

Anttila Henri

Continuous Integration and System Test Automation

Case Exertus

Thesis

Spring 2018

Seinäjoki University of Applied Sciences (SeAMK): School of Technology

Information technology

1

SEINÄJOEN AMMATTIKORKEAKOULU

Opinnäytetyön tiivistelmä

Koulutusyksikkö: Tekniikan yksikkö

Tutkinto-ohjelma: Tietotekniikka

Suuntautumisvaihtoehto: Tietoliikennetekniikka

Tekijä: Henri Anttila

Työn nimi: Jatkuva integraatio ja testiautomaatio: case Exertus

Ohjaaja: Alpo Anttonen

Vuosi: 2018 Sivumäärä: 46 Liitteiden lukumäärä: 1

Tässä opinnäytetyössä toteutettiin järjestelmät ohjelmistokoodin jatkuvaa
integrointia ja testauksen automatisointia varten Exertus Oy:lle. Työn tarkoituksena
oli yhtenäistää ja automatisoida lähdekoodin kääntäminen ajettaviksi
binääritiedostoiksi ja näin mahdollistaa testaamisen automatisoiminen. Työssä
kuvataan Jenkins CI -käännösautomaatiopalvelimen käyttöönottoa sekä
toteutetaan CAN-väylä pohjainen testausautomaatiojärjestelmä ja näiden välinen
yhteistoiminta. Työn tuloksena Exertukselle pystytettiin Jenkins-pohjainen
lähdekoodin käännösautomaatiojärjestelmä sekä testiautomaatiojärjestelmä, jolla
voi ajaa Exertuksen omalla Guitu no code -kehitysympäristöllä toteutettuja testejä.

Avainsanat: automatisointi, jatkuva integrointi, DevOps, CI, järjestelmäintegraatio,
testausautomaatio, ohjelmistotestaus, Jenkins, XStudio

2

SEINÄJOKI UNIVERSITY OF APPLIED SCIENCES

Thesis abstract

Faculty: School of Technology

Degree program: Information Technology

Specialization: Telecommunication technology

Author: Henri Anttila

Title of thesis: Continuous Integration and System Test Automation: Case Exertus

Supervisor: Alpo Anttonen

Year: 2018 Number of pages: 46 Number of appendices: 1

This thesis described the implementation of continuous integration and test auto-
mation systems for Exertus Oy. The purpose of the project described in the thesis
was to standardize and automate the source code build process, which is a prereq-
uisite for automated testing. To this end, the Jenkins build automation server was
taken into use and a custom CAN bus based test automation system was devel-
oped. As a result, Exertus’ daily source code is automatically built and tested each
night on each of their hardware modules. The tests for the test automation system
can be created in Exertus’ own Guitu no-code development environment.

Keywords: automation, continuous integration, DevOps, CI, test automation, sys-
tem integration, software testing, Jenkins, XStudio

3

TABLE OF CONTENTS

Opinnäytetyön tiivistelmä... 1

Thesis abstract .. 2

TABLE OF CONTENTS .. 3

Terms and Abbreviations... 5

Images and Figures ... 9

1 INTRODUCTION ... 10

1.1 Outline of the Thesis ... 11

1.2 Company Introduction: Exertus Oy ... 13

2 EXERTUS PRODUCTS .. 14

2.1 HCM2010S Hybrid Controller Module ... 14

2.2 MIC2000S Multi Information Controller ... 15

2.3 Guitu Graphical Programming Environment .. 16

2.4 Canto2: CAN Monitoring and Commissioning Tool 17

2.5 ExGUI Graphics Abstraction Layer ... 18

3 AIM AND SCOPE .. 19

4 TOOLS .. 21

4.1 Phabricator .. 21

4.2 Jenkins .. 21

4.3 Docker and Containerization ... 23

4.4 GNU Make and Makefiles ... 25

4.5 XStudio Test Management Suite ... 26

4.5.1 XAgent .. 27

4.5.2 XContinuousIntegration, XCI ... 27

4.5.3 XStudio Launcher.. 28

4.6 Controller Area Network (CAN) ... 28

4.7 CANopen... 29

4.7.1 CANopen Object Dictionary .. 30

4.7.2 Process Data Object (PDO) Protocol .. 30

4.7.3 Service Data Object (SDO) Protocol ... 31

4.7.4 Network Management (NMT) Protocol .. 31

4

5 IMPLEMENTING THE BUILD AUTOMATION 33

5.1 Requirements for MIC Platform Guitu Runtime ... 33

5.2 Requirements for MIC Platform ExGUI Library ... 33

5.3 Requirements for Bare Metal Devices ... 33

5.4 Additional Requirements ... 34

5.5 Challenges .. 35

5.6 Implementation .. 36

6 IMPLEMENTING THE TEST AUTOMATION 39

6.1 Challenges .. 39

6.2 Implementing the Wall of Test ... 39

7 CONCLUSIONS .. 44

7.1 Future .. 46

BIBLIOGRAPHY .. 47

APPENDICES.. 51

Appendix 1: Jenkins CI pipeline overall structure 1

5

Terms and Abbreviations

Apache Tomcat An open source Java servlet container. Also see: Java

servlet.

API Application Programming Interface

ash Almquist Shell. A lightweight Unix shell and command lan-

guage popular in embedded Linux systems. Also see: Bus-

yBox.

bash Bourne Again Shell. A Unix shell and command language

widely used in Linux.

BusyBox A software that provides a set of Unix tools in a single ex-

ecutable. Common in embedded systems with limited re-

sources.

C A popular general-purpose computer programming lan-

guage. Imperative paradigm.

C++ A popular general-purpose computer programming lan-

guage. Imperative, object-oriented and generic paradigms.

Heavily influenced by C.

CAN Controller Area Network. See chapter 2.7 for more details.

CANOpen A CAN communication protocol by CiA. See CiA and chap-

ter 2.8.

CD Continuous delivery, practice of automatically pushing pro-

moted release candidates to end users

CI Continuous integration, practice of automatically turning

new source code into an internally distributable software

package.

6

CiA CAN in Automation. International users’ and manufactur-

ers’ group for the CAN network.

CLI Command Line Interface. A text based user interface. Also

see: GUI.

CPU Central Processing Unit

DRY Don’t repeat yourself. A software development principle to

avoid code repetition and data duplication.

DSL Domain-specific language. A programming language spe-

cialized in a particular application domain.

FOSS Free and open-source software

Framebuffer A portion of RAM that contains the bitmap to be drawn on

the display.

Git A distributed revision control system. See chapter 2.1

GRT Guitu Runtime. See chapter 1.5.1.

GUI Graphical User Interface. What you see is what you get.

Also see: CLI.

HTTP Hypertext Transfer Protocol, a fundamental data commu-

nication protocol of the world wide web.

I/O Input / Output

IaC Infrastructure as code

Java A general-purpose, object-oriented computer-program-

ming language by Sun Microsystems / Oracle.

Java bytecode The instruction set of the JVM. Also see: Java, JVM.

Java servlet A Java program that extends the capabilities of a server.

Purpose similar to PHP and Microsoft's ASP.NET.

7

JVM Java Virtual Machine. A virtual computing machine that al-

lows running Java bytecode. Also see: Java, Java

bytecode.

Linux Or GNU/Linux. FOSS operating system built around the

Linux kernel. Also see: FOSS.

Make A build automation tool for creating executable programs

and libraries from the source code based on a Makefile.

Also see: Makefile and chapter 2.5.

Makefile A file that directs Make on how to compile and link a pro-

gram. Also see: Make and chapter 2.5.

Map An abstract data type. Also known as associative array,

symbol table or dictionary. A collection of key-value pairs.

MVP Minimum viable product. See chapter 1.6.

OD Object Dictionary. A CANOpen data model. See chapter

2.8.1.

OOP Object-oriented programming. A programming paradigm

based on the concept of objects.

OS Operating system. Software that manages hardware and

software resources and provides services for computer

programs.

OSI model The Open Systems Interconnection model. A conceptual

model for describing a communication or computing sys-

tem or network.

PDO Process Data Object. A CANOpen communication proto-

col. See chapter 2.8.2 on PDOs for further details.

SDO Service Data Object. A CANOpen communication protocol.

See chapter 2.8.3 on SDOs for further details.

8

QA Quality assurance

SaaS Software as a Service. A centrally hosted, subscription

based software licensing and delivery model.

SCP Secure Copy Protocol. An SSH based file transfer protocol.

Also see: SSH.

SDK Software development kit. A set of tools provided for creat-

ing additional functionality for an existing platform (soft-

ware or hardware).

Shell A user interface for access to an OS’ services.

SQL Standard Query Language. A DSL for managing data

stored in a relational database. See: DSL.

SSH Secure Shell. A cryptographic client-server network proto-

col for secure operation over an unsecure network.

Subversion Also known as SVN. A revision control system akin to Git.

SUT Service / Software / Subject / System Under Test. The tar-

get on which testing is being done.

UI User interface. Also see: GUI, CLI.

Userland Also user space. Code that runs outside an OS kernel,

such as applications.

UX User Experience

VM Virtual Machine. An emulated computer system.

YAML YAML Ain’t Markup Language or Yet Another Markup Lan-

guage. A human readable data serialization language akin

to JSON and XML.

9

Images and Figures

Image 1. HCM2010S Hybrid Controller Module .. 15

Image 2. MIC2000S Multi Information Controller .. 15

Image 3. Sample image of Guitu GUI ... 17

Image 4. Sample image of Canto2 GUI .. 18

Image 5. A simple example Dockerfile describing a Python container 24

Figure 1. Docker container and VM comparison ... 24

Figure 2. XQual XStudio test management suite data model................................ 26

Figure 3. CAN bus cabling .. 29

Figure 4. CAN bus encoding ... 29

Figure 5. The CANopen object dictionary index ranges .. 30

Figure 6. CANopen NMT state diagram .. 32

Figure 7. A Jenkinsfile containing a map of the different build parameters 36

Figure 8. A Jenkins pipeline that uses 'pipepars', a map of pipeline parameters to

control the different steps .. 37

Figure 9. HCM2010 latest build artifacts in the Jenkins GUI 38

Figure 10. A YAML file containing two inputs for test id 1170 41

Figure 11. Parts of class TestCase that show writing the CANOpen object

dictionary and running the test case ... 41

Figure 12. The full utility script that is required for each SUT in Guitu. 43

10

1 INTRODUCTION

Quality assurance is an umbrella term for the practice of preventing mistakes and

defects in manufactured products and provided services. The process of quality as-

surance can look very different depending on its target. In other words, one would

not assure the quality of a 10-story skyscraper with the same methods one uses to

assure the quality of a set of Lego bricks. Yet, the end goal of the process remains

the same. This thesis concerns implementing automated quality assurance in the

realm of embedded computer software and electronics design.

Even inside the realm of software testing the testing requirements are directly cor-

related with the purpose of the software. The on-board computer of the latest air-

plane model, where safety and reliability are of utmost importance, requires far more

comprehensive testing than a web browser based game of chess does. The meth-

ods of and approaches to testing are numerous and testing can be done on multiple

levels of software abstraction. Some of these methods include peer review of the

produced source code, testing the units of the source code, such as functions and

classes, the interfaces or the system as a whole. (Kautto 1996, 1.1.)

Quality assurance can be done by manually operating and manipulating the SUT in

different ways, using different inputs and comparing the actual outcome with the

expectations and making sure that they align. Manual testing is by its very nature

time-consuming and prone to errors. If testing is carried out in this way, for example

by the same software developer who wrote the software, there’s also a risk that the

test cases may be chosen based on how the code is expected to work. In the worst-

case scenario, if a formal testing protocol is not defined or properly followed, there

is also a chance of parts or all the quality assurance process being neglected.

(Kautto 1996, 1.2.)

It is also not enough to test just the new functionality, because in certain situations

new functionality or changes made to an existing one can have unexpected and

unintended side-effects and consequences in unexpected places, a phenomenon

known as regression (Kautto 1996, 2.2). Thus, it is also necessary to make sure that

the already verified functionality remains free of defects. The amount of testing that

11

needs to be carried out increases with the new functionality. It naturally follows, that

manual testing will therefore consume an ever-increasing amount of time.

To overcome the issue of time consumption, testing needs to happen automatically

with every new piece of functionality that has been introduced. Automation enables

the application of all the available tests on every change introduced and also effort-

less reapplication of the tests after the errors have been fixed. This makes sure that

everything that is being tested still retains its original integrity and intended function-

ality. Being able to run the whole suite of tests on every change increases the relia-

bility of the subject under test.

This increased reliability opens further automation opportunities. As the code is be-

ing tested rigorously in a short period of time and in an automatic, formally defined

and codified fashion and on smaller batches of changes, new software versions can

be taken into use more frequently with less need to worry about them being unreli-

able compared to the older ones. This further enables the catching of possible de-

fects earlier through internal user experience thus reducing their spread and impact.

A process like this is promoted by the DevOps movement and referred to as Con-

tinuous Integration. It may not be plausible to do all types of testing on all the

changes and some of the testing might be difficult to automate. A more rigorous

testing process can be carried out less frequently, for example before a new public

release.

The type of testing described in this thesis is a type of black box system testing,

where tests are run against the underlying hardware and software during runtime

without considering the underlying code. This testing is used to determine that the

features being tested produce results that are both predictable and conform to the

formal requirement documentation.

1.1 Outline of the Thesis

The previous chapter provided background information for this thesis. The next in-

troductory chapters will familiarize the reader with the company Exertus Oy and

some of its hardware and software products that are relevant for understanding the

12

rest of this thesis. After that, the aim and scope of this paper is discussed providing

the reader an overall view of the project that is described herein.

The thesis continues by describing the set of tools used to reach the goal of this

paper. The reader will be introduced to Phabricator, Jenkins, Docker, Make and

Makefiles, XStudio Test Management Suite, the CAN bus, the CANOpen specifica-

tion and some of its functionality, Exertus’ own Guitu and the Wall of Test, an in-

house testing configuration running the Exertus Guitu control system applications.

After these chapters, the reader should have an elementary understanding of these

concepts and be able to follow through the next chapters which discuss the actual

implementation details. The implementation chapters first discuss the implementa-

tion of the build automation and, after that, proceed to test automation. Both chap-

ters have an internal structure that goes through the business requirements, chal-

lenges that arise from them and how those requirements affect the implementation

decisions. The last chapter provides a summary of the end results. It also discusses

some of the challenges encountered along the way and finally what the future could

hold for this project.

The thesis will not provide minute details on how all the parts of the system are

installed, implemented or configured where such information is not relevant for the

aim and scope of this paper or doesn't considerably deviate from the documentation

and intended usage of the software in question. There are a lot of smaller tools and

utilities used and not all of them can be described in detail within the scope of this

thesis. Describing any such tools that are considered basic professional knowledge

and as auxiliary or means-to-an-end is outside the scope of this thesis. However, a

rather comprehensive Terms and Abbreviations section is provided. The reader is

highly suggested to look up any new concepts there. If there is a more comprehen-

sive explanation available elsewhere in the paper, the Terms and Abbreviations will

have a reference to the relevant chapter.

During the course of this thesis any source code or data will be presented with the

following formatting:

#!/bin/bash

NUM1=2

13

NUM2=1

if [$NUM1 -eq $NUM2]; then

 echo "Equal"

else

 echo "NOT equal"

fi

Where hexadecimal numbers are used instead of decimal numbers, the prefix 0x is

prepended to the number.

1.2 Company Introduction: Exertus Oy

Exertus Oy, from now on referred to as just Exertus, was founded in the year 2003

in Seinäjoki, Finland. Their core competence is in developing CAN bus based, dis-

tributed machine control systems. To achieve this, Exertus manufactures its own

control system hardware products based on the CAN bus technology. They also

develop software for programming and diagnosing these systems and provide a

comprehensive solution development service based on these products. Solution de-

velopment encompasses the system's whole life-cycle, including services such as

system design, prototyping, testing, series production, customer support and ser-

vice. Exertus aims to provide a full technology stack for building complete control

systems, both small and large. (Exertus Oy, Yritys. Accessed on 23rd Jan 2018)

For marketing purposes, Exertus' hardware products are grouped into four different

product categories: displays, controllers, sensors and other products such as CAN

hubs. In addition to their own hardware, Exertus is also a retailer for the IKUSI brand

remote controls. (Exertus Ltd, Products. [Accessed on 23rd Jan 2018]). Exertus also

has a lineup of software products that are introduced in more detail below.

14

2 EXERTUS PRODUCTS

During the course of this thesis references will be made to Exertus products. While

the project described in this thesis is meant to cover the testing of all Exertus hard-

ware products, only two representative examples are required from a technological

point of view.

This chapter will familiarize the reader with a subset of Exertus’ hardware and soft-

ware products. Instead of the marketing categories mentioned in the company in-

troduction, this thesis uses a high-level technological division for the hardware prod-

ucts; bare metal products and MIC Platform products. The term bare metal product

or system is used to refer to a system that runs without an intervening operating

system and instead runs a monolithic, single-purpose software that interacts directly

with the underlying hardware. A bare metal product used as an example in this pa-

per is the HCM2010S.

MIC Platform system is used to refer to the Exertus line of products that run the

Linux operating system. A MIC Platform product used for the purposes of this paper

is the MIC2000S.This division is made because it affects the way in which these

devices can be interacted with and the actual implementation details.

2.1 HCM2010S Hybrid Controller Module

The HCM2010S Hybrid Controller Module pictured in image 1 is a Guitu-program-

mable I/O controller with 60 configurable I/O channels and two CAN interfaces. The

HCM2010S runs on an ARM Cortex M4 168MHz CPU. (Exertus Ltd, HCM2010S

Tech Doc. [Accessed on 25th February 2018].)

15

Image 1. HCM2010S Hybrid Controller Module
(Exertus Oy, Products. [Accessed on 30th March 2018]).

2.2 MIC2000S Multi Information Controller

MIC2000S Multi Information Controller in image 2 is an embedded Linux based con-

troller that combines a traditional I/O controller, display controller and data logger

with USB, Ethernet, RS232 and CAN interfaces. It runs on an ARM Cortex A9 Dual

Core 800 MHz main CPU and also includes an ARM Cortex M4 168MHz auxiliary

CPU for dedicated handling of the I/O. The MIC2000S has a total of 40 Guitu-pro-

grammable I/Os and three CAN interfaces. (Exertus, MIC2000S Tech Doc. [Ac-

cessed on 25th February 2018].)

Image 2. MIC2000S Multi Information Controller
(Exertus Ltd, Products. [Accessed on 30th March 2018]).

16

2.3 Guitu Graphical Programming Environment

Guitu is Exertus' own graphical programming environment provided for Microsoft

Windows operating systems. It is a multi-user tool used to create GUIs and I/O con-

figurations for machine control systems. It also contains function block diagram

based scripting tools and a debugger. Guitu creates the low-level CAN communica-

tions between the different controllers on the background without the programmer

needing to understand the details of the CAN bus and the CANOpen protocol. (Ex-

ertus Ltd: Guitu Programming Environment). Guitu consists of two different parts:

The Guitu software for programming the controllers and Guitu Runtime (GRT for

short) that is used to run the control system configurations created with Guitu and

to handle the CAN traffic and other lower level details of the CANOpen implemen-

tation. Guitu is programmed in C++. GRT is programmed in C.

17

Image 3. Sample image of Guitu GUI

2.4 Canto2: CAN Monitoring and Commissioning Tool

Canto2 is Exertus' CAN bus monitoring and commissioning tool that conforms with

the standards specified in CANOpen. It can be used to follow and record the traffic

on the CAN bus, show basic information about the status of the different nodes on

the bus and to set node parameters through the use of the CANOpen Service Data

Object (SDO) protocol. (Exertus Ltd: Canto2 Monitoring and Commissioning Tool.

[accessed on 25th Feb].)

18

Image 4. Sample image of Canto2 GUI
(Exertus Ltd, Products. [Accessed on 30th March 2018]).

2.5 ExGUI Graphics Abstraction Layer

Guitu Runtime uses an in-house graphics abstraction layer called ExGUI to draw its

user interface. ExGUI handles the hardware details of drawing graphics, such as

maintaining the frame buffer. It provides a software interface for GRT to draw its UI

on the built-in or external display.

19

3 AIM AND SCOPE

The aim of the project described in this paper is to reinforce Exertus' existing testing

architecture and processes by setting up a framework for a build and test automation

system. Benefits that can be expected from such a system when correctly imple-

mented are:

1. Single common storage for source code

2. A unified way and environment for building the software from source code.

3. A single source for the developers to get the build products, such as soft-

ware libraries and executables that they need without having to rely on

other developers’ help or set up own build environments.

4. A unified process of testing the source code that is produced

5. The build and testing process is run automatically each night. The whole

set of tests is applied to ensure that the software remains as defect free

as possible and that there are no unexpected regressions.

6. Every binary product has gone through a set of these automated tests that

verify the functionality and enhance reliability of the released binary prod-

ucts

The scope of the project described in this paper is to establish a minimum viable

product (MVP) of the build and test automation system. A minimum viable product

is a concept that emphasizes the concept of learning. Eric Ries, author of the pop-

ular entrepreneurship blog Startup Lessons Learned and the author of Lean Startup

Methodology, who coined the term MVP defined it as "that version of a new product

which allows a team to collect the maximum amount of validated learning about

customers with the least effort" (Ries, 2008). Customers in this context refers to

users of the CI system, mainly Exertus employees.

For the MVP it was decided that the following functionalities are required:

1. Specimen of bare metal monolithic firmware and MIC platform applications

are built automatically, in a repeatable and reproducible manner every

night.

20

2. The build products are made available to Exertus' employees via a web

interface

3. The build products are automatically deployed to the test bench automat-

ically every night

4. The test bench hardware modules are updated with the latest software in

an automatic fashion

5. Multiple tests on Guitu scripting block functionality are carried out on mul-

tiple SUTs in an automatic fashion

6. Detailed results of these tests are stored in the test management suite

7. Overall success / failure status of these tests is stored on a per SUT basis

in the build automation system

8. The tests need to be implemented in Guitu to allow the test engineers,

who might not be familiar with programming with for example C, to create

these tests

Having completed these steps, all the necessary basic functionalities have been

built and capability of automating the compiling and testing has been fully demon-

strated. Future development is then just a matter of collecting usage experience and

adapting the design based on that experience and adding more and different types

of tests and adding more SUTs to the Wall of Test.

The scope of this thesis lies more in building a framework for executing tests and

logging their results than it does on the actual implementation of the tests and test

cases. As the project described herein includes a great deal of intercommunication

between multiple different systems, this thesis also describes implementation de-

tails in the domain of system integration.

21

4 TOOLS

The CI pipeline is comprised of four main parts: Phabricator, Jenkins, Docker, Make,

XStudio and what is colloquially referred to as The Wall of Test. A brief introduction

to the relevant concepts of the CAN bus and the CANOpen protocol is also provided.

4.1 Phabricator

Phabricator is a platform for software development collaboration created by Phacil-

ity. It comprises multiple applications that each serve a different purpose. Phabrica-

tor is available in two delivery models: as a SaaS by Phacility or hosted locally on

an in-house server. (Phacility Inc: Phabricator. [Accessed on 27th Jan 2018]). Exer-

tus has chosen to host Phabricator themselves. Phabricator is a FOSS written in

PHP (Phabricator, GitHub, accessed on 1st Feb 2018]).

The following Phabricator applications are used in the current workflow:

1. Differential: peer review tool for source code commits

2. Diffusion: a git repository browser

3. Maniphest: for tracking bugs, ideas and enhancement proposals

4. Phriction: a wiki tool for hosting internal documentation

4.2 Jenkins

Jenkins is an automation server software that can be used to automate virtually

anything that can be put into code. Its most prominent use has been in automation

of repetitive software development tasks such as compiling source code to execut-

able binaries, running automated test procedures, code analysis, software packag-

ing and making new software versions available to company's internal users such

as developers as well as end users. Jenkins is a common tool in a DevOps toolchain

to facilitate continuous integration and continuous delivery.

22

Jenkins is a server based system that runs in a Java servlet container, such as

Apache Tomcat (Jenkins.io, Installing Jenkins. Accessed on 1st Feb 2018). Histori-

cally, development of Jenkins started as Hudson by Kohsuke Kawaguchi at Sun

Microsystems. After Oracle's acquisition of Sun Microsystems, development of Jen-

kins began as a source code fork of Hudson. Jenkins was made available as a

FOSS under the MIT license. (Kawaguchi, 2014).

Jenkins uses the concept of a pipeline to define and codify a process that involves

building the software in a reliable and repeatable manner and progressing the built

software through stages of testing and deployment. The pipeline is written in a do-

main-specific language (DSL) into a text file known as a Jenkinsfile. It provides a

means to codify the build, test and deployment process and commit it into a source

code control system, such as Git. Jenkins also supports creating different types of

pipeline jobs through its GUI. The GUI based jobs were decided against as admin-

istratively heavy and less transparent. By writing the pipeline as code, Exertus can

start putting parts of its infrastructure and processes into code. (Jenkins.io, Pipeline:

What is Jenkins Pipeline? [Accessed on 1st Feb 2018].)

The Pipeline DSL comes in two flavors: declarative and scripted. The former is a

later development that aims to make writing Pipelines easier and to provide richer

syntactical features over the latter. The scripted pipeline allows more flexibility. (Jen-

kins.io, Pipeline: Declarative versus Scripted Pipeline syntax. [Accessed on 1st Feb

2018].)

Jenkins also includes a concept of shared libraries. In effect, a shared library is a

collection of procedures written in Apache Groovy that can be shared by multiple

pipelines, avoiding redundancy (Jenkins.io, Extending with Shared Libraries. [Ac-

cessed on 1st Feb 2018]). Apache Groovy is an object-oriented programming lan-

guage for the Java platform that can be compiled to bytecode executable by the

JVM.

There iss also a new development in Jenkins known as Blue Ocean. Blue Ocean is

an enhancement for Jenkins GUI and UX. In its current form, however, the traditional

Jenkins GUI is more mature. The move to Blue Ocean can be done at a later date,

23

when it has reached feature parity with the traditional GUI approach. (Jenkins.io,

Blue Ocean [Accessed on 1st Feb 2018].)

Jenkins has a way of distributing its pipeline workloads between multiple nodes, or

agents. This feature of Jenkins, however, is not utilized in this project. Every work-

load is run on the master node.

4.3 Docker and Containerization

Docker is a container platform developed by Docker, Inc. Containerization is a form

of operating-system-level virtualization. Instead of creating a complete virtual ma-

chine with a separate guest OS, Docker shares the host machine kernel between

the containers, but virtualizes the userland. Any state that is created inside a Docker

container, is only available inside that container and doesn’t affect the state of the

host machine or the other containers. Docker is primarily developed for Linux, alt-

hough a Windows version of Docker is also available. (Docker, Inc., Get Started,

Part 1: Orientation and setup. [Accessed on 2nd April 2018].)

A Docker container is launched by running a Docker image. A Docker image is an

executable package that includes everything needed to run an application. The

code, libraries, environment variables and configuration files. A container is a

runtime instance of an image that becomes a process that holds the current state.

(Docker, Inc., Get Started, Part 1: Orientation and setup. [Accessed on 2nd April

2018].)

Containers are defined by so called Dockerfiles that are simple text files used to

describe what goes into the environment inside a Docker container. (Docker, Inc.,

Get Started, Part 2: Containers. Accessed on 2nd April 2018. [Accessed on 2nd April

2018].)

24

Figure 1. Docker container and VM comparison
(medium.com / flow.ci: Introduction to Containers: Concept, Pros and Cons, Or-
chestration, Docker, and Other Alternatives. [Accessed on 2nd April 2018]).

Image 5. A simple example Dockerfile describing a Python container
(Docker, Inc., Get Started, Part 2: Containers. Accessed on 2nd April 2018).

25

flow.ci lists in its Medium.com blog post the following pros and cons for using Docker

containers:

Pros of using Docker containers

1. Small file size compared to VMs

2. Containers need less resources to run than VMs

3. Starting new containers takes a very short time

4. Application and its dependencies become portable

5. Simpler deployment

6. Cost effective

Cons of using Docker containers

1. Security. Less isolation than in VMs. Compromised host OS kernel com-

promises all containers.

2. All containers on the same server must use the same underlying OS

3. Networking containers is tricky

(medium.com / flow.ci: Introduction to Containers: Concept, Pros and Cons, Orches-

tration, Docker, and Other Alternatives. [Accessed on 2nd April 2018].)

Basically, Docker reliably replicates state and moves it from the host machine and

inside the containers, keeping the host machine cleaner and also easier to recreate

by reducing the need so setup state and software dependencies.

4.4 GNU Make and Makefiles

GNU Make is a build automation tool that control the generation of executables from

the program’s source code files. A Makefile contains a list of rules that in turn contain

a series of commands to execute to build a target file from source files. It also spec-

ifies a list of the target file’s dependencies.

The Makefile takes the following pseudo-code shape:

target … : prerequisites …

 commands

26

 …

 …

(Free Software Foundation, Make manual. [Accessed on 2nd April 2018]).

4.5 XStudio Test Management Suite

XStudio is a test management suite created by the French company XQual (XQual,

Contact us. [Accessed on 3rd March 2018]). Its structure is based on the following

data model:

Figure 2. XQual XStudio test management suite data model
(XQual, User Guide. Introduction, Data model. [Accessed on 3rd March 2018]).

The aspects of the XStudio data model that are most relevant for this thesis are the

SUTs, tests and test campaigns. Outside of the above diagram, XStudio also has

the concept of test cases and campaign sessions, which are of interest to the reader.

An SUT is an abstract object that represents a target that is being tested (XQual,

User Guide. The SUTs. [Accessed on 3rd March 2018]). Concretely, these are all

the different Exertus products, such as the HCM2010S and the MIC2000S.

27

The SUTs have attached to them a set of business requirements. For example, a

requirement could specify that “The module must implement the bitwise OR-

operation for arbitrary signed integers” . (XQual, User Guide. The requirements).

The requirements are then fleshed out by more detailed specifications, such as “The

bitwise OR-operation must handle negative integers correctly” (XQual, User Guide.

The specifications. [Accessed on 3rd March 2018].)

The specifications, in turn, are backed by a set of tests. A test is the smallest

executable unit in XStudio. The tests describe the steps that are necessary to make

sure that the specified functionality works as expected. The steps can be automated

or manual. A test can implement multiple test cases that carry out the testing in

different ways and with different parameters, such as implementing different edge

cases of the test scenario. (XQual, User Guide. The tests. [Accessed on 3rd March

2018].)

The tests are then collected inside different test campaigns. An example test

campaign could be “Verify Guitu scripting block functionality”. This campaign would

then include the test described above and lots of other, similar tests. A campaign

session is then generated to have XStudio run all the tests and their test cases that

belong to the campaign. (XQual, User Guide. The campaigns. [Accessed on 3rd

March 2018].)

4.5.1 XAgent

XAgent is a headless executable that can be left running in the background. It polls

the XStudio database at specified intervals. If it detects a test campaign that it can

run, it will run it and store the results in the XStudio database. (XQual, XAgent.

[Accessed on 3rd March 2018].)

4.5.2 XContinuousIntegration, XCI

XContinuousIntegration, from now on referred to as XCI, is a command line utility

that can be used to schedule test campaign sessions in XStudio. It provides an

28

integration APIs that can be used together with automation systems such as Jenkins

to build a CI pipeline. An XAgent will pick up the test campaign sessions generated

by XCI and run them and provide information about the test results that can be fed

back to the CI automation system. (XQual, Continuous Integration. [Accessed on 3rd

March 2018].)

4.5.3 XStudio Launcher

XQual provides a collection of different launchers for running automated tests in

different types of systems. The launchers are open-sourced and provided as an

SDK, so that they can be modified as much as necessary. The launchers are built

using Java. Their purpose is to run an external script that implements the actual

testing functionality and returns information about the test results when it has fin-

ished running. (XQual, Open-Source launchers. [Accessed on 3rd March 2018].)

4.6 Controller Area Network (CAN)

A Controller Area Network, or CAN bus, was originally developed for use in passen-

ger cars. It has since seen widespread used in different application domains, such

as industrial machine control systems, home and building automation, mobile ma-

chines, medical devices as well as many other. (CiA, CAN lower- and higher-layer

protocols. [Accessed on 1st April 2018].)

CAN is a multi-master serial bus system that relies on broadcast messages. This

means that any node is allowed to access the bus at any time if it is idle. The mes-

sages will be received by each node on the bus. Access conflicts are resolved by a

bit-wise arbitration of the CAN-ID. The bus work in two levels: recessive and domi-

nant. The dominant level overwrites the recessive level. All nodes that are transmit-

ting a recessive level, but detect a dominant level on the bus will lose bus arbitration

and transit into listening mode. The cabling of the CAN bus is usually implemented

with a twisted-pair copper cable with a common ground. (CiA, CAN data link layers

in some detail. [Accessed on 1st April 2018].)

29

The CAN bus uses a voltage differential between CAN HIGH (CAN_H) and CAN

LOW (CAN_L) conductors to physically encode the CAN messages. Using a voltage

differential increases robustness and tolerance to electromagnetic interference.

(CiA, CAN high-speed transmission. [Accessed on 1st April 2018].)

Figure 3. CAN bus cabling
(CiA, CAN data link layers in some detail. [Accessed on 1st April 2018]).

Figure 4. CAN bus encoding
(CiA, CAN high-speed transmission. [Accessed on 1st April 2018]).

4.7 CANopen

CANopen is a communication protocol and device profile specification that imple-

ments the OSI model layers from three to seven for CAN. A CANopen compliant

device has three logical parts:

1. The CANopen protocol stack, which handles the communication via the

CAN network.

2. The application software, which provides internal functionality and inter-

face to the hardware.

30

3. The CANopen object dictionary, that provides an interface between the

protocol and application software.

(CiA, CANOpen – The standardized embedded network [Accessed on 1st April
2018].)

4.7.1 CANopen Object Dictionary

Every CANopen node implements an object dictionary, abbreviated as OD. It serves

as a data storage that can be read and written by other nodes on the bus. It stores

the node’s configuration and state. The Object Dictionary consists of 24-bit ad-

dresses that are split into a 16-bit index and an 8-bit sub index. Any OD entry is

readable by the CANopen communication services, such as the SDO protocol. (CiA,

CANopen internal device architecture. [Accessed on 1st April 2018].)

Figure 5. The CANopen object dictionary index ranges
(CiA, CANopen internal device architecture. [Accessed on 1st April 2018])

4.7.2 Process Data Object (PDO) Protocol

PDOs are used for broadcasting high priority control and status information. A PDO

can be triggered by an event, it can be timer-driven, requested remotely or tied to

synchronization messages. A PDO can communicate up to eight bytes of data. (CiA,

Process data object (PDO). [Accessed on 1st April 2018].)

31

4.7.3 Service Data Object (SDO) Protocol

SDOs enable read/write access to the CANopen object dictionary. An SDO consists

of two CAN data frames. SDO facilitates peer-to-peer client-server communication

between two CANopen devices. The owner of the accessed object dictionary acts

as the SDO server and the device that accesses the object dictionary is the SDO

client. (CiA, Service data object (SDO). [Accessed on 1st April 2018].)

4.7.4 Network Management (NMT) Protocol

A CANopen device must implement support for the CANopen network management

state machine. The NMT state machine consists of following states

1. Initialization

2. Pre-operational

3. Operational

4. Stopped

(CiA, Network management (NMT). [Accessed on 1st April 2018].)

The NMT system is controlled by one node that is chosen as the NMT master. The

NMT commands are sent in a single CAN frame with a data length of two bytes.

When a node receives an NMT frame containing its own node id, it must perform

the commanded state transition. (CiA, Network management (NMT). [Accessed on

2nd April].)

32

Figure 6. CANopen NMT state diagram
(CiA, Network management (NMT). [Accessed on 2nd April 2018]).

33

5 IMPLEMENTING THE BUILD AUTOMATION

To be able to automate testing of the latest developments in the source code in the

first place, the building of the source code into executable binary needs to be auto-

mated. Exertus has already done some experiments with Jenkins, but a more com-

prehensive implementation is required.

5.1 Requirements for MIC Platform Guitu Runtime

All the MIC Platform devices use a version of the Linux operating system and exe-

cute Guitu Runtime as a userland application on top of it. Compiling GRT is depend-

ent on a graphics library, which is a single file generated from the ExGUI’s source

codes. GRT has a Makefile available, but the building process still depends on a set

of different build flags provided by the user.

An older version of the Linux kernel (from now on “The older system” as opposed to

“The new system”) used on one of the MIC Platform devices also needs to be con-

sidered. The older system and the new system are built using a different build tool-

chain. The source code for GRT is stored in a single Git repository which is used for

all MIC Platform devices.

5.2 Requirements for MIC Platform ExGUI Library

ExGUI needs to be compiled to compile GRT. Similar to Guitu Runtime, it uses two

different build toolchains for the older system and the new system. Both ExGUI and

GRT need to be built with the same build toolchain to be compatible with each other.

The source code for ExGUI is also stored in a single Git repository.

5.3 Requirements for Bare Metal Devices

Some of the bare metal devices have their source code stored in Subversion repos-

itories. Some have had their source code moved over to Git. It was decided that any

34

source code stored in Subversion repositories would be left out of the build automa-

tion scope only to be implemented when they have been moved over to Git. The

bare metal devices are dependent on two different Git repositories: the hardware

library, which implements the low-level hardware handling and GRT. Some bare

metal devices have a built-in display and thus also need ExGUI.

These dependencies are gathered together into a Git super project using Git’s sub-

module functionality, which allows a Git repository to contain other repositories.

These submodules can be frozen to a specific commit to allow controlled updates

instead of always using the latest commits.

The hardware library needs to be built with the correct build toolchain and correct

flags for make. If ExGUI is needed, it needs to be supplied with the hardware library

files. After that, GRT can be built but it needs both the hardware library files and the

ExGUI library file.

5.4 Additional Requirements

Exertus wants to also support the concept of different binary flavors. A binary flavor

in this context means a binary executable created with a different set of build flags

resulting in a different binary product. Candidate flavors could for example be a re-

lease version aimed for public release, an internal debug version with debugging

symbols left intact or a version that excludes some of the more advanced GRT fea-

tures in favor of backwards compatibility.

The resultant executable and binary files should also be packaged in a certain for-

mat to make them easy to use. It would also be useful for users to be able to use

Jenkins to build from source code branches other than the master branch to be able

to test more experimental features. Even better, if the custom branch functionality

could also be extended to the downstream dependencies such as the ExGUI. Users

should be able to specify an identifiable name for their builds, but a sane default

should be available too.

35

Some of the build toolchains have already been containerized, but a few of them

are installed locally on the Jenkins server. This will also need to be considered when

planning the Jenkins pipeline.

When dependencies’ source code is changed, every relevant firmware and applica-

tion need to be rebuilt to ensure that no module ends up being broken until someone

in the future tries to compile its firmware. The CI pipeline acts as a type of smoke

test in that it ensures that each and every module’s source code remains buildable

and that the modules can run any tests implemented for them.

5.5 Challenges

It is clear that a single declarative style pipeline per source code repository won’t be

enough to meet all these requirements, as its syntax and functionalities are quite

restrictive by design (Jenkins.io, Documentation: Pipeline syntax. Accessed on 2nd

April 2018). It won’t allow for the conditionality that the requirements specified in the

previous chapter set. The declarative pipeline can include blocks of scripted pipeline

code, which are far more flexible, to the limits imposed only by the Groovy scripting

language (Jenkins.io, Documentation: Pipeline syntax. Accessed on 2nd April 2018).

However, without a way to parameterize the pipeline through some sort of external

input, the pipeline structure would have to be repeated in multiple Jenkinsfiles with

different built in variable values for the different hardware. That would increase the

administrative burden whenever a change must be made and opens up for introduc-

ing bugs and inconsistent behavior down the road. However, the declarative syntax

is desirable, as it is the one recommended by Jenkins team and it also provides a

better visualization of the CI pipeline in the Jenkins GUI. Jenkins has available a

plug-in that provides parameterized builds, but the parameters for that plug-in would

need to be inserted in a job specified inside the Jenkins GUI, which would further

break away from the endeavor of putting parts of the infrastructure and processes

into revision controlled files and add functionality duplication and administrative

overhead.

36

5.6 Implementation

The common denominator for all the different requirement permutations is the

stages and steps that are necessary to implement. What varies though is how each

step is implemented for the various scenarios described above. Question then be-

comes how to both encapsulate the similarity of the overall Jenkins pipeline struc-

ture but facilitate different implementations details. Consult Appendix 1 for an overall

structure of the pipeline and variations that need to be facilitated at each stage.

This was accomplished by reducing the actual Jenkinsfiles to maps containing pa-

rameters that describe the target of the build and include all the necessary infor-

mation to facilitate runtime decisions on how to accomplish the pipeline steps.

Figure 7. A Jenkinsfile containing a map of the different build parameters

The parameters are stored inside a custom Jenkins DSL block that retrieves the

necessary pipeline structure from a Jenkins shared library file. The parameters that

are brought in to the pipeline environment as input from the custom Jenkins DSL

block are passed through a function that validates them and computes some addi-

tional parameters based on the ones defined in the Jenkinsfile.

After validation and computation, the extended set of parameters is injected into the

pipeline’s runtime environment. The pipeline can then use these parameters as in-

put to Jenkins Shared Library functions.

37

Figure 8. A Jenkins pipeline that uses 'pipepars', a map of pipeline parameters to
control the different steps

The function can do its workload and branch the execution based on these param-

eters as necessary.

Shell scripts were created to include new build targets to reduce the need for the

developers to remember different sets of build flags and to provide a simple interface

for Jenkins to build different binaries. Now the Jenkins functions can just call these

38

shell scripts to run the build process. The scripts are also available for anyone who

checks out the source code repository.

Where Docker is used, Windows bat files and Linux shell scripts were added to the

repositories to include suitable Docker run commands. These can be used by both

Jenkins as well as anyone who checks out the source code and has Docker installed

locally. The script files, whether for Windows or Linux, utilize Make and the Makefiles

inside a Docker container containing the suitable build toolchain.

The resultant build artifacts are stored and made available in a predefined format

for everyone through the Jenkins GUI. After this, they are deployed to WoT Control-

ler, which acting as the bus NMT master will pick up the new firmware files and

update the CAN bus nodes. After this, a suitable XContinuousIntegration call is is-

sued and the test automation can take over.

Figure 9. HCM2010 latest build artifacts in the Jenkins GUI

39

6 IMPLEMENTING THE TEST AUTOMATION

It was decided that the first type of testing that would be implemented as a proof of

concept would be testing of Guitu scripting block functionality. Testing the scripting

blocks already tests a lot more than the blocks themselves. It also executes a lot of

the underlying GRT code to verify its functionality. Testing will need to happen every

night on the latest versions of each firmware. Both Jenkins and the team of testers

will need to be able to trigger any single test or a set of tests using XStudio.

6.1 Challenges

In the beginning, most of the challenges stemmed from the fact that the testing

needs to be implemented in Guitu. There seemed to be a lot of logic that needs to

be similar between the different SUTs and possibly different Guitu test configura-

tions in the future. All of this foretold about a lot of code duplication resulting in a

heavy administrative burden, especially if some of the duplicated code units needed

to be changed. Another challenge was to figure out how to provide suitable test

inputs and get the test result back from the test configuration during runtime and be

able to compare that to what was expected from the test. In the end, both questions

had a very straightforward answer, but figuring them out took a few iterations. The

intermediate iterations will be discussed in the Retrospective chapter. Integrating

Guitu scripts and GRT with XStudio also poses some questions that need answer-

ing.

6.2 Implementing the Wall of Test

The WoT starts logically inside XStudio. There, a test campaign session is run. This

campaign session includes one or more tests which in turn include one or more test

cases. XStudio schedules this test campaign session with an XAgent that is running

on a Linux laptop colloquially known as The WoT Master.

The WoT Master is connected to a CAN network through a USB-CAN adapter and

the SocketCAN software interface. SocketCAN uses Berkeley socket API, the Linux

40

network stack and implements the CAN device drivers as standard Linux network

interfaces (The Linux Kernel Archives. [Accessed on 22nd April 2018]). The laptop

is also setup with python-canopen, a FOSS Python library that implements the CAN-

Open protocol.

The XAgent on The WoT Master picks up this campaign session and runs XStudio

Python launcher passing it a set of parameters that are used to control the actual

testing. For this, the launcher was customized a bit to better suit Exertus’ needs.

The launcher expects to find a Python script located in the following folder:

<test_root>/<test_name>/<test_name>.py

This is a challenge, since the current WoT implementation only uses one generic

Python script instead of many specific ones. The challenge was overcome by mod-

ifying the Java code of the Python launcher so that when it is run, it creates this

directory structure, but with a symbolic link pointing at the actual script.

<test_root>/<test_name>/<test_name>.py -> <test_root>/WoT.py

It would have been simpler just to hard code the actual launcher script, but because

of the way XStudio expects to be notified of finished tests, this would’ve blocked any

chance of running tests in parallel in the future.

The XStudio Python launcher is modified so that it launches WoT.py with the follow-

ing set of parameters:

 --test_id: ID number of the test in XStudio

 --sut_name: Name of the SUT in XStudio

 --testcaseindex: Index of the test case in XStudio

 --log: Name of the test result log file to be created in format <test

name>_<test case index>.txt

WoT.py then parses these command line arguments to control the rest of the testing.

It reads a YAML file whose name corresponds with --test_id. The file contains a test

41

configuration, which for now is a map of test inputs that should be used for the test

case indicated by --testcaseindex together with an expected output of the test case

with the given inputs.

Figure 10. A YAML file containing two inputs for test id 1170

--test_id and the test inputs read from the YAML test configuration are then written

into correct SUT’s object dictionary through the SDO protocol. When all the neces-

sary information is written in to the OD, one last entry called runflag is set to a certain

value to let the SUT know that it can now start running a test.

Figure 11. Parts of class TestCase that show writing the CANOpen object dictionary
and running the test case

42

A Guitu script that is run periodically on the SUT then picks up this runflag signal,

inspects the test-id and runs a system-global test selector script that points it to the

script that implements the actual test. This test case is then run with the values

written in to the OD used as inputs to the Guitu script that implements the test case.

When the test is finished, the result is written in to the OD and runflag is set to a

value that signals the controlling Python script that the test was finished success-

fully. The Python script polls the runflag value. When it detects a finished test, it

reads the test result from the OD of the current SUT and outputs it into a log file in

a format expected by XStudio. It then signals XStudio that the test is completed by

writing an empty file with the name test_completed.txt.

XStudio launcher picks up the creation of this file, parses the log file and writes the

test result in to the XStudio database. If there are remaining test cases in the test,

they are run similarly. When all the test cases have been completed, the test is ready

and the next one can be run until all the tests in the campaign session have been

finished.

A test operator can just build a test campaign in XStudio, create the test case con-

figuration file with YAML and implement the test scripts in Guitu. After this these can

be run on demand from the XStudio or by Jenkins via XContinuousIntegration. A

minimal amount of utility scripting needs to be done for each SUT in Guitu.

43

Figure 12. The full utility script that is required for each SUT in Guitu.

44

7 CONCLUSIONS

The main goal of this thesis was accomplished. Exertus made a major stride towards

CI by implementing nightly build and building facilities for automated building and

testing. Further developments are now a matter of implementing more and different

kinds of tests and bringing in more hardware modules under CI and testing. Exertus

can now start collecting experience and feedback to guide future development of

the system and make informed decisions on future development based on this ex-

perience. With the power of Python, CAN bus, the CANOpen protocol and all the

functionality provided by the GRT the system is very robust and extensible. The

testers can implement the test scripts in the familiar Guitu environment and specify

all the test inputs for the test scripts in a user-friendly YAML configuration file that

can be version-controlled. The author strongly believes that it is a great compliment

to Exertus’ pre-existing testing regimen given some time to mature.

The final implementation of the test automation system is surprisingly simple, but

the path to that solution went through a couple of less successful iterations, that

were quickly deemed sub-optimal in varying aspects. The first version of the system

was based entirely on Guitu configurations, which relied on text file based inputs to

parameterize the testing. Similarly, all the log output was done via Guitu scripting.

This does not scale very well and introduces a lot of copy and paste scripts that

build an administrative burden for the future, especially if something needs to be

changed. Some of this logic would also have to be copied to other Guitu configura-

tions to implement different kinds of testing. Another downside to this approach was

the fact that one extra MIC module would have to be dedicated as a controller mod-

ule for the SUTs, introducing redundant hardware to the Wall of Test.

The next implementation relied on Linux shell scripts, Exertus CLI CAN client Ex-

ecan and the CANOpen PDO protocol. The goal was to put more logic into version

controllable, reusable code and less inside the Guitu configuration. All the code was

still run on a MIC module. This was a step into the right direction, but due to some

of the properties of Execan this was not ideal either. This could have probably been

overcome by modifying Execan and to some extent by using SDO instead of PDO.

45

The implementation after this relied on Python and the CAN bus, but was still run

on a MIC module. This wouldn’t have been a problem otherwise, but an embedded

hardware module such as the MIC is quite inflexible when it comes to installing new

software, making it more difficult to leverage for example Python’s external libraries.

This implementation used some custom code to do basic SDO input and output

through a Linux character device node representing the CAN bus. However, it was

left unfinished when the final epiphany of moving all the Python code to the WoT

Master struck resulting in more flexible development environment and the final im-

plementation with python-can and python-canopen together with YAML test config-

uration files. This results in a minimal amount of logic stored inside the Guitu con-

figuration.

Most of these sub- optimal implementations were result of the authors’ unfamiliarity

with the CAN bus and the ways that CANOpen allows interacting with the modules.

The initial requirements also gave the author an impression that as much as possi-

ble of the testing should be done in Guitu, which resulted in the first implementation

but also in the realization that it would not scale well to larger amounts and several

types of tests. From that point onward, after having cleared that it would be accepta-

ble to implement some logic in written source code instead of Guitu configurations,

the progress towards the final implementation was relatively quick.

Implementing the build automation in Jenkins was not entirely straightforward either,

but with the help of Jenkins Shared Library it was possible to create a single pipeline

script that had enough intelligence built into it so that it can run the different varia-

tions of the build, deploy and test process stages. Everything is built and tested

nightly to provide an overview of all the different hardware products and their soft-

ware and their status after the past day’s development work. Executables and pro-

gramming libraries were made available through an easy to use GUI in Jenkins and

employees can retrieve them without having to rely on the developers to get what

they need, freeing up time and decreasing the amount of distractions. All the build

procedures have now also been codified and the toolchains required to build the

software are available for Jenkins reducing reliance on individual computers and

persons.

46

7.1 Future

When the number and variety of implemented tests grow, it might be necessary to

look into running some of the tests in parallel instead of the current sequential logic.

Some corner stones to enable this were already laid in the design process. Tying

together Phabricator and Jenkins to create more automation into the continuous

integration environment, where every introduced change is automatically built and

tested in real time is also a possible path worth considering.

47

BIBLIOGRAPHY

Burnstein, Ilene 2003. Practical software testing: a process-oriented approach.
New York: Springer Verl

CAN in Automation (CiA). No date. CAN data link layers in some detail [web
page]. [Accessed on 1st April 2018] Available at: https://www.can-cia.org/can-
knowledge

CAN in Automation (CiA). CAN high-speed transmission [web page]. [Accessed on
1st April 2018]. Available at: https://www.can-cia.org/can-knowledge/can/high-
speed-transmission/

CAN in Automation (CiA). No date. CAN lower- and higher-layer protocols [web
page]. [Accessed on 1st April 2018]. Available at: https://www.can-cia.org/can-
knowledge/can/can-data-link-layers/

CAN in Automation (CiA). No date. CANopen: CANopen internal device architec-
ture [web page]. [Accessed on 1st April 2018]. Available at: https://www.can-
cia.org/can-knowledge/canopen/device-architecture/

CAN in Automation (CiA). No date. CANopen: The standardized embedded net-
work [web page]. [Accessed on 1st April 2018]. Available at: https://www.can-
cia.org/canopen/

CAN in Automation (CiA). No date. Network management (NMT) [web page]. [Ac-
cessed on 1st April 2018]. Available at: https://www.can-cia.org/can-
knowledge/canopen/network-management

CAN in Automation (CiA). No date. Process data object (PDO) [web page]. [Ac-
cessed on 1st April 2018]. Available at: https://www.can-cia.org/can-
knowledge/canopen/pdo-protocol/

CAN in Automation (CiA). No date. Service data object (SDO) [web page]. [Ac-
cessed on 1st April 2018]. Available at: https://www.can-cia.org/can-
knowledge/canopen/sdo-protocol/

Docker, Inc. No date. Get Started, Part 2: Containers [web page]: Available at:
https://docs.docker.com/get-started/part2

Docker, Inc. No date. Get Started, Part 1: Orientation and setup [web page]: Avail-
able at: https://docs.docker.com/get-started/

Exertus Oy. No date. Yritys [web page]. [accessed on 23rd Jan 2018]. exertus.fi >
Yritys. Available at: http://exertus.fi/?lang=fi&page=Yritys

https://www.can-cia.org/can-knowledge
https://www.can-cia.org/can-knowledge
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/canopen/device-architecture/
https://www.can-cia.org/can-knowledge/canopen/device-architecture/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/can-knowledge/canopen/network-management
https://www.can-cia.org/can-knowledge/canopen/network-management
https://www.can-cia.org/can-knowledge/canopen/pdo-protocol/
https://www.can-cia.org/can-knowledge/canopen/pdo-protocol/
https://www.can-cia.org/can-knowledge/canopen/sdo-protocol/
https://www.can-cia.org/can-knowledge/canopen/sdo-protocol/
https://docs.docker.com/get-started/part2
https://docs.docker.com/get-started/
http://exertus.fi/?lang=fi&page=Yritys

48

Exertus Ltd. No date. About Us [web page]. [accessed on 23rd Jan 2018].
http://www.exertus.fi/?lang=en > About us. Available at: http://exer-
tus.fi/?lang=en&page=About%20us.

Exertus Ltd. No date. Canto2 Monitoring and Commissioning Tool [PDF Docu-
ment]. [accessed on 25th Feb]. Available at: http://www.exertus.fi/files/Tiedos-
tot/Canto2_Commissioning_Tool.pdf

Exertus Ltd. No date. Guitu Programming Environment [PDF Document]. [ac-
cessed on 25th Feb]. Available at: http://www.exertus.fi/files/Tiedos-
tot/GUITU_Programming_Environment.pdf

Exertus Ltd. No date. HCM2010S Tech Doc [PDF Document]. [accessed on 25th
Feb]. Available at: http://www.exertus.fi/files/Tiedostot/Tech-
Doc_HCM2010S.pdf

Exertus Ltd. No date. MIC2000S Tech Doc [PDF Document]. [accessed on 25th
Feb]. Available at: http://www.exertus.fi/files/Tiedostot/Tech-
Doc_MIC2000S_revD.pdf

Exertus Ltd. No date. Products [web page]. [accessed on 23rd Jan 2018].
http://www.exertus.fi/?lang=en > Products. Available at: http://exer-
tus.fi/?lang=en&page=Products

flow.ci / Medium.com, 2016. Introduction to Containers: Concept, Pros and Cons,
Orchestration, Docker, and Other Alternatives [web page]. Accessed on 2nd
April 2018. USA: A Medium Corporation. Available at: https://medium.com/flow-
ci/introduction-to-containers-concept-pros-and-cons-orchestration-docker-and-
other-alternatives-9a2f1b61132c

Free Software Foundation. No date. GNU make manual [web page]. Available at:
https://www.gnu.org/software/make/manual/make.html

Jenkins.io. No date. Documentation, Blue Ocean [web page]. [accessed on 3rd
March]. Available at: https://jenkins.io/doc/book/blueocean/

Jenkins.io. No date. Documentation, Extending with Shared Libraries [web page].
[accessed on 3rd March]. Available at: https://jenkins.io/doc/book/pipe-
line/shared-libraries/

Jenkins.io. No date. Documentation, Installing Jenkins [web page]. Available at:
https://jenkins.io/doc/book/installing/#installing-jenkins

Jenkins.io. No date. Documentation, Pipeline: Declarative versus Scripted Pipeline
syntax [web page]. [accessed on 3rd March]. Available at: https://jen-
kins.io/doc/book/pipeline/#declarative-versus-scripted-pipeline-syntax/

http://www.exertus.fi/files/Tiedostot/Canto2_Commissioning_Tool.pdf
http://www.exertus.fi/files/Tiedostot/Canto2_Commissioning_Tool.pdf
http://exertus.fi/?lang=en&page=Products
http://exertus.fi/?lang=en&page=Products
https://medium.com/flow-ci/introduction-to-containers-concept-pros-and-cons-orchestration-docker-and-other-alternatives-9a2f1b61132c
https://medium.com/flow-ci/introduction-to-containers-concept-pros-and-cons-orchestration-docker-and-other-alternatives-9a2f1b61132c
https://medium.com/flow-ci/introduction-to-containers-concept-pros-and-cons-orchestration-docker-and-other-alternatives-9a2f1b61132c
https://www.gnu.org/software/make/manual/make.html#Makefiles
https://jenkins.io/doc/book/pipeline/#declarative-versus-scripted-pipeline-syntax/
https://jenkins.io/doc/book/pipeline/#declarative-versus-scripted-pipeline-syntax/

49

Jenkins.io. No date. Documentation, Pipeline Syntax [web page. Available at:
https://jenkins.io/doc/book/pipeline/syntax/

Jenkins.io. No date. Documentation, Pipeline: What is Jenkins Pipeline? [web
page]. [accessed on 3rd March 2018]. Available at: https://jen-
kins.io/doc/book/pipeline/#overview

jenkinsci / jenkins. No date. GitHub source code repository: jenkins/LICENSE.txt
[text document]. [accessed on 1st Feb 2018]. Available at:
https://github.com/jenkinsci/jenkins/blob/master/LICENSE.txt

Kawaguchi, Kohsuke 2014. Hudson [PDF file]. Archived by Wayback Machine In-
ternet archive. Original URI: https://www.java.net//blog/kohsuke/ar-
chive/20070514/Hudson J1.pdf. Available at: https://web.ar-
chive.org/web/20140701020639/https://www.java.net//blog/kohsuke/ar-
chive/20070514/Hudson%20J1.pdf.

Kautto, Tuomas 1996. Ohjelmistotestaus ja siinä käytettävät työkalut:
ohjelmistotekniikan seminaariesitelmä [web site]. [accessed on 30th March
2018]. Available at: http://www.mit.jyu.fi/opiskelu/seminaarit/ohjelmisto-
tekniikka/testaus/#RTFToC1. University of Jyväskylä, Jyväskylä, Finland

Limoncelli, Thomas A., Hogan, Christina J. and Chalup, Strata R. 2017. The Prac-
tice of System and Network Administration: DevOps and Other Best Practices
for Enterprise IT Volume 1, Third Edition. USA: Addison-Wesley / Pearson Edu-
cation.

The Linux Kernel Archives. No date. Readme file for the Controller Area Network
Protocol Family (aka SocketCAN) [text document]. Available at:
https://www.kernel.org/doc/Documentation/networking/can.txt

Phacility Inc. No date. Phacility [web page]. [accessed on 27th Jan 2018]. phacil-
ity.com > Phabricator. Available at: https://www.phacility.com/phabricator/

phacility / phabricator. No date. Github source code repository: phabricator/LI-
CENSE [text document]. [accessed on 1st Feb 2018]. Available at
https://github.com/phacility/phabricator/blob/master/LICENSE.txt

Ries Eric 2008. Startup Lessons Learned: Minimum Viable Product: a guide [blog
post]. [accessed on 30th March 2018]. Available at http://www.startuples-
sonslearned.com/2009/08/minimum-viable-product-guide.html.

XQual. Contact us. 2018-03-13. Available at https://www.xqual.com/contact.html.

https://jenkins.io/doc/book/pipeline/syntax/
https://web.archive.org/web/20140701020639/https:/www.java.net/blog/kohsuke/archive/20070514/Hudson%20J1.pdf
https://web.archive.org/web/20140701020639/https:/www.java.net/blog/kohsuke/archive/20070514/Hudson%20J1.pdf
https://web.archive.org/web/20140701020639/https:/www.java.net/blog/kohsuke/archive/20070514/Hudson%20J1.pdf
http://www.mit.jyu.fi/opiskelu/seminaarit/ohjelmistotekniikka/testaus/#RTFToC1
http://www.mit.jyu.fi/opiskelu/seminaarit/ohjelmistotekniikka/testaus/#RTFToC1
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html

50

XQual. Continuous Integration. 2018-02-19. Available at
https://www.xqual.com/documentation/continuous_integration/continuous_inte-
gration.html.

XQual. Open-Source launchers [web page]. 2018-02-18. Available at
https://www.xqual.com/open_source/launchers.html.

XQual. XAgent [web page]. 2018-02-19. Available at https://www.xqual.com/docu-
mentation/xagent/xagent.html.

XQual. XStudio User Guide [web page]. 2018-03-13. Available at:
https://www.xqual.com/documentation/user_guide.

https://www.xqual.com/documentation/xagent/xagent.html
https://www.xqual.com/documentation/xagent/xagent.html

51

APPENDICES

1(1)

Appendix 1: Jenkins CI pipeline overall structure

The call to XCI will
need to vary based

on which device
and software the

pipeline is
producing.

7. Run tests and
archive overall

failure/success status

Different firmware
and application

binaries need to be
deployd to the WoT
Controller, but with

different naming.

6. Deploy for testing

Different build
targets need to

archive different
files.

5. Archive the build
artifacts

Different build
targets need to
package different
artifacts and name
the resulting file
archive differently.

4. Package

the build artifacts

Build procedures
for the different
devices look
somewhat
different. The logic
needs to be
branched here
based on which
device and
application the
pipeline is working
with and whether
or not is ueses
Docker. Build flavor
will also need to be
considered.

3. Build

Some of the jobs
will need to
accomplish some
steps before they
are ready for build.
For example, GRT
needs to retrieve
ExGUI C header and
library files from
the ExGUI's artifact
repository. Vary the
build naming
convention.

2. Pre-build steps

Support checking
out with or without
submodules. For
bare metal devices,
will also need to be
able to control
wheter to checkout
the submodule
commits frozen in
the Git
superproject or
head of the master
branch.

1. Checkout the source
code

