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2018. At the time this thesis is written, software and especially mobile apps are starting to 
occupy a huge part of our everyday life. The development team is one of the key-factor de-
ciding the success or failure of a project. Indeed, they are responsible of implementing all 
the ideas presented by a product owner which are made true by designers. 
 
An app is composed of two parts: 

− the Front-End that corresponds to the User Interface, the link between a user and 
an app 

− and the Back-End which is basically the brain, the logic behind every action, every 
process of an app. 

 
Those working on both are called Full-Stack developers. 
 
Me being part of that category and based on experience, a recurrent problem resides in 
the time spent to implement the “face” of the app and improve the user experience some-
times at the expense of the “brain”. The result being beautiful apps design-wise but lacking 
in functionality or practicability. 
 
In order to resolve that handicap, delegating a part of the work to the machine came to 
mind. Also, Artificial Intelligence is the state of the art technology right now. The goal is to 
research the possibilities to exploit the processing power and capacity to follow orders of 
the machine to help developers. 
 
The idea is to feed the machine with a design mockup and based on that, it will be able to 
recognize and return a code based on the different components and layout found. 
 
By reading this thesis, neophytes will be able to understand the different steps needed to 
explore a solution with deep explanation of what machine learning is and how to use it for 
visual recognition. 
 
Furthermore, as machines are extremely good at reproducing, a way to facilitate teams 
transitions in projects is also detailed. 
 
Finally, a solution is provided where a design will be fed to the Artificial Intelligence and an 
HTML code is received. 
 
Being a subject relatively new for the time of the thesis, the material and help to implement 
the final solution are limited. That is why, even incomplete, it should be considered as a 
boilerplate to continue working on to further improve it. 
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1 Introduction 

The Information Technology field is ever-changing. As a matter of fact, the tools used by 

developers are consistently getting more powerful, helpful, intelligent and thanks to that, 

the outcome’s quality is also increasing. 

 

So, at this stage, what are the problems we have to face? How can we fight against 

those? 

 

As a Full-Stack developer, I have stumbled upon the hardship of having to implement 

complex designs and I had to spend hours to make my project look like how it needed to 

be. Those same hours I could have spent on the back-end part of the project, improving 

the efficiency of the server-side logic. 

 

And that is when this question came to my mind: “Why am I the one implementing the 

front-end?” 

 

Through this report, I aim to create a solution in order to bring a new tool to developers. I 

decided to research how code could be auto-generated by an Artificial Intelligence. The 

objective would be for the Artificial Intelligence to recognize the different patterns in a 

given design and to provide the code from it. That said, the way to the solution will go 

through different stages. First of all, understanding the theory behind the practice is im-

portant, so a theoretical part will explain the relevant elements of machine learning as well 

as the current situation regarding the project, the advantages from such a solution and the 

philosophy behind it. After, the implementation can start and the three main components 

of the AI are going to be detailed. And lastly, a conclusion and summary to the thesis will 

be provided. 

 

The challenges that come with this project are considerable; especially on the implemen-

tation side. But I love the problem and I hope you, readers, will love it too. 
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2 Theoretical framework  

The aim of the project is to have an Artificial Intelligence that will be able to detect the dif-

ferent components on a design mock-up and then, based on the detected components, 

generate a normalized code. 

 

From the project baseline, the following steps are deducted in order to be able to create a 

working solution: image detection to understand a mockup and thus, determine the com-

ponents and related properties, generate the code and lastly, blend the two precedent 

steps together. 

 

Prior to going deeper into the technical explanations, it is important to understand what an 

Artificial Intelligence is and the current situation regarding this research. After that we will 

go through how to generate code with an Artificial Intelligence. Then, how the different 

components of a design mockup are discerned will be discussed. 

2.1 Artificial Intelligence (AI) 

According to the Oxford dictionary, an Artificial Intelligence is “the theory and development 

of computer systems able to perform tasks normally requiring human intelligence, such as 

visual perception, speech recognition, decision-making, and translation between lan-

guages”. (Oxford Dictionnary, 2018) 

 

In other words, an AI is a program that can do a task originally made to be done by hu-

mans.  

 

The Artificial Intelligence arrived on the big stage in 1956 after a conference at Dartmouth 

College where the field of AI research was founded. The researches have been through 

good and bad times when funds were cut because of the lack of results. Nowadays, Artifi-

cial Intelligence is back and has become one of the hottest topics as computers have 

evolved and are now able to run efficiently an AI. But the term is still wide and involves 

many aspects that will be further explained in this thesis. 

 

To have a deeper understanding of the concept, he history of AI will be gone through. Af-

ter that, machine learning and deep learning, which are both sub-parts of AI, will be ex-

plained as well as their differences. Lastly, the type of AI used will be highlighted and justi-

fied. 
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2.1.1 History 

 
Figure 1 Artificial Intelligence history 
 

At the very beginning, in 1950, Alan Turing, a mathematician, explored the mathematical 

possibilities of AI because, according to him, humans use available information and logic 

to solve problems and take decisions. 

 

Computers were only able to execute command and were unable to store any command 

until the 1949 and thus, lacking a key feature essential to develop AI. To add to that, the 

cost of leasing a computer powerful enough ran up to 200’000 dollars per month and there 

was a need for a solid proof of concept and support. 

 

Then, the race to AI started in 1956 during the Dartmouth College Artificial Intelligence 

conference hosted by John McCarthy and Marvin Minsky where the Logic Theorist was 

introduced. The proof of concept was a program that mimic the problem-solving skills of a 

human. 

 

From 1957 to 1974, AI research was a success thanks to computers becoming capable to 

perform more tasks. Unfortunately, researchers stumbled upon a hurdle that jeopardized 

their work: computers couldn’t store enough information or process it fast enough. Be-

cause of that and the high expectations for AI, investors started reducing the funds and AI 

research fell into a new Ice age. 

 

In the 1980’s, two main factors contributed to a new wave of AI research: an expansion of 

the algorithmic toolkit and a boost of funds.  
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Indeed, on the one hand, John Hopfield and David Rumelhart introduced a new concept 

named “deep learning”, discussed later in this thesis, and Edward Feigenbaum introduced 

expert systems that were able to mimic decision making processes. 

 

On the other hand, the Japanese government invested approximately 400 million dollars 

from 1981 to 1990 with the purpose of revolutionizing computer processing, implement 

logic programming and improve AI with high results expectations. But many goals were 

not met and the funds disappeared, once-more. 

 

However, thanks to the last huge funding of the Japanese government, engineers and sci-

entists got inspired by the topic and that is why, even without the help of the government, 

many landmark goals of AI had been achieved. Gary Kasparov, reigning world chess 

champion and grand master got beaten by IBM’s Deep Blue in 1997 or Dragon System’s 

speech recognition software are examples of incredible advances in AI research. 

 

Then, the age of Big Data appeared with the capacity to collect and store huge amount of 

data that can’t be processed by humans who have to rely on machine to do it. AI, one 

more time, is here to help, back to the big scene and still undergoing improvements. 

(Anyoha, 2017) 

2.1.2 Machine Learning 

 
Figure 2 Artificial Intelligence and Machine Learning Structure1 

 

According to Stanford University’s definition, machine learning is the science of getting 

computers to act without being explicitly programmed (Ng, 2018). 

                                                

 
1 https://www.datascience.com/hs-fs/hubfs/machine-and-deep-learning.jpg?width=418&name=ma-
chine-and-deep-learning.jpg 
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Machine learning is a way of creating an Artificial Intelligence, however, it is possible to 

have an AI without this method, although, it would imply writing millions of lines of code 

and the more complex the AI is, the more lines are needed. 

 

The interesting part with machine learning is that the program considered in this thesis will 

be able to learn and adapt on its own without needing the help of Humans. In other words, 

it will be able to gain and evolve with experience just like a human being. 

 

 
Figure 3 Machine Learning process2 

 

In the case of machine learning, the AI will be trained with a dataset in order to gain expe-

rience and learn to perform the asked task. For example, in the object recognition field, an 

AI trained with the machine learning method will be given pictures of each object it has to 

recognize and be trained to learn how to recognize it. (McClelland, 2017 ; Ng, 2018 ; 

Pigeon, 2018.) 

 

That way of implementing an Artificial Intelligence has been enable with the recent surge 

in processing power and thus, ability to work with a large amount of data. Indeed, the 

more data the program will be fed, the better and acurate it will be. To add to that, the 

nature of the data fed has to be consistent and relevent in order to have an AI performing 

the desired way. The importance of the dataset is hereby highlighted and with that, the 

fact that the human factor in the success or failure of such a program still remains 

important. 

 

                                                

 
2 https://cdn-images-1.medium.com/max/1600/1*WjXHRFcFT--7jPRWJ9Q5Ww.jpeg 
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To sum up, developers have come up with a new way of implementing an Artificial 

Intelligence, able to learn by itself. But what can be the involved improvements? One of 

the involved improvements is the so called “Deep Learning”. 

2.2 Deep Learning  

 
Figure 4 Artificial Intelligence, Machine Learning and Deep Learning structure 

 
Figure 5 Deep Learning process3 

 

Deep learning is a subfield of machine learning concerned with algorithms inspired by the 

structure and function of a brain called Artificial Neuron Network (ANN) and is the state-of-

the-art method to implement machine learning. Indeed, it sees the Artificial Intelligence as 

a human brain that is composed of neurons and synapses that work together to resolve 

problems and learn from experience. Because of that, an Artificial Intelligence imple-

mented with Deep Learning is referenced as an Artificial Neural Network (ANN). 

 

To better understand ANN, an example is presented. As humans, we perceive our envi-

ronment through different channels, different inputs -earing, sight, touch-. Based on those 

                                                

 
3 Picture taken from a course in Udemy 
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inputs, we are able to make deductions. An ANN will do the same as shown on figure 5. 

Inputs will be given to the machine, those will be weighted, because each input has more 

or less importance in the final deduction and given to a neuron that can be seen as a 

black box. It also called the hidden layer and is responsible for working on the different in-

put values. The work consists of summing up the weighted inputs and give the result to an 

Activation Function. 

2.2.1 The Activation Function 

That function is here to determine if the result of the neuron will be processed further or 

not. This process is based on different algorithms whose most known ones are the thresh-

old function, the sigmoid, the rectifier or the hyperbolic tangent. Every activation function 

has its pros and cons and influence. Because of that, the choice of which one to use relies 

on the nature of the input values but also on the output value. 
 

 
Figure 6 Threshold Function with a bias of 0 

 

The x-axis represents the sum value of the weighted inputs and the y-axis, the result of 

the threshold function. The function will always return either 0 or 1 which is kind of like a 

Boolean that will be either true or false. The threshold function has a bias that is the same 

as a minimum required to be considered true. The bias value is decided by the developer 

to fit the needs. For instance, the threshold function will always return 0 as long as the 

sum of the weighted inputs plus the bias is less than 0 and 1 if it is equal or greater than 0. 

It means that the neuron will be taken into consideration if its sum plus bias is equal or 

greater than 0. The method is really straightforward, rigid. 
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Figure 7 Sigmoid Function 

 

The Sigmoid function is smooth compared to the threshold function and is especially use-

ful in the output layer to predict probabilities. Anything below is dropped off and above will 

approximate 1. 

 

 
Figure 8 Hyperbolic Tangent Function 

 

The Hyperbolic Tangent function is similar to the sigmoid function but the function goes 

below 0. 

 

 
Figure 9 Rectifier Function 
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Even though it has a kink, the rectifier is one of the most popular activation function. Until 

the sum is equal to 0, the result is 0 but then, it increases gradually as the input value in-

creases as well. 

 

After going through the Activation function, the result is either given to another hidden 

layer or to the output layer. On the one hand, the output values can be single. For in-

stance, in the case of estimating the price of an apartment, the output value will be contin-

uous because it will be a price. On the other hand, it can be multiple. Here, most of the 

time, the output values will be composed of probabilities. For example, if the Artificial Intel-

ligence has to detect the different fruits in an image, in the output layer, multiple probabili-

ties of a fruit being in the picture will be received (Nielsen, chap1.html, 2017). 

2.2.2 Backpropagation 

The last step of Deep Learning is the backpropagation. The goal of this step is to under-

stand how changing the different weights and biases in a network influence the Cost func-

tion. The machine will generate an output and compare it to the expected value with a 

Cost function. And the goal is to minimize the result. In order to do that, the ANN will ad-

just all the weights from right to left according to how much they are responsible for the er-

ror. The back-propagation can be done after each observation (Reinforcement Learning) 

or after a batch of observations (Batch Learning). The choice depends on the quantity of 

data used. Indeed, the more data available, the less the frequency of back-propagation 

will be. 

 

 
Figure 10 Cost function in its Quadratic form 

 

As shown in Figure 10, one of the most used Cost Function is called the Quadratic Cost 

Function or mean squared error (MSE). 
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Figure 11 Quadratic Cost Function representation 

 

The advantages of such a cost function is that, first of all, it never goes below zero as all 

the terms are greater or equal to zero. To add to that, it helps to determine the way of cor-

recting the different weights and biases by aiming to minimize that function. Indeed, it can 

be extremely difficult to find out how to influence the weights and biases by trying to max-

imize the rightness in the training data. However, a smooth function represented in Figure 

11 as the MSE is much easier to manipulate and understand. 

 

Now, going back to minimizing the Cost function, in a graphical representation as in Fig-

ure 11, the first idea to determine the minimum would be to use calculus and try to find 

where the derivative would be equal to 0. Unfortunately, it would only work for simple Cost 

function using only two variables and the more complex a Neural Network will be, the 

more variables will be included in the Cost function. Because of that, a new way of deter-

mining the minimum is proposed. The idea is to imagine the function as a valley where we 

will let a ball roll down the slope until it finishes at the bottom. What’s interesting to know is 

that the behavior of the ball corresponds to a partial derivative of the Cost function that will 

give the direction; if it is going uphill or downhill. From here, the goal is to minimize the 

Cost until a global minimum is found as well as a partial derivative as close from zero as 

possible (Nielsen, chap2.html, 2017). 
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Figure 12 The 7 Deep Learning Steps 

 

All the steps involved in Deep Learning are part of an iteration or epoch. And the AI will 

run as many epochs as needed in order to minimize the Cost function. (Berkman, 

2017 ;Brownlee, 2016 ;Dettmers, 2015 ;Keenan, 2018 ; McClelland, 2017 ; Moujahid, 

2016.) 

 

After the training, the Artificial Intelligence can be used to predict a behaviour. For 

instance, if we take the same example of the house pricing, given the right input values, 

the algorithm will be able to answer with an estimated price. 

 

To add to that, having multiple outputs is quite common and, we need to choose the best 

output. In order to take the right decision, the output values are given to another funtion 

called the SoftMax function that will iterate through them and select, for example, the 

ouptput with the highest probability. 

2.2.3 Digging deeper in how a Neural Network learn 

As humans, making huge mistakes help us to learn faster and the harder we fall, the more 

we learn. So, if the same concept is applied to machine learning, setting weights and bi-

ases badly wrong should help the algorithm to learn faster. As it is not that is not the case, 

in order to understand the reason behind the phenomenon, remember that neurons learn 

by adjusting the weights and biases they are related to. In other words, saying that a neu-

ral network is “learning slowly” is equivalent to saying that the partial derivatives of the 

Cost function are small. 

 

To improve the learning capacity of a neural network, some key-elements can be influ-

enced but we will focus on the Cost Function. 
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Figure 13 Neuron receiving three input values 

 

In figure 13, a neuron receives three input values x1, x2, x3 with their corresponding 

weights. Then, the output value a will be the sigmoid of the sum of the weighted values 

plus the bias (z). 

 
Figure 14 Cross-Entropy cost function for a neuron with three input values 

 

In the case shown in Figure 13, the Cross-Entropy cost function equation will be as shown 

in Figure 14. While the reason why that function can be considered a cost function is not 

visible at a glance, two properties in particular make it so: 

− the function is non-negative 
− and if the output value is similar to the desired one, then the function will be close 

to 0. 
 

The main difference between the Cross-Entropy and the MSE is that the first one resolves 

the problem of learning slowing down. 

 

 
Figure 15 Derivative process to understand the Cross-Entropy function 

 

In the last step of Figure 15, the derivative of the Cross-Entropy cost function by the 

weights of the actual neuron tells us that the rate at which the weight learns is controlled 
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by (𝜎(𝑧) − 𝑦) which corresponds to the error in the output. Because of that, the bigger the 

error, the faster the neuron will learn. That is the opposite of the Quadratic Cost Function 

(Nielsen, chap3.html, 2017). 

2.3 Component Recognition 

Before even thinking about generating code, it is necessary to understand how the differ-

ent components of an app are going to be recognized. 

 

As humans, we have the capacity to differentiate objects, animals, colors, seeming easy 

for us. But how does our recognition mechanism work? With experience, our brain is able 

to store and label objects; in other word, it is able to classify them. Thanks to this ability, 

we are able to react accordingly in a fight-or-flight situation for example because we know 

that depending on the situation, it is common sense to defend ourselves or just go away 

as fast as possible. So, to recognize the different components of a design, the computer 

needs to be able to do the same. It has to train itself to know what a header, a footer, a 

paragraph, images… 

 

For the machine to be able to do the processing, a Convolutional Neural Network (CNN) 

will be used. After, we will go through how the image recognition works and step by step, 

a deeper introduction into the subject until we define what a CNN is. 

2.3.1 Image processing 

Let’s start with understanding how an Artificial Intelligence can recognize handwritten 

numbers. From the point of view of a computer, an image is nothing else than an array of 

numbers with each number representing the gradient of black. Because of that, to train 

the neural network, we only need to feed it arrays of numbers representing, for example, 

the number 8. 

 

Through image processing, the output will not be unique anymore. In fact, two outputs will 

be received; those being the probability of “the image has an 8” and “the image does not 

have an 8” if we take the number 8 as an example again. 
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Figure 16 Output of image processing of a handwritten 8 

 

However, the outcome of a processed image strongly depends on the dataset used to 

train the neural network. Indeed, if trained with images of handwritten numbers where the 

number is perfectly centred every time, the machine will not be able to recognize a given 

number if it is not positioned the same way. And here is when we reach the limits of image 

processing with a normal fully-connected neural network. 

 

The problem resides in the fact that the output of the neural network when processing the 

image of a number, in that case, depends on the structure of the dataset. 

 

 
Figure 17 Output of image processing with centred number in dataset 

 

In order to resolve it, the first solution that comes to mind would be give more data to the 

machine and train it more because the more data it will be fed, the more accurate it will re-

sult. In theory, it can resolve the problem. But then, the dataset will need to cover all the 

many possibilities that the item that has to be recognized can be represented in an image. 

And that shows the limits of the solution. Indeed, it would be impossible to train the neural 

network with a dataset that fully covers those possibilities depending on what has to be 

recognized. 

 

Whereas it is not optimal, the deep neural network that comes out of that solution is inter-

esting. Because of the increased data, the problem becomes harder for the machine to re-

solve, thus, more layers would have to be added to the neural network in order to make it 

more effective and able to understand more complex patterns. 
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Figure 18 Deep Neural Network 

 

As written by Adam Geitgey: “We call this a “deep neural network” because it has more 

layers than a traditional neural network”. Another possibility demonstrated by Adam Geit-

gey is “to scan all around the image” until the machine is able to resolve the problem. It is 

called the Sliding Window (Machine Learning is Fun! Part 3: Deep Learning and Convolu-

tional Neural Networks, 2016). 

2.3.2 Convolutional Neural Network 

The human brain is able to recognize an object whatever the environment because it 

doesn’t need to re-learn for every situation. Indeed, it is able to memorize the specific 

properties related to an object and use them to tell us if it is present or not. 

 

And that is exactly what the machine needs to be able to do. As said by Adam Geitgey: 

“we need to give our neural network understanding of translation invariance”. (Machine 

Learning is Fun! Part 3: Deep Learning and Convolutional Neural Networks, 2016) 

 

In order to give the machine this ability and thus, to improve its skills at recognizing an 

item in an image without needing to feed it with data that cover every situation, the Convo-

lutional Neural Network appears. This technique to implement machine learning is specific 

to image processing and is composed of multiple steps: breaking the image, feed the im-

age, store the result, downsampling, predict. 
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Figure 19 Step 1 – Breaking down of an image 

 

The first step of breaking the image consists in cutting the image in smaller, overlapping 

images of equal sizes. In the figure 13, an image has been broken down in 77 overlapping 

tiny images of equal size. 

 

 
Figure 20 Step 2 – Feeding of a tiny image to a small neural network 

 

For the second step, all the tiny images are fed to a small neural network that is going to 

analyze it and see if the expected item is present or not. 

 

But here, there will not be any backpropagation because all the tiny images are going to 

be fed to the neural network with the same weights. Keeping the same environment be-

tween images helps to process them all the same way. 
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Figure 21 Step 3 – From an array of images to an array of results after processing 

 

In figure 15, the results of each image fed to the neural network are stored in a new array. 

Because of that, the arrangement of the original tiles is kept. It is important to keep the ar-

rangement of the tiles like the original image because we want our machine to think the 

same way as humans. The closer two individual images are, the more related to each 

other they will be. If we shuffle the order at this point, the correlation between the relative 

position and the relation between pictures would be lost. 

 

 
Figure 22 Step 4 – Downsampling 
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The figure 16 illustrates the concept of downsampling. Because the order has been kept, 

the array is divided in 2x2 grid squares and from those small parts, only the most interest-

ing output, being the one with the best similarity to the expected output, is kept. 

 

This process helps the machine to reduces the size of the array that it has to process 

while keeping the important part. 

 

 
Figure 23 Step 5 – Full Convolutional Neural Network 

 

The fifth and last step consists of feeding the reduced array to a fully-connected Neural 

Network which will be responsible of processing it like any image only composed of num-

bers for the computer and give the final output. 

 

All those steps are key factors of a Convolutional Neural Network aimed at processing im-

ages. A simple one will only iterate through the step 1 to 4 once but more complex ones 

can be composed of multiple iterations where each small neural network will be responsi-

ble of processing the array in order to look for a specific detail and thus, reducing the ar-

ray to the very most important parts. And after being fed to the fully-connected neural net-

work, it will give us the most precise output. (Dettmers, 2015 ; Geitgey, 2014 ; Keenan, 

2018 ; McClelland, 2017 ; Seif, 2018 ; gk_, 2017.) 

2.4 Current situation  

With the Artificial Intelligence coming back to the big stage, AI researchers are exploring 

how this technology can be used to help developers bring new powerful tools. As a matter 

of fact, I am not the first one to research how to generate code from mock-ups. Big com-

panies, Airbnb for example, have already come up with experimental solutions related to 

the topic discussed in this thesis. Not being the first one to study the ways of using the Ar-

tificial Intelligence, I therefore base my analysis on two main researchs previously pro-

posed by Airbnb (2018) and tony belltramelli (2017), which strongly relate to mine. 
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2.4.1 Airbnb’s sketch2Code 

Airbnb is widely-known for their renting services but is betting big on automation and be-

lieves that the process to transform design into code will, in the future, be done by an Arti-

ficial Intelligence. 

 
The guideline behind Benjamin Wilkins’s work is based on the idea that “The time required 
to test an idea should be zero” (Generating code from low fidelity wireframes). 
 

Airbnb has come up with a solution called sketch2code. Before implementing an applica-

tion, the first stage of every project is: sketching. This part of the process is extremely im-

portant to create a base for the final product and how it will look like. It is also the moment 

where the design complexity is set. 

 

But, how can a designer test the feasibility of the design? How can he/she know that it can 

be implemented? Right now, the only solution is to write the corresponding code, face the 

problems and reiterate by prototyping and coming back to the generation phase of ideas 

until design and feasibility blend together. That is why sketch2Code is relevant and Benja-

min Wilkins thought that “Sketching seemed like the natural place to start” (AirBnb, 2018). 

 

So, starting from the root of the problem, sketch2Code is able to scan the mockups made 

by the designers and translate it into code. The capacity of an Artificial Intelligence to gen-

erate code in the blink of an eye will help designers to test their design in real-time and 

help the developers to improve the generated code. (AirBnb, 2018) 

2.4.2 Tony Beltramelli’s pix2code  

After Airbnb, another actor explored the topic. That person is Tony Beltramelli, Co-

Founder if Ulzard Technologies. He researched how to automate writing code to imple-

ment the User Experience part of an app, led by the same reasons as me. In fact, he 

says: 

 
The process of implementing client-side software based on a Graphical User Inter-
face (GUI) mockup created by a designer is the responsibility of developers. Imple-
menting GUI code is, however, time-consuming and prevent developers from dedi-
cating the majority of their time implementing the actual functionality and logic of the 
software they are building. (Beltramelli, 2017) 

 

In his case, the Artificial Intelligence will analyze the structure of a screenshot to deter-

mine the components and then translate it into code. The difference with Airbnb’s solution 

resides in the programming language used to generate the code. Indeed, while Airbnb has 
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focused his solution around React, pix2code is able to produces code either for iOS, An-

droid or the web. 

2.5 Normalized architecture 

Now that the technical requirements have been explained, it is time to understand the pur-

pose of the research. 

 

One of the biggest problem in an IT project is the learning curve of a newcomer when he 

or she joins a team. Before even starting to write a line of code or actually getting involved 

in the project, that person needs to understand the state of the project namely, the tech-

nology, the architecture, the conventions used. Depending on the stage, the complexity of 

each step can vary a lot. 

 

As Artificial Intelligence remains just a machine, the generated code will always be the 

same as long as the same technology and programming language are used. Because of 

this ability to continuously produce the same output, it is possible to normalize the written 

code between projects. For that reason, the learning curve will be improved. Any new-

comer will already know how the code is structured and where to look for in order to fix a 

bug. 

 

Moreover, through generating code with an AI, it is possible to keep developing it to al-

ways use the latest state of the art libraries, plugins and more, without needing to spend 

as much time as a human would need to learn it. The IT field is ever changing and de-

pending on the sub-field, those changes can happen at a frightening speed resulting in 

developers being unable to follow the rhythm because of the surreal time they would need 

to invest in order to master the new technology. 

 

So, the machine could be an important asset to a software development company by 

providing the same code all the time and helping employees to focus on other tasks rather 

than having developers implementing the design of the software over and over again. 

 

To better understand the improvements in the architecture that a machine can bring, we 

will look deeper into the Object-Oriented language like Java. In this case, one of the key-

factor resides in the low coupling and high cohesion of the classes. It means that classes 

related to the same task should be together and limited in their relationships with those 

doing another one. The point here is to avoid any global impact to an update in a class, 

differentiate the roles of every package of components and know exactly where to look for 
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bugs. Therefore, a developer needs to pay attention to how to structure the code to re-

spect the principle. 

 

In order to do so, an important amount of time has to be invested in to researching and 

trying to put together the architecture. With experience, it gets better and faster but, in 

some cases, it could occur that developers stick to their habits and stop improving the 

model because it is working fine as it is. However, if fed enough projects using the low 

coupling and high cohesion principle, the Artificial Intelligence is able to recognize a pat-

tern and pick the best of every project in order to find the best architecture. 

 

To illustrate the pattern finding ability of an AI, Adam Geitgey (2016) explains how it is 

possible to generate Super Mario Bros maps after translating each component of it in a 

symbol recognizable by a computer. 

 

 
Figure 24 Super Mario Bros map translated for computer (Adam Geitgey, Machine Learn-

ing is Fun! Part 2: Using Machine Learning to generate Super Mario Maker levels, 2016) 

 

In the figure 19, the translation is done so that : 

- “-“ is a blank space 
- “=” is a solid block 
- “#” is a breakable block 
- “?” is a coin 
- “P” is a pipe 
- “@” is an enemy 
… and so on with every character representing a component of the map. 

 

After training the Artificial Intelligence with the map, it is able to understand the intrinsic 

properties of the map and thus, notice many aspects like 

- each column as to have the same height 
- a pipe needs to reside on top of two bricks wherever they are 
- no obstacle should obstruct the player to advance further. (Geitgey, 2016) 
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2.6 Tools used 

In order to implement a solution and create an Artificial Intelligence able to do the ex-

pected work in this thesis, different tools are needed: a programming language and an In-

tegrated Development Environment. 

 

Nowadays, Python is the most used programming language in the machine learning field 

with 57% of data scientists and developers using it. From that percentage, 33% prioritize it 

to start a project. One of the main reasons for that choice can be found in the wide range 

of frameworks which brings tools to developers like TensorFlow or PyTorch. (Voskoglou, 

2017) This is the reason motivating me to choose Python as the language to build the 

proof of concept joined. 

 

Then, to code, an Integrated Development Environment is needed. It is a software that fa-

cilitate application development. In general, an IDE is a graphical user interface (GUI)-

based workbench designed to aid a developer in building software applications with an in-

tegrated environment combined with all the required tools at hand. Based on experience 

using IntelliJ from Jetbrains, I decided to use their Python IDE named PyCharm in order to 

help me to create my solution. (Techopedia, 2018 ; Vasconcellos, 2017) 

 

To go deeper in the machine learning aspect, TensorFlow will be the framework used to 

create the different parts needed to make my project. 

 
It is an open source software library for high performance numerical computation. Its 
flexible architecture allows easy deployment of computation across a variety of plat-
forms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and 
edge devices. Originally developed by researchers and engineers from the Google 
Brain team within Google’s AI organization, it comes with strong support for machine 
learning and deep learning and the flexible numerical computation core is used 
across many other scientific domains. (TensorFlow, 2018) 

 

A lot of companies like AirBnb or NVIDIA are also using that framework and it is reassur-

ing to know that other big leading companies trust Google with that tool to help them de-

velop their own machine learning solution. 

2.7 Consequences in the IT field 

Generating code automatically with the help of an Artificial Intelligence hasn’t been imple-

mented well enough to be used all the time. Because of that, there is no study regarding 

the possible consequences on employment. 
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However, history has shown us that every big change comes with its advantages and dis-

advantages. My assumptions are the negative impact on the IT fields will be eclipsed by 

the good ones. Indeed, even though the developers responsible of implementing the de-

sign are going to lose some ground to the machine, they will, at the same time, have more 

time to develop other skills that will further improve the field. 

 

For example, on the one hand, Artificial Intelligence awakening leads to an increase in 

ability to manipulate complex and numerous data. On the other hand, those same data 

come from users through all the different available services. So, in a more and more con-

nected world, how does one’s privacy can remain private? How can we protect our integ-

rity? In my opinion and based on the interview of Zvika Krieger, co-leader of the World 

Economic Forum’s Center for the Fourth Industrial Revolution, by Nick Johnsone, security 

is one of the fields that is going to be affected because, as written, “We don’t want tech-

nology to take away people’s freedom; we want it to give people more choice and more 

autonomy”. (World Economic Forum, 2018 ; RichmondVale, 2016) 

 

Even though those big changes are happening, the World Economic Forum’s Center for 

the Fourth Industrial Revolution is helping to supervise them and, by cooperating with 

companies and people from different horizons, develop policy frameworks and that will ac-

celerate the benefits of science and Technology. 
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3 Empirical Part 

Now that the theoretical part and knowledge has been established, the implementation of 

a working solution can start. In order to provide a proof of concept to the thesis, an Artifi-

cial Intelligence able to generate code based on a simplistic design mockup will be cre-

ated from scratch. The simplistic part resides in the fact that the solution will only focus on 

recognizing images and text as well as the layout relative to each component. 

 

The extent of the ability of the algorithm to detect and generate code will be narrowed 

down as I lack time, sources and the knowledge to implement a perfectly working solution 

able to cover all the different components that can be present in a HTML page. 

 

In other words, the objective is to implement an AI able to detect simplistic representation 

of paragraphs and images and translate them to code. 

 

 
Figure 25 Implementation plan 

 

In figure 25, the different steps of development are shown. The main part of my solution 

will be the component recognition. The importance of this component and its difficulty of 

implementation is the reason I decided to approach this element first. Then, it will be up-

dated in order to store and remember the location of the recognized components through 

the layout recognition. Lastly, with all the cards in our hands, it is my aim to generate a 

precise, not random code, created under parameters representing the different elements 

found in the first part of the algorithm. 

3.1 Dataset 

Trying to implement an Artificial Intelligence able to generate code like that is something 

completely new. As a matter of fact, no dataset complete enough actually exists that could 
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help to sufficiently train an AI. A dataset is crucial to machine learning because the more 

data, the more accurate the algorithm will be. 

 

For the solution, as I needed to produce the dataset by myself, I made use of the many 

resources available to me and collected the material needed to support this thesis of the 

different components there with a focus on texts and images. The task was really long and 

laborious. After revising all the material, I realized that the algorithm wasn’t good enough 

and only worked on a few and specific test images. That problem led me to decide to 

choose two types of elements because they represent the main components of a website 

and they seemed like the most easily recognizable parts. In order to create a dataset big 

enough to train and evaluate my AI, I drew two shapes: a black square with a cross in the 

middle and a black square with horizontal lines. The first one represents an image and the 

second one a paragraph. Now that the simplistic representation has been created, I con-

verted them to black and white pictures. The same picture will be fed to a loop that will it-

erate through all the integers from 1 to 359 and save a new picture of the simplistic repre-

sentation rotated by one degree each time. Thanks to that solution, the dataset for each 

component went up to 360 pictures. An example of a paragraph representation after a ro-

tation of 0 degree (original) and 10 degrees can be seen hereafter in Figure 26. 

 

 
Figure 26 Picture representation at 0° and 10° 

 

Another option possible option for increasing the size of the dataset would be to blur the 

pictures, change the contrast, the brightness and many other factors. However, a simpler 

and more concrete representation was chosen. 
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def main(unused_argv): 
    picture = ndimage.imread("picture.png", flatten=True) 
    paragraph = ndimage.imread("paragraph.png", flatten=True) 
    picture_rot_array = [] 
    picture_array_labels = [] 
    paragraph_rot_array = [] 
    paragraph_array_labels = [] 
     
    for x in range(0, 360): 
        picture_rot = ndimage.rotate( 
            picture, 
            x, 
            mode='constant',  
            cval=100 
        ) 
        picture_rot_array.append(picture_rot) 
        picture_array_labels.append("picture") 
        mpimg.imsave( 
            "data/picture/train/picture{}.png".format(x),  
            picture_rot, 
            cmap=plt.cm.gray 
        ) 
         
        paragraph_rot = ndimage.rotate( 
            paragraph, 
            x, 
            mode='constant',  
            cval=100 
        ) 
        paragraph_rot_array.append(paragraph_rot) 
        paragraph_array_labels.append("paragraph") 
        mpimg.imsave( 
            "data/paragraph/train/paragraph{}.png".format(x),  
            paragraph_rot,  
            cmap=plt.cm.gray 
        ) 
     
    print("Data Set for pictures created !") 

 
 

In the code here before, numpy has been used to work on the image. The .imread() func-

tion will find the picture at the given location and convert the image into a numpy array 

which is the representation of the image in vectors. 

 

Then, the for loop will iterate from 0 to 360, with 360 excluded, and rotate the loaded pic-

ture by rearranging the vectors through the .rotate() function. After that step, the .imsave() 

function save the pictures to the given path. 
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All those steps are repeated 360 times in order to create my data. Being a proof of con-

cept, I wanted to demonstrate that it was possible to detect those shapes and convert 

them to code. That dataset has been used to aim to train the prototype of AI I present. 

3.2 Component Recognition 

The Component Recognition is the most important part of the whole process. Indeed, it 

has to be thoroughly trained in order to recognize all the different elements presented in a 

design mock-up. 

 

It was my goal to reuse the code from TensorFlow training set and modify it in order for it 

to recognize my own pictures but unexpectedly, this idea faced the image manipulation 

problem. 

 

I then implemented an example using Watson API that returns to me probabilities regard-

ing the appearance of an element. In a way, recognizing an element seems rather easy 

but the number of possibilities a design can present is based on the designer imagination; 

thus, they are near infinite… That’s why, the capacity of self-learning of an algorithm is pri-

mordial. 

 

With that problem came the question of how to distinguish a component, what are its in-

trinsic characteristics? It is rather complicated and complex to define a component by 

mere criteria. For instance, an image can have different shapes, different border size or 

colour. The specific elements of an image were narrowed down and I then arrived to the 

conclusion that as for now, it is limited to a black square with a white X in the middle. It is 

a rather simplistic representation of an image but for a proof of concept, that would be 

enough. As for a paragraph, I decided to limit the representation to a black square with 

horizontal white stripes. 

 

The biggest challenge here resides in the limited possibilities of writing a paragraph and 

inserting an image. Design is an art and therefore, the imagination is the only limit. Based 

on my knowledge and the current sources available to me, I was unable to find a pattern 

in the case presented.  

 

By using the code found on Tensorflow tutorials, I am able to retrain a model in order to 

recognize the two components I have created with great precision. However, that preci-

sion is high only because of the simplistic representation of an image and a component. In 

reality, as stated before, those elements can be found in many shapes and aspects thus, 

making the recognition process much more difficult. 
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The retrain.py code has been modified in order to take as default parameters the right 

paths and directories specific to my project. Because of that, by running the following 

command, it will take in the data set created before and train the model. See Appendix 1 

for the whole code. 

 

To go deeper into the code, the main methods to understand are the following: 
− main(_), 
− prepare_file_system(), 
− create_image_lists(image_dir, testing_percentage, validation_percentage), 
− create_module_graph(module_spec), 
− add_final_retrain_ops(), 
− add_jpeg_encoding(module_spec), 
− cache_bottlenecks(), 
− add_evalutation_step(result_tensor, ground_truth_tensor), 
− get_random_cached_bottlenecks(), 

 

The main(_) function is the starting point of the retraining. It initializes all the different 

global variables and calls the methods needed to train and evaluate the model. That 

method contains all the steps needed to have a model able to recognize the components. 

Another responsibility of main(_) is to detect errors as soon as possible and stop the pro-

cess in order to avoid unnecessary work. 

3.2.1 Environment setup 

First of all, the environment has to be set up in order to train the model. Indeed, what is 

going to happen is that a pre-trained model will be used and on top of that, a new output 

layer is going to be added. That last layer is the one that will be able to recognize our 

components. 

 

Different files are needed during the retraining and saved in directories. prepare_file_sys-

tem() is here to create those directories in case they don’t exist yet. Its task is quite simple 

but important as it must know where each created file is stored. 

 

In create_image_lists(image_dir, testing_percentage, validation_percentage), the different 

lists of images are produced. It is its task to check if at least 20 images are presented in 

the subfolders; less than that wouldn’t be enough to properly train the AI. The returned re-

sult is an array where each key is the name of the subfolder aka the label of the compo-

nent, here it will be either “paragraph” or “picture” and each cell will contain the path to the 

subfolder, the training images, the testing images and the validation images. It is responsi-

ble of splitting all the images into three types of usage for the model to train, test and vali-

date the process. 
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Then, the graph for the model is created through the create_module_graph(module_spec) 

method. It receives the specifications from the hub module of Tensorflow as an argument 

and generate a pre-trained graph that is going to be used to train with the images pro-

vided by the developer. Here, pre-trained model able to recognize pictures is used in or-

der to speed up the process. Otherwise, the AI has to learn from the beginning how to rec-

ognize a picture. 

 

After that, a new layer is added on top of the pre-trained graph with the add_final_re-

train_ops() method. That layer will be the one used to recognize the picture and para-

graph element. It returns the Tensor for the training and cross-entropy results as well as 

tensors for the bottleneck input and ground truth input. The last one contains true values 

of the expected output. 

 

The data set generated before contains picture in jpeg format. However, that specific for-

mat needs to have a pre-processing in order to be used in our model. That’s why the 

add_jpeg_decoding(module_spec) method is used, it adds operations to perform JPEG 

decoding and resize the picture for the graph. 

 

The next step consists of creating the bottlenecks or image feature vectors that are going 

to be used for the training. The process can take up to 30 minutes depending on the 

speed of the machine but once it is done, it will be re-used every time. A bottleneck con-

tains information on an image. It is important to create them because in this case, each 

image can be used multiple times and converting an image into a vector representation 

takes time, so it is faster to create all of them beforehand. 

3.2.2 Training 

Now that the environment has been set, the training can start. In this section, the different 

training steps will be described and explained so the process, although complex, will re-

sult to be easy to understand. 

 

First of all, we need to be able to evaluate the accuracy of the new layer that will recog-

nize our components. The add_evaluation_step(final_tensor, ground_truth_input) method 

fulfills that task and inserts the needed operations. The received arguments are, first, the 

final_tensor which is basically the layer we are training and, secondly, the 

ground_truth_input that have true expected values to compare to the future output values 

received and return a tuple of evaluation step and prediction. 
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Then, we will iterate through the number of training steps requested on the command line 

with a default value of 4000. During each iteration, we are going to get_ran-

dom_cached_bottlenecks(). 

 

With those bottlenecks received, a training step is run after which a summary is saved for 

the TensorBoard visualisation. When all the training steps have been completed, the 

model can be saved in a checkpoint. and we can go on with an evaluation step where the 

model is going to be tested so the ability to recognize the elements can be verified. 

 

Another possibility would have been to use the Watson Visual Recognition API and feed it 

with pictures of paragraphs and pictures. However, for the same reason as stated before, 

the number of ways to represent those two elements is near infinite as it is based on one’s 

imagination and therefore, this possibility was not feasible and was tossed away as even 

after collecting visual representations of the components of different websites, I was still 

unable to generalize “a picture” or “a paragraph” as concepts. The related code can be 

found on my GitHub as a proof of concept for my research (Cheng, 2018). 

3.3 Code Generation 

The idea behind the code generation is that based on the probabilities received from the 

component recognition layer, I would be able to generate the corresponding code. In that 

matter, it wouldn’t be a random output but instead, a parametrized output where the result 

would take into consideration which element is really present or not in the design mock-

up. 

 

In order to implement that, I opted for using a Recurrent Neural Network that is extremely 

good at predicting words in a sentence based on the previous words used in the text and 

adapt it to learn the structure and philosophy behind HTML programming and especially 

the opening and closing of tags. 

 

For that part, I found some re-usable code from Karpathy where he trains his model to 

predict the next words in a sentence. I updated it in order to use the source code from the 

welcome view of GitHub and trained it with that code as data set (karpathy, 2016). 

 

Regarding the use of the outputted probabilities from the component recognition part to 

parametrize the code generation, unfortunately, I didn’t reach any conclusive solution. The 

only way that would be possibly fulfil my expectations would be to create a switch and out-

put the corresponding code based on the probability and thus, the minimum required for 

an element to be considered detected and recognized. However, that solution would be 
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time inefficient and resource consuming as it would require that, for all the different tags 

available in HTML, a case would be created. So, here-after, the explanation in depth of 

Karpathy can be found and my update to train the model with HTML code. 

 

The model is not using Tensorflow as the component Recognition. Instead, it is based on 

Torch which is scientific computing framework with the wide support for machine learning 

algorithms that pus GPUs first. It is easy to use and efficient, thanks to an easy and fast 

scripting language, LuaJIT, and an underlying C/CUDA implementation (Torch, 2018). 

 

Lua is sequential execution. By that, I mean that when the script is launched, it will go 

through it from top to bottom. Because of that, the methods that are going to be used later 

on have to be initialized before-hand. That’s why the most important part of the code is at 

the bottom. That method will basically iterate through the number of trainings needed and 

call the methods responsible of the different steps of the training. 

 

One part that starts line 112 loads the data from my input.txt where the source code I pro-

vided can be found and create the vocabulary database based on the it. After that step, 

the RNN is flattened to be used in a tensor. Then, the weights are initialized randomly with 

small uniform numbers. 

 

The eval_split() function is responsible to evaluate the loss over an entire split, usually at 

the end of an iteration and the feval() function will manage the epoch and the backpropa-

gation as well as returning the loss for the current batch that is evaluated. 

 

To summarize, the proof of concept is composed of three main parts: the data set creator, 

the component recognition and the code generator. By working together, the related code 

should be created as an output and should be usable for improvements by developers or 

for usability testing regarding the User Experience for example. 

 

Even though the implementation is not a working solution, it gives an idea of the difficulty 

of creating such a solution and experience on what was successful or not. It has been re-

ally interesting to work on the topic discussed as it required a lot of commitment and learn-

ing that was, in that case, lacking as machine learning is quite new for me. But, with a 

deeper understanding of the subject and the way it is possible to link those three parts to-

gether, improvements can be achieved in the future. 
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4 Discussion 

After going through the implementation part, the solution is, unfortunately, not a working 

one. If we consider each part separately, some good points can be highlighted. First, re-

garding the dataset creator, even though it was difficult to obtain a relevant and big 

enough dataset, the script used is a good solution to increase that number based on a sin-

gle picture. To add to that, Tensorflow also provides some tools to distort and blur the pic-

tures; thus, improving the possibility to increase the dataset. However, the representation 

of the two used components, paragraph and picture, is extremely simplistic and cannot be 

used to represent reality. 

 

Secondly, regarding the component recognition, based on the dataset created, on the one 

hand, it was capable of recognizing the elements and give accurate probabilities as if an 

element was in the picture or not. On the other hand, the solution is not using Deep Learn-

ing; the state-of-the-art technology at the moment for the reason that I was unable to im-

plement it. Thus, the algorithm is not able to learn by itself and requires to be trained 

again and again for each new category that we want to add. 

 

Lastly, the code creator is in almost of the cases able to more or less understand that to 

generate HTML code, it needs to open and close tags and fill those tags with content. 

However, its result is completely random and even after the thorough discussion of the 

topic, a further control of its behavior during the generations hasn’t been possible. 

 

Based on those outcomes, I would say that my proof of concept is not complete but can 

be used as a boilerplate to explore new ways, new leads. For instance, the dataset crea-

tor can be improved further with blurs and distortions. To add to that, the component 

recognition should be implemented using Deep learning so that the model is able to learn 

by itself. And to finish, the code generator has to be researched more thoroughly in order 

to generate appropriate code depending on the elements found in the mock-up. 

 

Another point that can be improved is the way each of the three parts communicate to-

gether because as of now, they work independently from each other. 

 

More personally, I found working on this thesis extremely challenging as it was using 

state-of-the-art technologies and the topic was poorly documented leaving me with no 

guideline in researching and implementing a working solution. Also, the thesis process 

has been disturbing a lot because the more I was going forward, the more challenges I 

faced because of my lack of experience and knowledge. Still, the outcome of the thesis 
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remains, overall positive for me as it pushed me to investigate a topic that I would like to 

keep developing in the future. 
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Appendices 

Appendix 1. Thesis Proof of Concept Link 

To access the code written during the thesis, follow the link here-after: 

https://github.com/chengjo0/thesis_POC  

 


