
Ali Anafcheh

Intrusion Detection with OSSEC

Bachelor’s thesis
Information Technology

2018

Author (authors) Degree Time

Ali Anafcheh Bachelor of
Engineering

May 2018

Thesis title

Intrusion Detection with OSSEC
40 pages

Commissioned by

Supervisor

Reijo Vuohelainen
Abstract
The purpose of this thesis was to study the way of intrusion detection with OSSEC. The
first chapter was the theoretical part where my understanding of OSSEC and its
components was introduced. The chapter was divided to multiple sections explaining
OSSEC’s fork Wazuh and how it can be used with Elastic Stack to enhance monitoring and
add features to OSSEC. The second chapter started by setting up testing machines using
Google Cloud and an Infrastructure as a Code tool called Terraform. Next, Wazuh
installation was done automatically using Ansible as a configuration management tool. In
the final section of Chapter 2, Wazuh’s important features were evaluated on two virtual
machines.

The motivation to write this thesis was derived from being in a position to monitor many
servers for any security issues. Therefore host-based intrusion detection was the best
choice to comply to security policies specifically. This study is useful for companies
interested in monitoring every single activity on a host and taking actions accordingly.

Keywords

OSSEC, Wazuh, intrusion detection, security

CONTENTS

1 INTRODUCTION..4

2 INTRUSION DETECTION SYSTEM (IDS)..5

2.1 OSSEC..5

2.1.1 Benefits...5

2.1.2 Features..7

2.1.3 Architecture...8

2.1.4 Modules..9

2.2 Wazuh..10

2.3 Elastic Stack..11

3 PRACTICAL IMPLEMENTATION..13

3.1 Infrastructure...13

3.1.1 Google Cloud..13

3.1.2 Terraform..16

3.2 Wazuh Installation...26

3.2.1 Ansible..26

3.2.2 Installation Process...28

3.3 Wazuh Capabilities Evaluation..32

3.3.1 Log Monitoring..32

3.3.2 File Integrity..33

3.3.3 Policy Monitoring and Malware Detection..34

3.3.4 Active Response...36

4 CONCLUSION...39

REFERENCES..40

4

1 INTRODUCTION

Nowadays, most companies are using SaaS services where the infrastructure

and the end point software are already provided. This helps businesses to focus

on their main business without worrying about hardware, software, or security

maintenance. In most cases, these smaller companies use a security solution to

protect their employees’ laptops from malware and viruses. However, that is only

a small part of the security world. Big companies that host their own servers

physically or in the cloud need a solution to monitor their servers for various logs,

file integrity or any abnormal behavior to identify or prevent intrusions. This is

where a host-based intrusion detection and prevention system (HIDPS) or

generally an intrusion detection and prevention system (IDPS) is needed.

HIDPS is normally a package installed on a computer which analyses different

aspects of the operating system and reports any abnormalities to the HIDPS

administrator. The most distinctive feature of an HIDPS is that it can be

configured to detect behaviors that the administrator thinks are abnormal. So, it’s

a customizable system that can be configured according to the security policies

of a company. This is what makes it a must-have tool compared to regular home

security solutions or antivirus software.

In this thesis, I will go through OSSEC(Open Source HIDS SEcurity) which is one

of the most popular tools in this area and mainly its fork Wazuh which extends

OSSEC’s main functionality with added features and integration with Elastic

Stack for visualization and better data processing and management. I will also

study and test the main features of OSSEC which according to Wazuh’s official

website (2018) are the following:

 File integrity monitoring

 Intrusion and anomaly detection

 Automated log analysis

 Policy and compliance monitoring

5

The first part of the thesis will be the theoretical part in which I explain OSSEC,

Wazuh and Elastic Stack and how all of these tools come together to create a

powerful security system with real time monitoring and alerts. In the second part,

I will implement a practical solution where I use all of these tools to monitor a few

test machines for any suspicious activities. I will also briefly explain the tools that

I will use to automate this whole process to make it easily re-usable in the future

using configuration management tools like Ansible and Terraform.

2 INTRUSION DETECTION SYSTEM (IDS)

This chapter explains the tools needed to have a useful and convenient IDS. The

description of the tools introduced is based on the official documentation of

OSSEC (2018), Wazuh (2018) and Elastic Stack (2018).

2.1 OSSEC

OSSEC is an open source HIDS developed by Daniel B. Cid whom sold the

project to Trend Micro in 2008 (Daniel Cid, 2018) but the project continued to be

free and open source. Its current stable release is 2.9.3. It consists of many

services and modules that each provide their own unique features in terms of

intrusion detection. HIDS has many aspects and OSSEC mixes them all which in

return provides some fundamental benefits as explained in the following

subsections.

2.1.1 Benefits

OSSEC fulfills security compliance requirements. Many customers, mostly

business customers require the business they work with to have certain security

compliances such as Payment Card Industry Data Security Standard (PCI DSS),

Health Insurance Portability and Accountability (HIPAA) etc. Monitoring logs and

analyzing them for suspicious activities is one of the ways how OSSEC allows

businesses to comply by different security requirements.

6

It is multi-platform and flexible. OSSEC is a multi-platform solution that

enables companies to collect and inspect logs on and from different operating

systems and devices, which is a vital feature compared to its competitors. By

using custom rule and log decoders collecting almost every type of log is

possible. The OSSEC agent which does the job of collecting information and

sending them to the OSSEC manager is supported on GNU/Linux, Windows,

MacOS, FreeBSD etc. It is also able to collect information via SSH or Syslog

which extends its support to almost all network devices as well. Many companies

might have certain policies or requirements that would prevent them from

installing software on their hosts, and this feature helps to comply to such

requirements.

OSSEC provides real-time monitoring and alerts. It has a very customizable

and configurable system. The administrator can configure which specific issues

to be alerted about and through which communications channels. It is easily

integrable to most traditional and modern methods such as SMS, email, Slack

etc. OSSEC also supports custom rules and scripts to be triggered when a

certain suspicious activity is detected. For example, certain IPs can be blocked

when a certain rule with a high alert lever is triggered, or emails can be sent with

specific information to a defined address. These are called active responses and

the possibilities are limitless using custom scripts.

It is integrable with many tools to give it additional functionalities. OSSEC

fits in anywhere and is able to send logs to a designated log management

system. This is one of the important features that allows it to be integrated with

solutions like Elastic Stack which is going to be tested in this thesis.

It can be centrally managed which facilitates administration. OSSEC

normally consists of one server and several agents. However, this architecture is

scalable in case high availability is required. In any case, the information is all

accessible through one management server.

7

2.1.2 Features

OSSEC is capable of monitoring and analyzing logs. It uses its agents or

other agentless methods to collect logs and it will notify the administrator of any

abnormal activities such as authentication failure, package installation, privilege

escalation or any other specific activity that was configured by the administrator

to be detected by OSSEC. For example, let’s assume a user does not have

privileges to run a specific command. In this case, the user would normally try

using “sudo” or an equivalent command to escalate privileges. OSSEC will

immediately write this activity to the alert log, if there is already an alert rule

configured for this case.

OSSEC does frequent file Integrity checks (Syscheck). The OSSEC agent

runs an initial scan on the specified files or directories and sends the checksum

information to the OSSEC server. As the server stores the information, the

administrator will be alerted in the future in case of any modification in the

checksum of these files. This is specifically necessary in a situation where

additions or deletion on specific files or directories are not allowed and are

important. In most attacks, there will be some modifications on specific files or

directories, and the goal of this feature is to detect such modifications.

OSSEC can detect harmful software such as malware. In case of a smart

attack, hackers would normally try to hide or fake their activities and delete

important logs. Using this feature, OSSEC will alert the administrator if there are

any changes that might be suspiciously done by malware. This detection is

performed using certain database files containing information regarding different

malware and Trojans.

OSSEC can be configured to actively respond to certain activities. Active

responses are like automated attack encounters. This feature is perfect for

situations when the administrator is not immediately available to counter an

attack. So, this is basically a set of pre-configured scripts to be triggered in case

8

of a corresponding attack to prevent it from getting bigger. This is a very powerful

feature that could be used creatively to reduce different kind of attacks and risks.

2.1.3 Architecture

OSSEC can have a single or multiple managers architecture. OSSEC is

consisted of many modules and pieces. As Figure 1 shows below, there is a

OSSEC manager that collects all the information centrally from OSSEC agents

and other devices monitored in other methods. The manager stores everything

just to facilitate the administration of the whole system and the agents. The main

way the agents communicate with the manager is through the 1514 UDP/TCP

port which is used for the main communication and 1515 port which is only used

during the registration process to send a registration request to the OSSEC

manager. The agent itself is a very small package running on its own isolated

environment and has very little effect on the system’s performance.

Figure 1. OSSEC single manager architecture (OSSEC, 2018)

9

OSSEC can be deployed in a cluster mode as well. It means there can be a few

managers and many agents. This is a perfect architecture for big companies that

require high availability and fail-over to guarantee strong communication among

the agents and the managers. So, the agents send information to many

managers, and the load is distributed allowing more events to be processed

compared to a single manager architecture. For precise load distribution, a load-

balancer must be used and its IP address will be used as the manager address

for the agents. In addition, no data is lost in fail-over mode. In case any manager

goes offline, the requests will be automatically redirected to another manager.

2.1.4 Modules

I wanted to understand how OSSEC works in more detail, I also studied each of

its modules and commands and included their brief description in Table 1. Some

modules are Linux daemons or services that are on the background and do their

job, the rest are tools that can be used as commands in the terminal.

Table 1.OSSEC modules (OSSEC, 2018)

Module Description
ossec-authd Daemon that adds agents to the manager
ossec-agentlessd Daemon that handles agent-less communications
ossec-analysisd Daemon that creates alerts by analyzing logs
ossec-csyslogd Daemon that forwards alerts using syslog
ossec-dbd Daemon that stores alert logs in a configured database
ossec-execd Daemon that runs the active response scripts
ossec-maild Daemon that sends email alerts
ossec-monitored Daemon that monitors agents’ connectivity
ossec-remoted Daemon that handles agents’ communication
ossec-reportd Daemon that creates alert logs
ossec-syscheckd Daemon that checks files for any changes
agent-auth Tool used with ossec-authd to add agents to the manager
ossec-control Tool to control all of OSSEC’s services

10

ossec-logcollector Tool collect specified logs
ossec-logtest Tool to test logs to help with troubleshooting
ossec-makelists Tool to recompile the outdated ones
ossec-regex Tool to read regex expressions
verify-agent-conf Tool to verify agents configuration file
clear_stats Tool to clear the events stats
list_agents Tool to list available agents connected to the manager
agent_control Tool to control agents and get their information
manage_agents Tool to manage authentication keys of the agents
syscheck_control Tool to manage the integrity checking database
syscheck_update Tool to update the integrity checking database
rootcheck_control Tool to manage the auditing database
util.sh Tool to add files to be monitored by ossec-logcollector

2.2 Wazuh

This section explains how Wazuh extends OSSEC’s functionality and makes it

much easier to use. Wazuh integrates three features to OSSEC which are

explained as follows.

Briefly starting with Elastic Stack, it is a combination of tools, mainly Elastic

Search, Logstash and Kibana. That’s where the name ELK Stack comes from.

This stack works together to show the received data from tools like OSSEC to be

viewed in a user friendly way. Wazuh created their own plugin for Kibana which is

a data visualization tool running in a browser. The plugin allows the user to

communicate with the OSSEC manager through a browser and view important

statistics about the agents. Some of the most important features of these

integration are:

• Sophisticated visualization based on alerts, file changes etc

• A search engine to help find specific information

• Long-term data storage

11

The second feature is the Wazuh Ruleset. OSSEC itself has its own default rules

to detect attacks and suspicious activities. Wazuh extends those rules by adding

several rules of their own such as a few rules for Amazon Web Services(AWS),

docker, firewall, openvpn etc. On top of that, they also maintain their own version

of OSSEC’s default rules to increase precision.

In my opinion, the other great feature over OSSEC is that the documentation that

Wazuh provides is great and always up to date. It walks you through all the

features and possibilities and customization that you can have on OSSEC, and

also provides great tutorials on how to implement the whole Wazuh system using

configuration management tools like Ansible and Puppet or virtualization tools

Docker and Virtual Box.

2.3 Elastic Stack

Elastic Stack and its tools and the way they are related to OSSEC are explained

in more details In this section.

Elastic Search is an open-source search and analytics engine which can store

big amounts of data and add features like search, filters and other advanced

search features. This tool can be used in almost any case where search is

needed, like a simple search for a food delivery service, or in our case to search

the aggregated logs sent by our Wazuh agents. All data is searchable by Elastic

Search by one second latency. The data is indexed then becomes available in

that second which makes Elastic Search near real time(NRT).

Elastic Search runs in a cluster which may contain one or more nodes(servers).

Each cluster has a unique name as nodes join a cluster based on its name.

Nodes may join the wrong cluster if the same name is reused. A node in terms of

Elastic Search is the server running the tool itself which also stores and analyzed

all the data. All nodes have a unique identifier by default and automatically would

12

try to join a cluster named ”elasticsearch”. In the most basic case, Elastic Search

runs as a single-node cluster.

Each piece of indexed data in Elastic Search is a called a ”document”. You may

have a document for a different items like different kind of products which are

stored in JSON. Each index can store many number of documents depending on

the hardware limits. If an index stores way too much data that takes too much

space to be on a single node, that index can can be divided into ”shards”. Each

shard is an index on its own as well. Shards give the flexibility of distributing data

on multiple nodes which would increase performance. Elastic Search carries out

aggregating the shards and forming them to a searchable form to the user.

Besides shards, it is also possible to replicate indexes to provide high availability.

The number of shards and replicas can be configured before index creation.

Kibana is another tool provided by elastic.co which is used to add a visual

interface for all the other tools of the company especially Elasticsearch. It allows

the user to view and interact with the data and it also helps in presenting the data

in a more readable way using charts, tables, maps etc. As it is a browser

application with an appealing interface, the tool facilitates the process of looking

at logs and other settings. It runs on port 5601 by default, and it is powered by

Node.js. The other tool and the middle letter of ELK is Logstash. Logstash is

mainly a data parser which works based on rules to receive, parse, index and

send logs to Elasticsearch.

13

3 PRACTICAL IMPLEMENTATION

In this section, I will implement a working intrusion detection system in Google

Cloud using configuration and automation management tools Terraform and

Ansible. Once my Wazuh installation is up and ready, I will go through the

different features that it provides and analyze the data gathered from each one of

the hosts.

3.1 Infrastructure

I need three machines to implement my installation. One of them will be the

OSSEC manager which must be a small to average machine with the minimum of

4 GiB of RAM and 2 CPU cores, because it will be running Elastic Stack and

Wazuh. Elastic Stack is the tool that will consume much of the resources as it will

be doing the data calculations and analysis.

The other two machines will be used as test hosts to be monitored and to detect

any intrusion on them. I will describe how I setup this infrastructure using

Terraform on Google Cloud based on the official documentation of Terraform

(2018) and Google (2018).

3.1.1 Google Cloud

Nowadays, big companies use cloud services for any of their heavy services that

would need to be highly available and easily scalable. Running Elastic Stack in

the cloud would be a great practice, because services like Google Cloud or AWS

offer much flexibility such as easily creating backup images of their virtual

machines, adding resources or simply running multiple machines and setting up a

load-balancer. All of these services help decrease the need for more human

resources and maintenance. Personally, I am an AWS user but I have decided to

take the opportunity and use Google Cloud for this study to familiarize myself with

a another cloud service provider. Before I describe the type of resources I will use

14

in Google Cloud, I will integrate it with my current environment first to be able to

interact with it through the command line which will make it much easier and

simpler to understand instead of using the GUI which could lead to human errors

and miss clicks. The other reason for this integration is to be able to write my

infrastructure as a code and then use Terraform to lunch my specific

infrastructure on Google Cloud. I will describe the advantages of this practice in

the section 3.1.2.

First, we need to install Google Cloud Tools which is the command line tool to

allow us to programmatically interact with our Google Cloud account. On my

personal computer, I am using Arch Linux. The google-cloud-sdk is available in

the Arch Linux User Repositories(AUR) which can be installed using tools like

”yaourt”. Once the package is installed, the ”gcloud” command will be available

to be used to interact with our account as follows:

[alian@aanafcheh ~]$ gcloud --version

Google Cloud SDK 201.0.0

app-engine-go

app-engine-python 1.9.69

beta 2017.09.15

bq 2.0.33

core 2018.05.11

gsutil 4.31

Google makes the authentication and integration very easy. We simply run

”google init” and an interactive shell will open up asking us to authenticate in a

browser . After authentication, I will create my first project and make it my default

in the following way:

[alian@aanafcheh ~]$ gcloud projects create ali-anafcheh-oalan002

Create in progress for

[https://cloudresourcemanager.googleapis.com/v1/projects/ali-anafcheh-

oalan002].

Waiting for [operations/cp.8829041521380186492] to finish...done.

15

[alian@aanafcheh ~]$ gcloud config set project ali-anafcheh-oalan002

Updated property [core/project].

As we created a new project, we need to link our billing account to this new

project. The following command must be run to get our billing account ID. In this

case and in future cases where personal data is exposed, I randomly replace the

data to keep the process as natural and real as possible.

[alian@aanafcheh ~]$ gcloud beta billing accounts list

ACCOUNT_ID NAME OPEN MASTER_ACCOUNT_ID

123abc-123abc-123abc My Billing Account True

Next, we execute the following command to link our project to the billing account

above:

[alian@aanafcheh ~]$ gcloud alpha billing projects link ali-anafcheh-

oalan002 –billing-account=123abc-123abc-123abc

billingAccountName: billingAccounts/123abc-123abc-123abc

billingEnabled: true

name: projects/ali-anafcheh-oalan002/billingInfo

projectId: ali-anafcheh-oalan002

Google cloud has a big list of virtual machines available that fit different cased

depending on the requirements. Some machines are designed for high CPU

usage and some are designed for high memory or I/O usage. However, for this

study a standard machine would be enough. The details of the machine are as

follows:

[alian@aanafcheh ~]$ gcloud compute machine-types list | grep n1-

standard

n1-standard-1 us-central1-f 1 3.75

n1-standard-2 us-central1-f 2 7.50

The n1-standard-1 is a good choice for our agent hosts to be monitored and the

n1-standard-2 is good enough to be the manager in a test environment.

16

3.1.2 Terraform

Now that we have integrated our environment with Google Cloud, we can use a

infrastructure as code software to create our infrastructure in the cloud. The main

reason I chose to do this is to keep things easier to manage. Terraform allows us

to write each of our resources and our configuration as a code using their easy to

learn and understand configuration language. The best part of this is that we can

create different files for different resources which allow us to manage our

infrastructure conveniently and smartly.

As an example, we can create one Terraform file for our Wazuh manager virtual

machine that includes the code about all the machine’s configuration. This will

allow us to be able to see all the relevant configurations of a certain machine in

one file and change things easily in the future. This way we can also keep track

of our infrastructure in a version control system like Git and revert changes in

case of any issues.

How does Terraform run the code? In this section we will go through the steps to

allow Terraform to access our project programmatically through a command line.

Once Terraform has access permissions to our project and our infrastructure

code is ready, running a simple ”terraform plan” command will give us the whole

information of what would be created. Once we accept the plan, all the changes

will be saved in a file called Terraform state which can be hosted remotely in a

storage node. This allows us to have a unified state file which will contain the

updated version of the infrastructure and prevents people from making unwanted

changes. Therefore, in the future, if there is a certain change in the infrastructure

code, Terraform will evaluate how that change affects the whole infrastructure

and report the result back to us.

After installing Terraform, let’s start by connecting it to our Google Cloud project.

We need to create a service account specifically for Terraform which would

17

generate credentials specifically for Terraform to be able to communicate with our

project as follows:

[alian@aanafcheh ~]$ gcloud iam service-accounts create terraform --

display-name "Terraform"

Created service account [terraform].

Now let’s create the keys that will allow Terraform to access our ”ali-anafceh-

oalan002” project as follows:

[alian@aanafcheh ~]$ gcloud iam service-accounts keys create

~/.config/gcloud/terraform.json --iam-account terraform@ali-anafcheh-

oalan002.iam.gserviceaccount.com

created key [76439639grefdfv9e869864983fdvd939r8v6fd98v63] of type

[json] as [/home/alian/.config/gcloud/terraform.json] for [terraform@ali-

anafcheh-oalan002.iam.gserviceaccount.com]

Next, we give Terraform permissions to make any changes in our project. Google

Cloud already has default roles like ”viewer”, ”editor” etc which can be used. We

will use the ”editor” role in this case:

[alian@aanafcheh ~]$ gcloud projects add-iam-policy-binding ali-

anafcheh-oalan002 --member serviceAccount:terraform@ali-anafcheh-

oalan002.iam.gserviceaccount.com --role roles/editor

bindings:

- members:

 - serviceAccount:service-33458730939827@compute-

system.iam.gserviceaccount.com

 role: roles/compute.serviceAgent

- members:

 - serviceAccount:33458730939827-compute@developer.gserviceaccount.com

 - serviceAccount:33458730939827@cloudservices.gserviceaccount.com

 - serviceAccount:terraform@ali-anafcheh-

oalan002.iam.gserviceaccount.com

 role: roles/editor

mailto:terraform@ali-anafcheh-oalan002.iam.gserviceaccount.com
mailto:terraform@ali-anafcheh-oalan002.iam.gserviceaccount.com

18

- members:

 - user:aanafcheh@protonmail.com

 role: roles/owner

etag: Tcidfv09tB=

version: 1

Terraform is all ready to be used, but let’s do one final step to make things even

easier. As mentioned before in this section, it’s better to store the Terraform state

file remotely rather than locally, accordingly let’s store our state file in the same

Google Cloud account. We will use the ”gsutil” tool which was already installed

with the ”gcloud” package. This tool allows us to interact with Google Storage to

create files, buckets etc. Hence, we will create a bucket named ”terraform-

statefile” that will host our statefile:

[alian@aanafcheh ~]$ gsutil mb -p ali-anafcheh-oalan002 gs://terraform-

statefile

Creating gs://terraform-statefile/…

If we would like to enable versioning on this bucket to keep old versions of our

objects, run the following command:

[alian@aanafcheh wazuh-terraform-ansible]$ gsutil versioning set on

gs://terraform-statefile

Enabling versioning for gs://terraform-statefile/...

We can start creating our Terraform files now. I created a repository below that

will include all of the Terraform configuration code that I used for this practical

implementation.

[alian@aanafcheh repos]$ git clone https://github.com/aanafcheh/wazuh-

terraform-ansible.git

Cloning into 'wazuh-terraform-ansible'...

warning: You appear to have cloned an empty repository.

19

Terraform reads any files with the extension ”tf” and ”tf.json”. Firstly, let’s create

our first Terraform file which connects it to our Google Cloud. Create a file with

any name such as ”backend.tf” that includes this configuration:

// Terraform state file stored in Google cloud Storage

terraform {

 backend "gcs" {

 bucket = "terraform-statefile"

 path = "/terraform.tfstate"

 project = "ali-anafcheh-oalan002"

 }

}

// Google Cloud provider

provider "google" {

 credentials = "${file("/home/alian/.config/gcloud/terraform.json")}"

 project = "ali-anafcheh-oalan002"

}

As the code above shows, in the first part I configured Terraform to store a state

file called ”terraform.tfstate” in my “terraform-statefile” bucket that I have created

already. In the second part, it is configured to read the credentials files that were

specifically created for Terraform to access our project. Before we initialize our

Terraform, we also need to export the following variable to be able to connect

Google Cloud Storage:

[alian@aanafcheh wazuh-terraform-ansible]$ export

GOOGLE_APPLICATION_CREDENTIALS=/home/alian/.config/gcloud/terraform.json

[alian@aanafcheh wazuh-terraform-ansible]$ export GOOGLE_PROJECT=ali-

anafcheh-oalan002

Of course, the environment variables above could be placed in our user’s bash

profile in case we will be using the same configuration often.

It’s finally time to initialize our Terraform backend:

20

As we didn’t apply anything into our Terraform state yet, running ”terraform plan”

will report that our infrastructure is up to date:

Figure 2. Terraform initialization succeeded, stage 1

Figure 3. Terraform infrastructure up-to-date stage 2

21

Terraform is all ready now, and we will create three “tf” files for each of our

machines. Here’s the Wazuh manager:

wazuh-manager.tf

Create a new virtual machine

resource "google_compute_instance" "wazuh_manager" {

 name = "wazuh-manager"

 machine_type = "n1-standard-2"

 zone = "europe-west3-a" // Frankfurt region

 tags = ["wazuh-manager", "staging"]

 boot_disk {

 initialize_params {

 image = "centos-7"

 }

 }

 metadata {

 sshKeys = "${var.gc_ssh_user}:${file(var.gc_ssh_pub_key_file)}"

 }

network_interface {

 network = "default"

 access_config {}

}

}

// show the virtual machine's public IP address

output "wazuh_manager_address" {

 value = "$

{google_compute_instance.wazuh_manager.network_interface.0.access_config.

0.nat_ip}"

}

22

The two files for the two virtual machines used as agents are as follows:

wazuh-agent-1.tf

Create a new virtual machine

resource "google_compute_instance" "wazuh_agent_1" {

 name = "wazuh-agent-1"

 machine_type = "n1-standard-2"

 zone = "europe-west3-a" // Frankfurt region

 tags = ["wazuh-agent-1", "staging"]

 boot_disk {

 initialize_params {

 image = "centos-7"

 }

 }

 metadata {

 sshKeys = "${var.gc_ssh_user}:${file(var.gc_ssh_pub_key_file)}"

 }

network_interface {

 network = "default"

 access_config {}

}

}

// show the virtual machine's public IP address

output "wazuh_agent_1_address" {

 value = "$

{google_compute_instance.wazuh_agent_1.network_interface.0.access_config.

0.nat_ip}"

}

wazuh-agent-2.tf

Create a new virtual machine

resource "google_compute_instance" "wazuh_agent_2" {

 name = "wazuh-agent-2"

23

 machine_type = "n1-standard-2"

 zone = "europe-west3-a" // Frankfurt region

 tags = ["wazuh-agent-2", "staging"]

 boot_disk {

 initialize_params {

 image = "centos-7"

 }

 }

 metadata {

 sshKeys = "${var.gc_ssh_user}:${file(var.gc_ssh_pub_key_file)}"

 }

network_interface {

 network = "default"

 access_config {}

}

}

// show the virtual machine's public IP address

output "wazuh_agent_2_address" {

 value = "$

{google_compute_instance.wazuh_agent_2.network_interface.0.access_config.

0.nat_ip}"

}

One of the other strengths of Terraform is that it is easily readable and

understandable. All you need to do is to provide it with the right information. The

code above shows, we created three instances that will run CentOs 7. We

created a common network called “default” for all the three machines to be able

to communicate with each other and also assigned them public IPs to be able to

access them from my local computer. In Terraform, we can create variables for

repeated values. For example, I added my public SSH key in a file called

”variables.tf” and named my variables as ”${var.gc_ssh_user}” and $

24

{var.gc_ssh_pub_key_file}”. The purpose of the SSH key is to be able to easily

log in to my machine with no password, and for future use with Ansible.

Last but not least, I also added the relevant security rules to allow traffic to

Kibana and master-agent communication in a file called ”firewall.tf” which is as

follows:

#firewall.tf

// Allow https traffic and pings from everywhere

resource "google_compute_firewall" "wazuh" {

 name = "wazuh"

 network = "default"

 allow {

 protocol = "icmp"

 }

 allow {

 protocol = "tcp"

 ports = ["5601"]

 }

 allow {

 protocol = "tcp"

 ports = ["1515"]

 }

 allow {

 protocol = "tcp"

 ports = ["1514"]

 }

 source_ranges = ["0.0.0.0/0"]

}

25

Everything is ready and we can simply create our infrastructure by running

”terraform apply”. We review the changes that will take affect and type ”yes”, if

everything looks fine. Briefly, Terraform will make the following changes:

+ google_compute_firewall.wazuh

+ google_compute_instance.wazuh_agent_1

+ google_compute_instance.wazuh_agent_2

+ google_compute_instance.wazuh_manager

Green color in Terraform means that new resources will be created. Red color

means that the specified resources will be destroyed and yellow mean that the

specified resource will change. Figure 4 shows the result after confirming

Terraform’s change:

Another important feature that you see in Figure 4 above is ”output variables”. In

our Terraform code, the public IP of each machine was specified as an output

variable so that we can save it immediately after instances creation without the

need to make further checks.

Figure 4. Terraform added resources, stage 3

26

I have specified ”aanafcheh” as my username for the instances, and they

automatically use the ”name” part of the Terraform code as their host name. Let’s

make an attempt to test SSH to our manager as follows:

[alian@aanafcheh ~]$ ssh aanafcheh@35.198.95.196

Enter passphrase for key '/home/alian/.ssh/id_ed25519':

Last login: Mon May 21 21:33:10 2018 from dsl-hkibng11-50dc4c-

22.dhcp.inet.fi

[aanafcheh@wazuh-manager ~]$

As the code above shows, SSH was successful to our virtual machine which was

named “wazuh-manager”.

3.2 Wazuh Installation

This section explains Wazuh installation using an IT automation tool called

Ansible. Subsection 3.2.1 introduces Ansible and how Wazuh can be installed

using the tool according to Ansible (2018) and Wazuh (2018). Subsection 3.2.2

explains the process of installing Wazuh using Ansible.

3.2.1 Ansible

Ansible is an IT automation and configuration management tool. It is perfect for

running generic pieces of code or commands on many machines. It is used by

big companies to manage and maintain applications and configurations on their

infrastructure. It is agentless and runs everything through SSH. In addition, it

does not need any extra software to be installed on the remote hosts.

 Ansible describes their configuration and deployment language as Playbooks. In

this case, I will create a Playbook for Elastic Stack, the Wazuh manager and

Wazuh agent. Each Playbook has roles which include tasks to be executed,

variables, templates, dependencies etc. For the installation, I will fork the official

Ansible Playbooks provided by Wazuh and modify them to fit my requirements

27

and infrastructure. I will describe the important parts of Ansible and the

Playbooks to keep this section short and stay on the topic. The first step is to fork

or clone the following repository locally:

[alian@aanafcheh ansible]$ git clone https://github.com/wazuh/wazuh-

ansible

Ansible uses YAML as its configuration language. In the repository’s root

directory, we can see different files such as ”wazuh-elastic_stack-single.yml”

which is the Playbook that that will setup a single manager architecture system.

As an example, here is the Playbook’s content:

- hosts: 35.198.95.196

 roles:

 - { role: ansible-wazuh-manager }

 - { role: ansible-role-elasticsearch, elasticsearch_network_host:

'localhost' }

 - { role: ansible-role-logstash, elasticsearch_network_host:

'localhost' }

 - { role: ansible-role-kibana, elasticsearch_network_host:

'localhost' }

As the YAML code above shows, the Playbook starts with specifying a host. I

specified the IP address of the manager here as I will run this Playbook on it.

Ansible is very flexible and a separate host file with different groups and variables

can be created for bigger environments. However, I will keep the Ansible part of

this study simple and straightforward to continue with the installation and have

the intrusion system installed. In the rest of the Playbook, we can see the roles

specified in which each of them are in their own directory at the root of the

repository.

The core of a role is its “tasks” directory. It includes at least one YAML file or in

other words, task files that include a set of Ansible modules specifically

programmed to carry out certain tasks. There are a lot of Ansible modules

28

available already for different kind of services and operating system. For

example, the tasks that add the Wazuh repository and install the Wazuh manager

are as follows:

- name: RedHat/CentOS/Fedora | Install Wazuh repo

 yum_repository:

 name: wazuh_repo

 description: Wazuh repository

 baseurl: https://packages.wazuh.com/3.x/yum/

 gpgkey: https://packages.wazuh.com/key/GPG-KEY-WAZUH

 gpgcheck: yes

 when:

 - ansible_distribution_major_version|int > 5

- name: Install wazuh-manager and expect (EL5)

 package: pkg={{ item }} state=latest

 with_items:

 - wazuh-manager

 - expect

 when:

 - (ansible_distribution == 'CentOS' or ansible_distribution ==

'RedHat') and ansible_distribution_major_version|int < 6

Therefore, a role includes tasks like above to carry out certain tasks and copy

certain configuration files to meet a goal such as fully installing and configuring a

Wazuh manager.

3.2.2 Installation Process

Each role may have its own default variables located under ”role-name/defaults/

main.yml”. I will go through all of these variables to make sure they match my

preferences and my installation. One of the important variables is the log files to

be monitored. For now, I will go with the defaults which are the following:

29

• /var/log/messages

• /var/log/secure

• /var/log/maillog

• /var/log/httpd/error_log

• /var/log/httpd/access_log

• /var/ossec/logs/active-responses.log

Also, in the “wazuh-agent” Playbook we have to specify the address of the

manager so that authentication requests are sent there. I will not be using any

https certificates in this setup as this is a demo environment with no DNS names,

in other words there is no point in setting up self-signed certificates.

One of the last variables to modify is to specify an “authd”(explained in Table 1)

password in both the manager and the agent playbooks to be able to

authenticate and register agents on the manager. After running the manager

playbook first, we will run the agent playbooks on each host afterwards which will

do the authentication part described earlier.

After modifying a few other values, we run the manager playbook on our

manager host as follows:

[alian@aanafcheh wazuh-ansible]$ ansible-playbook wazuh-elastic_stack-

single.yml -u aanafcheh -i 35.198.95.196,

PLAY [all]

**

TASK [Gathering Facts]

**

Enter passphrase for key '/home/alian/.ssh/id_ed25519':

ok: [35.198.95.196]

TASK [ansible-wazuh-manager : RedHat/CentOS | Install Nodejs repo]

**

changed: [35.198.95.196]

30

TASK [ansible-wazuh-manager : Fedora | Install Nodejs repo]

**

skipping: [35.198.95.196]

TASK [ansible-wazuh-manager : RedHat/CentOS/Fedora | Install Wazuh repo]

**

changed: [35.198.95.196]

.

.

PLAY RECAP

**

35.198.95.196 : ok=58 changed=11 unreachable=0

 failed=0

The above Ansible run was summarized. As the code above shows, like

Terraform, each single task has a color and it can be either

”ok”,”changed”,”skipping” or ”failed. In this case, I only specified one host. We

can easily run this on a huge group of hosts, and allow ansible handle everything.

That is the power of Ansible. The Kibana web page should now be available at

”35.198.95.196:5601” as shown in Figure 5:

Figure 5. Kibana and Wazuh plugin, stage 1

31

We can also see the Wazuh plugin on the left menu as shown in Figure 5. That’s

one of the important Wazuh added features on top of OSSEC which will make

administrating the agents easier. Let’s start by clicking on the Wazuh plugin and

setup the rest of the agents. Once we click on the plugin, we will be presented

with a page to connect to the Wazuh manager API as all the information

collection for the plugin will be done through the API. I already added a username

“aanafcheh” and a password as my credentials and authenticated to the API as

shown in Figure 6:

After successful authentication we are presented with the interface of the Wazuh

plugin as shown in Figure 6. We will go through the plugin in section 3.3. Let’s

continue the installation process by adding agents. This is done through Ansible

as well and by running the following command:

ansible-playbook wazuh-agent.yml -u aanafcheh -i 35.234.66.146, -vvv

This task ”TASK [ansible-wazuh-agent : Linux | Register agent (via authd)] ”

must be executed and be labeled as ”changed. Once the Ansible run is done with

no fails, the agent should show up in Kibana in the Wazuh plugin as follows in

Figure 7:

Figure 7. Available Wazuh agents, stage 3

Figure 6. Wazuh Manager API, stage 2

32

We will do the same steps as above with the second host and add it as an agent.

Finally, we will configure our Elasticsearch template for analyzing data in the

discover page of Kibana. There are two templates and one has to be chosen as

default. The wazuh-monitoring template is used to monitor the manager as it

highlights specific values from its logs like monitoring a cluster. The other

template is the wazuh-alerts template which analyses the logs and highlights

information as shown in Figure 8.

Figure 8. Elasticsearch log analysis, stage 3

3.3 Wazuh Capabilities Evaluation

In this section, I will test the important features of Wazuh like file integrity, log

monitoring etc. that I introduced earlier in sections 2.1.2 and 2.2.

3.3.1 Log Monitoring

This feature is already working out of the box as one of Wazuh’s most import

features is their enhanced OSSEC rules that are deployed by default during the

installation. I’ll test this feature by installing a ”yum” package as I am monitoring

the log file of the package manager. I installed “nano” text editor on wazuh-agent-

1, and this event was instantly reported to the manager. I could easily find this log

by simply searching in Kibana which is powered by the Elasticsearch engine.

Figure 9 shows the results as follows:

33

Figure 9 also shows a lot of other important information and values such as the

source IP address, the agent name, the command that was run, the location of

the log etc. The more interesting part is that as the installation command was run

with ”sudo” another alert was received regarding this event as well indicating

which user escalated privileges and whether it was successful or not.

3.3.2 File Integrity

This feature will inform us of any changes in the directories that we specified. The

following is my current configuration:

 syscheck:

 frequency: 43200

 scan_on_start: 'yes'

 auto_ignore: 'no'

 alert_new_files: 'yes'

 ignore:

 - /etc/mtab

 - /etc/mnttab

Figure 9. Yum package installation alert

34

 - /etc/hosts.deny

 - /etc/mail/statistics

 - /etc/random-seed

 - /etc/random.seed

 - /etc/adjtime

 - /etc/httpd/logs

 - /etc/utmpx

 - /etc/wtmpx

 - /etc/cups/certs

 - /etc/dumpdates

 - /etc/svc/volatile

 no_diff:

 - /etc/ssl/private.key

 directories:

 - dirs: /etc,/usr/bin,/usr/sbin

 checks: 'check_all="yes"'

 - dirs: /bin,/sbin

 checks: 'check_all="yes"'

In the configuration above, I have file integrity enabled on a directory such as

”/etc/”, meaning that I will be alerted of any new files or changes in that directory.

We can also ignore files that change often. I will make a change on my agent’s

OSSEC configuration and also add a file to the “/etc” directory. Wazuh plugin

should report that as shown in Figure 10:

3.3.3 Policy Monitoring and Malware Detection

This part is done using both syscheck and rootcheck. The current configuration of

rootcheck is as follows:

Figure 10. Wazuh file integrity check

35

 <rootcheck>

 <disabled>no</disabled>

 <check_unixaudit>yes</check_unixaudit>

 <check_files>yes</check_files>

 <check_trojans>yes</check_trojans>

 <check_dev>yes</check_dev>

 <check_sys>yes</check_sys>

 <check_pids>yes</check_pids>

 <check_ports>yes</check_ports>

 <check_if>yes</check_if>

 <!-- Frequency that rootcheck is executed - every 12 hours -->

 <frequency>3600</frequency>

 <rootkit_files>/var/ossec/etc/shared/rootkit_files.txt</rootkit_files>

 <rootkit_trojans>/var/ossec/etc/shared/rootkit_trojans.txt</rootkit_t

rojans>

 <system_audit>/var/ossec/etc/shared/system_audit_rcl.txt</system_audi

t>

 <system_audit>/var/ossec/etc/shared/system_audit_ssh.txt</system_audi

t>

 <system_audit>/var/ossec/etc/shared/cis_rhel7_linux_rcl.txt</system_a

udit>

 <skip_nfs>yes</skip_nfs>

 </rootcheck>

As you can see, it is instructed to audit the system and also scan for Trojans or

malware every hour on wazuh-agent-2. It uses the defined standard databases

listed in the code above to make the scans, compare and suggest corrections. As

an example, Figure 11 shows the security flaws that were detected on wazuh-

agent-2:

36

3.3.4 Active Response

This is one of the interesting features in which Wazuh manager takes automatic

actions to counter certain attacks or activities. Wazuh has a few default scripts

located at ”/var/ossec/active-response/bin” which can be configured to be used

as an active response. I decided to try the firewall-block active response which

will be fired once a user tries to make invalid ssh connections for eight times. The

following has to be in the configuration file of the manager:

<command>

 <name>firewall-drop</command>

 <executable>firewall-drop.sh</executable>

 <expect>srcip</expect>

</command>

<active-response>

 <command>firewall-block</command>

 <location>all</location>

 <rules_group>authentication_failed,authentication_failures</rules_group>

 <timeout>700</timeout>

</active-response>

The first part of the configuration defines the script to be used for the active

response and the second part of the configuration is the active response itself

which refers to the name of the command to be used as well. The user will be

Figure 11. Policy monitoring

37

blocked for 700 minutes when this active response is provoked. Let’s try and test

the connection to our wazuh-agent-2 first as follows:

[alian@aanafcheh ~]$ ping 35.198.171.230

PING 35.198.171.230 (35.198.171.230) 56(84) bytes of data.

64 bytes from 35.198.171.230: icmp_seq=1 ttl=57 time=38.7 ms

64 bytes from 35.198.171.230: icmp_seq=2 ttl=57 time=40.3 ms

^C

--- 35.198.171.230 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

Now we will make many invalid SSH connections with an invalid user as follows:

[alian@aanafcheh ~]$ ssh ali@35.198.171.230

ali@35.198.171.230: Permission denied (publickey,gssapi-keyex,gssapi-

with-mic).

After eight retries the active response is invoked in the manager, as can be seen

in the following logs as well:

** Alert 1527131910.778856: -

ossec,active_response,pci_dss_11.4,gpg13_4.13,

2018 May 24 03:18:30 (wazuh-agent-2)

35.198.171.230->/var/ossec/logs/active-responses.log

Rule: 601 (level 3) -> 'Host Blocked by firewall-drop.sh Active Response'

Src IP: 80.244.70.11

Thu May 24 03:18:28 UTC 2018 /var/ossec/active-response/bin/firewall-

drop.sh add - 80.220.76.22 1527131908.777026 5712

script: firewall-drop.sh

type: add

38

The connection to the agent is blocked for 700 minutes from the source IP above:

[alian@aanafcheh ~]$ ping 35.198.171.230

PING 35.198.171.230 (35.198.171.230) 56(84) bytes of data.

^C

--- 35.198.171.230 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 4060ms

39

4 CONCLUSION

The aim of this study was to study intrusion detection in detail and learn about the

process of monitoring activities on individual hosts in various ways. I find Wazuh

to be very interesting and full of great features with great flexibility to monitor

different systems. For smaller companies, this solution might not be suitable, as it

would require maintenance and human resources to watch and acknowledge the

alerts and activities and to develop different ways to encounter them. However,

this is a great tool for companies with many personal servers that host sensitive

information of different customers.

I find Wazuh’s integration with Elastic Stack to be its greatest feature as it

provides great log monitoring and analysis in combination with Elastic search

specifically which makes reading, classifying and filtering huge number of logs

much easier.

40

REFERENCES

OSSEC. 2018. Welcome to OSSEC’s documentation! WWW document.
Available at: https://www.ossec.net/docs/ [Accessed 12 May 2018].

Wazuh. 2018. Welcome to Wazuh. WWW document. Available at:
https://documentation.wazuh.com/current/index.html [Accessed 12 May 2018].

Elastic Stack. 2018. Elastic Stack and Product Documentation. WWW document.
Available at: https://www.elastic.co/guide/index.html [Accessed 14 May 2018].

Google. 2018. Google Cloud Platform Documentation. WWW document. Updated
9 May 2018. Available at: https://cloud.google.com/docs/ [Accessed 16 May
2018].

Terraform. 2018. Terraform Documentation. WWW document. Available at:
https://www.terraform.io/docs/index.html [Accessed 20 May 2018].

Isla, D. 2017. Managing GCP Projects with Terraform. WWW document.
Available at: https://cloud.google.com/community/tutorials/managing-gcp-
projects-with-terraform [Accessed 20 May 2018].

Ansible. 2018. Ansible Documentation. WWW document. Available at:
http://docs.ansible.com/ansible/latest/index.html [Accessed 20 May 2018]

http://docs.ansible.com/ansible/latest/index.html
https://cloud.google.com/community/tutorials/managing-gcp-projects-with-terraform
https://cloud.google.com/community/tutorials/managing-gcp-projects-with-terraform
https://www.terraform.io/docs/index.html
https://cloud.google.com/docs/
https://www.elastic.co/guide/index.html
https://documentation.wazuh.com/current/index.html
https://www.ossec.net/docs/

	1 INTRODUCTION
	2 Intrusion detection system (IDS)
	2.1 OSSEC
	2.1.1 Benefits
	2.1.2 Features
	2.1.3 Architecture
	2.1.4 Modules

	2.2 Wazuh
	2.3 Elastic Stack

	3 PRACTICAL IMPLEMENTATION
	3.1 Infrastructure
	3.1.1 Google Cloud
	3.1.2 Terraform

	3.2 Wazuh Installation
	3.2.1 Ansible
	3.2.2 Installation Process

	3.3 Wazuh Capabilities Evaluation
	3.3.1 Log Monitoring
	3.3.2 File Integrity
	3.3.3 Policy Monitoring and Malware Detection
	3.3.4 Active Response

	4 Conclusion
	REFERENCES

