exec babel-node", 
  "start": "forever start ./dist/server.js 4000", 
  "build": "babel src -d dist --presets env,react,stage-2", 
  "build-client": "node_modules/.bin/webpack -p" 
} 
Code 3. A section of package.json file containing scripts 
 
The script dev starts a development server with Nodemon on port 4000 after 

transpiling the files with Babel. A production server is started with a start script 

which uses Forever to restart automatically. The server part of the application is 

built with the build script and the client part of the application is built with the 

build-client script which utilizes Webpack to bundle the files. The start script 

runs when npm start command is executed. All other scripts can be executed 

with npm run <script name> command. 

 

7.2.3 Configuring the web server and main packages 

Global and development packages were already installed. Nevertheless, the 

main packages had to be added still. The following command was executed to 

install these packages: 

 
npm install --save @blueprintjs/core @google-cloud/storage aws-sdk bcrypt 

better-queue body-parser connect-mongo express express-session formidable 

mongoose node-cron passport passport-local react react-dom react-redux 

react-router-bootstrap react-router-dom react-transition-group redux 

 

The packages installed with this command, their versions and descriptions are 

listed below: 

• @blueprintjs/core 2.0.0-rc.2 
Basis of the Blueprint framework 

• @google-cloud/storage 1.6.0 
Package for interacting with Google Cloud Storage 

• aws-sdk 2.212.1 
Package for interacting with Amazon Web Services 

• bcrypt 2.0.1 
Library for the password encryption 

• better-queue 3.8.6 
Advanced queue system 

• body-parser 1.18.2 
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Middleware for parsing request body 
• connect-mongo 2.0.1 

MongoDB session store 
• express 4.16.2 

Web application framework 
• express-session 1.15.6 

Session middleware for Express 
• formidable 1.2.1 

Package for parsing form data 
• mongoose 5.0.9 

Framework for interacting with MongoDB databases 
• node-cron 1.2.1 

Task scheduler based on crontab 
• passport 0.4.0 

Authentication middleware 
• react 16.2.0 

Framework for building user intarfaces 
• react-dom 16.2.0 

Package for rendering DOM 
• react-redux 5.0.7 

Package that provides React bindings for Redux 
• react-router-dom 4.2.2 

Package that provides routing for React 
• react-transition-group 2.3.1 

Animation module used by Blueprint 
• redux 3.7.2 

Predictable state container 
All these packages were used during the development of this project. Once they 

were installed, a configuration file for the application was created. It was a JSON 

file called config.json and Code 4 shows its structure. 

 

{ 
    "mongoDBUri": "", 
    "secret": "" 
} 
Code 4. Structure of a main configuration file 
 
mongoDBUri property defines the connection string for MongoDB database and 

secret stores a secret string for the session management. Then, development of 

the server part of the application was started. A static HTML file index.html was 

created in /public folder and a CSS file custom.css was created in /public/css 

folder. The HTML file contained basic page markup and link to a new CSS file. 

Also, bundle.js file was linked there and one div container was created with the 
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ID main. This container is needed for React to place rendered content. A new file 

called server.js was created which was an entry point. Code 5 shows modules 

that were imported into that file. 

 

import Path from 'path'; 
import Express from 'express'; 
import Mongoose from 'mongoose'; 
import BodyParser from 'body-parser'; 
import Config from './config.json'; 
Code 5. Modules and files imported into server.js file 
 

Next step was to create the web server. Code 6 shows how it was done. 

 

//Connecting to the database 
Mongoose.connect(Config.mongoDBUri); 
const port = process.argv[2] || 4000; 
//Initializing Express and creating a server 
const app = new Express(); 
var server = require('http').createServer(app);  
//Trust proxy, so we can get the real IP behind reverse proxy 
app.enable('trust proxy'); 
//Handling requests with body-parser 
app.use(BodyParser.json()); 
app.use(BodyParser.urlencoded({ extended: true })); 
//Hosting static assets 
app.use(Express.static(Path.join(__dirname, '..', 'public'))); 
//Displaying static HTML page otherwise 
app.get('*', (req, res) => { 
    res.sendFile(Path.join(__dirname, '..', 'public', 'index.html')); 
}); 
server.listen(port); 
Code 6. Initializing database connection and creating a web server 
 

At this point, the application was initialized and ready for the further development. 

 

7.3 Routing 

Routing was necessary for implementing the backend of the application. A web 

server should have been able to distinguish the routes in order to provide 

appropriate API functionality. Express has built-in routing capabilities. First of all, 

a new file index.js was created in /src/routes. Code 7 shows how this file was 

initialized. 
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import { Router } from 'express'; 
const router = new Router(); 
 
router.post('/login', function (req, res, next) { 
    //Authenticate 
}); 
 
export default router; 
Code 7. Initialization of the router and a route example 
 

Afterwards, the router was connected to Express by importing it from the 

server.js file. Path of all the API routes began with /api. Code 8 shows how it 

was done. 

 

import Routes from './routes/index'; 
app.use('/api', Routes); 
Code 8. Connecting router to Express 
 

Table 1 shows all the routes that were eventually added to the application and 

their functions. 

 
Table 1. Server-side routing for an application 
Route Purpose 
/login Performs authentication 

/logout Performs logout 

/getuser Retrieves information about an 

authenticated user 

/createroot Creates an initial root account 

/settings/get Retrieves settings 

/settings/save Saves settings 

/dashboard/get Retrieves dashboard data: all 

databases, destinations and 

schedules 

/database/add Adds a new database 

/database/delete Removes a database 

/database/manualbackup Performs a manual backup on the 

database 
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/destination/add Adds a new destination 

/destination/delete Removes a destination 

/scheduler/add Adds a new schedule 

/scheduler/delete Removes a schedule 

 

All of these routes accepted parameters in JSON that was parsed by body-parser 

middleware, except for /destination/add which accepted parameters as a 

multipart/form-data parsed by formidable. The reason for this design choice will 

be explained later. The next step was to create data models and then to 

implement application functionality. 

 

7.4 Creating data models with Mongoose 

Mongoose allows to easily create data models that can later be used for 

interaction with a MongoDB database. Six models were created for the 

application: Backup, Database, Destination, Scheduler, Settings and User. These 

models were created in the files backup.js, database.js, destination.js, 

scheduler.js, settings.js and user.js respectively and located at /src/models. 

Code 9 shows how one of these models was created. 

 

var mongoose = require('mongoose'); 
var Schema = mongoose.Schema; 
module.exports = mongoose.model('Scheduler', new Schema({  
    database: { type: Schema.Types.ObjectId, ref: 'Database' }, 
    destination: { type: Schema.Types.ObjectId, ref: 'Destination' }, 
    rule: String 
})); 
Code 9. Scheduler model 
 

The fields database and destination are linked to the Database and Destination 

models. These fields contain ObjectId of a document that is a part of another 

collection. This ObjectId can later be replaced with the document itself. This 

process is called population. 

 

Similarly, other models were created. The Database model contained name and 

engine fields of the type String and the options field of the type Object. The 
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Destination model contained name and provider fields of the type String and the 

options field of the type Object. The Settings model contained the fields uniqueId 

and value of the type String. The User model contained the fields username, 

password and group of the type String. Finally, the Backup model contained the 

fields database and destination of the type String that were linked to the 

Database and Destination models respectively. The fields filename, type, status 

and log were also of the type String, field startDate was of the type Date and 

field hashes was of the type Object. 

 

7.5 Implementing the authentication 

Passport middleware was used for the authentication. Sessions were handled by 

an express-session module and stored in a MongoDB database with a connect-

mongo module. The module bcrypt was used for hashing the password. Code 10 

shows new imports added onto the top of the server.js file. 

 

import ExpressSession from 'express-session'; 
import Passport from 'passport'; 
import PassportLocal from 'passport-local'; 
import Bcrypt from 'bcrypt'; 
import User from './models/user'; 
Code 10. Imports in the server.js file for authentication 
 

Before implementing the authentication itself, session middleware had to be 

connected and session store had to be configured. Code 11 shows how it was 

done. The existing MongoDB connection created by Mongoose was used for the 

session store. Default session’s expiration time was set to one day for security 

reasons. 

 

const MongoStore = require('connect-mongo')(ExpressSession); 
app.use(ExpressSession({ 
    secret: Config.secret, 
    resave: false, 
    saveUninitialized: false, 
    store: new MongoStore({ mongooseConnection: Mongoose.connection }), 
    cookie: { maxAge: 86400000 } 
})) 
app.use(Passport.initialize()); 
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app.use(Passport.session()); 
Code 11. Connecting the Passport, session middleware and session store 
 

Local authentication strategy was connected to Passport and the methods for 

verifying, serializing and deserializing the user data were implemented. Code 12 

shows the code used for that. 

 

const LocalStrategy = PassportLocal.Strategy; 
Passport.use(new LocalStrategy(function(username, password, done) { 
    User.findOne({ username : username }, function(err, user){ 
        if (err) { return done(err); } 
        if (!user) { 
            return done(null, false, { message: 'Invalid username' }); 
        } 
 
        if (Bcrypt.compareSync(password, user.password)) { 
            done(null, user) 
        } else { 
            done(null, false, { message: 'Invalid password' }); 
        } 
    }); 
})); 
 
Passport.serializeUser(function(user, done) { 
    done(null, user.id); 
}); 
 
Passport.deserializeUser(function(id, done) { 
    User.findById(id, function(err, user){ 
        if (err) { 
            done(err) 
        }; 
        done(null, user); 
    }); 
}); 
Code 12. Local strategy for Passport 
 

Also, four routes were implemented in the /src/routes/index.js file: /login, 

/logout, /getuser and /createroot. Authentication for local strategy was handled 

with the Passport’s authenticate method. The route /createroot simply allowed 

adding an account to the database, but only if there are no other accounts 

available. Password was hashed with Bcrypt’s hashSync method. The route 

/getuser was implemented to retrieve general information about the user’s 
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account: whether the user is logged in or not, username and group. Middleware 

was created to verify user’s authentication status for restricted routes. Code 13 

shows this middleware. 

 

function isAuthenticated(req, res, next) { 
    if (req.user) { 
        return next(); 
    } 
 
    res.json({ 
        error: true, 
        message: "Access denied" 
    }); 
} 
Code 13. Middleware for verifying authentication status 
 
This middleware was added to all the routes except for /login, /logout, /getuser 

and /createroot. 

 

7.6 Schema for database engines and storages 

In order to make it easy to add new database engines and storage providers to 

the application, a schema was implemented. It consisted of three files placed in 

the /src/providers/ directory: schema.js, server.js and types.js. The file 

types.js had just a simple list of enums used to identify the field type in the 

schema. Three types were implemented for the purposes of this application. The 

first one allowed passing a string, the second one allowed passing a number and 

the third one allowed passing a JSON file. These types also affected user 

interface: the string and number types generated a simple text box, while the 

JSON file type generated a file input. Code 14 shows all these types. 

 

const ENUM = { 
    TYPE_STRING: 0, 
    TYPE_NUMBER: 1, 
    TYPE_JSONFILE: 2 
} 
 
export { ENUM }; 
Code 14. File types.js 
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The file schema.js was shared between the client and the server and it contained 

the main information about the fields required to add a new database/storage. 

Code 15 shows a sample structure of the schema. 

 

import { ENUM } from './types'; 
 
module.exports = { 
    engines: { 
        mysql: { 
            name: "MySQL", 
            fields: { 
                hostname: { type: ENUM.TYPE_STRING, default: "", name: 
"Hostname", description: "Hostname of your database" }, 
                port: { type: ENUM.TYPE_NUMBER, default: 3306, name: 
"Port", description: "Port of your database", mix: 0, max: 65535 }, 
                username: { type: ENUM.TYPE_STRING, default: "", name: 
"Username", description: "Username for your database" }, 
                password: { type: ENUM.TYPE_STRING, default: "", name: 
"Password", description: "Password for your database", masked: true } 
            } 
        }, 
    }, 
    storages: { 
        local: { 
            name: "Local", 
            fields: { 
                path: { type: ENUM.TYPE_STRING, default: "/tmp", name: 
"Path", description: "Backup path" } 
            } 
        }, 
    }, 
} 
Code 15. A sample schema 
 

The schema above is highly simplified as all engines, except for MySQL, and all 

storages, except for the local one, are omitted. Except for the type, every field 

had a couple of other properties. The property default allowed to specify a 

default value for this field, name and description were used to provide information 

about the field in the user interface. For the number type, two additional 

properties were available: min and max that allowed specifying minimum and 

maximum input value respectively. Additionally, every field had a masked property 

that allowed hiding sensitive information. 
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The server.js file was a server-side only file that contained the methods for 

performing backups. It simply extended the schema for the server use. Code 16 

shows an example of the file structure. 

 

import Schema from './schema'; 
 
Schema.engines.mysql.methods = { 
    generateFilename(input) { 
    }, 
    performBackup(input, hashStreams, storageStream, cb) { 
    } 
}; 
 
Schema.storages.local.methods = { 
    storeBackup(filename, input, cb) { 
    } 
}; 
Code 16. Example structure of the server.js file 
 

For database engines, two methods were available: generateFilename and 

performBackup. The first one is quite simple: it takes some input, generates a 

filename based on it and returns a string. The input parameter in all these 

methods is an object based on the Backup model. The next method is responsible 

for performing the backup and any other operations with the data stream, such as 

compression. It takes four arguments: input is the same as in the method above, 

hashStreams is an array containing writable streams for hashing functions where 

output stream from the method should be piped. Output stream is also piped into 

the storageStream which is responsible for writing the data to an appropriate 

provider. The last argument is a callback. It takes two arguments: the first one is 

a bool defining whether an error occurred or not during the backup and the 

second one is the backup log. 

For storage engines, one method is available: storeBackup. This method defines 

storage logic and returns just a single storage stream which is later passed to the 

database engine’s performBackup method as the third argument. Backup data is 

later piped into that stream to be stored. The method storeBackup takes three 

arguments. The first one specifies a filename, the second one is the same input 

as used in database storage methods and the last one is a callback. Callback has 
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exactly the same arguments as the one in the performBackup method for 

database engines. 

 

7.7 Database and storage management 

User interaction with the database management system was done via two routes: 

/database/add and /database/delete. For the first route, there were two 

mandatory parameters: name and engine. They were representing a unique name 

for the database and engine used respectively. Based on the engine parameter, 

the rest of the required fields were dynamically loaded from the schema and 

verified. Removal of the database required just one parameter: databaseId. This 

parameter had to be a valid identifier of the database. Four parameters were 

defined for both MySQL and PostgreSQL in the schema: hostname, port, username 

and password. On the other hand, MongoDB required just one parameter: uri. 

This parameter represented a connection string. When a new database was 

being added, a MongoDB document was created based on the Database model. 

Field options in this model is an object containing all the dynamically loaded 

parameters. 

 

Two other routes were used for communication with the storage management 

module: /destination/add and /destination/delete. Unlike all other routes, 

/destination/add accepts input as multipart/form-data. There is a reason for 

that: some storage providers require a JSON key file to be used for 

authentication. Google Cloud Platform is one of such providers. As file cannot be 

provided as a parameter to a JSON object, this route uses form data instead. A 

module called formidable was used for parsing the form data. Code 17 shows 

how it was implemented. 

 

import Formidable from 'formidable'; 
router.post('/destination/add', isAuthenticated, function (req, res, next){ 
    var Form = new Formidable.IncomingForm(); 
    Form.parse(req, function (err, fields, files) { 
        if (err) { 
            return res.json({ error: true, message: "An unexpected error 
occurred" }) 
        } 
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        //The code for adding the destination is omitted 
    } 
}); 
Code 17. Use of formidable to parse the form data 
 

After parsing, formidable provides three parameters: error, object with fields and 

object with files. Similarly to adding the database, all the fields were dynamically 

loaded from the schema based on the provider parameter. Another required 

parameter was the name. A new MongoDB document based on the Destination 

model was being created every time when a new destination is added. 

 

7.8 Performing backups 

As it was mentioned earlier, the schema contained a performBackup method for 

each database engine. In general, this method is supposed to perform two 

operations: backup and data compression. The child_process module was used 

to execute the backup tools for each database engine and gzip compression tool. 

While mongodump for MongoDB has built-in capabilities for compression, 

mysqldump and pg_dump for MySQL and PostgreSQL don’t. Therefore, 

additional gzip module had to be used for that.  

 

The spawn method from child_process module allows to spawn a process and 

provide command line arguments to it. Unlike exec method, it has protection from 

the injection of code that could have been used to execute another command. 

Exit code, standard output (stdout) and standard error (stderr) can be easily 

captured. Code 18 shows an example of how child_process module was used 

within performBackup method. A significant part of the code below is omitted. 

 

import { spawn } from 'child_process'; 
let stderr = []; 
const mysqldump = spawn('mysqldump', [ 
    '--all-databases',  
    `--user=${input.database.options.username}`,  
    `--password=${input.database.options.password}`,  
    `--port=${input.database.options.port}`,  
    `--host=${input.database.options.hostname}`,  
    '--verbose']); 
mysqldump.stdout.pipe(gzip.stdin); 
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mysqldump.stderr.on('data', data => { 
    stderr.push(data); 
}); 
mysqldump.on('exit', code => { 
    stderr.push(Buffer.from(`Backup was completed with code ${code}.\n`)) 
    if (code == 0) { 
        gzip.stdin.end(); 
        stderr.push(Buffer.from(`Starting compression...\n`)) 
    } else { 
        cb(true, Buffer.concat(stderr).toString()); 
    } 
}) 
Code 18. Use of the child_process module to run mysqldump 
 

In the example above, mysqldump process is being spawned with stderr being 

written to a string and stdout being piped directly into a standard input (stdin) of 

gzip. Spawn of gzip is omitted due to it being done the same way. Once the 

backup is completed, resulting stream of data is piped into all the streams in a 

hashStreams array and a storageStream stream in order to perform hash 

calculations and store the data in an appropriate storage.  

 

7.9 Hash calculations and storage 

Once the backup was performed, hash values had to be calculated and the 

backup had to be stored. Four hash values were being generated for every 

backup: MD5, SHA-1, SHA-256 and SHA-512. These values were calculated 

using Node.js’ built-in crypto module. A function CalculateHashes was 

implemented to create the writable streams for hashing and return an array of 

them. Code 19 shows how a stream could be created with a crypto module on 

the example of MD5 algorithm. 

 

import Crypto from 'crypto'; 
let md5Val; 
let md5 = Crypto.createHash('md5'); 
md5.on('readable', () => { 
    const data = md5.read(); 
    if (data) { 
        md5Val = data.toString('hex'); 
    } 
}) 
Code 19. Creation of a hashing stream with crypto module 
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The resulting string was being converted to hexadecimal format. The result of 

CalculateHashes function was being passed as the second argument to the 

performBackup method. That function also had one argument for callback. This 

callback had to be called once all hash values were calculated in order to return 

the result. 

 

The data was being stored at the same time as hash values were being 

generated. A storeBackup method of an appropriate storage provider was being 

used for that. This method had to return a writable stream that would later be 

passed as the third argument to the performBackup method. Code 20 shows an 

example of storeBackup method. 

 

Schema.storages.local.methods = { 
    storeBackup(filename, input, cb) { 
        let stream = 
fs.createWriteStream(`${input.destination.options.path}/${filename}`, { 
flags: 'w' }); 
        stream.on('error', function(err) { 
            cb(true, err); 
        }); 
        stream.on('close', function() { 
            cb(false, `File was successfully written to 
${input.destination.options.path}/${filename}.\n`); 
        }) 
 
        return stream; 
    } 
}; 
Code 20. storeBackup method for the local storage provider 
 

Two more backup providers were also created in a similar way: Amazon S3 and 

Google Cloud Storage. Two modules were used for the interaction with the cloud 

providers’ API: aws-sdk and @google-cloud/storage. Backup was considered 

complete once the callback passed as the third argument to storeBackup method 

was called. At this point, backup status, filename, log and hash values were 

being stored in the database.  
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7.10 Queue 

A queue was implemented using the better-queue package in order to process 

each individual backup as fast and efficiently as possible. A new file queue.js was 

created in the /src directory. Code 21 shows the code used to create the queue. 

 

import Queue from 'better-queue'; 
var BackupQueue = new Queue(function (input, cb) { 
}); 
Code 21. Initialization of a queue 
 

There were two parameters in a method used for processing a queue element. 

The first one defined the data provided for processing. This data was passed as 

the first argument to the push method provided by the queue object. An object 

based on the Backup model was meant to be passed as an input to a queue. The 

second argument was the callback. It was being called once the task was 

finished to make queue proceed to the next task. Function passed to the queue 

constructor was used to combine all the elements of backup logic together: 

backup processing, hashing and storage.  

 

7.11 Manual backup and scheduler 

Two options were available for performing backups: manual backup and the use 

of the scheduler. Manual backup feature was used to perform a one-time backup 

of the selected database to the selected destination. Route 

/database/manualbackup was used for performing manual backups. It accepted 

just two parameters: databaseId and destinationId. The first parameter was used 

to define the database for which backup will be performed and the second one 

was used to define the destination. 

 

Firstly, database and destination documents were being retrieved from the 

database based on databaseId and destinationId provided. Then, a new backup 

object was being created from the Backup model.  
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import Backup from '../models/backup'; 
var localBackup = new Backup({ 
    database: database._id, 
    destination: destination._id, 
    filename: null, 
    startDate: Date.now(), 
    type: "manual", 
    status: "queued", 
    hashes: {}, 
    log: "" 
}); 
Code 22. A new backup object 
 

However, at this point the database and destination properties were of the 

ObjectId type. It wasn’t possible to pass this object to a queue, because these 

paths weren’t populated yet. Code 23 shows how the paths were populated. 

 

Backup.findOne({_id: localBackup._id}) 
.populate('database') 
.populate('destination') 
.exec(function(err, backup) { 
    BackupQueue.push(backup); 
}); 
Code 23. Populating paths 
 

After population, retrieved document could be passed to the queue for 

processing. Scheduler is another way of performing a backup. The node-cron 

package was used for implementing the scheduling capabilities. Three new 

methods were added to the queue.js file: AddSchedule, RemoveSchedule and 

InitData. Also, a global object Tasks was created to store relationships between 

an ObjectId of a scheduler object and an ID of a job created by node-cron. 

 

The AddSchedule method accepted one argument: schedule. This argument 

represented an object based on the Scheduler model. Then, a new schedule was 

added based on the rule specified in that object. RemoveSchedule method allows to 

destroy a task using an ObjectId of a scheduler object. Code 24 shows how 

these two methods were implemented. A part of AddSchedule method is omitted. 
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import Cron from 'node-cron'; 
function AddSchedule(schedule) { 
    Tasks[schedule._id] = Cron.schedule(schedule.rule, function () { 
        //Start a new backup here in a similar way to manual backup 
    }); 
} 
 
function RemoveSchedule(id) { 
    Tasks[id].destroy() 
} 
Code 24. AddSchedule and RemoveSchedule methods 
 

The InitData method is simply called once on application’s startup. It is required 

to load schedulers and queued backups that were started before application’s 

shutdown but not processed yet. 

 

Two routes were used for the management of the schedulers: /scheduler/add 

and /scheduler/delete. The first one accepted three parameters: databaseId, 

destinationId and rule. The rule parameter had to be a valid CRON expression. 

It was being validated with validate function from the node-cron module. After 

validation, this route would add a new document into the database based on the 

Scheduler model and schedule a new task with AddSchedule method. The second 

route was used to remove a scheduler based on the taskId property. 

 

7.12 User interface 

Once application’s backend was implemented, a user interface had to be created 

for interaction with it. It was decided to use React as a framework for building the 

UI, Redux as a state container and Blueprint as a collection of commonly used 

React components. The Fetch API was used for communication with the 

backend. Entry point for the client side of the application was app-client.js file 

located in the /src directory. Redux was used to store the user state which had to 

be accessed all over the application. Therefore, basic setup was performed: User 

reducer was created and added to the root reducer using combineReducers 

method. Afterwards, a store was created to store the application state. Also, one 

action was implemented: UserState. React Router was also initialized for 

performing client-side routing. 
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Nine custom components were created. The App component was used to 

combine all other components together and perform routing. It was also used to 

retrieve user’s authentication status. The Header component was used to display 

application’s header, including navigation and information about authentication 

status. A simple footer was displayed using Footer component. It was important 

to make sure that sensitive data is not displayed right away. Therefore, 

MaskedText component was created. It allowed to display the text in a hidden 

state with an option to show the actual contents by pressing a button. This 

component was later used to hide database passwords. The Home component 

represented the main page of the application. It would then either display the 

Dashboard component or the LoginForm component, depending on whether user 

was logged in or not. Finally, the Toaster component was used to display 

notifications. 

 

The main component of the application was Dashboard. It had four sections: 

Databases, Destinations, Scheduler and Latest Backups. Databases and 

Destinations sections were dynamically loading layout from the schema to display 

correct fields. 

 

The Databases section allowed to view existing databases and all the information 

about them, such as name, engine and all the options specified in the schema. 

Additionally, records could be removed and manual backup could be performed 

through the menu button. The Destinations section allowed to view, add or 

remove the destinations. Name, provider and options were displayed. The 

Scheduler section was used for management of the tasks. Each task had a 

database, a destination and a rule displayed. Also, tasks could be removed. The 

Latest Backups sections contained general information about the backups: 

database, destination, filename, start date, type (manual or scheduled), status 

(queued, finished or failed). Additionally, backup log and hash values could be 

viewed. All dashboard data was being refreshed every ten seconds. 
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Client-side files were bundled into a single bundle.js file using build-client 

script that was created during the environment preparation phase. At that point, 

application was ready. 

 

7.13 Results 

For testing purposes, the application was deployed on an Amazon EC2 instance 

that was earlier described. Nginx was configured as a reverse proxy and DNS 

records were set for the domain name. The main page of the application can be 

seen in the Figure 15. It contains a login form and basic information. There is no 

account created yet, so the setup is considered incomplete. 

 

 
Figure 15. Application’s main page 
 

The process of creating a root account is shown in the Figure 16. Once the root 

username and password are specified, the account is created. 
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Figure 16. Creation of a root account 
 

These credentials can be used to log into the application. A user gets access to 

the dashboard when logged in. It is shown in the Figure 17. 

 

 
Figure 17. Empty dashboard 
 

A new database, destination or task can be added using the appropriate buttons. 

Figure 18 shows how the panel for adding a new database looks. 

 



55 

 
Figure 18. Creating a new database record 
 

Three new databases were added: one of each available type. The result is 

shown in the Figure 19.  

 

 
Figure 19. List of databases 
 

A panel for adding a new destination is displayed in the Figure 20. 
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Figure 20. Creating a new destination record 
 

One of the each type of destinations was added for the testing purposes. They 

can be seen in the Figure 21. 

 

 
Figure 21. List of destinations 
 

The task creation panel is shown in the Figure 22.  
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Figure 22. Creating a new task 
 

Now, a couple of tasks were added and several backups were performed. The 

first task would backup the MySQL database to the Amazon S3 every two 

minutes. The second task would backup the MongoDB database to the Google 

Cloud Storage every five minutes. The PostgreSQL database would be backed 

up manually to the local storage. Figure 23 shows these tasks and backups that 

were performed. 

 
Figure 23. Tasks and backup list 
 

The Log button allows viewing the backup log. The contents of such a log can be 

seen in the Figure 24. 
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Figure 24. Backup log for a MongoDB database 
 

The View details button allows seeing hash values for the generated file. Figure 

25 shows this panel. 

 

 
Figure 25. Hash values for a backup 
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Figures 26 and 27 show the contents of the Amazon S3 and Google Cloud 

Storage buckets after performing the backups. 

 

 
Figure 26. The contents of the Amazon S3 bucket 
 

 
Figure 27. The contents of the Google Cloud Storage bucket 
 

During this test session, everything went as planned. The application worked 

correctly and without any interruptions. 

 

8 CONCLUSIONS 

Insufficient data protection is one of the key issues in the modern world. The 

main goal of this work was to contribute to the solution of this problem. There are 

many different challenges related to the safety of information and I have tried to 

shed light upon some of them in this thesis. The goal was reached by 

successfully creating an expandable application for the centralized database 
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backup management. All the planned features were fully implemented and the 

application performs its job well.  

 

The theoretical part of this thesis provides a detailed overview of backup methods 

available for certain popular databases and security issues related to the 

backups. The role of cloud storage solutions in this matter is shown as well. This 

information is later used for carrying out the practical part of the project. I have 

attempted to write a decently detailed, but not too overwhelming by unnecessary 

details, explanation of the application’s implementation process. The application 

was implemented with Node.js which is a really good choice for highly scalable 

products. React is a great framework for building modern and highly interactive 

user experiences. 

 

The project can be extended in many different ways. First of all, support for more 

database engines and storage providers may be added. It will be extremely easy 

to accomplish due to the application’s architecture. Certain secondary features 

can be implemented in the future, such as user management and advanced 

permission system. Another way to make the application better is by bringing 

additional capabilities for customization, such as optional fields in the schema 

and more field types. Moreover, there is a huge number of topics in the 

information security field closely related to this thesis.  
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