

Aleksandr Stepantsov

DEVELOPMENT OF A CENTRALIZED
DATABASE BACKUP MANAGEMENT
SYSTEM WITH NODE.JS AND REACT

Bachelor’s thesis
Information Technology

2018

Author (authors) Degree

Time

Aleksandr Stepantsov Bachelor of
Engineering

May 2018

Title

Development of a Centralized Database Backup Management
System with Node.js and React

66 pages
0 pages of appendices

Commissioned by

South-Eastern Finland University of Applied Sciences
Supervisor

Matti Juutilainen
Abstract

The purpose of this thesis was to show the importance of data security for databases,
explain the related challenges and risks and to provide a solution for the discovered
problems. Such a solution is needed because databases are used to store many kinds of
data and both individuals and businesses cannot afford the critical information to be
completely lost.

The basics of cloud computing were described and it was shown how cloud solutions could
be applied to the information security field. In the theoretical part, backup methods were
studied for MySQL, PostgreSQL and MongoDB. Possible security measures and their
implementations were also explored. The main tools that were used for building a solution
were introduced.

Based on the study, a software solution allowing performing and managing database
backups in a centralized manner was developed using Node.js and React. The entire
process and the methods of development were explained. The application was built in a
modular way, so it could be easily altered. As a result, a working solution was presented
and tested. Possibilities for the further development of the application, such as support for
the additional database engines and storage providers, were listed and described. This
thesis was closely related to a huge number of other topics in the information security field
and could be used for researching many of them.
Keywords

Node.js, JavaScript, database, backup, MongoDB, MySQL, PostgreSQL, React, web,
RDBMS, cloud

CONTENTS

1 INTRODUCTION .. 5

2 DATABASES .. 6

2.1 Database types and differences between them .. 6

2.2 Relational databases .. 7

2.2.1 Structured Query Language .. 7

2.2.2 MySQL .. 8

2.2.3 PostgreSQL .. 8

2.2.4 Other relational databases .. 9

2.3 Non-relational databases .. 9

3 DATABASE BACKUP METHODS .. 10

3.1 MySQL .. 10

3.2 PostgreSQL .. 12

3.3 MongoDB .. 13

4 CLOUD SOLUTIONS ... 14

4.1 Overview ... 14

4.2 Cloud-based storages ... 15

4.2.1 Amazon S3 ... 16

4.2.2 Google Cloud Storage .. 17

5 SECURITY ... 17

5.1 Encryption ... 17

5.2 Hash functions .. 19

5.3 Security risks in web development .. 20

6 DEVELOPMENT TOOLS AND SERVICES .. 21

6.1 HTML .. 21

6.2 CSS .. 22

6.3 JavaScript ... 23

6.4 Node.js and Express ... 24

6.5 React, Redux and Blueprint .. 25

6.6 Babel and Webpack .. 26

7 IMPLEMENTATION .. 28

7.1 Goals .. 28

7.2 Preparing the environment ... 28

7.2.1 Setting-up Babel and Webpack .. 32

7.2.2 Installing global packages and creating the scripts ... 34

7.2.3 Configuring the web server and main packages ... 35

7.3 Routing ... 37

7.4 Creating data models with Mongoose ... 39

7.5 Implementing the authentication ... 40

7.6 Schema for database engines and storages .. 42

7.7 Database and storage management ... 45

7.8 Performing backups .. 46

7.9 Hash calculations and storage .. 47

7.10 Queue ... 49

7.11 Manual backup and scheduler .. 49

7.12 User interface ... 51

7.13 Results .. 53

8 CONCLUSIONS ... 59

REFERENCES .. 61

5

1 INTRODUCTION

We live in a world where information is an extremely valuable asset. Companies

and individuals cannot afford to lose important data as such loss might cost them

millions. Therefore, any enterprise with an IT infrastructure will eventually look

into backup solutions.

There are various ways to backup the data. Cloud services are widely used for

that purpose nowadays. However, there is a need for an automated solution with

visualisation capabilities when it comes to an enterprise level.

A recent incident at GitLab.com is a great example of what could be caused by a

simple negligence and insufficiency of backup procedures. An employee of

GitLab Inc. had run a directory removal command on the wrong database cluster.

The company had five database backup procedures set in place to be able to

restore the data after such an emergency. However, none of them were reliably

working. One of the employees of Gitlab Inc. happened to run a manual backup

of that database cluster six hours prior to the incident. This coincidence allowed

the company to restore most of the data. This emergency caused a few hours of

downtime, loss of the data stored in the last six hours and probably cost the

company a lot of money and customers. (GitLab Inc. 2017.)

The unfortunate situation explained above could have been prevented, if

adequate backup procedures would have been in place. If such situation can

occur even in a large company, many small businesses may be vulnerable, too.

Any company should be prepared for incidents and there should be free

comprehensive software solutions to provide help in achieving business

continuity. The purpose of this work is to introduce available database backup

methods, to explain how a centralized database backup management solution

can be built and what tools can be used for the development.

I have been fascinated by software development since my childhood: building

something new felt really interesting and important. I could easily forget about

time and spend many hours in a row sitting and trying to solve a problem through

6

programming. Therefore, I would like to apply my skills to the solution of this

unexpectedly common problem.

2 DATABASES

Types of databases, database engines and differences between them will be

discussed in this section. It is not a comprehensive overview of the information

about databases, as only the topics relevant to the project will be covered.

2.1 Database types and differences between them

In general, two types of databases can be distinguished: relational (SQL) and

non-relational (NoSQL). These are very different concepts that have their own

benefits and drawbacks. Relational databases are often referred to as SQL

databases because all of them use Structured Query Language to work with the

data.

Relational databases have their roots in the 1970s and base on the relational

model of data explained in a publication written by E. F. Codd. It was published in

the Communications of the ACM magazine in 1970 (IBM 2018). In a relational

model, the data is organized into tables that consist of columns and rows. Figure

1 shows a possible structure of the tables and relationships between them.

 Figure 1. Relationships between tables in a relational database (ntu.edu.sg 2010)

7

Each row must be uniquely identified. Therefore, every table has a column called

primary key which contains a unique value for each row in that table. Relations

can be created between tables using foreign keys. For instance, a table can refer

to another table by making one of its rows a foreign key. In this case, the foreign

key will be the primary key of another table. (ntu.edu.sg 2010.)

Non-relational databases have existed since the late 1960s, but they weren’t very

popular back in those days. Nowadays, the market started slowly moving towards

the adoption of NoSQL databases, because they allow better scalability than

normal relational databases. While there are many different types of non-

relational databases, they have one thing in common: they can efficiently work

with unstructured data, which is a huge advantage. (Leavitt 2010.)

2.2 Relational databases

This section will provide a brief overview of certain details related to relational

databases.

2.2.1 Structured Query Language

Structured Query Language (SQL) is a language designed to access or

manipulate data in a relational database management system. SQL was

developed in the 1970s by two employees of IBM: Donald D. Chamberlin and

Raymond F. Boyce. It was initially created for use with IBM’s System R, a

relational database management system. SQL was officially standardized by

ANSI and ISO in 1986. (Chamberlin 2012.)

Data retrieval and manipulation is done via statements that may contain multiple

clauses. SQL supports predicates which are evaluated with three-valued logic.

They are used to retrieve only a specific set of data that meets a provided

condition. The three-valued logic has three truth values: true, false and unknown.

(Chamberlin 2012.)

8

Several subsets can be distinguished within SQL:

• Data Manipulation Language (DML) allows retrieving and altering data in a
table using such statements as SELECT, INSERT, UPDATE, DELETE and more.

• Data Definition Language (DDL) allows defining and altering data
structures using such statements as CREATE, ALTER and DROP.

• Data Control Language (DCL) allows setting access rights in a database
using such statements as GRANT and REVOKE.

These three subsets form the SQL language itself. (Lifewire 2017.)

2.2.2 MySQL

According to DB-Engines Ranking by solid IT (2018), MySQL is one of the most

popular relational database management systems (RDBMS) in the world. It is

currently owned by Oracle Corporation which is a parent company of MySQL AB.

MySQL was initially released in 1995 by a Swedish company MySQL AB. There

is a completely open-source version of it called MySQL Community Server which

is released under the GNU General Public License and a commercial version,

MySQL Enterprise Server. MySQL is well-documented and has a large

community of supporters. (Data Science Central 2018.)

MySQL was written in C and C++ and officially supports many platforms,

including various versions of Windows and popular distributions of Linux (Black

Duck Software, Inc. 2018). Some of the reasons why it became so popular

include high reliability, capabilities for scaling and security.

2.2.3 PostgreSQL

PostgreSQL is a widely used object-relational database management system

(ORDBMS) written in the C language. The main difference from a normal

RDBMS is that it has an object-oriented model. It is completely free and open-

source under the PostgreSQL License. PostgreSQL is cross-platform and

supports both Microsoft Windows and Unix-like systems. (The PostgreSQL

Global Development Group 2018.)

PostgreSQL was developed as a successor of the Ingres project at the University

of California and its development started in 1985 under the name of POSTGRES.

9

This project was ended in 1994 and released under the MIT license. In 1994, two

students from Berkeley created Postgres95 which was based on POSTGRES but

used the SQL query language interpreter instead of the POSTQUEL one. The

project was renamed to PostgreSQL and its initial production-ready version was

released in 1996. PostgreSQL is currently being maintained by PostgreSQL

Global Development Group which consists of many people and companies. (The

PostgreSQL Global Development Group 2018.)

Many people choose PostgreSQL over its competitors because it is open-source,

supported by a diverse community, follows ACID principles and supports various

replication methods (The PostgreSQL Global Development Group 2018). It is

also one of the most advanced relational database management systems in

terms of features. However, it is much less popular than MySQL and Microsoft

SQL Server based on DB-Engines Ranking by solid IT (2018).

2.2.4 Other relational databases

There are many other relational database management systems that weren’t

described above, but still have to be mentioned:

• Microsoft SQL Server – a popular RDBMS by Microsoft
• Oracle – the most popular RDBMS in the world as of April 2018 based on

DB-Engines Ranking by solid IT (2018)
• SQLite – a local RDBMS that is embedded into an application
• MariaDB – a fork of MySQL made by its own creators
• Firebird – a RDBMS maintained by Firebird Project

These RDBMSs are widely used but will not be used for the implementation of

this project. (solid IT 2018.)

2.3 Non-relational databases

Non-relational databases have started gaining popularity recently. Following

Makris (2016), they can be classified into four categories:

• Key-value stores: Each value has a corresponding key (Redis,
MemCached, Dynamo).

• Document stores: These consist of documents that represent compressed
key-value pairs (MongoDB, CouchDB).

10

• Column family stores: These represent a sorted multidimensional map that
allows to store key-value pairs (PNUTS, Cassandra).

• Graph stores: Data is stored within the edges, nodes and properties of a
graph structure (Neo4j, HyperGraphDB).

However, the classification of NoSQL databases is not limited to these categories

and each of them may be further divided into subcategories.

MongoDB document store will be used during the implementation phase of this

project. Therefore, certain details about it will be provided next. MongoDB is a

highly scalable and flexible NoSQL database engine. It is the most popular

document store in the world based on DB-Engines Ranking by solid IT (2018).

The development of MongoDB was started in 2007 by 10gen software. The name

of the company was changed to MongoDB Inc. in 2013. Initially, it was planned to

release the product using the Platform as a Service model. However, the

company leaned towards the open source model in 2009. (ByteScout 2014.)

MongoDB stores data in JSON-like documents, so fields can be different in each

document and it is not limited to a single model like RDBMSs. The document

model can be mapped to objects in the application code. MongoDB has its own

query language, which looks similar to JavaScript. Also, many advanced features

are supported, such as aggregation, indexing and ad hoc queries. There are

many different tools for each programming language that make it easy to work

with MongoDB. (MongoDB, Inc. 2018.)

3 DATABASE BACKUP METHODS

This section will explain backup methods available for the databases covered in

the project.

3.1 MySQL

According to Oracle Corporation’s documentation (2018), the following backup

methods are available for MySQL:

1) Backup using MySQL Enterprise Backup product (MySQL Enterprise
Edition only)

11

This method allows performing physical backups of both entire database
and selected tables. MySQL Enterprise Backup supports compressed and
incremental backups. A huge advantage of this method is that restoring is
much faster. Hot and warm backup methods are supported. Hot backup
means that data can be modified while a backup is being performed.
However, this backup technique is only supported if the InnoDB storage
engine is used. Otherwise, a warm backup is performed which means that
tables cannot be modified during the backup process.

2) Backup using mysqldump utility

This method provides capabilities for performing a logical backup of either
entire database or selected tables. Logical backup means that generated
output is a set of statements in SQL language that can be used to fully
reproduce the database. It is possible to perform a hot backup for the
InnoDB tables with this tool. Mysqldump is a command line utility. There
are three main ways to invoke it as can be seen in the Figure 2.

Figure 2. Invocation syntax of mysqldump (Oracle Corporation 2018)

The first way is used to backup certain tables from one database, the
second way is used to backup multiple databases and the third one is
used to backup all databases. The mysqldump command also accepts many
options. Only the options that will be used during the development of this
project are going to be mentioned here. The list below shows these
options:

• --host
IP address or hostname of the destination server.

• --port
Port where the destination server is running.

• --user
Username for connecting to the MySQL server.

• --password
Password for connecting to the MySQL server.

• --all-databases
Backup all tables.

• --databases
Allows to specify a list of tables to be backed up.

• --single-transaction
Performs a backup in a single transaction.

Restoration of a backup is later possible by injecting a backup file into the
database.

3) Backup by copying the storage engine files

12

MySQL Server must be stopped for a backup to be consistent (or a lock
must be placed for read operations). InnoDB tables cannot be backed up
using this method.

4) Delimited-text file backup

There is a MySQL query which allows outputting the table’s data to a file.
This method is not very practical and output can only be saved on the
server’s host.

5) Incremental backup using binary log

6) Backup using replication slaves

By using this method, data is replicated to the other server and then
backed up from there (to avoid performance problems).

7) Backup by making a file system snapshot

The second method from the list above will be used in the practical part of this

thesis. The other methods are mentioned but not explained in details for this

reason.

3.2 PostgreSQL

There are three different approaches for backing up the data in PostgreSQL

database. According to the The PostgreSQL Global Development Group’s

documentation (2018), the following methods are available:

1) Backup using pg_dump utility

This utility allows performing a logical backup of PostgreSQL database
(just like mysqldump for MySQL). It is possible to perform hot backups.
This tool can be invoked in the following way:

pg_dump [option…] [dbname]

pg_dump command accepts many options, most important ones are listed
below:

• --host
IP address or hostname of the destination server.

• --port
Port where the destination server is running.

• --username
Username for connecting to the PostgreSQL server.

• --password
Password for connecting to the PostgreSQL server.

13

• --table
Specifies a table to be backed up, may be provided multiple times.

• --dbname
Specifies a database to be backed up, may be provided multiple
times.

• --format
Specifies format of the output. Allowed values: plain, custom and
tar.

• --single-transaction
Performs backup in a single transaction.

pg_restore tool can be used to later restore the database. It accepts all the
parameters that were explained for pg_dump above and has the following
syntax:

pg_restore [option…] [filename]

2) File system level backup by making a file system snapshot

3) Continuous archiving (similar to the binary log in MySQL)
The first method will be used for the implementation of this project. The other

methods are mentioned but not explained in details for this reason.

3.3 MongoDB

According to the documentation provided by MongoDB, Inc. (2018), the following

backup methods are available for MongoDB:

1) Direct copying of the files

2) Backup by making a file system snapshot

3) Backup using mongodump utility

This utility creates a binary export of the data stored in a database. It has
the following invocation syntax:

mongodump [options]

There are many options available and the list below provides an overview
of the most important ones:

• --uri
This option is used to specify a connection string for the MongoDB
database. This string has the following format:

mongodb://[username:password@]host1[:port1][,host2[:port2],...
[,hostN[:portN]]][/[database][?options]]

14

• --gzip
Compresses the output file(s).

• --archive
Used to write the output to a single archive. Option --out allows to
specify output as well but writes everything to separate files.

The mongodump utility will be used in the practical part of this thesis. The rest of

the methods are not explained in details for this reason.

4 CLOUD SOLUTIONS

This section will give a brief overview of cloud technologies and, in particular,

cloud-based storages. They will be widely used in the practical part of this

project.

4.1 Overview

Certain initial concepts of what is currently called “cloud computing” were

developed as early as in the 1960s. Back then, it was called Remote Job Entry

(RJE). Tasks were sent to the mainframe computers remotely and then the

output could be retrieved. In the 1970s many time-sharing solutions became

available such as Multics and Cambridge CTSS. However, this approach wasn’t

very popular. A lot of research related to time-sharing technologies was

conducted in 1990s. However, the actual cloud computing only became available

in 2006 when Amazon launched its Elastic Compute Cloud. Later on, more

companies released their solutions: Google App Engine became available in

2008, Microsoft Azure came into existence in 2010. (Mourghen, 2018.)

Cloud solutions have many advantages over traditional approaches.

Responsibility for the management and maintenance of the infrastructure lies with

the cloud provider. It means that businesses can focus on the development of

their own products and services instead of wasting time and resources on

building an on-premises IT infrastructure. Moreover, cloud solutions provide high

availability and have presence across multiple regions. If data center in one

region will fail, then other data centers can temporarily compensate for the lost

capacity. Cloud products also have outstanding scaling capabilities. It allows to

15

use just as much capacity as needed on-demand and only pay for what is

actually used. (Amazon Web Services 2018.)

In general, three types of cloud computing service models can be distinguished:

• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)
• Software as a Service (SaaS)

Each of these models has its own benefits and use cases. IaaS is the lowest-

level solution out of three. Customer manages everything except for the hardware

itself. Amazon EC2 is a good example of a service that uses such a model. Many

IaaS providers also offer a library of images to make setup process easier for a

customer. PaaS delivers an entire computing platform which may include

operating system, development environment, databases and web servers. Users

simply upload their applications to the platform and run them. However, there is

less control from the user than in IaaS model. Google App Engine utilizes this

approach. The last model is SaaS and it is very high-level. A user can subscribe

to receive the access to a service offered by a provider. Everything is managed

by the provider, user cannot manage underlying infrastructure or platform. This

approach is widely used nowadays. (Amazon Web Services 2018.)

4.2 Cloud-based storages

Cloud-based storage is one of the services typically available from most cloud

providers. This data storage model implies that users can upload their data into

the logical pools without access to the underlying physical layer where the data is

actually stored. It is widely adopted by many large companies. For instance,

Netflix uses Amazon S3 for streaming the movies to their customers. There is no

need to think about the security of the data yourself and the data can be

replicated across many regions to ensure its safety. Moreover, storage space in

object storage services, such as Amazon S3 and Google Cloud Storage, is

usually billed on usage. While object storages are more business-oriented, there

are many normal file storage services, too. Two object-oriented storage services

will be covered in my work: Amazon S3 and Google Cloud Storage. (Amazon

Web Services 2018.)

16

4.2.1 Amazon S3

Amazon S3 is an object storage service by Amazon Web Services. S3 is an

abbreviation for Simple Storage Service. It was officially launched in 2006 and

quickly gained high popularity. There are two interfaces available for creating,

retrieving and managing the objects: REST (Representational State Transfer)

and SOAP (Simple Object Access Control). Additionally, an object can be

retrieved using BitTorrent protocol or HTTP GET interface. There is also a web

interface available for manual object management. Objects are stored in user-

created “buckets”. Each bucket must be given a unique name that will be used to

identify it. (Amazon Web Services 2018.)

Amazon S3 offers three different storage types:

1) Amazon S3 Standard (S3 Standard)
2) Amazon S3 Standard-Infrequent Access (S3 Standard-IA)
3) Amazon S3 One Zone-Infrequent Access (S3 One Zone-IA)

S3 Standard is designed to provide high levels of availability and durability for the

frequently accessed data. Data is stored in three Availability Zones

simultaneously and it is guaranteed to be safe even in case of destruction of one

Availability Zone. S3 Standard-IA is designed for storing the infrequently

accessed data. It has the same durability as S3 Standard but lower availability.

Another difference is that S3 Standard-IA has minimum capacity (128KB) and

minimum storage duration charge (30 days) set for the objects. Storage price and

retrieval fee are reduced for this type of storage compared to the S3 Standard.

S3 One Zone-IA is similar to the S3 Standard-IA, but data is only stored in one

Availability Zone which results in a decreased redundancy. (Amazon Web

Services 2018.)

Amazon S3 has built-in encryption capabilities with both automatically assigned

encryption keys and custom encryption keys provided by a user. This feature

removes the need for manual encryption and saves time and resources.

Additionally, data transfer can also be encrypted by using endpoints with a SSL

(Secure Socket Layer) encryption. (Amazon Web Services 2018.)

17

4.2.2 Google Cloud Storage

Google Cloud Storage is a direct competitor of Amazon S3 launched in 2010. It is

an object storage service by Google aimed at enterprises. It follows the same

principles as Amazon S3: objects are stored in buckets that have unique keys

assigned by a user. Data can be stored, retrieved and managed using the REST

API.

There are four storage classes available:

1) Multi-Regional
2) Regional
3) Nearline
4) Coldline

Multi-Regional storage is designed for the frequently accessed data that requires

additional redundancy achieved by replicating the data across multiple regions.

Regional storage is similar to the Multi-Regional one, but the data is stored in a

single region. Nearline storage is designed for the data accessed less than once

a month. Coldline storage is created for the data accessed less than once a year.

(Google LLC 2018.)

5 SECURITY

Security should be a key consideration in any project. It is unacceptable to have

data compromised or corrupted. Moreover, nowadays there are more dangers

related to information security than ever. General information about common

security measures will be given in this section.

5.1 Encryption

Encryption is a security measure aimed at the prevention of access by

unauthorized parties through information encoding. Encryption itself doesn’t

prevent the encoded data from being intercepted. However, this data will be

useless unless decrypted with a valid key. In theory, any piece of encoded data

can be decrypted without a key with enough computational resources. However,

there is no such computational power currently available to crack the modern

18

algorithms that are considered secure. There are two types of encryption:

symmetric-key and public-key.

In symmetric-key method, the same shared key is used for both encryption and

decryption. It means that if the encryption key is compromised, then the data can

also be decrypted with it. However, this approach provides a couple of

advantages: symmetric-key algorithms have a high protection level as long as the

key is safe and they are inexpensive to process. The main problem of this

method is in exchange of the shared key as it must be known by both parties. It

can be solved with the use of the Diffie-Hellman key exchange algorithm.

Implementations of symmetric-key algorithms include but are not limited to AES,

Blowfish, 3DES. Figure 3 shows how symmetric-key encryption works. (IBM

2018.)

Figure 3. Symmetric-key encryption (IBM 2018)

Public-key encryption utilizes two keys: public and private. A public key is known

to everyone and a private key is secret. If data was encrypted with a public key,

then it will only be possible to decrypt it with a private one. It also works the other

way around. Public key algorithms require much more computational resources

than symmetric-key algorithms. Most implementations of such algorithms are

based on Rivest-Shamir-Adelman (RSA) cryptosystem created in 1978. Figure 4

describes the principle used for public-key encryption. (IBM 2018.)

19

Figure 4. Public-key encryption (IBM 2018)

Choice of the encryption type mostly depends on what it will be used for.

However, symmetric-key encryption is usually preferred, unless there is no other

choice but to use public key encryption, due to performance considerations.

While encryption is not directly used for backups in the practical part of this

thesis, it is important to understand the main concepts. For instance, Amazon S3

provides built-in encryption capabilities for uploaded objects.

5.2 Hash functions

Hash functions allow to convert data of random size to data of a fixed size. Result

of such conversion is a hash value. Original data cannot be reconstructed from a

hash value. However, there are some exceptions when it comes to outdated

hashing algorithms. Hash functions are widely used for verification of data

integrity, message authentication and digital signatures. (SANS Technology

Institute 2018.)

However, two different pieces of data may sometimes produce the same hash

value and form a collision. Perfect hash function means that such a collision

cannot occur because hash function will map every input to a unique hash value.

In practice, it is impossible to achieve such a result for a random input. Therefore,

a collision will inevitably occur after some time. The probability of this event may

be reduced by using stronger hashing algorithms. (SANS Technology Institute

2018.)

Certain widely used hash functions are listed below:

1) MD5 is a 128-bit hash function that is no longer considered secure. Many
vulnerabilities have been found over the years. This hash function is not

20

resistant to collision attacks. However, MD5 is still being used for the data
integrity verification.

2) SHA-1 is a 160-bit hash function that is not considered secure since 2005.
Collisions have been found in 2017. However, it is still being used for the
data integrity verification.

3) SHA-2 is a family of 4 hash functions: SHA-224, SHA-256, SHA-384 and
SHA-512. Each of them produces an output of 224, 256, 384 and 512 bits
respectively. They are widely used and considered secure.

4) SHA-3 is a relatively new family of hash functions which is considered
secure. However, it is not widely used yet due to the fact that SHA-2 is still
secure.

Some of the outdated hash functions from the list above are still being used for

the data integrity verification, because a collision is not very likely and these older

functions are also less expensive in terms of consumption of computational

resources. However, they should never be used for hashing critical information or

passwords. Passwords should always be hashed with a strong algorithm and

never be stored in plain text.

5.3 Security risks in web development

Security vulnerabilities are very common even in large projects. These flaws may

affect the most critical systems even in such fields as medicine and finance.

There are many well-known vulnerabilities that are still often present in modern

applications. New security risks are being constantly discovered and a lot of them

are still waiting to be found. Most common and publicly known vulnerabilities can

be avoided by building an application using the best practices and continuous

testing during the development process. (OWASP 2018.)

Certain common security risks are listed below:

1) Injection
Possibility for SQL and NoSQL injections is a serious problem. The goal of
this attack is to get access to the database or corrupt it. Such attacks can
be mitigated by sanitizing user input and using escaping techniques.
According to the OWASP’s research, it was the most critical vulnerability in
2017. (OWASP 2018.)

2) Cross-site scripting (XSS)
XSS allows an attacker to execute any JavaScript code in the victim’s
browser by adding a piece of code to a web page through some unsecure
data input control. Filtering and escaping of raw input can be used to
prevent that. (OWASP 2018.)

3) Cross-site request forgery (CSRF)

21

CSRF is a commonly used technique for performing actions in an
application where user is already authenticated. Third-party website may
contain the code that will send a request to the web application.
Functionality of a vulnerable application can be accessed by an attacker.
(OWASP 2018.)

These three risks should be avoided in every web application. However, this list

is not comprehensive as there are many other security risks. They are usually

obvious and can be easily avoided simply by having a good application

architecture. Such risks include broken authentication, broken access control,

security misconfiguration. There are tools and services available that allow to

scan for security vulnerabilities. (OWASP 2018.)

6 DEVELOPMENT TOOLS AND SERVICES

The purpose of this section is to give an overview of the main technologies,

frameworks, tools and services that weren’t mentioned in the previous chapters

and will be used in the practical implementation of the project.

6.1 HTML

HTML (Hypertext Markup Language) is a markup language which is used to

define the structure of a web page semantically. This markup is later retrieved

from a web server and rendered by a web browser. It is the most important

technology is web development. HTML is currently maintained by World Wide

Web Consortium (W3C).

The language implements a series of tags that can be used to wrap different

parts of the content in order to change its representation. HTML tags also accept

attributes that are used for customization. Most elements consist of opening and

closing tags. However, some self-closing tags are also available. Figure 5 shows

a structure of an HTML tag. (Mozilla Corporation 2018.)

22

Figure 5. Structure of an HTML element

There were many versions of HTML specification created over the years. The

history of HTML begins in 1993 when it was initially released (first specification).

The latest version up to date is HTML5. It includes many new features which are

absolutely necessary in the modern world, such as <video> and <audio> tags that

allow embedding multimedia content into a web page natively. HTML5 is adopted

by the latest versions of all modern web browsers. (W3C 2017.)

6.2 CSS

CSS (Cascading Style Sheets) is the second core technology in web

development, and closely related to HTML. It allows to customize the style of

HTML elements such as colors, fonts, and layout. CSS separates content of an

HTML document from its presentation. CSS also makes it easier to maintain web

pages. The latest specification is CSS3 and it is supported by all modern

browsers. (W3C 2018.)

Before CSS was taken into use, all styling was applied to HTML elements

through attributes. Therefore, styling options were very limited, and it was hard to

find anything. Everything changed after the initial release and standardization of

CSS (first specification) in 1993. This version only provided basic customization

capabilities and it greatly differs from the latest CSS3 standard.

CSS represents a simple markup language. CSS stylesheet consists of a set of

rules. Every rule includes one or more selectors (tag, class or id) and a

declaration block itself. Declaration block is a set of properties with assigned

values (declarations). Figure 6 gives a good overview of the structure of a CSS

rule. (Wordpress.com 2018.)

23

Figure 6. Structure of a CSS rule (Wordpress.com 2018)

CSS3 also provides strong capabilities for animation. It is now possible to

implement many kinds of animations using pure CSS without JavaScript which

makes developers’ life easier.

6.3 JavaScript

JavaScript is a dynamic, prototype-based, multi-paradigm, interpreted and an

object-oriented programming language (Mozilla Corporation 2018). It is one of the

core technologies of World Wide Web content production. JavaScript is usually

used to make webpages more interactive and provide additional user

experiences such as animations. Most websites use this technology, and all

modern web browsers provide native support for it. There are many JavaScript

engines (implementations). Each of them is based on ECMAScript specification,

but some engines implement only part of the specifications and others have

features beyond ECMA. (ECMAScript 2007.)

Event-driven, functional and imperative (including object-oriented and prototype-

based) programming styles are supported by JavaScript. There are many

advanced built-in features. JavaScript is often used in web development for the

Document Object Model (DOM) manipulation. JavaScript engines were initially

only implemented client-side in web browsers, but they are now embedded in

many types of host software such as web servers and databases, and in non-web

programs. (Mozilla Corporation 2018.)

It is important to note that JavaScript and Java are totally different languages (in

terms of design). There are many different frameworks/tools available for

JavaScript to make development easier: Node.js, React.js, Angular.js and others.

24

6.4 Node.js and Express

Node.js is an asynchronous event-driven JavaScript runtime which allows to build

network applications at scale easily. In Node.js process never gets blocked as it

is designed without threads. Therefore, it is a great choice for scalable systems.

Moreover, Node.js provides many useful default libraries, such as HTTP which

allows to create a webserver with just 2 lines of code. Nowadays, Node.js

became very popular for backend programming in web. (Node.js Foundation

2018.)

Node.js provides the following command syntax for launching an application:

node [options] [V8 options] [script.js | -e "script" | -] [arguments]

While most of the parameters are self-explanatory, V8 options requires further

explanation. V8 is a JavaScript engine used by Node.js to run the code.

Therefore, V8 options parameter specifies options for that engine.

According to npm, Inc. (2018), npm is a package manager for JavaScript which is

frequently used with Node.js. There are thousands of packages available for use

and they can be easily installed with npm. Application’s configuration for npm is

stored in a package.json file. This file may contain such information as application

name, author’s name, license, version number, description, homepage, entry

point, scripts and dependencies. The following command line syntax is being

used by npm:

npm <command> [args]

Most commonly used commands for npm are listed below:

• init: allows to create a package.json file interactively.
• install: installs specified packages. If no arguments are provided, then it

will install all the packages listed as dependencies in a package.json file.
• uninstall: uninstalls specified packages.
• run: runs a specified script.
• start: executes a start script.

25

It is important to mention a few arguments for the install and uninstall

commands:

• -g or --global: installs/uninstalls a package globally.
• --save: saves a package as a dependency or removes it. It will be

added/removed in dependencies section of a package.json file.
• --save-dev: saves a package as a development dependency or removes it.

It will be added/removed in devDependencies section of a package.json file.

Express is one of the most commonly used web frameworks for Node.js. It has

many essential features such as routing, support for rendering engines and it is

highly flexible with custom middlewares. Use of Express makes it easier for the

developers to create backend and organize the code.

6.5 React, Redux and Blueprint

React is a framework for JavaScript that allows to easily build user interfaces. It is

currently maintained (and also utilized) by such companies as Facebook and

Instagram. MVC (Model-View-Controller) pattern is utilized in React.

Simply said, React provides capabilities to create UI for highly scalable and

complex web applications that can change content over time without the reload of

the page. It manipulates DOM in order to update the page’s content. Browser’s

DOM is updated very efficiently as React computes the differences between an

old data structure and a new one before updating the actual DOM. This feature is

called Virtual DOM. (Krill 2018.)

State is an important concept in React. When the state is updated, React will re-

render the component using the new state. The state is supposed to be

immutable. React is often used together with Redux which allows to store the

state of the whole application in an object tree within a single store. The use of

Redux makes development significantly easier, reduces the amount of code that

has to be written and makes the code less cluttered. There are three main

concepts in Redux:

1) Actions: objects that are required to update the state in the store from the
application. Action creators are functions that return actions. Actions can
be easily dispatched using dispatch method. (Abramov 2018.)

26

2) Reducers: functions that change the state after the action is sent to the
store (Abramov 2018).

3) Store: an object where an entire application’s state is stored. Plus, it
provides a couple of methods for manipulations with the store, such as
getState, dispatch and subscribe. (Abramov 2018.)

These concepts form the core of Redux.

Another useful JavaScript library is called Blueprint. It is a React-based toolkit for

UI development. Blueprint contains many commonly used components for React

and provides a huge amount of customization options. React will be used in

combination with Blueprint components during the implementation stage of this

project.

6.6 Babel and Webpack

There are many versions of ECMAScript (ES) standard which forms the core of

JavaScript. The latest versions make development significantly easier by adding

new features. However, developers of modern web browsers are slow at

adopting these standards. The latest version of ECMAScript standard is ES8.

However, only ES5 is fully supported by all modern browsers at the moment.

Babel makes it possible to use newer specifications even in browsers that don’t

support them by transpiling the code to an older specification. Moreover, Babel

supports presets and plugins that allow to perform custom manipulations with the

code during the transpiling process.

Plugins and presets can be added through .babelrc file. Figure 7 shows how this

file looks.

Figure 7. An example of .babelrc file contents

There are two presets and no plugins added in the example shown in the figure

above. They will be used during the transpiling process later. The following

command can be used to start the transpiling:

27

babel src -d dest

src is the directory where files to be transpiled are located and dest is a

destination directory.

Another useful tool for the JavaScript development is Webpack. It is a module

bundler for JavaScript. It means that Webpack processes all the files and

dependencies of an application and combines everything into one or more

bundles. It is an extremely useful tool that allows to include just one file into a

web page instead of having to worry about all the files and dependencies.

Custom plugins and loaders are also supported. Loaders allow Webpack to

process more types of files than just JavaScript. (webpack.js.org 2018.)

Webpack’s configuration is stored in a webpack.config.js file. It allows to specify

the entry point and output filename, add loaders/plugins and more. Figure 8

shows the general structure of a Webpack configuration file.

Figure 8. Structure of a Webpack configuration file

In the figure above, entry is the entry point for Webpack, output is an object that

contains path and filename properties that define where the bundle will be saved.

28

There are two arrays: rules and plugins. Each of these arrays may contain

objects that define rules for the loaders or plugins to be used during the bundling.

7 IMPLEMENTATION

The project’s implementation was the most challenging aspect of this thesis. A

web application had to be built that would satisfy basic requirements for a

database backup management system. Development process is explained in this

section.

7.1 Goals

It is very important for any project to have the goals defined early in development.

The main goal of this project was to create an extensive web-based database

backup management system. The application was created with Node.js and

React.

The following features were implemented:

• Authentication
• Database management
• Scheduler
• Backup monitoring
• Manual backups
• Data integrity verification
• Compression
• Modularity
• Upload to cloud services

Backup processing for MySQL, PostgreSQL and MongoDB was supported in this

project. Amazon S3 and Google Cloud Storage were used as cloud storages.

7.2 Preparing the environment

Visual Studio Code was used for the development of this project. It is a free,

cross-platform and open source code editor developed by Microsoft. There are

many useful plugins available for it to speed up the development. When it comes

to choosing a hosting solution, Amazon Web Services (AWS) offers a great

amount of flexibility and even includes a year of free use for a t2.micro computing

29

instance. An Amazon EC2 instance was used for hosting a web server and

Amazon S3 was used as a remote storage for backups.

There was one t2.micro instance with a custom security group and Elastic IP

assigned. This security group had all outbound connections allowed and inbound

connections allowed on TCP ports 22 (SSH), 80 (HTTP) and 443 (HTTPS).

Elastic IP is a static IP address that can be assigned to a resource on AWS.

Ubuntu 16.04 was chosen as an operating system for the computing instance. An

SSD volume with 30 GB of space was attached to the instance. A key pair was

generated for authentication.

The following software was installed on the instance:

• Node.js 8.11.1
• npm 5.6.0
• nginx 1.10.3
• certbot 0.22.2
• mysqldump 10.13 (part of a mysql-client package)
• mongodump r3.6.4 (part of a mongodb-org-tools package)
• pg_dumpall 10.3 (part of a postgresql-client-10 package)

All of these packages were installed using an APT package management tool.

Some of the tools listed above require a description. Nginx is a web server and a

reverse proxy. Mainly its reverse proxy functionality was used in the project.

Certbot is a very useful tool for deploying SSL certificates from Let’s Encrypt.

Let’s Encrypt is a free certificate authority. This tool also automatically configures

the web server for use with a new certificate. The last three tools are used for

performing backups on MySQL, MongoDB and PostgreSQL databases

respectively.

The next step was to setup the cloud storage and to obtain credentials for

programmatic access. A bucket called db-backup-thesis was created on the

Amazon S3 platform. Figure 9 shows the settings of the bucket. Afterwards, a

new IAM user was created on AWS with full access to the Amazon S3 service. It

is possible to restrict the user’s access to just one bucket. However, for the

purposes of testing in this project, full access is a great fit. Summary and

permissions of the new IAM account are shown in the Figure 10. Access key was

30

associated with the newly created IAM user. Access key ID and Secret key ID

were recorded for the future use. Access key without Secret key ID is shown in

the Figure 11.

Figure 9. Amazon S3 bucket configuration

Figure 10. IAM user permissions

Figure 11. Access key for an IAM user account

31

Another bucket with the same name was created on Google Cloud Storage.

Figure 12 shows the settings specified during the creation of the bucket. Google

Cloud Platform uses service accounts for access management. Service account

was created with full access to Google Cloud Storage and JSON key was

generated and downloaded. This process is shown in the Figure 13.

Figure 12. Creation of a Google Cloud Storage bucket

Figure 13. Creation of a new service account and generation of a key

A new directory was created for the project. The project was initialized with a npm

init command. This command prompts the user input to receive general

information about an application, such as name, version, description, author and

license. Afterwards, it creates a new package.json file containing all this

information.

32

7.2.1 Setting-up Babel and Webpack

Babel and Webpack play a very important role in this project. First of all, a few

npm packages were installed with the following command:

npm install --save-dev babel-cli babel-core babel-loader babel-preset-env

babel-preset-react babel-preset-stage-2 css-loader style-loader webpack

webpack-cli

The option save-dev specifies that the installed packages will be saved as

development dependencies in the package.json file. The versions of the

packages are listed below:

• babel-cli 6.26.0
• babel-core 6.26.0
• babel-loader 7.1.4
• babel-preset-env 1.6.1
• babel-preset-react 6.24.1
• babel-preset-stage-2 6.24.1
• css-loader 0.28.10
• style-loader 0.20.2
• webpack 4.1.0
• webpack-cli 2.0.10

The packages installed with this command require a more detailed description.

The command-line interface (CLI) for Babel is provided by a babel-cli package.

The core functionality of Babel is provided by a babel-core package. Three

presets for Babel were installed: babel-preset-react contains bindings for React,

babel-preset-env is the main preset that automatically determines plugins based

on the targeted environment, babel-preset-stage-2 provides some additional

features that are in a draft stage and are not yet adopted by ECMAScript

specification. Webpack and command-line interface for it are installed with

webpack and webpack-cli packages. There are also three loaders for Webpack:

babel-loader makes use of Babel while the code is being bundled, css-loader

and style-loader allow loading CSS files within the code.

Directory structure used for this project has to be explained before moving onto

the configuration of Babel and Webpack. Figure 14 shows the directories that

were used throughout this project.

33

Figure 14. Directory structure

There were three autogenerated directories: .git created by Git, babel_cache

created by Babel to store the cache and node_modules created by npm to store

the packages. Source files of the project are located in a src directory, while

public assets are stored in a public directory. Transpiled files will be stored in the

dist directory.

Babel and Webpack have to be configured once they are installed. The

configuration for Babel is stored in a .babelrc file which should be located in the

root directory. This project has a very simple Babel configuration which just

specifies three presets. Code 1 shows how Babel was configured in this project.

{
 "presets": ["env", "react", "stage-2"],
 "plugins": []
}
Code 1. Configuration in .babelrc file

Webpack’s configuration can be stored in a webpack.config.js file in the root

directory of the project. Code 2 shows the Webpack configuration used for this

project.

34

const webpack = require('webpack');
const path = require('path');

module.exports = {
 entry: path.join(__dirname, 'src', 'app-client.js'),
 mode: "production",
 output: {
 path: path.join(__dirname, 'public', 'js'),
 filename: 'bundle.js',
 },
 module: {
 rules: [
 {
 test: path.join(__dirname, 'src'),
 loader: 'babel-loader',
 query: {
 cacheDirectory: 'babel_cache',
 presets: ['react', 'env', 'stage-2']
 }
 },
 {
 test: /\.css$/,
 loader: "style-loader!css-loader"
 }
]
 }
};
Code 2. Configuration in the webpack.config.js file

The entry point for the client part of the project is /src/app-client.js file. After

going through three loaders, a bundle is saved as /public/js/bundle.js.

7.2.2 Installing global packages and creating the scripts

Two global npm packages were installed: forever and nodemon. The Forever utility

automatically restarts the application in case of crashing. The Nodemon utility

automatically restarts the application when any files are changed and it is very

useful for testing purposes. The following command was executed:

npm install -g forever nodemon

Once the global packages were installed, four scripts were added to the

package.json file. Code 3 shows these scripts.

35

"scripts": {
 "dev": "nodemon ./src/server.js 4000 --exec babel-node",
 "start": "forever start ./dist/server.js 4000",
 "build": "babel src -d dist --presets env,react,stage-2",
 "build-client": "node_modules/.bin/webpack -p"
}
Code 3. A section of package.json file containing scripts

The script dev starts a development server with Nodemon on port 4000 after

transpiling the files with Babel. A production server is started with a start script

which uses Forever to restart automatically. The server part of the application is

built with the build script and the client part of the application is built with the

build-client script which utilizes Webpack to bundle the files. The start script

runs when npm start command is executed. All other scripts can be executed

with npm run <script name> command.

7.2.3 Configuring the web server and main packages

Global and development packages were already installed. Nevertheless, the

main packages had to be added still. The following command was executed to

install these packages:

npm install --save @blueprintjs/core @google-cloud/storage aws-sdk bcrypt

better-queue body-parser connect-mongo express express-session formidable

mongoose node-cron passport passport-local react react-dom react-redux

react-router-bootstrap react-router-dom react-transition-group redux

The packages installed with this command, their versions and descriptions are

listed below:

• @blueprintjs/core 2.0.0-rc.2
Basis of the Blueprint framework

• @google-cloud/storage 1.6.0
Package for interacting with Google Cloud Storage

• aws-sdk 2.212.1
Package for interacting with Amazon Web Services

• bcrypt 2.0.1
Library for the password encryption

• better-queue 3.8.6
Advanced queue system

• body-parser 1.18.2

36

Middleware for parsing request body
• connect-mongo 2.0.1

MongoDB session store
• express 4.16.2

Web application framework
• express-session 1.15.6

Session middleware for Express
• formidable 1.2.1

Package for parsing form data
• mongoose 5.0.9

Framework for interacting with MongoDB databases
• node-cron 1.2.1

Task scheduler based on crontab
• passport 0.4.0

Authentication middleware
• react 16.2.0

Framework for building user intarfaces
• react-dom 16.2.0

Package for rendering DOM
• react-redux 5.0.7

Package that provides React bindings for Redux
• react-router-dom 4.2.2

Package that provides routing for React
• react-transition-group 2.3.1

Animation module used by Blueprint
• redux 3.7.2

Predictable state container
All these packages were used during the development of this project. Once they

were installed, a configuration file for the application was created. It was a JSON

file called config.json and Code 4 shows its structure.

{
 "mongoDBUri": "",
 "secret": ""
}
Code 4. Structure of a main configuration file

mongoDBUri property defines the connection string for MongoDB database and

secret stores a secret string for the session management. Then, development of

the server part of the application was started. A static HTML file index.html was

created in /public folder and a CSS file custom.css was created in /public/css

folder. The HTML file contained basic page markup and link to a new CSS file.

Also, bundle.js file was linked there and one div container was created with the

37

ID main. This container is needed for React to place rendered content. A new file

called server.js was created which was an entry point. Code 5 shows modules

that were imported into that file.

import Path from 'path';
import Express from 'express';
import Mongoose from 'mongoose';
import BodyParser from 'body-parser';
import Config from './config.json';
Code 5. Modules and files imported into server.js file

Next step was to create the web server. Code 6 shows how it was done.

//Connecting to the database
Mongoose.connect(Config.mongoDBUri);
const port = process.argv[2] || 4000;
//Initializing Express and creating a server
const app = new Express();
var server = require('http').createServer(app);
//Trust proxy, so we can get the real IP behind reverse proxy
app.enable('trust proxy');
//Handling requests with body-parser
app.use(BodyParser.json());
app.use(BodyParser.urlencoded({ extended: true }));
//Hosting static assets
app.use(Express.static(Path.join(__dirname, '..', 'public')));
//Displaying static HTML page otherwise
app.get('*', (req, res) => {
 res.sendFile(Path.join(__dirname, '..', 'public', 'index.html'));
});
server.listen(port);
Code 6. Initializing database connection and creating a web server

At this point, the application was initialized and ready for the further development.

7.3 Routing

Routing was necessary for implementing the backend of the application. A web

server should have been able to distinguish the routes in order to provide

appropriate API functionality. Express has built-in routing capabilities. First of all,

a new file index.js was created in /src/routes. Code 7 shows how this file was

initialized.

38

import { Router } from 'express';
const router = new Router();

router.post('/login', function (req, res, next) {
 //Authenticate
});

export default router;
Code 7. Initialization of the router and a route example

Afterwards, the router was connected to Express by importing it from the

server.js file. Path of all the API routes began with /api. Code 8 shows how it

was done.

import Routes from './routes/index';
app.use('/api', Routes);
Code 8. Connecting router to Express

Table 1 shows all the routes that were eventually added to the application and

their functions.

Table 1. Server-side routing for an application
Route Purpose
/login Performs authentication

/logout Performs logout

/getuser Retrieves information about an

authenticated user

/createroot Creates an initial root account

/settings/get Retrieves settings

/settings/save Saves settings

/dashboard/get Retrieves dashboard data: all

databases, destinations and

schedules

/database/add Adds a new database

/database/delete Removes a database

/database/manualbackup Performs a manual backup on the

database

39

/destination/add Adds a new destination

/destination/delete Removes a destination

/scheduler/add Adds a new schedule

/scheduler/delete Removes a schedule

All of these routes accepted parameters in JSON that was parsed by body-parser

middleware, except for /destination/add which accepted parameters as a

multipart/form-data parsed by formidable. The reason for this design choice will

be explained later. The next step was to create data models and then to

implement application functionality.

7.4 Creating data models with Mongoose

Mongoose allows to easily create data models that can later be used for

interaction with a MongoDB database. Six models were created for the

application: Backup, Database, Destination, Scheduler, Settings and User. These

models were created in the files backup.js, database.js, destination.js,

scheduler.js, settings.js and user.js respectively and located at /src/models.

Code 9 shows how one of these models was created.

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
module.exports = mongoose.model('Scheduler', new Schema({
 database: { type: Schema.Types.ObjectId, ref: 'Database' },
 destination: { type: Schema.Types.ObjectId, ref: 'Destination' },
 rule: String
}));
Code 9. Scheduler model

The fields database and destination are linked to the Database and Destination

models. These fields contain ObjectId of a document that is a part of another

collection. This ObjectId can later be replaced with the document itself. This

process is called population.

Similarly, other models were created. The Database model contained name and

engine fields of the type String and the options field of the type Object. The

40

Destination model contained name and provider fields of the type String and the

options field of the type Object. The Settings model contained the fields uniqueId

and value of the type String. The User model contained the fields username,

password and group of the type String. Finally, the Backup model contained the

fields database and destination of the type String that were linked to the

Database and Destination models respectively. The fields filename, type, status

and log were also of the type String, field startDate was of the type Date and

field hashes was of the type Object.

7.5 Implementing the authentication

Passport middleware was used for the authentication. Sessions were handled by

an express-session module and stored in a MongoDB database with a connect-

mongo module. The module bcrypt was used for hashing the password. Code 10

shows new imports added onto the top of the server.js file.

import ExpressSession from 'express-session';
import Passport from 'passport';
import PassportLocal from 'passport-local';
import Bcrypt from 'bcrypt';
import User from './models/user';
Code 10. Imports in the server.js file for authentication

Before implementing the authentication itself, session middleware had to be

connected and session store had to be configured. Code 11 shows how it was

done. The existing MongoDB connection created by Mongoose was used for the

session store. Default session’s expiration time was set to one day for security

reasons.

const MongoStore = require('connect-mongo')(ExpressSession);
app.use(ExpressSession({
 secret: Config.secret,
 resave: false,
 saveUninitialized: false,
 store: new MongoStore({ mongooseConnection: Mongoose.connection }),
 cookie: { maxAge: 86400000 }
}))
app.use(Passport.initialize());

41

app.use(Passport.session());
Code 11. Connecting the Passport, session middleware and session store

Local authentication strategy was connected to Passport and the methods for

verifying, serializing and deserializing the user data were implemented. Code 12

shows the code used for that.

const LocalStrategy = PassportLocal.Strategy;
Passport.use(new LocalStrategy(function(username, password, done) {
 User.findOne({ username : username }, function(err, user){
 if (err) { return done(err); }
 if (!user) {
 return done(null, false, { message: 'Invalid username' });
 }

 if (Bcrypt.compareSync(password, user.password)) {
 done(null, user)
 } else {
 done(null, false, { message: 'Invalid password' });
 }
 });
}));

Passport.serializeUser(function(user, done) {
 done(null, user.id);
});

Passport.deserializeUser(function(id, done) {
 User.findById(id, function(err, user){
 if (err) {
 done(err)
 };
 done(null, user);
 });
});
Code 12. Local strategy for Passport

Also, four routes were implemented in the /src/routes/index.js file: /login,

/logout, /getuser and /createroot. Authentication for local strategy was handled

with the Passport’s authenticate method. The route /createroot simply allowed

adding an account to the database, but only if there are no other accounts

available. Password was hashed with Bcrypt’s hashSync method. The route

/getuser was implemented to retrieve general information about the user’s

42

account: whether the user is logged in or not, username and group. Middleware

was created to verify user’s authentication status for restricted routes. Code 13

shows this middleware.

function isAuthenticated(req, res, next) {
 if (req.user) {
 return next();
 }

 res.json({
 error: true,
 message: "Access denied"
 });
}
Code 13. Middleware for verifying authentication status

This middleware was added to all the routes except for /login, /logout, /getuser

and /createroot.

7.6 Schema for database engines and storages

In order to make it easy to add new database engines and storage providers to

the application, a schema was implemented. It consisted of three files placed in

the /src/providers/ directory: schema.js, server.js and types.js. The file

types.js had just a simple list of enums used to identify the field type in the

schema. Three types were implemented for the purposes of this application. The

first one allowed passing a string, the second one allowed passing a number and

the third one allowed passing a JSON file. These types also affected user

interface: the string and number types generated a simple text box, while the

JSON file type generated a file input. Code 14 shows all these types.

const ENUM = {
 TYPE_STRING: 0,
 TYPE_NUMBER: 1,
 TYPE_JSONFILE: 2
}

export { ENUM };
Code 14. File types.js

43

The file schema.js was shared between the client and the server and it contained

the main information about the fields required to add a new database/storage.

Code 15 shows a sample structure of the schema.

import { ENUM } from './types';

module.exports = {
 engines: {
 mysql: {
 name: "MySQL",
 fields: {
 hostname: { type: ENUM.TYPE_STRING, default: "", name:
"Hostname", description: "Hostname of your database" },
 port: { type: ENUM.TYPE_NUMBER, default: 3306, name:
"Port", description: "Port of your database", mix: 0, max: 65535 },
 username: { type: ENUM.TYPE_STRING, default: "", name:
"Username", description: "Username for your database" },
 password: { type: ENUM.TYPE_STRING, default: "", name:
"Password", description: "Password for your database", masked: true }
 }
 },
 },
 storages: {
 local: {
 name: "Local",
 fields: {
 path: { type: ENUM.TYPE_STRING, default: "/tmp", name:
"Path", description: "Backup path" }
 }
 },
 },
}
Code 15. A sample schema

The schema above is highly simplified as all engines, except for MySQL, and all

storages, except for the local one, are omitted. Except for the type, every field

had a couple of other properties. The property default allowed to specify a

default value for this field, name and description were used to provide information

about the field in the user interface. For the number type, two additional

properties were available: min and max that allowed specifying minimum and

maximum input value respectively. Additionally, every field had a masked property

that allowed hiding sensitive information.

44

The server.js file was a server-side only file that contained the methods for

performing backups. It simply extended the schema for the server use. Code 16

shows an example of the file structure.

import Schema from './schema';

Schema.engines.mysql.methods = {
 generateFilename(input) {
 },
 performBackup(input, hashStreams, storageStream, cb) {
 }
};

Schema.storages.local.methods = {
 storeBackup(filename, input, cb) {
 }
};
Code 16. Example structure of the server.js file

For database engines, two methods were available: generateFilename and

performBackup. The first one is quite simple: it takes some input, generates a

filename based on it and returns a string. The input parameter in all these

methods is an object based on the Backup model. The next method is responsible

for performing the backup and any other operations with the data stream, such as

compression. It takes four arguments: input is the same as in the method above,

hashStreams is an array containing writable streams for hashing functions where

output stream from the method should be piped. Output stream is also piped into

the storageStream which is responsible for writing the data to an appropriate

provider. The last argument is a callback. It takes two arguments: the first one is

a bool defining whether an error occurred or not during the backup and the

second one is the backup log.

For storage engines, one method is available: storeBackup. This method defines

storage logic and returns just a single storage stream which is later passed to the

database engine’s performBackup method as the third argument. Backup data is

later piped into that stream to be stored. The method storeBackup takes three

arguments. The first one specifies a filename, the second one is the same input

as used in database storage methods and the last one is a callback. Callback has

45

exactly the same arguments as the one in the performBackup method for

database engines.

7.7 Database and storage management

User interaction with the database management system was done via two routes:

/database/add and /database/delete. For the first route, there were two

mandatory parameters: name and engine. They were representing a unique name

for the database and engine used respectively. Based on the engine parameter,

the rest of the required fields were dynamically loaded from the schema and

verified. Removal of the database required just one parameter: databaseId. This

parameter had to be a valid identifier of the database. Four parameters were

defined for both MySQL and PostgreSQL in the schema: hostname, port, username

and password. On the other hand, MongoDB required just one parameter: uri.

This parameter represented a connection string. When a new database was

being added, a MongoDB document was created based on the Database model.

Field options in this model is an object containing all the dynamically loaded

parameters.

Two other routes were used for communication with the storage management

module: /destination/add and /destination/delete. Unlike all other routes,

/destination/add accepts input as multipart/form-data. There is a reason for

that: some storage providers require a JSON key file to be used for

authentication. Google Cloud Platform is one of such providers. As file cannot be

provided as a parameter to a JSON object, this route uses form data instead. A

module called formidable was used for parsing the form data. Code 17 shows

how it was implemented.

import Formidable from 'formidable';
router.post('/destination/add', isAuthenticated, function (req, res, next){
 var Form = new Formidable.IncomingForm();
 Form.parse(req, function (err, fields, files) {
 if (err) {
 return res.json({ error: true, message: "An unexpected error
occurred" })
 }

46

 //The code for adding the destination is omitted
 }
});
Code 17. Use of formidable to parse the form data

After parsing, formidable provides three parameters: error, object with fields and

object with files. Similarly to adding the database, all the fields were dynamically

loaded from the schema based on the provider parameter. Another required

parameter was the name. A new MongoDB document based on the Destination

model was being created every time when a new destination is added.

7.8 Performing backups

As it was mentioned earlier, the schema contained a performBackup method for

each database engine. In general, this method is supposed to perform two

operations: backup and data compression. The child_process module was used

to execute the backup tools for each database engine and gzip compression tool.

While mongodump for MongoDB has built-in capabilities for compression,

mysqldump and pg_dump for MySQL and PostgreSQL don’t. Therefore,

additional gzip module had to be used for that.

The spawn method from child_process module allows to spawn a process and

provide command line arguments to it. Unlike exec method, it has protection from

the injection of code that could have been used to execute another command.

Exit code, standard output (stdout) and standard error (stderr) can be easily

captured. Code 18 shows an example of how child_process module was used

within performBackup method. A significant part of the code below is omitted.

import { spawn } from 'child_process';
let stderr = [];
const mysqldump = spawn('mysqldump', [
 '--all-databases',
 `--user=${input.database.options.username}`,
 `--password=${input.database.options.password}`,
 `--port=${input.database.options.port}`,
 `--host=${input.database.options.hostname}`,
 '--verbose']);
mysqldump.stdout.pipe(gzip.stdin);

47

mysqldump.stderr.on('data', data => {
 stderr.push(data);
});
mysqldump.on('exit', code => {
 stderr.push(Buffer.from(`Backup was completed with code ${code}.\n`))
 if (code == 0) {
 gzip.stdin.end();
 stderr.push(Buffer.from(`Starting compression...\n`))
 } else {
 cb(true, Buffer.concat(stderr).toString());
 }
})
Code 18. Use of the child_process module to run mysqldump

In the example above, mysqldump process is being spawned with stderr being

written to a string and stdout being piped directly into a standard input (stdin) of

gzip. Spawn of gzip is omitted due to it being done the same way. Once the

backup is completed, resulting stream of data is piped into all the streams in a

hashStreams array and a storageStream stream in order to perform hash

calculations and store the data in an appropriate storage.

7.9 Hash calculations and storage

Once the backup was performed, hash values had to be calculated and the

backup had to be stored. Four hash values were being generated for every

backup: MD5, SHA-1, SHA-256 and SHA-512. These values were calculated

using Node.js’ built-in crypto module. A function CalculateHashes was

implemented to create the writable streams for hashing and return an array of

them. Code 19 shows how a stream could be created with a crypto module on

the example of MD5 algorithm.

import Crypto from 'crypto';
let md5Val;
let md5 = Crypto.createHash('md5');
md5.on('readable', () => {
 const data = md5.read();
 if (data) {
 md5Val = data.toString('hex');
 }
})
Code 19. Creation of a hashing stream with crypto module

48

The resulting string was being converted to hexadecimal format. The result of

CalculateHashes function was being passed as the second argument to the

performBackup method. That function also had one argument for callback. This

callback had to be called once all hash values were calculated in order to return

the result.

The data was being stored at the same time as hash values were being

generated. A storeBackup method of an appropriate storage provider was being

used for that. This method had to return a writable stream that would later be

passed as the third argument to the performBackup method. Code 20 shows an

example of storeBackup method.

Schema.storages.local.methods = {
 storeBackup(filename, input, cb) {
 let stream =
fs.createWriteStream(`${input.destination.options.path}/${filename}`, {
flags: 'w' });
 stream.on('error', function(err) {
 cb(true, err);
 });
 stream.on('close', function() {
 cb(false, `File was successfully written to
${input.destination.options.path}/${filename}.\n`);
 })

 return stream;
 }
};
Code 20. storeBackup method for the local storage provider

Two more backup providers were also created in a similar way: Amazon S3 and

Google Cloud Storage. Two modules were used for the interaction with the cloud

providers’ API: aws-sdk and @google-cloud/storage. Backup was considered

complete once the callback passed as the third argument to storeBackup method

was called. At this point, backup status, filename, log and hash values were

being stored in the database.

49

7.10 Queue

A queue was implemented using the better-queue package in order to process

each individual backup as fast and efficiently as possible. A new file queue.js was

created in the /src directory. Code 21 shows the code used to create the queue.

import Queue from 'better-queue';
var BackupQueue = new Queue(function (input, cb) {
});
Code 21. Initialization of a queue

There were two parameters in a method used for processing a queue element.

The first one defined the data provided for processing. This data was passed as

the first argument to the push method provided by the queue object. An object

based on the Backup model was meant to be passed as an input to a queue. The

second argument was the callback. It was being called once the task was

finished to make queue proceed to the next task. Function passed to the queue

constructor was used to combine all the elements of backup logic together:

backup processing, hashing and storage.

7.11 Manual backup and scheduler

Two options were available for performing backups: manual backup and the use

of the scheduler. Manual backup feature was used to perform a one-time backup

of the selected database to the selected destination. Route

/database/manualbackup was used for performing manual backups. It accepted

just two parameters: databaseId and destinationId. The first parameter was used

to define the database for which backup will be performed and the second one

was used to define the destination.

Firstly, database and destination documents were being retrieved from the

database based on databaseId and destinationId provided. Then, a new backup

object was being created from the Backup model.

50

import Backup from '../models/backup';
var localBackup = new Backup({
 database: database._id,
 destination: destination._id,
 filename: null,
 startDate: Date.now(),
 type: "manual",
 status: "queued",
 hashes: {},
 log: ""
});
Code 22. A new backup object

However, at this point the database and destination properties were of the

ObjectId type. It wasn’t possible to pass this object to a queue, because these

paths weren’t populated yet. Code 23 shows how the paths were populated.

Backup.findOne({_id: localBackup._id})
.populate('database')
.populate('destination')
.exec(function(err, backup) {
 BackupQueue.push(backup);
});
Code 23. Populating paths

After population, retrieved document could be passed to the queue for

processing. Scheduler is another way of performing a backup. The node-cron

package was used for implementing the scheduling capabilities. Three new

methods were added to the queue.js file: AddSchedule, RemoveSchedule and

InitData. Also, a global object Tasks was created to store relationships between

an ObjectId of a scheduler object and an ID of a job created by node-cron.

The AddSchedule method accepted one argument: schedule. This argument

represented an object based on the Scheduler model. Then, a new schedule was

added based on the rule specified in that object. RemoveSchedule method allows to

destroy a task using an ObjectId of a scheduler object. Code 24 shows how

these two methods were implemented. A part of AddSchedule method is omitted.

51

import Cron from 'node-cron';
function AddSchedule(schedule) {
 Tasks[schedule._id] = Cron.schedule(schedule.rule, function () {
 //Start a new backup here in a similar way to manual backup
 });
}

function RemoveSchedule(id) {
 Tasks[id].destroy()
}
Code 24. AddSchedule and RemoveSchedule methods

The InitData method is simply called once on application’s startup. It is required

to load schedulers and queued backups that were started before application’s

shutdown but not processed yet.

Two routes were used for the management of the schedulers: /scheduler/add

and /scheduler/delete. The first one accepted three parameters: databaseId,

destinationId and rule. The rule parameter had to be a valid CRON expression.

It was being validated with validate function from the node-cron module. After

validation, this route would add a new document into the database based on the

Scheduler model and schedule a new task with AddSchedule method. The second

route was used to remove a scheduler based on the taskId property.

7.12 User interface

Once application’s backend was implemented, a user interface had to be created

for interaction with it. It was decided to use React as a framework for building the

UI, Redux as a state container and Blueprint as a collection of commonly used

React components. The Fetch API was used for communication with the

backend. Entry point for the client side of the application was app-client.js file

located in the /src directory. Redux was used to store the user state which had to

be accessed all over the application. Therefore, basic setup was performed: User

reducer was created and added to the root reducer using combineReducers

method. Afterwards, a store was created to store the application state. Also, one

action was implemented: UserState. React Router was also initialized for

performing client-side routing.

52

Nine custom components were created. The App component was used to

combine all other components together and perform routing. It was also used to

retrieve user’s authentication status. The Header component was used to display

application’s header, including navigation and information about authentication

status. A simple footer was displayed using Footer component. It was important

to make sure that sensitive data is not displayed right away. Therefore,

MaskedText component was created. It allowed to display the text in a hidden

state with an option to show the actual contents by pressing a button. This

component was later used to hide database passwords. The Home component

represented the main page of the application. It would then either display the

Dashboard component or the LoginForm component, depending on whether user

was logged in or not. Finally, the Toaster component was used to display

notifications.

The main component of the application was Dashboard. It had four sections:

Databases, Destinations, Scheduler and Latest Backups. Databases and

Destinations sections were dynamically loading layout from the schema to display

correct fields.

The Databases section allowed to view existing databases and all the information

about them, such as name, engine and all the options specified in the schema.

Additionally, records could be removed and manual backup could be performed

through the menu button. The Destinations section allowed to view, add or

remove the destinations. Name, provider and options were displayed. The

Scheduler section was used for management of the tasks. Each task had a

database, a destination and a rule displayed. Also, tasks could be removed. The

Latest Backups sections contained general information about the backups:

database, destination, filename, start date, type (manual or scheduled), status

(queued, finished or failed). Additionally, backup log and hash values could be

viewed. All dashboard data was being refreshed every ten seconds.

53

Client-side files were bundled into a single bundle.js file using build-client

script that was created during the environment preparation phase. At that point,

application was ready.

7.13 Results

For testing purposes, the application was deployed on an Amazon EC2 instance

that was earlier described. Nginx was configured as a reverse proxy and DNS

records were set for the domain name. The main page of the application can be

seen in the Figure 15. It contains a login form and basic information. There is no

account created yet, so the setup is considered incomplete.

Figure 15. Application’s main page

The process of creating a root account is shown in the Figure 16. Once the root

username and password are specified, the account is created.

54

Figure 16. Creation of a root account

These credentials can be used to log into the application. A user gets access to

the dashboard when logged in. It is shown in the Figure 17.

Figure 17. Empty dashboard

A new database, destination or task can be added using the appropriate buttons.

Figure 18 shows how the panel for adding a new database looks.

55

Figure 18. Creating a new database record

Three new databases were added: one of each available type. The result is

shown in the Figure 19.

Figure 19. List of databases

A panel for adding a new destination is displayed in the Figure 20.

56

Figure 20. Creating a new destination record

One of the each type of destinations was added for the testing purposes. They

can be seen in the Figure 21.

Figure 21. List of destinations

The task creation panel is shown in the Figure 22.

57

Figure 22. Creating a new task

Now, a couple of tasks were added and several backups were performed. The

first task would backup the MySQL database to the Amazon S3 every two

minutes. The second task would backup the MongoDB database to the Google

Cloud Storage every five minutes. The PostgreSQL database would be backed

up manually to the local storage. Figure 23 shows these tasks and backups that

were performed.

Figure 23. Tasks and backup list

The Log button allows viewing the backup log. The contents of such a log can be

seen in the Figure 24.

58

Figure 24. Backup log for a MongoDB database

The View details button allows seeing hash values for the generated file. Figure

25 shows this panel.

Figure 25. Hash values for a backup

59

Figures 26 and 27 show the contents of the Amazon S3 and Google Cloud

Storage buckets after performing the backups.

Figure 26. The contents of the Amazon S3 bucket

Figure 27. The contents of the Google Cloud Storage bucket

During this test session, everything went as planned. The application worked

correctly and without any interruptions.

8 CONCLUSIONS

Insufficient data protection is one of the key issues in the modern world. The

main goal of this work was to contribute to the solution of this problem. There are

many different challenges related to the safety of information and I have tried to

shed light upon some of them in this thesis. The goal was reached by

successfully creating an expandable application for the centralized database

60

backup management. All the planned features were fully implemented and the

application performs its job well.

The theoretical part of this thesis provides a detailed overview of backup methods

available for certain popular databases and security issues related to the

backups. The role of cloud storage solutions in this matter is shown as well. This

information is later used for carrying out the practical part of the project. I have

attempted to write a decently detailed, but not too overwhelming by unnecessary

details, explanation of the application’s implementation process. The application

was implemented with Node.js which is a really good choice for highly scalable

products. React is a great framework for building modern and highly interactive

user experiences.

The project can be extended in many different ways. First of all, support for more

database engines and storage providers may be added. It will be extremely easy

to accomplish due to the application’s architecture. Certain secondary features

can be implemented in the future, such as user management and advanced

permission system. Another way to make the application better is by bringing

additional capabilities for customization, such as optional fields in the schema

and more field types. Moreover, there is a huge number of topics in the

information security field closely related to this thesis.

61

REFERENCES

Abramov, D. 2018. Actions. WWW document. Available at:

https://redux.js.org/basics/actions [Accessed 21 April 2018].

Abramov, D. 2018. Reducers. WWW document. Available at:

https://redux.js.org/basics/reducers [Accessed 21 April 2018].

Abramov, D. 2018. Store. WWW document. Available at:

https://redux.js.org/basics/store [Accessed 21 April 2018].

Amazon Web Services. 2018. Amazon S3 Features. WWW document. Available

at: https://aws.amazon.com/s3/features/ [Accessed 14 April 2018].

Amazon Web Services. 2018. What is Cloud Computing? WWW document.

Available at: https://aws.amazon.com/what-is-cloud-computing/ [Accessed 14

April 2018].

Bitnine Co, Ltd. 2016. Advantages of PostgreSQL. WWW document. Available at:

http://bitnine.net/blog-postgresql/advantages-of-postgresql/ [Accessed 8 April

2018].

Black Duck Software, Inc. 2018. MySQL. WWW document. Available at:

https://www.openhub.net/p/mysql [Accessed 14 April 2018].

ByteScout. 2014. MongoDB History and Advantages. WWW document. Available

at: https://bytescout.com/blog/2014/09/mongodb-history-and-advantages.html

[Accessed 14 April 2018.]

Chamberlin, D. D. 2012. Early History of SQL. Washington D.C.: IEEE Computer

Society.

https://redux.js.org/basics/actions
https://redux.js.org/basics/reducers
https://redux.js.org/basics/store
https://aws.amazon.com/s3/features/
https://aws.amazon.com/what-is-cloud-computing/
http://bitnine.net/blog-postgresql/advantages-of-postgresql/
https://www.openhub.net/p/mysql
https://bytescout.com/blog/2014/09/mongodb-history-and-advantages.html

62

Data Science Central. 2016. History of MySQL. WWW document. Available at:

https://www.datasciencecentral.com/profiles/blogs/history-of-mysql [Accessed 15

April 2018].

ECMAScript. 2007. Proposed ECMAScript 4th Edition – Language Overview.

Available at:

https://www.webcitation.org/5rBiWD4P6?url=http://www.ecmascript.org/es4/spec/

overview.pdf [Accessed 9 April 2018].

ECRYPT. 2009. The Hash Function Zoo. WWW document. Available at:

https://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo [Accessed 21 April

2018].

GitLab Inc. 2017. Gitlab.com database incident. WWW document. Available at:

https://about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident/ [Accessed

7 March 2018].

Google LLC. 2018. Google Cloud Storage. WWW document. Available at:

https://cloud.google.com/storage/ [Accessed 14 April 2018].

IBM. 2018. Public key cryptography. WWW document. Available at:

https://www.ibm.com/support/knowledgecenter/SSB23S_1.1.0.14/gtps7/s7pkey.h

tml [Accessed 15 April 2018].

IBM. 2018. Relational database. WWW document. Available at: http://www-

03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/ [Accessed 9 April 2018].

IBM. 2018. Symmetric cryptography. WWW document. Available at:

https://www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtps7/s7sy

mm.html [Accessed 15 April 2018].

https://www.datasciencecentral.com/profiles/blogs/history-of-mysql
https://www.webcitation.org/5rBiWD4P6?url=http://www.ecmascript.org/es4/spec/overview.pdf
https://www.webcitation.org/5rBiWD4P6?url=http://www.ecmascript.org/es4/spec/overview.pdf
https://ehash.iaik.tugraz.at/wiki/The_Hash_Function_Zoo
https://about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident/
https://cloud.google.com/storage/
https://www.ibm.com/support/knowledgecenter/SSB23S_1.1.0.14/gtps7/s7pkey.html
https://www.ibm.com/support/knowledgecenter/SSB23S_1.1.0.14/gtps7/s7pkey.html
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/
https://www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtps7/s7symm.html
https://www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtps7/s7symm.html

63

Krill, P. 2014. React: Making faster, smoother UIs for data-driven Web apps.

WWW document. Available at:

https://www.infoworld.com/article/2608181/javascript/react--making-faster--

smoother-uis-for-data-driven-web-apps.html [Accessed 21 April 2018].

Leavitt, N. 2010. Will NoSQL Databases Live Up to Their Promise? Washington,

D.C.: IEEE Computer Society.

Lifewire. 2017. What You Need to Know About Structured Query Language.

WWW document. Available at: https://www.lifewire.com/what-is-sql-1019769

[Accessed 15 April 2018].

Makris, A., Tserpes, K., Andronikou, V., Anagnostopoulos, D. 2016. A

Classification of NoSQL Data Stores Based on Key Design Characteristics.

Madrid: Elsevier B.V.

MongoDB, Inc. 2018. mongodump. WWW document. Available at:

https://docs.mongodb.com/manual/reference/program/mongodump/ [Accessed

14 April 2018].

MongoDB, Inc. 2018. MongoDB Backup Methods. WWW document. Available at:

https://docs.mongodb.com/manual/core/backups [Accessed 11 April 2018].

MongoDB, Inc. 2018. What is MongoDB? WWW document. Available at:

https://www.mongodb.com/what-is-mongodb [Accessed 14 April 2018].

Mourghen, Denis. 2016. Cloud Computing- Origin, Advantages & Limitations.

WWW document. Available at: https://www.linkedin.com/pulse/cloud-computing-

origin-advantages-limitations-denis-mourghen [Accessed 14 April 2018].

Mozilla Corporation. 2018. About JavaScript. Available at:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript

[Accessed 21 April 2018].

https://www.infoworld.com/article/2608181/javascript/react--making-faster--smoother-uis-for-data-driven-web-apps.html
https://www.infoworld.com/article/2608181/javascript/react--making-faster--smoother-uis-for-data-driven-web-apps.html
https://www.lifewire.com/what-is-sql-1019769
https://docs.mongodb.com/manual/reference/program/mongodump/
https://docs.mongodb.com/manual/core/backups
https://www.mongodb.com/what-is-mongodb
https://www.linkedin.com/pulse/cloud-computing-origin-advantages-limitations-denis-mourghen
https://www.linkedin.com/pulse/cloud-computing-origin-advantages-limitations-denis-mourghen
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript

64

Mozilla Corporation. 2018. HTML basics. Available at:

https://developer.mozilla.org/en-

US/docs/Learn/Getting_started_with_the_web/HTML_basics [Accessed 5 April

2018].

Node.js Foundation. 2018. About Node.js®. WWW document. Available at:

https://nodejs.org/en/about/ [Accessed 21 April 2018].

npm, Inc. 2018. npm-install – Install a package. WWW document. Available at:

https://docs.npmjs.com/cli/install [Accessed 21 April 2018].

npm, Inc. 2018. npm-uninstall – Remove a package. WWW document. Available

at: https://docs.npmjs.com/cli/uninstall [Accessed 21 April 2018].

npm, Inc. 2018. npm – javascript package manager. WWW document. Available

at: https://docs.npmjs.com/cli/npm [Accessed 21 April 2018].

npm, Inc. 2018. package.json – Specifics of npm’s package.json handling. WWW

document. Available at: https://docs.npmjs.com/files/package.json [Accessed 21

April 2018].

ntu.edu.sg. 2010. A Quick-Start Tutorial on Relational Database Design.

Available at:

https://www.ntu.edu.sg/home/ehchua/programming/sql/Relational_Database_Des

ign.html [Accessed 7 April 2018].

Oracle Corporation. 2018. Database Backup Methods. WWW document.

Available at: https://dev.mysql.com/doc/refman/5.7/en/backup-methods.html

[Accessed 11 April 2018].

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://nodejs.org/en/about/
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/uninstall
https://docs.npmjs.com/cli/npm
https://docs.npmjs.com/files/package.json
https://www.ntu.edu.sg/home/ehchua/programming/sql/Relational_Database_Design.html
https://www.ntu.edu.sg/home/ehchua/programming/sql/Relational_Database_Design.html
https://dev.mysql.com/doc/refman/5.7/en/backup-methods.html

65

Oracle Corporation. 2018. mysqldump – A Database Backup Program. WWW

document. Available at:

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html [Accessed 11 April

2018].

Oracle Corporation. 2018. MySQL Enterprise Backup Overview. WWW

document. Available at: https://dev.mysql.com/doc/refman/5.7/en/mysql-

enterprise-backup.html [Accessed 11 April 2018].

Oracle Corporation. 2018. The Main Features of MySQL. WWW document.

Available at: https://dev.mysql.com/doc/refman/5.7/en/features.html [Accessed 7

April 2018].

OWASP. 2017. OWASP Top 10 – 2017: The Ten Most Critical Web Application

Security Risks. WWW document. Available at:

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

[Accessed 16 April 2018].

OWASP. 2018. Cross-Site Request Forgery (CSRF). WWW document. Available

at: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

[Accessed 16 April 2018].

SANS Technology Institute. 2018. Hash Functions. WWW document. Available

at: https://www.sans.edu/cyber-research/security-laboratory/article/hash-functions

[Accessed 15 April 2018].

solid IT. 2018. DB-Engines Ranking. WWW document. Available at: https://db-

engines.com/en/ranking [Accessed 7 April 2018].

The PostgreSQL Global Development Group. 2018. About. WWW document.

Available at: https://www.postgresql.org/about/ [Accessed 14 April 2018].

https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/5.7/en/features.html
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.sans.edu/cyber-research/security-laboratory/article/hash-functions
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://www.postgresql.org/about/

66

The PostgreSQL Global Development Group. 2018. Backup and Restore. WWW

document. Available at: https://www.postgresql.org/docs/8.3/static/backup.html

[Accessed 13 April 2018].

The PostgreSQL Global Development Group. 2018. History. WWW document.

Available at: https://www.postgresql.org/docs/8.4/static/history.html [Accessed 8

April 2018].

The PostgreSQL Global Development Group. 2018. pg_dump. WWW document.

Available at: https://www.postgresql.org/docs/8.3/static/app-pgdump.html

[Accessed 13 April 2018].

The PostgreSQL Global Development Group. 2018. pg_restore. WWW

document. Available at: https://www.postgresql.org/docs/8.3/static/app-

pgrestore.html [Accessed 13 April 2018].

W3C. 2017. HTML 5.2. WWW document. Available at:

https://www.w3.org/TR/html/ [Accessed 5 April 2018].

W3C. 2018. What is CSS?. WWW document. Available at:

https://www.w3.org/standards/webdesign/htmlcss#whatcss [Accessed 5 April

2018]

W3CSchools. 2018. JavaScript Versions. WWW document. Available at:

https://www.w3schools.com/js/js_versions.asp [Accessed 21 April 2018].

webpack.js.org. 2018. Concepts. WWW document. Available at:

https://webpack.js.org/concepts/ [Accessed 21 April 2018].

Wordpress.com. 2018. CSS Basics. WWW document. Available at:

https://en.support.wordpress.com/custom-design/css-basics/ [Accessed 5 April

2018]

https://www.postgresql.org/docs/8.3/static/backup.html
https://www.postgresql.org/docs/8.4/static/history.html
https://www.postgresql.org/docs/8.3/static/app-pgdump.html
https://www.postgresql.org/docs/8.3/static/app-pgrestore.html
https://www.postgresql.org/docs/8.3/static/app-pgrestore.html
https://www.w3.org/TR/html/
https://www.w3.org/standards/webdesign/htmlcss#whatcss
https://www.w3schools.com/js/js_versions.asp
https://webpack.js.org/concepts/
https://en.support.wordpress.com/custom-design/css-basics/

	1 INTRODUCTION
	2 DatabaseS
	2.1 Database types and differences between them
	2.2 Relational databases
	2.2.1 Structured Query Language
	2.2.2 MySQL
	2.2.3 PostgreSQL
	2.2.4 Other relational databases

	2.3 Non-relational databases

	3 DATABASE BACKUP METHODS
	3.1 MySQL
	3.2 PostgreSQL
	3.3 MongoDB

	4 CLOUD SOLUTIONS
	4.1 Overview
	4.2 Cloud-based storages
	4.2.1 Amazon S3
	4.2.2 Google Cloud Storage

	5 SECURITY
	5.1 Encryption
	5.2 Hash functions
	5.3 Security risks in web development

	6 DEVELOPMENT TOOLS AND SERVICES
	6.1 HTML
	6.2 CSS
	6.3 JavaScript
	6.4 Node.js and Express
	6.5 React, Redux and Blueprint
	6.6 Babel and Webpack

	7 IMPLEMENTATION
	7.1 Goals
	7.2 Preparing the environment
	7.2.1 Setting-up Babel and Webpack
	7.2.2 Installing global packages and creating the scripts
	7.2.3 Configuring the web server and main packages

	7.3 Routing
	7.4 Creating data models with Mongoose
	7.5 Implementing the authentication
	7.6 Schema for database engines and storages
	7.7 Database and storage management
	7.8 Performing backups
	7.9 Hash calculations and storage
	7.10 Queue
	7.11 Manual backup and scheduler
	7.12 User interface
	7.13 Results

	8 CONCLUSIONS
	REFERENCES

