

Aleksi Lehtola

Optimizing Unity Projects

Bachelor of Business Ad-

ministration

Business Information

Technology

Spring 2018

Tiivistelmä

Tekijä(t): Lehtola Aleksi

Työn nimi: Unity Projektien Optimointi

Tutkintonimike: Tradenomi, tietojenkäsittely

Asiasanat: optimointi, Unity, pelimoottori, ohjelmointi

Opinnäytetyön tavoitteena oli perehtyä Unity-pelimoottoria käyttävien projektien optimointiin. Työn
toimeksiantaja toimi Virtual Frontiers Oy, jonka projektia työn aikana optimoitiin Mac-laitteille toimi-
vaksi.

Tämän opinnäytetyön teoreettinen osa käy läpi optimoinnin periaatteita, Unity-pelimoottorin opti-
mointityökalujen käyttöä ja tälle moottorille ominaisia ongelmakohtia ja ratkaisuja. Siinä myös tu-
tustutaan yleisiin ongelmakohtiin pelien suorituskyvyssä ja haetaan niihin ratkaisuja.

Optimointiprosessin osalta tärkeimmät periaatteet ovat profilointi, optimoinnin priorisointi ja suori-
tuskyvyn seuranta. Profilointiin käytettävät työkalut ovat Unity Profiler, Frame Debugger ja Memory
Profiler. Unity Profilerilla seurataan yleistä suorituskykyä, Frame Debuggerilla voi perehtyä tarkem-
min GPU:n toimintaan ruudun piirtämisessä ja Memory Profiler näyttää tarkasti, miten pelin käyt-
tämä muisti jaetaan eri objektien välille. Yleisimmät suorituskyvyn ongelmat ovat ruudunpäivitys
piikit, joka ruudun prosessit, roskankeräyksen piikit, muistin käyttö ja latausajat.

Työn toiminnallisessa osuudessa käydään läpi projektin työstämisessä ilmenneitä ongelmia ja ker-
rotaan erilaisista ratkaisuista, joihin päädyttiin. Projektin työstämisessä tuli vastaan seuraavat on-
gelmat, UI:n suorituskyky, tekstuurien muistinkäyttö ja piirtokutsujen suuri määrä. UI:n suoritusky-
kyä parannettiin jakamalle se usealle kankaalle, tekstuurien kokoa pienennettiin ja piirtokutsuja
vähennettiin lisäämälle objekteille laatutasoja ja käyttämällä occlusion culling -tekniikkaa.

Opinnäytetyön tuloksena syntyi dokumentti, joka toimii tietolähteenä optimointiprosessia aloitta-
valle henkilölle. Työosuuden tuloksena yrityksen projekti saatiin alustavasti toimimaan Mac-lait-
teilla ja sen jatkokehittäminen jatkuu kirjoittajan toimesta.

Abstract

Author(s): Lehtola Aleksi

Title of the Publication: Optimizing Unity Projects

Degree Title: Bachelor of Business Administration, Business Information Technology

Keywords: optimization, Unity, game engine, programming

The objective of the thesis was to study the optimization of Unity game engine projects. The client
of the thesis is Virtual Frontiers Ltd, a Finnish game company, whose game project was optimized
for Mac devices.

The theoretical part of this thesis deals with the principles of optimization, the optimization tools
provided by Unity game engine, the issues found on this platform and solutions for them. It also
goes into detail on the common performance issues found in video games and seeks solutions for
them.

The main principles in the optimization process are profiling, prioritizing optimization and measur-
ing the performance. The tools used for profiling are the Unity Profiler, the Frame Debugger and
the Memory Profiler. The Unity Profiler is used to measure the overall performance, the Frame
Debugger is used to debug the rendering process and the Memory Profiler shows how the Memory
Usage of the project is spread among the different objects, The most common performance issues
are framerate spikes, every-frame costs, garbage collection spikes, memory usage and loading
times.

The operational part was of the thesis focuses on optimizing the performance of a project and on
the unique issues found during the work and on the solutions reached for those issues. The follow-
ing problems were faced while working on the project; The performance of the UI, the memory
usage of textures and the high number of drawcalls. The performance of the UI was improved by
spreading it on multiple canvases, the size of the textures was made smaller and the number of
drawcalls was brought down by adding levels of detail to models and by using occlusion culling.

As a result for the thesis, a document was created that works as a source of information for those
starting on an optimization process. The assignment project reached acceptable performance on
Mac devices and the work on it continues.

Table of contents

1 Introduction ..1

2 Optimization principles ...2

2.1 Profiling ...2

2.2 Prioritizing optimization ...2

2.3 Measure the effects of changes ...3

2.4 The 5 classes of optimization ...3

2.4.1 Spikes ...3

2.4.2 Every-frame costs ...4

2.4.3 Garbage collection spikes ..4

2.4.4 Loading time ...5

2.4.5 Memory usage ..5

3 Profiling Unity ...7

3.1 Connecting the Profiler ...7

3.1.1 Making a build for profiling ..7

3.1.2 Profiling external devices ..8

3.1.3 Profiling mobile devices ..9

3.2 The Unity Profiler ..9

3.2.1 Using the Profiler ..10

3.2.2 Reading the Profiler ..11

3.3 The Frame Debugger ...12

3.3.1 Using the Frame Debugger ..12

3.3.2 Reading the Frame Debugger ..13

3.4 The Memory Profiler ...14

3.4.1 Using the Memory Profiler ..14

3.4.2 Reading the Memory Profiler ..15

3.5 Benchmarking ...16

4 Optimizing Unity ...18

4.1 Unity UI ...18

4.2 Memory management ...18

4.2.1 Garbage collector ...19

4.2.2 Manual garbage collection ..19

4.2.3 Object pooling ...20

4.2.4 Pre-allocating memory ..20

4.3 Reducing drawcalls ..21

4.3.1 Static game objects and batching ..21

4.3.2 Frustum culling..21

4.3.3 Occlusion culling ...22

4.3.4 LOD levels on 3D objects ...24

4.4 Optimizing scripts ...25

4.4.1 Preventing spikes ...25

4.4.2 Caching ...25

5 Optimizing the Virtual Frontiers project ...26

5.1 Benchmarking ...26

5.2 Occlusion culling ...27

5.3 The UI ...27

5.4 Terrain issues ...27

5.5 Terrain streaming..29

6 Conclusion ...30

List of Symbols

LOD – Level of Detail. Refers to the amount of details on a 3D object.

Drawcall – A single task performed on the GPU. A single frame consists of multiple draw-

calls.

RAM – Random access memory is the memory on which a game is loaded while running.

VRAM – Video random access memory is on a graphics card and is preserved for graph-

ical effects.

1 Introduction

A massive framerate drop in the middle of an action-packed moment or having to wait for

ages in loading screens can throw the player out of the gameplay experience. These are

common issues in videogames and are often the result of poor optimization (Turner,

Schell 2017).

Optimization refers to the process of making your game run better. Usually the main rea-

son for optimization is to make the gameplay smoother (Turner, Schell 2017), or to make

the game more available to a wider audience by having it run better on lower end devices.

When it comes to optimization, every project is unique and has different challenges which

need different solutions (San Filippo 2015). Profiling the project should always be the

starting point. Find out where the issues lie and start the optimization process from there

(Echterhoff, Riber 2013). However, there are common and well-known issues in the Unity

game-engine. Existing guidelines can also be found from which the optimization process

is easier to begin.

The first part of this thesis focuses on some of these guidelines and provides information

on profiling Unity projects. It should help you find a place to start the optimization process

from.

The second part of the thesis tells about the optimization work I did during my internship

in Virtual Frontiers. I was given the task to work on the performance of their project while

porting it to Mac devices.

2

2 Optimization principles

No matter how grand or small the optimization process is intended to be, there are some

general principles and good practices that should be followed. This chapter aims to intro-

duce some of these practices and to provide information on more common areas of opti-

mization. Many issues this chapter introduces have their own dedicated chapter later in

the thesis.

2.1 Profiling

To know what is the issue with the performance of a project, profiling is needed. Profiling

assists in understanding the unique issues found in a project, and should always be the

starting point for optimizing a project (San Filippo 2015).

The first step is to figure out whether your project is GPU or CPU bound (San Filippo

2015). This means which of the two components needs to wait for the other one to finish

performing its tasks before moving on to the next frame. Figuring out by which component

a project is bound helps to find the optimization tasks with the most performance gain.

Profiling has its own dedicated chapter later that goes through the act of profiling and the

tools used for it.

2.2 Prioritizing optimization

After the optimization tasks have been determined and before the process of optimization

is started, it is advisable to take some time and consider which area of optimization is the

priority (San Filippo 2015). This is done by comparing the approximated time an optimi-

zation job would take to the expected performance gain of said job.

Through this method a prioritized list can be made. This list then works as a guideline for

the entire process of optimization. This also helps to tackle the low hanging fruits first and

to gain the most performance with the least effort (San Filippo 2015).

3

2.3 Measure the effects of changes

Whenever a task of optimization is completed, the project should be profiled and the data

stored. The stored data can then be compared with a previous data allowing for closer

inspection of the state of the whole optimization process. This then helps to rearrange the

priority list, should it be necessary, and assists in keeping the whole process organized

(San Filippo 2015).

To accurately measure the changes between optimization tasks, benchmarking is often

used. Benchmarking has its own dedicated chapter later in the thesis.

2.4 The 5 classes of optimization

Aaron San Filippo, programmer and co-owner of the game studio Flippfly, divides optimi-

zation issues into four main categories in his presentation on Race the Sun Optimization

at Unite 2015. These categories are spikes, every-frame costs, garbage collection spikes

and loading time.

Memory size has been added as an additional class. This is a lesser issue on modern

PCs and powerful gaming machines, but is still relevant on weaker Mac machines and

mobile devices (Echterhoff, Riber 2013).

This chapter goes through the classes and provides information on what causes them.

Possible solutions for these issues can be found in a later chapter.

2.4.1 Spikes

Spike is a sudden drop in the framerate of a game. This is noticed when the screen sud-

denly stops and doesn’t move for a noticeable time frame. This can break the immersion

of the player or cause him to make a mistake he wouldn’t have otherwise made (San

Filippo 2015). Spikes can be seen in the profiler as a high point in otherwise stable fram-

erate (Picture 1).

Spikes are mainly caused by complex calculations or difficult operations performed during

a single frame (Turner, Schell 2017). Spikes are an issue in high-intensity games which

4

need a steady framerate and high control over the game to feel good, such as driving or

shooting games.

Picture 1. Framerate spike in the profiler

2.4.2 Every-frame costs

Every-frame costs are the calculations and operations that are run every single frame

(San Filippo 2015). These can be, for example, physics calculations, running AI behavior

or handling animations of characters.

Every-frame costs slow down the general framerate of the game. They are the little things

that slow the game down and make it feel less fluid (San Filippo 2015). If a game just

generally runs poorly, this is the area that needs work.

2.4.3 Garbage collection spikes

Garbage collection spikes are framerate drops specifically caused by the garbage collec-

tion system of Unity (San Filippo 2015). These can be huge framerate spikes and are

easily noticed while playing the game. The spikes happen when the memory garbage limit

is met and the collection runs, cleaning up the unnecessary objects from the memory

(Turner, Schell 2017). Their frequency is mandated by how much garbage the game gen-

erates each frame. The frequency can be slowed down by generating less garbage during

runtime.

5

The only way of preventing these spikes completely is to generate no garbage during

runtime (Kjems, Pedersen et al. 2016). This is a huge undertaking and must be considered

from the very beginning of a project.

2.4.4 Loading time

Loading time refers to how long the game takes to load. This includes the first load when

the game is opened, and loading that happens during runtime, for example between

stages.

While not usually a major issue, having extremely long loading times or having loading

screens appear far too often can negatively affect the user experience. To reduce the

length of loading screens, consider splitting up the work done during them. This can mean

preloading assets beforehand, to reduce the number of objects that need to be loaded

during the screen, or reducing the complexity of loaded scenes.

In an open world game, where a lot of objects need to be loaded during runtime, a method

of recycling or streaming assets can be implemented (Kjems, Pedersen et al. 2016). In

Inside, the 2D adventure game by the studio Playdead, a small part of every frame is

dedicated to loading and unloading assets. This allows the whole four-hour experience to

be played through with just a single initial loading screen.

2.4.5 Memory usage

The memory needed by a game is split into two categories here, RAM memory and VRAM

memory. Either or both might become a bottleneck on a project running with unoptimized

or simply with far too many assets.

RAM memory stores everything needed by a game during runtime. To reduce the amount

of RAM needed by your project, consider reducing the complexity of objects and the res-

olution of textures, or simply have less unique assets in the project (Echterhoff, Riber

2013).

VRAM memory is the storage used to store textures and models drawn by the graphics

card. When there is not enough memory for the graphics card to use, stuttering may occur.

This is caused by the component loading and unloading assets from RAM memory (Bavoil

6

2015). The same trick as with RAM works here. Reducing the amount of different assets

and the complexity of those assets helps to reduce the amount of VRAM necessary for

the project to run smoothly.

7

3 Profiling Unity

The first step of every optimization process should be profiling (San Filippo 2015). Profiling

means reading the performance data of the project and finding out where the performance

issues lie. From this data, bottlenecks can be found and the optimization process moni-

tored.

Unity provides three different tools for profiling; The Unity Profiler, the Frame Debugger

and the Memory Profiler. This chapter goes through each of these tools, analyses them

and gives information on how to use them.

3.1 Connecting the Profiler

The Unity Profiler and the Frame Debugger can both be used to profile a project currently

running on the same editor. However, the editor affects the performance of the project

and the profiling information can be inaccurate. For this reason, if accurate profiling data

is needed, a separate build should be created for profiling purposes.

3.1.1 Making a build for profiling

To have a build for the profiler to connect to, simply use the settings “Development build”

and “Autoconnect profiler” while building (Picture 2). This allows the editor to find the build

and for the profiler to connect to it.

8

Picture 2. Making a development build

3.1.2 Profiling external devices

To get accurate profiling data, the project should be profiled on a device the end user will

use the final product on. Profiling a mobile game on a powerful PC gives little insight on

how a user will experience the game.

The easiest way to connect the profiler to an external device is to have the two devices

share the same network. If there is a device running a development build of the project, it

should be selectable in the “Connected Player” dropdown menu of the profiler (Picture 3).

Once the correct device has been selected, the profiler should automatically start profiling

it. Profiling on an external device still affects the performance, but the effect is less than

9

when profiling on the same device. Mobile devices can also be profiled through an USB

cord.

Picture 3. The connected player dropdown menu

3.1.3 Profiling mobile devices

Modern mobile devices are powerful but often lack an active cooling system. Because of

this the heat of the device affects its performance drastically (Hawkins 2015).

On mobile devices, the performance of a game can be directly compared to the heat level

of the device. When the device is just turned on and the application is launched, the per-

formance is at its best. Once the device has warmed up the performance starts to fall as

the device tries to cool itself. And again, once the device has cooled down enough, per-

formance is improved (Hawkins 2015).

To effectively profile a mobile device, it should be warmed up first. After the build has run

for 10 or so minutes, and the device has warmed up properly, the profiling information

becomes more accurate and more applicable to an actual user experience.

3.2 The Unity Profiler

The Unity profiler is the main tool for profiling Unity projects. It provides a plethora of

information on the different performance areas of a project, such as CPU and GPU time,

the rendering process and memory usage (Introduction to the Profiler 2013).

This tool is the beginning of every optimization process on Unity. From information pro-

vided by it, bottlenecks are found and from these bottlenecks the first optimization tasks

are created. Learning to use it helps to understand the innerworkings of the engine and

the project at hand.

10

3.2.1 Using the Profiler

The profiler window can be opened through the “Window” tab of the editor, or by pressing

the shortcut CTRL+7 (Picture 4).

Picture 4. The profiling window

Once the profiler has been connected to a running build and the record button has been

pressed, profiling information starts pouring in. On the left side of the window the different

profiling categories can be seen, and more can be added from the “Add Profiler” dropdown

menu. Out of these categories the most relevant ones are CPU usage, GPU usage, ren-

dering and memory usage.

11

Picture 5. Profiling information

When profiling, information on each active category appears from the right side of the

window (Picture 5). Each slice of the information presents a single frame. On the CPU

usage category, the time the frame takes to finish is presented by the height of the slice.

These slices can be cycled through by pressing the arrow keys on the window, or by

clicking a slice with the mouse. Information on the selected category and frame appears

under the window. To stop or pause the profiler simply toggle the Record button.

3.2.2 Reading the Profiler

By clicking the different categories on the profiler window, different information is pre-

sented on the lower half. For example, when the CPU category is highlighted the infor-

mation shown is a list of functions running on the CPU (Picture 5).

Next to the function name different values are shown. The values provide information on

the performance of the function in the selected frame. These values are the percentage

of the total CPU time spend on this function, the number of times the function is called in

the chosen frame, how much garbage the function generated and the time it took to finish

the function in milliseconds.

12

If these functions themselves call other functions, a small arrow is shown next to the name

of the function. Clicking this arrow opens a function hierarchy that shows how the full time

of the function is split among the functions called by it (Picture 6).

Picture 6. Function hierarchy

The height of the lines shown on the upper half of the window tells how long that frame

took to finish (Picture 7). If these lines have noticeable spikes in them, there has been a

framerate drop. Hunting down what function caused the spike and optimizing it is a way

of making the framerate and gameplay experience smoother.

Picture 7. CPU usage graph

3.3 The Frame Debugger

To gain information on what the GPU spends its drawcalls on, the frame debugger can be

used. By using the tool, more insight on the rendering process can be gained. It also is

used to find the areas where the most drawcalls are spend, and where optimization is

required (Frame Debugger 2015).

3.3.1 Using the Frame Debugger

The frame debugger window can be opened through the “Window” tab of the editor.

13

The debugger is connected the same way as the profiler, by choosing the right player

under the “Connected Player” dropdown menu. The frame debugger can easily be used

either inside the editor, debugging the gameplay window, or on a separate device. De-

bugging a build on the same device as the editor can cause some issues as the window

is frozen by the debugger.

Once the frame debugger has been activated, it freezes the profiled build and collects

data on the frozen frame. Once the data has been collected, information on every drawcall

used to render that frame appears on the left side of the window. The drawcalls are orga-

nized into hierarchies such as drawing and image effects. Next to the hierarchy name is

shown the amount of drawcalls it took to finish rendering that area.

Picture 8. Frame debugger window

3.3.2 Reading the Frame Debugger

By cycling through the drawcalls on the debugger window, changes can be seen on the

frozen frame of the profiled build as the debugger shows what was drawn by each call

14

(Picture 8). By clicking a single drawcall, more information on that specific call appears on

the right side of the window.

Cycling through the drawcalls and watching the frozen screen change can give enough of

an idea on where optimization is required. For example, if the most of the drawcalls are

spend drawing a single object or a character in the scene, work on that object might be

required.

3.4 The Memory Profiler

The Memory Profiler is an external Unity project that can be downloaded from Unity’s

BitBucket site. The Memory Profiler provides more accurate information on the memory

usage of the profiled project. It takes a snapshot of the current memory usage and divides

the memory by object type (Harness, Dundore 2016).

3.4.1 Using the Memory Profiler

The memory profiler is a separate project instead of being a part of the engine. To use it,

a build of the profiled project is needed. Once the build is running and the memory profiler

project is open in the editor, the profiler must be connected to the build. Once connected

and information starts to appear on the profiler, from the editor the “Memory Profiler” win-

dow needs to be opened. This window can be found under the “Window” tab.

Once the window has been opened, the “Snapshot” button can be pressed. This usually

freezes the build for a moment, as information on the memory usage is being collected.

This step can require some patience as collecting the memory and building the snapshot

can be a lengthy process. Once the snapshot has been build, it shows up on the memory

profiler window and the profiled build is no longer needed (Picture 9).

15

Picture 9. Memory profiler snapshot

3.4.2 Reading the Memory Profiler

The snapshot represents the whole memory usage of the project. Different colored

squares indicate memory taken by different object types, for example textures or meshes

(Picture 9). By clicking a square, it is divided further into smaller squares representing

individual objects (Picture 10). More information on these individual objects can be seen

by clicking them, and even a reference on what is using the object can be seen.

16

Picture 10. Memory profiler area split

Just by looking at the memory usage snapshot split up by object type tells which objects

use the most memory. Tracking down the individual big spenders and working on those

can quickly bring down the memory used by the project. Especially with the textures, just

changing the import settings in the Unity editor goes a long way.

3.5 Benchmarking

Benchmarking refers to collecting data from a project to measure its performance. This is

different from profiling in that the benchmarking data should be as close to the perfor-

mance of the final product as possible. Because of this the data should not be collected

by using the Unity Profiling tool, since just running the tool has an impact on the perfor-

mance.

Benchmarks should be taken on the same device as the final product is meant to run on

(Turner, Schell 2017). A single device can be good enough, but for getting a lot of data,

multiple devices of different performance capabilities should be benchmarked on. This

way more information on the performance of low- mid- and high-tier devices can be

gained.

When benchmarking the framerate of the project, a separate script can be used to track

the framerate instead of using the profiling tool. To keep the framerate data accurate be-

tween benchmarks, the gameplay should be reproduced as accurately as possible

17

(Kjems, Pedersen et al. 2016). The best way to handle this is to have a script that plays

the game the same way every time. When the gameplay is identical between benchmarks,

they can be compared to each other and the optimization process can easily be monitored.

18

4 Optimizing Unity

Every project is unique and has its own unique issues. However, there is a plethora of

well-known performance related problems associated with the engine itself. This chapter

goes through several of the known performance issues in Unity and provides information

on avoiding them.

4.1 Unity UI

The most common optimization issue with new Unity projects is the UI system (Dundore

2016). The basic element of the Unity UI is a canvas. These canvases then house all

other elements of the UI, be it text or images. The issue with these canvases is that when

a single thing on a canvas changes, the whole canvas is marked dirty and needs to be

redrawn.

Often with developers who haven’t had much experience with Unity, all the UI in the game

is set up under a single canvas (Dundore 2016). This can mean that a complex menu

system, even while hidden, needs to be redrawn every frame because it shares the can-

vas with a timer.

Luckily there is a simple way to approach this issue, multiple canvases. The common

method is to split UI elements to separate canvases by update frequency (Dundore 2016).

Elements that are updated regularly, like timers, under a single canvas and static ele-

ments under another one. This fixes the issue of having to update every single UI element

every frame.

UI is a bottleneck especially on mobile devices. Transparent graphics are not handled well

by mobile graphics cards, and all the UI elements in Unity are considered transparent

(Dundore 2016). For this reason, splitting elements between multiple canvases can have

a huge effect on the performance of the project.

4.2 Memory management

In Unity, the memory management is done automatically. Unity is fast and efficient at

allocating memory, but deallocating it afterwards often causes a huge framerate drop

19

(Echterhoff, Riber 2013). These drops are especially noticeable in fast paced games,

where stable framerate is important.

Many Unity’s own functions generate garbage, making it almost impossible to eliminate

the garbage collection spikes, without altering the source code of the engine (Kjems,

Pedersen et al. 2016). Following are listed several methods of circling around this garbage

collection issue.

4.2.1 Garbage collector

All memory deallocation in Unity is done by the garbage collector (Echterhoff, Riber 2013).

When enough memory has been allocated, the garbage collector automatically clears un-

used objects from the memory (Echterhoff, Riber 2013). This is referred to as running the

garbage collector, and always causes a framerate drop.

There are multiple ways to lessen the performance impact and the frequency of running

the garbage collector. The simplest is to generate less garbage during runtime (Echter-

hoff, Riber 2013). When profiling the CPU, the amount of garbage generated by each

function can be seen. Then altering those functions to generate less garbage, for example

by caching, is a way to lessen the frequency of these garbage collector runs.

4.2.2 Manual garbage collection

One way to dodge the issue is to manually run the garbage collection when the gameplay

is less hectic, and the framerate drop won’t affect the user experience. For example, dur-

ing loading screens or during more peaceful periods of gameplay (San Filippo 2015).

In the video game Race the Sun, garbage collection spikes were a major issue. The game-

play in Race the Sun consists of longer periods of active gameplay with a shorter passive

moment between them. The way this issue was beaten was to run the garbage collection

on those passive moments of gameplay. This still caused a noticeable framerate drop, but

at a time where it did not negatively affect the gameplay (San Filippo 2015).

20

4.2.3 Object pooling

To prevent garbage collector issues in games with a lot of spawning and destroying ob-

jects, a method called object pooling can be used (Mignano). Object pooling refers to

creating all necessary objects beforehand and disabling / enabling them when necessary,

instead of instantiating and destroying objects during runtime.

This is often done by having an array containing disabled objects that are often used, for

example bullets or units in a strategy game. When a gun is fired, instead of spawning a

new bullet and allocating memory for it, we take a game object from the list, move it to the

right position and activate it. When the bullet collides with something, instead of destroying

it, we disable it and add it back to our list. This way we can have a lot of objects appear

and disappear in game, without allocating any memory and causing issues with the gar-

bage collector (Echterhoff, Riber 2013).

These objects can also be spawned beforehand during a loading screen and kept hidden

until needed. This way they won’t cause performance issues when spawned during game-

play.

4.2.4 Pre-allocating memory

Unite pre-allocates a minimum amount of memory on startup. This is called the heap.

When the heap is filled, new memory must be allocated and this can be performance

intensive (Echterhoff, Riber 2013).

One way to avoid the issue is to manually allocate a large amount of memory on startup

and then empty that memory. This amount should be close to the measured maximum

amount of memory needed by the program. This forces Unity to expand the heap on

startup and removes the performance issues caused by expanding the heap during

runtime (San Filippo 2015).

21

4.3 Reducing drawcalls

A drawcall is a function performed on the GPU used to draw the screen every frame

(Frame Debugger 2015). Modern 3D games with complex graphical assets and effects

may need thousands of drawcalls to render the screen each frame.

If a project is GPU bound, reducing the number of drawcalls is a simple method to lessen

the workload of the GPU. Several different approaches can be taken to reduce the number

of calls needed for rendering a frame. The simplest way is to remove objects drawn

(Echterhoff, Riber 2013). This can be done by removing objects from the scene, but this

is not always an option, or by using the culling systems provided by Unity (Echterhoff,

Riber 2013).

4.3.1 Static game objects and batching

Game objects can be marked as static in the editor. This mark tells the engine that the

marked object will never move. This allows the engine to use a method called batching to

render it (Echterhoff, Riber 2013).

Batching happens when the engine draws multiple objects on a single drawcall. For batch-

ing to work the objects must be marked as static and they must share the same material

(Echterhoff, Riber 2013). By using the frame debugger, you can see when batching has

been used to reduce the number of drawcalls. The debugger will also tell you why a draw-

call was not rendered in the same batch as the previous one.

4.3.2 Frustum culling

Frustum culling removes objects outside the camera view from the rendering process

(Picture 12), saving draw calls without affecting the user experience (Echterhoff, Riber

2013). In Unity, this is an automated process and is always on, requiring no setup from

the developer.

22

Picture 11. Maze level Picture 12. Maze with Frustum culling

4.3.3 Occlusion culling

Occlusion culling works alongside frustum culling as an additional method of reducing

draw calls. While frustum culling hides objects outside the view, occlusion culling aims to

minimize draw calls in view (Picture 16). This is achieved by removing objects hidden

behind other objects from the rendering process (Wesolowski 2014).

Unlike frustum culling, an automated process, the occlusion culling must be set up and

baked beforehand in the editor (Unity Manual: Occlusion Culling). For achieving this Unity

has provided an object called occlusion culling area, which can be created from the oc-

clusion window (Picture 13). The occlusion culling window can be found under the “Win-

dow” tab of the editor. These objects need to be placed in the world before the data can

be baked. This can be done by hand or through scripts.

23

Picture 13. Occlusion culling window

Game objects with the tags Occluder Static and Occludee Static are included in the oc-

clusion culling process. These are on by default in static game objects (Picture 14). When

an object marked with the occluder tag hides an object marked with the occludee tag

behind it from camera view, the occludee object is removed from the rendering process.

Picture 14. Occlusion culling tags

The occlusion areas are to be set up such that the camera will never wander outside them

(Picture 15). Should the camera go outside the occlusion culling areas, no occlusion cull-

ing will be applied, causing errors such as invisible objects and holes in the terrain.

Once the occlusion areas have been set up, occlusion culling can be baked. This is done

from the occlusion window. Once completed the effects of occlusion culling can be viewed

24

by using the visualize tab on the scene window. This allows for debugging by moving the

camera and observing the changes in editor.

Should pop-in of objects and other errors occur, there are few ways to approach the issue.

The values provided in the occlusion window can be tweaked, affecting the precision of

the culling, the size of the baked file and the time it takes to finish the baking process.

Other way of adjusting the culling precision is to change the size and frequency of occlu-

sion areas. Multiple small areas can be more precise compared to a single larger area,

but can bring up the baking time and the size of the baked occlusion data file. If there are

still objects that are not correctly culled, they can be taken out of the occlusion process

entirely by removing the Occludee Static tag from the game object.

Picture 15. Maze with occlusion areas Picture 16. Maze with occlusion culling

4.3.4 LOD levels on 3D objects

LOD or level of detail is a system used on 3D objects to reduce their impact on the per-

formance. It functions by replacing the high-quality 3D object with a similar object of lower

quality when they get further away from the camera (Wesolowski 2014). Often the 3D

object is replaced further with a 2D render of it and even removed completely.

LOD levels can be set up by adding the LOD component to the game object (Unity Manual:

Level of Detail (LOD)). From the component the amount of levels and the level changing

distance can be modified. The way Unity determines when the LOD level should be

changed, is how much of the object is on the screen at a given time. This can cause weird

25

behavior in objects partially hidden or underground, for example rocks. This method of

reducing drawcalls causes more work on the artists end since the lower quality objects

need to be made by someone.

4.4 Optimizing scripts

This chapter provides information on methods of making the scripts more optimal. There

are multiple known ways of tackling the common performance issues on the programming

side. Just remember that the most optimal code is the one that doesn’t have the be run.

4.4.1 Preventing spikes

As mentioned before spikes are caused by difficult and complex operations performed

during a single frame. These issues can be prevented by splitting the operation along

multiple frames. They can also be performed ahead of time or when the gameplay is less

intensive (Kjems, Pedersen et al. 2016).

4.4.2 Caching

Caching refers to storing something that is often needed as a variable instead of calculat-

ing or fetching it whenever it is needed. For example, this can mean storing the camera

as a variable in a script instead of calling Camera.Main function whenever the camera is

needed.

These Unity API functions such as Camera.Main or gameobject.transform all cause a little

bit of overhead (Echterhoff, Riber 2013). Camera.Main is a shortcut for finding a camera

object from the scene with the tag Main. This value is never stored so every time the

function is called, a search operation is performed. All this overhead can be eliminated by

storing a reference to the object as a variable after the first call of the function (Dundore

2017).

26

5 Optimizing the Virtual Frontiers project

This chapter gives information on a project I worked on during my internship in Virtual

Frontiers. The task given was to optimize a company project while porting it on Mac de-

vices.

This chapter will go through some of the unique challenges, that came up during the task,

and the solutions reached for those challenges. A lot of trial and error was needed to

reach the solutions and it will be shown in the chapter.

5.1 Benchmarking

To gain proper performance information like what the end user would experience, bench-

marking on the Mac devices was needed. To gain accurate data from multiple different

devices and quality levels, an automatic benchmarking system was created.

The gameplay of this project consists of multiple linear tracks, that can take a lot of time

to finish. This would mean two things; The gameplay would not be too difficult to automa-

tize and that benchmarking through the whole project would take multiple hours.

A script was set up such that we had a single “hub” scene from which the other scenes

were launched. The script would start the project on the lowest quality setting in the hub

scene. From this scene it would open and play through the gameplay scenes, always

returning to the hub after a scene was completed. After finishing all the gameplay scenes,

the quality level would be increased and playing through the scenes started again.

The automatic system would also collect performance information while running. This in-

formation was then stored on text files created by the script. These files were saved on

the hard drive of the device and organized by scene and quality level. This script would

often be left running on two or more Mac laptops over the night and fresh data could be

gathered on the next morning.

27

5.2 Occlusion culling

Thanks to the game running on a single linear track, the occlusion culling areas could be

set up automatically. A script was made, that took the track and automatically created the

occlusion culling areas along it. This removed the need for human touch from the creation

process of these areas, and removed that workload entirely. Whenever changes would

be made to the scenes, the areas could be set up automatically and the occlusion culling

data baked easily.

5.3 The UI

As is often the case, the UI was shown to be a bottleneck in this project as well. Like

mobile devices, the Mac laptops had an issue with rendering transparent graphics like the

whole UI system.

The simple solution worked the best and the UI was split among multiple different can-

vases by update frequency. This seemed to fix the issue and the task was considered

done.

After more optimization work had been done and the overall performance of the project

increased, the UI once again became a bottleneck. The assets of the project included

road signs that had the text on them done by using a UI canvas. This was found to be a

bad idea, since UI elements that move and resize in 3D space as the player moves caused

an even larger performance issue.

This was fixed by dividing the UI further on even more canvases and flattening the hier-

archy of those canvases. The canvases on the signs were replaced with transparent tex-

tures with writing on them, and the performance impact of the UI was once again brought

down.

5.4 Terrain issues

From the very beginning of the optimization process, the terrain system of Unity proved a

huge bottleneck on Mac devices. A LOD system used by the Unity’s default terrain system

28

caused a lot of computations to be done on the GPU, which was one of the weaker com-

ponents on Macs. By disabling the terrains, a large performance gain was achieved, which

caused me to think of ways to replace the default terrain system.

The first idea was to replace the terrains with meshes. A third-party component from the

Unity’s asset store was used to generate meshes from the default terrains. These meshes

eliminated the need for LOD computations during runtime, but did cause the project to

use a lot more memory. Another issue was caused by the mesh terrains however, and it

was the foliage system.

The default foliage and tree system of Unity is integrated into the terrain system. By re-

placing the terrains with meshes we lost the trees and plants used in the project. The first

idea to fix this was to have an invisible default terrain just under the mesh terrain to run

the foliage system on. This terrain would only contain the heightmap for the correct place-

ment of the foliage and the foliage system itself. This was however deemed dodgy and a

better system was needed.

The second option was to try one of the multiple foliage systems found in the asset store.

After testing a few assets, a working option was found and that system was used along-

side the mesh terrains to have a terrain comparable to the default one with far better

performance.

However even this solution wasn’t perfect and multiple issues were caused by the new

foliage system. Once the Unity version was updated, and further benchmarking was done

on the terrain systems, not much performance was gained by using our system compared

to the default one. This caused us to backtrack into using the default terrain and foliage

systems once more, losing a little performance but gaining back the lower memory usage.

The performance lost was quickly gained back by opting to always use the lowest LOD

level of the terrain, losing some of the fidelity but removing the need for runtime calcula-

tions. The other step to greatly increase the performance was to replace most of the trees

in scenes with 2D images, lessening the workload of the foliage system without much

affecting the user experience.

29

5.5 Terrain streaming

A simple issue in some of the scenes of the project was the sheer size of them. Just

having a lot of objects, especially terrains, in a single scene caused the performance of

that scene go down drastically.

Multiple approaches were tried to limit the number of objects and the size of the scene.

Soon it was clear that a streaming system would be necessary. The first one tried was a

system to stream scenes; The initial scene was split unto multiple smaller scenes and

they were loaded and unloaded when necessary. This proved to be nonfunctional in our

case since the loading and unloading would always cause a framerate spike that could

freeze the game for multiple seconds.

The second system tried was just streaming the terrains inside the scene. Instead of hav-

ing over 30 terrains always active in the scene, only nine terrains around the player char-

acter would be active at once. For the rest of the terrains a boundary was set up that

would trigger when the player would move inside it. When a boundary was triggered, the

terrains behind the player would be removed and new terrains would be spawned in front

of the character.

The system was working, and just by having less active terrains the performance was

improved, but the framerate spikes would still occur when terrains were loaded and un-

loaded. The framerate spikes were then eliminated completely by removing the spawning

and deleting of objects from the system. The next iteration of the streaming system worked

by moving the already existing terrains in front of the player when necessary and replacing

the data of the moved terrain by a new one. This way no spawning was necessary, and

instead the same nine terrains were being recycled through the whole scene.

30

6 Conclusion

Every project is unique and the performance issues found in them are unique as well.

Learning the usage of the tools provided helps immensely in finding and understanding

these issues.

The optimization process should be started in a projects lifetime as soon as there is some-

thing to optimize. This should be done before there are too much to change if big changes

are needed. However, over-optimization can also be an issue. Remember to not spend

time optimizing what, in the end, doesn’t provide much performance gain. If the perfor-

mance issue can’t be measured, it is not an issue.

When starting a project, take some time to consider some baseline practices for the assets

created for the project. Do you really need those 2K textures for your mobile game? Or

does it really need these complicated calculations done every frame? Changes to an al-

ready existing asset- or codebase can be tedious and take a long time to do. Doing them

before the project has grown too large to handle can save a lot of time.

31

References

1. Bavoil L. Are you running out of video memory? detecting video-memory overcommitment

using GPUView. https://developer.nvidia.com/content/are-you-running-out-video-memory-

detecting-video-memory-overcommitment-using-gpuview. Updated 2015.

2. Hawkins K. Uncover your game's power and performance pro-

file. https://www.youtube.com/watch?v=6Ra3ouahAzM. Updated 2015.

3. Unity manual: Occlusion culling. https://docs.unity3d.com/Manual/OcclusionCulling.html.

4. Turner K, Schell M. Performance optimization for begin-

ners. https://www.youtube.com/watch?v=1e5WY2qf600. Updated 2017.

5. Unity manual: Level of detail (LOD). https://docs.unity3d.com/Manual/LevelOfDetail.html.

6. Unity. Frame debugger. https://unity3d.com/learn/tutorials/topics/graphics/frame-debug-

ger. Updated 2015.

7. Unity. Introduction to the profiler. https://unity3d.com/learn/tutorials/topics/interface-essen-

tials/introduction-profiler. Updated 2013.

8. Mignano M. Object pooling design pattern in unity C#. . . http://gamedevelop-

ertips.com/object-pooling-design-pattern-in-unity-c/.

9. Gesota R. A simple how to guide for graphics optimization in unity. .

2016. http://www.theappguruz.com/blog/graphics-optimization-in-unity.

10. Dilmer V. Unity3D mobile optimization tips. . 2017. http://dilmer-

games.com/blog/2017/10/02/unity3d-mobile-optimization-tips/.

11. Wesolowski J. How to plan optimizations with unity. . 2014. https://software.intel.com/en-

us/articles/how-to-plan-optimizations-with-unity.

12. Mignano M. How to optimize and increase performance in unity games. . . http://gamede-

velopertips.com/increase-performance-in-unity-games/.

https://developer.nvidia.com/content/are-you-running-out-video-memory-detecting-video-memory-overcommitment-using-gpuview
https://developer.nvidia.com/content/are-you-running-out-video-memory-detecting-video-memory-overcommitment-using-gpuview
https://www.youtube.com/watch?v=6Ra3ouahAzM
https://docs.unity3d.com/Manual/OcclusionCulling.html
https://www.youtube.com/watch?v=1e5WY2qf600
https://docs.unity3d.com/Manual/LevelOfDetail.html
https://unity3d.com/learn/tutorials/topics/graphics/frame-debugger
https://unity3d.com/learn/tutorials/topics/graphics/frame-debugger
https://unity3d.com/learn/tutorials/topics/interface-essentials/introduction-profiler
https://unity3d.com/learn/tutorials/topics/interface-essentials/introduction-profiler
http://gamedevelopertips.com/object-pooling-design-pattern-in-unity-c/
http://gamedevelopertips.com/object-pooling-design-pattern-in-unity-c/
http://www.theappguruz.com/blog/graphics-optimization-in-unity
http://dilmergames.com/blog/2017/10/02/unity3d-mobile-optimization-tips/
http://dilmergames.com/blog/2017/10/02/unity3d-mobile-optimization-tips/
https://software.intel.com/en-us/articles/how-to-plan-optimizations-with-unity
https://software.intel.com/en-us/articles/how-to-plan-optimizations-with-unity
http://gamedevelopertips.com/increase-performance-in-unity-games/
http://gamedevelopertips.com/increase-performance-in-unity-games/

32

13. Unity manual: Practical guide to optimization for mobiles. https://docs.unity3d.com/Man-

ual/MobileOptimizationPracticalGuide.html.

14. Dundore I. Let's talk optimization. https://www.youtube.com/watch?v=n-oZa4Fb12U. Up-

dated 2016.

15. Echterhoff J, Riber KS. Performance optimization tips and tricks for

unity. https://youtu.be/jZ4LL1LlqF8. Updated 2013.

16. Harness M, Dundore I. Optimizing mobile applications. https://youtu.be/j4YAY36xjwE.

Updated 2016.

17. Harness M, Dundore I. Squeezing unity: Tips for raising perfor-

mance. https://www.youtube.com/watch?v=_wxitgdx-UI. Updated 2017.

18. Simonov V. Practical guide to profiling tools in unity. https://youtu.be/OSlOwJP8Z14. Up-

dated 2017.

19. Kjems K, Pedersen ER, Madsen ST. Tools, tricks and technologies for reaching stutter

free 60 FPS in INSIDE. https://www.youtube.com/watch?v=mQ2KTRn4BMI. Updated 2016.

20. San Filippo A. Race the sun optimiza-

tion. https://www.youtube.com/watch?v=3E946igYpZ4. Updated 2015.

https://docs.unity3d.com/Manual/MobileOptimizationPracticalGuide.html
https://docs.unity3d.com/Manual/MobileOptimizationPracticalGuide.html
https://www.youtube.com/watch?v=n-oZa4Fb12U
https://youtu.be/jZ4LL1LlqF8
https://youtu.be/j4YAY36xjwE
https://www.youtube.com/watch?v=_wxitgdx-UI
https://youtu.be/OSlOwJP8Z14
https://www.youtube.com/watch?v=mQ2KTRn4BMI
https://www.youtube.com/watch?v=3E946igYpZ4

