
!

IVAN RZHANOI

MUSIC MOOD
MUSIC PLAYER BASED ON USERS FEELINGS

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Ivan Rzhanoi (e1300545)
Title Music Mood - Music player based on users feelings
Year 2018
Language English
Pages 38
Name of Supervisor Gao Chao

The purpose of this thesis is to find ways of connecting the user’s feelings with

the music they listen to. This should help to both make the listening experience

more intriguing in itself and help improve the emotional state of the listener.

The project is intended to be a prototype, and hence it does not go into great detail

in regard to measurements and other similar observations. The main focus is the

execution of a concept.

The app was done for iOS on Mac using Xcode development environment with

MUSE brain-sensing headband as an accessory. This thesis goes over history of

the idea, development process, similar research as well as code implementation.

Keywords music, feelings, emotions, brainwaves

CONTENTS

ABSTRACT

ABBREVIATIONS AND ACRONYMS 5 ...

1. Introduction 6

1.1. STRUCTURE 6 ..

2. Project history 7 ..

3. Similar Projects 9 ...

3.1. NEUROWEAR PRODUCT RANGE 9 ..

3.2. COMPETING PROJECT 10 ...

4. Basics of project creation 11 ...

4.1. PRELIMINARY RESEARCH 11 ...

4.2. EQUIPMENT 13 ...

4.3. DEVELOPMENT ENVIRONMENT AND TARGET PLATFORM 15

4.4. SETUP 15 ..

5. App design 17

5.1. MAIN WINDOW 17 ...

5.2. LEGAL INFORMATION AND USAGE INSTRUCTIONS WINDOWS 19 ..

5.3. SETTINGS 20 ...

5.4. CONNECTION 22 ..

6. Inner workings and code 24 ..

6.1. MAIN FILE (VIEWCONTROLLER.SWIFT) 24 ..

6.2. DETERMINING MOOD (DATA.SWIFT) 30 ..

7. Conclusion 33

8. References 34

!4
LIST OF FIGURES AND TABLES

FIGURE 1. MODEL JULIE WATAI WEARING A MICO HEADSET[6] 10

FIGURE 2. BRAINWAVES[7] 11 ..

FIGURE 3. EMOTIONS ARRANGED IN RELATION TO BRAINWAVES[8] 12 .

FIGURE 4. CONSTRUCTION OF MUSE HEADBAND[9] 14

FIGURE 5. APPLICATION LAYOUT (MAIN WINDOW) 18

FIGURE 6. POP-UPS 20 ..

FIGURE 7. SETTINGS MENU 21 ...

FIGURE 8. MENU FOR CONNECTING THE HEADBAND 22

FIGURE 9. CODE FOR DECLARING THE NEEDED OBJECTS 25

FIGURE 10. CODE FOR CONNECTING INTERFACE ELEMENTS WITH CODE

AND DECLARING MOOD VALUES 26 ...

FIGURE 11. CODE FOR SELECTING MOOD 27 ...

FIGURE 12. CODE FOR FILTERING SONGS 30 ...

FIGURE 13. CODE FOR DECLARING THE BRAINWAVE VALUES FOR MOODS

31

FIGURE 14. CODE FOR AVERAGE VALUE OF BRAINWAVES 31

FIGURE 15. CODE FOR DETERMINING THE MOOD 32....................................

!5
ABBREVIATIONS AND ACRONYMS

Abbreviations

API Application Programming Interface

iOS iPhone OS

OS Operating System

Mac Macintosh (Apple branded personal computer)

SIT Shibaura Institute of Technology

CRUD Create Remove Update Delete (Apple Core Data Database system)

!6
1. INTRODUCTION

The goal of this thesis is to provide a new way of listening to music. This is the first it-

eration of the idea and it is not supposed to be complete. Providing a prototype for fur-

ther research and implementation is the top priority.

Music is supposed to be picked up based on the user’s feelings, which are determined

by the use of brainwaves. At the moment the program takes into account only “happy”

and “sad” states of mind, but allows for further expansion with more complicated calcu-

lations.

MUSE Headband was used for taking the measurements. The application was created

for iOS 10 with Swift 3 and Objective-C programming languages.[1] It also utilises API

provided by Interaxon Inc. - the creators of the brain sensing headband.[2]

1.1. Structure

The rest of the thesis includes following Chapters: Chapter 2 discusses project history

and how the idea was created; Chapter 3 touches upon similar projects that gave an in-

spiration and helped shape the app; Chapter 4 describes the basics that have led the

project such as tools, development environment and how accessory for the app is work-

ing; Chapter 5 goes over the visual design of an app and how it is tied with functionali-

ty; Chapter 6 presents inner workings of the program, the way it acquires data and de-

termines the mood; Chapter 7 concludes the thesis.

!7
2. PROJECT HISTORY

The idea for this program originally came during the Slush Hackathon in 2015.[3] Dur-

ing the event attendees were tasked with creating something unique and innovative in

the span of three days.

The time constraints were too strict for a project of this size, however, the event intro-

duced the technology available for development. It was the first time when I saw the

MUSE Headband, which is used for this project.[4]

With this idea, I needed knowledge to develop my future app. I chose to go for ex-

change, because my home university did not have the capabilities to teach the usage of

brainwaves. The only suitable place to go was Shibaura Institute of Technology (SIT),

located in Tokyo, Japan. There I was introduced to Doctor Professor Shin’ichiro Kanoh,

who is responsible for the laboratory dedicated to measurement of brainwaves. He and

his team of students assisted me throughout my stay and helped me shape the applica-

tion to its current state.

They taught me about the different types of brainwaves and described some of the

states. I was also given a crash course in using professional equipment for measuring

the brainwaves. Even though my tool is much simpler and cheaper, the ability to use

theirs gave me a much clearer understanding of brain operation and gathering of the in-

formation.

This application was done in half a year during my exchange period. The majority of

this time was delegated towards fixing the bugs within the application.

There is a remarkable lack of comparable research open to public. The analysis done in

the laboratory for determining the users’ mood was not substantial enough to deduct any

strong correlation of selected brainwaves with their emotional state. Instead the idea

was guided by various internet sources only as a point of reference.

The main goal of creating the prototype was a limited success. As of writing this thesis,

the app utilises only one brainwave to determine the feelings. It however does have the

!8
mechanism and logic for using another four to get more precise results and choose vari-

ous types of moods.

!9
3. SIMILAR PROJECTS

The main competitor is Neurowear, which was founded in 2011.[5] In April of 2012 they

debuted on the market with “necomimi” - headband with cat ears that move depending

on the user’s emotion. Their purpose is cosplay. It is based on MindWave headband

made by NeuroSky. The original headband was sold for 99 dollars and was the cheapest

headband sold by Neurosky.

Necomimi is rather simple in its operation. While Neurowear claims that it uses emo-

tions, in reality it only utilises an alpha brainwave, which corresponds to user concentra-

tion. When the user is concentrated, the cat ears move up to show excitement.

3.1. Neurowear Product range

Neurowear offers a variety of other products. In addition to the aforementioned ears,

they now have an electronic cat tail that is referred to as “shippo”. Neurocam is a sys-

tem that takes photos with the smartphone when the user is concentrated. The idea is to

capture life moments when the user feels them. The same concept is applied to Brain-

Bookmark, except instead of pictures it saves web pages.

"Neuro tagging map" is trying to get the data of the user’s feelings depending on the

place. For example, your friends can know whether you liked a certain cafe or not based

on your experience.

“Mononome” is trying to bring robots into our life through fun and interactive experi-

ence. Mononome represents two eyes expressing emotions.

“Cotorees” is shaped as a small bird and maintains functions of personal assistant akin

to Amazon Alexa or Google Assistant.

“NEURO TURNTABLE” plays music only when the user is concentrated on it. It helps

people give higher appreciation to the listened tracks, because if the user is not truly lis-

tening to music, it stops.

“Brain Disco” was an experiment where DJs needed to keep the audience's attention. If

the attention was too low, they were kicked out of the competition. This goes on the op-

!10
posite end of a spectrum compared to the previous project as this time DJ is the one in

need of keeping attention of other people and not the people themselves.

Moving closer in similarities to the project I have done is “ZEN TUNES”. It works in

the background during music listening sessions and compiles playlist based on the re-

laxed or focused state of listener. So later, the user can pick up the song to help them

either concentrate or otherwise mediate.

3.2. Competing project

Finally, there is “mico”. The name comes from “music inspiration from your subcon-

sciousness”. Rather bulky headphones have various brainwave sensors inside them. An

iPhone app plays music depending on the users feelings just like my project. I have to

admit however that this project has an advantage of being built into a headset already.

This simplifies a few things. The general principal of operation however is otherwise

similar to my project.

Sadly, after the initial presentation in 2013 there was not much info present regarding

these headphones. The company is still active and is working on other projects, but

mico is seemingly abandoned.

!

Figure 1. Model Julie Watai wearing a mico headset[6]

!11
4. BASICS OF PROJECT CREATION

The function of our brain is based on electronic impulses between neurones. Neurones

are constantly generating ionic current, and with it electromagnetic field. Those elec-

tromagnetic fields oscillate a certain amount in the unit of time (second). There are five

different brainwaves and each has a corresponding frequency range:

Figure 2. Brainwaves[7]

In addition to these, there are also Mu (8 - 12 Hz), Sigma (12 - 14 Hz) and Sensorimotor

rhythm (12.5 - 15.5 Hz) waveforms. The last one is commonly abbreviated as SMR.

They are often delineated in electroencephalographic measurements. They are omitted

in this project, because precision is of lesser importance compared to performance. Not

to mention the fact that the used equipment itself does not register these waves.

In either case, five main waves shall provide a substantial amount of data to determine

the mood of user.

4.1. Preliminary research

Similar research is not very common and due to the tight schedule I was not able to ob-

serve the exact correlation between values of brainwaves and moods of the user. Instead

I have used a “Brainwaves Analysis of Positive and Negative Emotions” (Fu-Chien

Kao, Shinping R. Wang and Yu-Jung Chang) discussing the determination of emotions

based on the brainwaves.[8] While not used in its entirety, it gives a good perspective for

my application.

Researchers observed 15 subjects, both male and female. They were given three differ-

ent audio stimuli after the experiment and were asked to decide, which was suited best

• Gamma 30 - 50 Hz

• Beta 14 - 30 Hz

• Alpha 8 - 14 Hz

• Theta 4 - 8 Hz

• Delta 0.1 - 4 Hz

!12
to their current emotion. Before that they were listening to 20 seconds of sounds with 10

seconds of breaks in between. Their brainwave was recorded and compared with other

subjects.

Observers have defined eight emotional states: four positive and four negative. Interest-

ingly enough they are put into positive-negative pairs: Joyful-Angry, Surprised-Fear,

Protected-Sad, Satisfied-Unconcerned. The reason for this is that the brainwaves for

those paired emotions are extremely similar, the negative being just slightly more pow-

erful. Even the expensive equipment had trouble detecting the difference. Researchers

provided the diagram, which can be seen at the figure below.

!

Figure 3. Emotions arranged in relation to brainwaves[8]

Note that Angry and Joyful emotions (for example) are positioned on the same level of

Strength and Transformation (figure 3). All emotions are positioned according to

Strength on the vertical axis and Transformation on the left side axis with positive emo-

tions on the right side of diagram on the horizontal right axis. While the average power

of negative emotion is slightly greater, they decided to omit the difference due to possi-

ble inconsistencies in measurements. Meaning, if we were to have a 16-th subject and

they would not tell us their current emotion, we would not be able to tell ourselves from

!13
within a pair (Angry - Joyful for example). Different people have different average

“power output” in the brainwave measurements.

This provides challenges for creation of my application. Because of this, I decided to

temporarily concentrate on Sad and Joyful emotions due to them being completely polar

opposite in terms of produced brainwave. According to the diagram Sad emotion should

have low values for most brainwaves, while Joyful emotion has higher ones. At the

moment, in my application I choose one of two emotions based on alpha brainwave for

simplicity, although implementation allows for use of other emotions and brainwaves.

For further details, such as power averages, please see to the referred material. (Please

note, I will be quite often referring to Joyful emotional state in my application as “Hap-

py”.)

4.2. Equipment

When comparing the MUSE headband with professional grade machinery used in the

laboratories we will firstly focus on the operation of equipment utilised at SIT laborato-

ry of Doctor Professor Shin’ichiro Kanoh. It and many other similar systems are used in

most of the brainwave researches.

The subject has electrodes attached to their scalpel. These electrodes can register the

brainwaves and present it in the form of voltage, which is then carefully amplified. Such

measurements always have problems with noise generated by both external and internal

factors. A more expensive equipment generally yields more precise results. Signals are

registered by a PC using special connectors operated by a Matlab code. The data is typi-

cally recorded either in CSV or Excel database.

Thankfully, MUSE Headband simplifies most of the work. It is much simpler in terms

of its construction. We will analyse its physical design presented in the picture below

and then discuss data acquisition.

!14

!

Figure 4. Construction of MUSE Headband[9]

Professional equipment usually has many different places to attach electrodes. Mean-

while, the MUSE Headband has only seven sensors in total. Five of them are regular

electrodes. Two conductive rubber sensors are used only for auxiliary data, to level the

voltage levels from the brain and make the results more precise.

The interesting point of the MUSE Headband is that it presents data to developers not in

the voltage spectrum. Instead, it takes the general voltage of your brain (that being the

voltage generated by brainwaves) and compares it with voltage levels of other users.

After that gives a decimal value between 0 an 1 (for example 0.3456).

It is possible to get the exact voltage levels of brainwaves, but for the purposes of this

application they are omitted. We do not require the precise value, we only need to tell

whether the alpha or beta brainwaves are “strong”.

Alpha brainwave is commonly used to determine the concentration of a user. The more

concentrated the subject, the stronger the emotional response in their brain, which is

shown with a higher voltage value. On MUSE Headband it is shown closer to 1 than 0,

to represent that.

!15
4.3. Development environment and target platform

Now I would like to discuss the development platform. I will try to explain why I chose

it and my equipment. I was creating this application for iPhone first. There is a number

of reasons for that.

I have decided to develop for smartphones, because the MUSE Headband as a product

is firstly oriented towards ordinary people and not the research scientists. It is assumed

that the program will be used with a smartphone before all else. It is possible to do some

purely scientific research with the MUSE Headband, but most of the manufacturers

support goes towards mobile developers and this is not the goal of this thesis.

An iPhone has been chosen as the main target platform due to my honest lack of profi-

ciency with Windows phone and Android development. Also, neither Android nor Win-

dows devices are in my possession. The iPhone 6S was my daily driver at the time,

which simplified certain areas of testing such as UI Design and UX as I was familiar

with the equipment. On top of that, development environment has less variations due to

similar hardware lineup. It must be also admitted that there is personal a preference in-

volved as I feel more comfortable developing for Apple ecosystem. Lastly, Apple has

released a new programming language, which is fast, versatile and offers some great

power combined with flexibility. I used Xcode 8.3 with Swift 3.

The MUSE Headband was chosen, because it was the first brain-sensing headband en-

countered by me. It is also relatively popular, which means a wide spread of my appli-

cation. The API Reference provided by Interaxon Inc. is quite sufficient; most of the

API components are simple and work together effortlessly.

There have been a few problems during the development ranging from incompatibility

to code conversion to the headband simply refusing to connect. All this however did not

stop the project from release.

4.4. Setup

I would like to go over the implementation of API for MUSE Headband, which is avail-

able at their developer portal. Unfortunately, despite the initial ease I still have encoun-

!16
tered certain problems. An official example is made in Objective-C, which has certain

constraints. The problem is not only the age of the language, but also the way Xcode

handles certain things. For example, Swift applications employ a storyboard file, which

can show the layout of an entire application within all available windows. Objective-C

however requires a new file for each new application window. This would make the

process longer and more complicated. It was chosen to port the code to Swift 3.

The API implementation took longer than expected. While being overall simple, it

presents a few caveats.[10][11][12][13][14] Case in point, SDK download and full installation

of MuseLab and LibMuse Applications is required no matter whether it will be used or

not. LibMuse folder hosts “Muse.framework” file that needs to be imported into an

Xcode project. In Xcode, under Build Phases “Muse.framework” is added into “Link

Binary With Libraries”. Then we need to click on “+” in the same subsection and add

“libc++.tbd” to the project. Bitcode also needs to be disabled in project settings. “Info.-

plist” requires “com.interaxon.muse” next to “Supported external accessory protocol” as

“Item 0”. Finally, the Muse header is imported as “Muse/Muse.h”.

A large chunk of time was dedicated towards solving all those problems and many oth-

ers. The MUSE Headband was also refusing to connect and send data for very long.

!17
5. APP DESIGN

App functionality is tightly related to its visual representation in Xcode and the func-

tions are generally triggered by the user’s actions except for a few files that calculate the

values of brainwaves. The attempt was to make interface as simple as possible.

(Please note, the app might be further updated after publishing, which means that the

design discussed in this paper might not reflect the one offered in the current version)

Swift 3 and Xcode allow developers to create an app with multiple windows. They are

referred to as Scenes. Each scene has a ViewController assigned to it. ViewController is

a file written in Swift (sometimes Objective-C), which executes functions written inside

it. Scenes are often referred to as ViewControllers, because both of them are united in

their functionality and without each other they would be useless.

5.1. Main window

The application utilises the iOS system music player with iTunes library. As such, be-

fore any operations, the app asks for permission to access the MusicLibrary. Without

access to Media Library the app would not perform its main functionality, that being the

playback of music corresponding to the user’s feelings.[15] The songs are supposed to

have tags in their info section (#happy #sad).[16]

In the beginning the user is greeted with the main screen (figure 5-1). In my project it is

connected to ViewController named “ViewController.swift”, because it is a centre point

of MusicMood application. The user is going to spend most of their time here.

!18

!

Figure 5-1. With icon, paused

!

Figure 5-2. With mood selection, playing  

Figure 5. Application layout (main window)

As you can see in figure 5-1, there is a logo of the MusicMood application. If the user

does not have the MUSE Headband or does not want to utilise it, then they can tap on a

button with the text “My Mood”.[17] The view at figure 5-2 is shown.[18] That little sec-

tion is a PickerView,[19][20] which is referred to in the code as MoodPicker. For now

there are three options: Undefined, Happy and Sad. The user can pick the option corre-

sponding to their feelings. When any of the media buttons are pressed, the list of mental

states disappears and in its place artwork appears again. By default, it is an icon of this

app. However, if there is a song that will be played, then the app displays the album

cover.

!19
By pressing My Music button, we will be presented with a list of all the songs we have.

This is a Swift 3 builtin function, which not only does that, but also organises all the

tracks in a concise manner.

The layout of the app is arranged in a way that visually splits it in half. The lower part

represents the Player part. It is all gathered inside a rounded rectangle with a mixture of

blue and green colours.[21][22] Inside there is a label showing “Current Mood”.[23] Cur-

rent Mood label is constantly changing after the new mood of user has been determined.

The mood is determined after a song is finished. Then we have Artist and Song labels.

They are constantly changing as well. Note, that in figure 5-2 Artist and Song labels

have disappeared, because the simulator was used for screen capture and it does not

have any tracks stored inside of it.

You may also see the basic playback controls, which are Rewind, Play and Fast-For-

ward buttons. When the track starts playing, the image of Play button changes to Pause

as can be seen in figure 5-2. For user this is would be a much clearer portrayal of the

player’s operation.

Meanwhile, the upper part represents some additional information. If we were out of

screen space, the upper part could be essentially cut off. The app was built with a

MUSE Headband in mind, so the importance of MoodPicker was lessened during the

course of development.

5.2. Legal information and Usage instructions windows

ViewControllers for Legal Information and usage instructions windows do not perform

any functions. Their purpose is only to provide user with information and be dismissed

upon tap. In figures 6-1 and 6-2 you may observe buttons at the bottom. Upon pressing

them speech bubbles are shown.[24] Two design principles behind them are simplicity

and playfulness. For this reason the windows were chosen to be smaller than the screen

and presented as speech bubbles.

As a side note, if you read the “How to use” text, you may notice that process of operat-

ing the app is rather complicated. There is a great challenge in simplifying the instruc-

!20
tions as part of MusicMood is dependant on external factor, iTunes Library as you may

already know. Hopefully in the future its usage can be mitigated or simplified.

!

Figure 6-1. Simple legal information

!

Figure 6-2. Instructions  

Figure 6. Pop-ups

5.3. Settings

Moving on, if the user will press the cog-shaped button in the top-left corner, Settings

ViewController will be presented (figure 7). Instead of being a popover akin to Legal

info it will slide up form the bottom taking the whole screen. For now there are only

two settings, but in the future there will be more, which requires an entire iPhone screen

estate for clarity. However, right now the options are not put in UITableView, which is a

common development practise.[25] As an alternative way of bringing it up users can just

swipe up. It may be dismissed by either tapping the Dismiss button or swiping down.

!21

!

Figure 7. Settings menu

“Use MUSE Headband” is responsible for the song selection method. If turned on, the

MoodPicker (figure 5-2) will not appear when My Mood button is pressed. In a way, it

is done with intent to prohibit the users with headband from not using it if they have

one.[26] Otherwise the user might instinctively rely on usage of MoodPicker.

Save Mood setting is temporarily disabled, because it uses extremely huge amount of

resources, which slows down an iPhone to a halt. Apples Core Data is used for saving.
[27][28][29] Saving will be implemented in the future when less performance intensive so-

lution is available.

The Apple watch option will be added in the future to filter the songs based on the

HeartBeat monitor.

!22
5.4. Connection

The last ViewController in the interface is responsible for the connection of MUSE

Headband (figure 8).[30] It can be reached either by pressing the Connect button in the

top-right corner of the main menu (figure 5) or by swiping left anywhere on the screen

while in the main menu. It can be dismissed by either swiping right from the edge or by

pressing the automatically generate button in the top-left corner (figure 7). It is all part

of the typical iOS navigation.

!

Figure 8. Menu for connecting the headband

At the moment the view is separated into two parts. The bottom shows the list of brain-

waves and the data acquired from the headband, which is represented in value between

0 and 1. The first column shows the names, the second presents the current value and

the last one gives the average over a certain time.

!23
The top part consists of table view with buttons. The table is not seen very well in a fig-

ure 8 except for a single grey stripe above the buttons. Table outline is avoided for a

cleaner looking interface.

Once MUSE is powered on it starts the pairing process. On the application’s end Scan

button displays all Bluetooth devices with Interaxon signature (that is all Muse head-

bands powered on). User can then select a headband to connect to it. Upon connecting

the iPhone stops the search and the data exchange is started.

If the user wants to stop searching for the headband they can press Stop, otherwise Mu-

sicMood will stop searching after a set amount of time. If the user wishes to disconnect

from the headband, all they need to do is press the Disconnect button.

!24
6. INNER WORKINGS AND CODE

This section goes over inner workings of program hidden from the user. It describes the

functionality of code not only linked to the interface, but also the code running in the

background, which is responsible for selecting the mood and music.

This section will mainly go over the song filtering. Examples of data acquisition for the

MUSE Headband can be found online. Hence there is no need to talk about the code

that is explained elsewhere.

6.1. Main file (ViewController.swift)

This ViewController has import of UIKit that communicates with the interface as well

as MediaPlayer. Another framework provided by Apple called AVPlayer exists and it is

used for general playback of media items. However, we only need music from iTunes

library of a user in order to simplify an app. Direct access to the system player allows to

play music outside of the application by means of iOS Control Centre.[31]

New objects are created as instances of other classes. The MediaPlayer Controller has a

variety of subclasses (figure 9). The variable “player” controls music playback, while

“queueCollection” is an array storing songs, which are selected corresponding to user’s

mood at the moment.[32][33] The “notificationCenter” is responsible for sending informa-

tion regarding the playback status such as when song is playing or have reached an end.

“defaults” is holding user settings. “data” will load the users current mood and “cur-

rentMoodValue” displays it. The “currentMoodValue” is the result of calculations

achieved from values available in the “Data.swift” file.

!25

import MediaPlayer

class ViewController: UIViewController, UIPickerViewDataSource,
UIPickerViewDelegate, MPMediaPickerControllerDelegate,
UIPopoverPresentationControllerDelegate {

 // Declaration for player
 var player = MPMusicPlayerController()
 //var album = MPMediaItemPropertyAlbumTitle
 var queueCollections = [MPMediaItemCollection]()

 // System declarations
 let notificationCenter = NotificationCenter.default
 let defaults = UserDefaults.standard

 // For determining the mood
 var data = Data()
 var currentMoodValue = Data.Mood.undefined.rawValue

Figure 9. Code for declaring the needed objects

Following that, the main file has @IBOutlet objects (figure 10) representing interface

elements in the code. With Xcode we can for example connect the label seen in figure 5-

1 as “undefined” to “currentMood” UILabel inside the code. Later we can change the

mood.

 @IBOutlet weak var currentMood: UILabel!
 @IBOutlet var artist: UILabel!
 @IBOutlet var song: UILabel!

 let moodPickerValues = [Data.Mood.undefined.rawValue, Data.-
Mood.happy.rawValue, Data.Mood.sad.rawValue
// Data.Mood.melancholic.rawValue,
// Data.Mood.angry.rawValue
]

 @IBOutlet var artwork: UIImageView!
 @IBOutlet weak var moodPicker: UIPickerView!
 @IBOutlet var playPauseButton: UIButton!

!26
Figure 10. Code for connecting interface elements with code and declaring mood val-

ues

Function “mood()” (figure 11) allows the user to choose their mood with the picker

view as seen in figure 5-2. If the user has selected not to use MUSE Headband, they will

instead be presented with a standard iOS notification pop-up that can be dismissed with

a tap of a button.

Function “update()” is being called after the song started playing. This is done due to

the nature of MediaPlayer and its required behaviour for this app. Each time the track is

finished the mood needs to be determined again in order to find a corresponding track.
[34] Due to this the list of songs is dynamic and does not exist in a proper form typical

for iOS. Upon updating the player does not have a song to get info from. As such, the

player is playing the song a bit before pausing it. That way the song is technically added

to the queue and the displayed album title can be updated together with artist and album

cover.[35] Buttons are also updated in order to follow this logic.

!27

@IBAction func mood(_ sender: AnyObject) {
 if defaults.bool(forKey:
Settings.Setting.UseMuse.rawValue)==false{
 if moodPicker.isHidden {
 hideShow(objectA: self.artwork, objectB: self.mood-
Picker)
 } else {
 hideShow(objectA: self.moodPicker, objectB: self-
.artwork)
 player.play()
 update()
 player.pause()
 playPauseButton.setImage(#imageLiteral(resourceName:
"Play"), for: .normal)
 }
 } else {
 let alert = UIAlertController(title: "Picker View dis-
abled", message: "You can't pick the song when using MUSE Head-
band. It will do it for you.", preferredStyle: UIAlertCon-
trollerStyle.alert)

 alert.addAction(UIAlertAction(title: "ok", style:
UIAlertActionStyle.default, handler: nil))

 self.present(alert, animated: true, completion: nil)
 }
}

Figure 11. Code for selecting mood

The main in file also has a “playPause()” function that starts and pauses music depend-

ing on user selection. “update()” function changes the details of music track visible to

user. “previous()” switches to the previous track in the queue. “next()” is atypical for

this kind of applications as instead of moving up the queue, it dynamically modifies it

by adding another element (song).

The core algorithm for song selection is inside the “runMediaLibraryQuery()” function

(figure 12). The current solution is very CPU intensive and because of that it runs only

between the songs.[36] Despite that, it is rather fast and does not bog down the system

too much. The delay between songs is negligible. Swift allows quick sorting of individ-

ual songs by their artists or genre, but not by comments, because for now Apple have

decided not to implement this functionality. The official statement says that this type of

!28
filtering is not necessary as comments for songs are changed by user and are not consis-

tent enough.

In the beginning the function checks whether the MUSE Headband is used. Values of

brainwaves are updated in the cyclical manner inside “Data.swift”. If the headband is

enabled by the user, the current mood is updated based on those values.

The system is based on song comments with hashtags (#happy #sad). The user is re-

quired to define it themselves, except for in some rare instances when a song already

comes with predefined values. If the songs has the desired comment, for example the

user is happy and the song has the corresponding hashtag, it is added to the query.[37][38]

[39] The song is picked randomly from all suitable songs.

!29
func runMediaLibraryQuery() {
 if defaults.bool(forKey: Settings.Setting.UseMuse.rawValue)
{
 data.determineMood()
 currentMood.text = Data.CMV.currentMoodValue
 }

// Get all songs from the library. Needs to be run in sequence,
so asynchronous solution does not work
 let query = MPMediaQuery.songs()
 var queue = [MPMediaItemCollection]()

 // Filter the songs for chosen mood by using the comments
 if let collections = query.collections {
 for collection in collections {
 if let representativeTitle = collection.representa-
tiveItem!.title, let comment =
collection.representativeItem!.comments {
 switch Data.CMV.currentMoodValue {
 case Data.Mood.happy.rawValue:
 if comment.lowercased().range(of: "#\(Data.-
Mood.happy.rawValue)") != nil {
 print("Title: \(representativeTitle)
comment: \(comment)")
 print(Data.Mood.happy.rawValue)
 queue.append(collection)
 }

 case Data.Mood.sad.rawValue:
 if comment.lowercased().range(of: "#\
(Data.Mood.sad.rawValue)") != nil {
 print("Title: \(representativeTitle)
comment: \(comment)")
 print(Data.Mood.sad.rawValue)
 queue.append(collection)
 }

 case Data.Mood.undefined.rawValue:
 queue.append(collection)

 default:
 print("Bizarre case!")
 queue.append(collection)
 }
 }
 }

 if queue.count != 0 {
 let randomIndex =
Int(arc4random_uniform(UInt32(queue.count)))
 queueCollections.append(queue[randomIndex])
 self.player.setQueue(with: queue[randomIndex])
 } else {

!30
 // Need to use var, because sometimes it is be-
ing changed for some reason
 var alert = UIAlertController(title: "No songs
found", message: "There are no songs with \(self.currentMoodVal-
ue) mood", preferredStyle: UIAlertControllerStyle.alert)
 alert.addAction(UIAlertAction(title: "ok",
style: UIAlertActionStyle.default, handler: nil))
 self.present(alert, animated: true, completion:
nil)
 }
 }
 }

Figure 12. Code for filtering songs

The player is configured to send notifications regarding its playback state and the song

filtering occurs when the track fully stops.[40] Due to this “trackFinished()” function is

called only between songs. It would be unreasonable to change the songs during their

playback as it may lead to unpleasant listening experience.

The cycle of changing songs can run indefinitely until it is stopped or paused. If the app

is closed down, the music will play till the end of current song, but not more as the

queue may not be extended. However, the app can still perform its function in the back-

ground, while another app is in operation, unless that app utilises sound playback.

6.2. Determining mood (Data.swift)

“Data.swift” is responsible for picking the mood based on values received from MUSE

Headband. At the moment value-ranges (figure 13) are arbitrary due to lack of defining

research.

!31
// This struct determines the mood by the range of brainwave
values
struct WaveRange {
 // Undefined
 static let alphaDefault: Double = 0.0
 static let betaDefault: Double = 0.0
 static let deltaDefault: Double = 0.0
 static let thetaDefault: Double = 0.0
 static let gammaDefault: Double = 0.0

 // Sad mood
 static let alphaRange1000: Range = 0.0..<0.5
 static let betaRange1000: Range = 0.0..<1.0
 static let deltaRange1000: Range = 0.0..<1.0
 static let thetaRange1000: Range = 0.0..<1.0
 static let gammaRange1000: Range = 0.0..<1.0

 // Happy mood
 static let alphaRange5000: Range = 0.5..<1.0
 static let betaRange5000: Range = 0.0..<1.0
 static let deltaRange5000: Range = 0.0..<1.0
 static let thetaRange5000: Range = 0.0..<1.0
 static let gammaRange5000: Range = 0.0..<1.0
}

Figure 13. Code for declaring the brainwave values for moods

The “currentMoodValue” (figure 14) variable is put inside a struct and made static in

order to allow the main file access the calculated value. The “Waves” variable will hold

all the brainwaves received from the headband. The “WavesAverage” variable will hold

average value of previous values. Everything is declared with zeros in the beginning.

struct CMV {
 static var currentMoodValue = Mood.undefined.rawValue
}

static var Waves = [
 "alpha": Array(repeating: 0.0, count: maxData),
 "beta": Array(repeating: 0.0, count: maxData),
 "delta": Array(repeating: 0.0, count: maxData),
 "theta": Array(repeating: 0.0, count: maxData),
 "gamma": Array(repeating: 0.0, count: maxData)
]

static var WavesAverage: [String: Double] = ["alpha": 0.0,
"beta": 0.0, "delta": 0.0, "theta": 0.0, "gamma": 0.0]

Figure 14. Code for average value of brainwaves

!32
The “determineMood()” function (figure 15) compares the data received from the head-

band with the values for mood using switch.[41][42][43] It is possible to add many other

ranges for other feelings.[44][45] For now it is hugely approximate. In case something

goes wrong, there is a default clause, which leads to the undefined value.

Before comparing, we calculate the average using the “reduce()” function. “for” loop

iterates over all 5 brainwaves.[46]

func determineMood() {
 for (wave, value) in Data.Waves {
 Data.WavesAverage[wave] = value.reduce(0.0) {
 return $0 + $1/Double(value.count)
 }
 print("Average of \(wave): \
(Data.WavesAverage[wave]!)")
 }

 // Switching over the values of the headband and deter-
mining the mood
 switch (Data.WavesAverage["alpha"],
Data.WavesAverage["beta"], Data.WavesAverage["delta"], Da-
ta.WavesAverage["theta"], Data.WavesAverage["gamma"]) {

 // Undefined. Default
 case (WaveRange.alphaDefault?, WaveRange.betaDefault?,
WaveRange.deltaDefault?, WaveRange.deltaDefault?, WaveRange.gam-
maDefault?):
 CMV.currentMoodValue = Mood.undefined.rawValue

 // Sad mood
 case (WaveRange.alphaRange1000?, WaveRange.beta-
Range1000?, WaveRange.deltaRange1000?,
WaveRange.deltaRange1000?, WaveRange.gammaRange1000?):
 CMV.currentMoodValue = Mood.sad.rawValue

 // Happy mood
 case (WaveRange.alphaRange5000?, WaveRange.beta-
Range5000?, WaveRange.deltaRange5000?,
WaveRange.deltaRange5000?, WaveRange.gammaRange5000?):
 CMV.currentMoodValue = Mood.happy.rawValue

 default:
 print("Something went really wrong!")
 CMV.currentMoodValue = Mood.undefined.rawValue
 }
 }

Figure 15. Code for determining the mood

!33
7. CONCLUSION

Despite many hurdles this project has finally seen the light of day. It can however not be

commercially released due to licensing issues with Interaxon Inc, who created the

MUSE Headband used in this application. Even the beta version of the app unfortunate-

ly will not be available on iOS App Store anytime in near future.

After all, the app works and performs its main functionality of playing music depending

on the feelings. As a prototype, it is a success, albeit it can use more refinement both

aesthetically and functionally. MusicMood will be updated in the future to reach the

standards of other exemplary iOS applications.

All documents and files related to this project will be available on the internet for future

revisions and improvements of MusicMood and other programs based on the principle

of filtering music depending on users feelings. The software will be released under open

license.

!34
8. REFERENCES

1. Apple Developer portal
https://developer.apple.com

2. MUSE Developer portal

http://developer.choosemuse.com

3. Junction Hackathon 2015

https://en.wikipedia.org/wiki/Junction_(hackathon)

4. MUSE Brain-sensing headband
http://www.choosemuse.com

5. Neurowear website
http://neurowear.com

6. Image reference (mico brain-sensing headset)

http://neurowear.com/projects_detail/mico.html

7. Neural Oscillation, from Wikipedia the free encyclopaedia

https://en.wikipedia.org/wiki/Neural_oscillation

8. Fu-Chien Kao, Shinping R. Wang and Yu-Jung Chang. Brainwaves Analysis of Pos-

itive and Negative Emotions, from Department of Computer Science & Information

Engineering Da-Yeh University (2015)
http://www.wseas.org/multimedia/journals/information/2015/a405709-517.pdf

9. Image reference (MUSE Brain-sensing headband)

http://www.choosemuse.com/what-does-muse-measure/

10. Xcode/Swift ‘filename used twice’ build error (question asked by user RobertyBob

on StackOverflow)
http://stackoverflow.com/questions/34838184/xcode-swift-filename-used-twice-build-error

11. Xcode won’t recognise a new Swift class (question asked by user Sam J on Stack-

Overflow)

http://stackoverflow.com/questions/30146269/xcode-wont-recognize-a-new-swift-class

12. Instance member cannot be used on type (question asked by user Aderstedt on

StackOverflow)
http://stackoverflow.com/questions/32351343/instance-member-cannot-be-used-on-type

https://developer.apple.com
http://developer.choosemuse.com
https://en.wikipedia.org/wiki/Junction_
https://en.wikipedia.org/wiki/Junction_(hackathon)
http://www.choosemuse.com
http://neurowear.com
http://neurowear.com/projects_detail/mico.html
https://en.wikipedia.org/wiki/Neural_oscillation
http://www.wseas.org/multimedia/journals/information/2015/a405709-517.pdf
http://www.choosemuse.com/what-does-muse-measure/
http://stackoverflow.com/questions/34838184/xcode-swift-filename-used-twice-build-error
http://stackoverflow.com/questions/30146269/xcode-wont-recognize-a-new-swift-class
http://stackoverflow.com/questions/32351343/instance-member-cannot-be-used-on-type

!35
13. How to create the Upload File for Application Loader? (question asked by user

Ohad Regev on StackOverflow)

http://stackoverflow.com/questions/5937660/how-to-create-the-upload-file-for-application-
loader

14. Certificate has either expired or has been revoked (question asked by user

“user6218736” on StackOverflow)
http://stackoverflow.com/questions/36689116/certificate-has-either-expired-or-has-been-re-
voked

15. Ben Dodson. Media Library privacy flaw fixed in iOS 10 (2016)

https://bendodson.com/weblog/2016/08/02/media-library-privacy-flaw-fixed-in-ios-10/

16. nackpan. [iOS][Swift]MPMediaQueryを使って曲を絞り込む translation jp-en:

Use MPMediaQuery to narrow down songs, from nackpan Blog (2015)

http://nackpan.net/blog/2015/09/16/ios-swift-mpmediaquery/

17. Changing image of UIButton via click - Xcode 6 Swift (question asked by user

MitchKrendell on StackOverflow)
http://stackoverflow.com/questions/27025759/changing-image-of-uibutton-via-click-xcode-6-
swift

18. How to add animation while changing the hidden mode of a uiview? (question

asked by user Sanchit Paurush on StackOverflow)

http://stackoverflow.com/questions/6177393/how-to-add-animation-while-changing-the-hidden-
mode-of-a-uiview

19. Bharathi. iOS UIPickerView Example using Swift, from Source Freeze (2015)
http://sourcefreeze.com/ios-uipickerview-example-using-swift/

20. Swift: How to set a default value of a UIPickerView with three components in

Swift? (question asked by user KML on StackOverflow)

http://stackoverflow.com/questions/25917693/swift-how-to-set-a-default-value-of-a-uipick-
erview-with-three-components-in-swi

21. Nick Hanan. How to Create a UIColor in Swift (2016)

http://www.codingexplorer.com/create-uicolor-swift/

22. Use storyboard to mask UIView and give rounded corners? (question asked by user

Crashalot on StackOverflow)
http://stackoverflow.com/questions/34215320/use-storyboard-to-mask-uiview-and-give-round-
ed-corners

23. Scale text label by screen size (question asked by user Jeffrey on StackOverflow)

http://stackoverflow.com/questions/5937660/how-to-create-the-upload-file-for-application-loader
http://stackoverflow.com/questions/5937660/how-to-create-the-upload-file-for-application-loader
http://stackoverflow.com/questions/36689116/certificate-has-either-expired-or-has-been-revoked
http://stackoverflow.com/questions/36689116/certificate-has-either-expired-or-has-been-revoked
https://bendodson.com/weblog/2016/08/02/media-library-privacy-flaw-fixed-in-ios-10/
http://nackpan.net/blog/2015/09/16/ios-swift-mpmediaquery/
http://stackoverflow.com/questions/27025759/changing-image-of-uibutton-via-click-xcode-6-swift
http://stackoverflow.com/questions/27025759/changing-image-of-uibutton-via-click-xcode-6-swift
http://stackoverflow.com/questions/6177393/how-to-add-animation-while-changing-the-hidden-mode-of-a-uiview
http://stackoverflow.com/questions/6177393/how-to-add-animation-while-changing-the-hidden-mode-of-a-uiview
http://sourcefreeze.com/ios-uipickerview-example-using-swift/
http://stackoverflow.com/questions/25917693/swift-how-to-set-a-default-value-of-a-uipickerview-with-three-components-in-swi
http://stackoverflow.com/questions/25917693/swift-how-to-set-a-default-value-of-a-uipickerview-with-three-components-in-swi
http://www.codingexplorer.com/create-uicolor-swift/
http://stackoverflow.com/questions/34215320/use-storyboard-to-mask-uiview-and-give-rounded-corners
http://stackoverflow.com/questions/34215320/use-storyboard-to-mask-uiview-and-give-rounded-corners

!36
http://stackoverflow.com/questions/29308941/scale-text-label-by-screen-size

24. How to completely colorise UIPopoverPresentationController background color?

(question asked by user Mario on StackOverflow)

http://stackoverflow.com/questions/31906070/how-to-completely-colorize-uipopoverpresenta-
tioncontroller-background-color

25. How to use UIScrollView in Storyboard (question asked by user Alex Reynolds on

StackOverflow)
http://stackoverflow.com/questions/12905568/how-do-i-use-uiscrollview-in-storyboard

26. Detect first launch of iOS app [duplicate] (question asked by user Julian Stellaard

on StackOverflow)

http://stackoverflow.com/questions/27208103/swift-detect-first-launch

27. user Takumu Uyama - sasurai_usagi3. Swift3.0のcore dataでCRUD! translation jp-

en: CRUD with core data of Swift 3.0! , from Qiita (2016)
http://qiita.com/sasurai_usagi3/items/e47fd82c3cb116c8e953

28. SWIFT: Updating an existing core data object (question asked by user GabrielMSC

on StackOverflow)

http://stackoverflow.com/questions/37489634/swift-updating-an-existing-core-data-object

29. Adding Core Data to existing iPhone project (question asked by user swalkner on

StackOverflow)
http://stackoverflow.com/questions/2032818/adding-core-data-to-existing-iphone-project

30. Sergey Kargopolov. Customize UINavigationBar appearance in Swift (2015)
http://swiftdeveloperblog.com/customize-uinavigationbar-appearance-in-swift/

31. user sawapi. Swiftで⾳楽を再⽣ translation jp-en: Play music with Swift, from Qi-

ita (2014)

http://qiita.com/sawapi/items/e08ab4f56f7e4684defd

32. Pick a random element from an array (question asked by user Fela Winkelmolen on

StackOverflow)
http://stackoverflow.com/questions/24003191/pick-a-random-element-from-an-array

33. (Swift) How to create global array? (question asked by user Rashwan L on Stack-

Overflow)

http://stackoverflow.com/questions/34885682/swift-how-to-create-global-array

http://stackoverflow.com/questions/29308941/scale-text-label-by-screen-size
http://stackoverflow.com/questions/31906070/how-to-completely-colorize-uipopoverpresentationcontroller-background-color
http://stackoverflow.com/questions/31906070/how-to-completely-colorize-uipopoverpresentationcontroller-background-color
http://stackoverflow.com/questions/12905568/how-do-i-use-uiscrollview-in-storyboard
http://stackoverflow.com/questions/27208103/swift-detect-first-launch
http://qiita.com/sasurai_usagi3/items/e47fd82c3cb116c8e953
http://stackoverflow.com/questions/37489634/swift-updating-an-existing-core-data-object
http://stackoverflow.com/questions/2032818/adding-core-data-to-existing-iphone-project
http://swiftdeveloperblog.com/customize-uinavigationbar-appearance-in-swift/
http://qiita.com/sawapi/items/e08ab4f56f7e4684defd
http://stackoverflow.com/questions/24003191/pick-a-random-element-from-an-array
http://stackoverflow.com/questions/34885682/swift-how-to-create-global-array

!37
34. Swift - Detect music playing, whether it’s Spotify or iTunes (question asked by user

zantuja on StackOverflow)

http://stackoverflow.com/questions/38385464/swift-detect-music-playing-whether-its-spotify-
or-itunes

35. In Swift, how do you check if an object (AnyObject) is a String? (question asked by

user shim on StackOverflow)
http://stackoverflow.com/questions/26521583/in-swift-how-do-you-check-if-an-object-anyob-
ject-is-a-string

36. Gabriel Thedoropoulos. Grand Central Dispatch (GCD) and Dispatch Queues in

Swift 3, from APPCODA (2016)

http://www.appcoda.com/grand-central-dispatch/

37. Paul Solt. How to search for a Character in a String with Swift 2, from super easy

apps (2015)
http://supereasyapps.com/blog/2015/8/7/how-to-search-for-a-character-in-a-string-with-swift-2

38. Austin Zheng. Swift 2: Control Flow Pattern Matching Examples (2015)

http://austinzheng.com/2015/09/23/pmatch-control-flow/

39. Austin Zheng. Swift’s pattern-matching switch statement (2014)

http://austinzheng.com/2014/12/16/swift-pattern-matching-switch/

40. MPMusicPlayerController not posting notifications? (question asked by user Ben

Collins on StackOverflow)
http://stackoverflow.com/questions/3904746/mpmusicplayercontroller-not-posting-notifications

41. user hachinobu. Swiftの列挙型(enum)おさらい translation jp-en: Swift's enumer-

ated type (enum) review, from Qiita (2017)

http://qiita.com/hachinobu/items/392c96820588d1c03b0c

42. Switch case on enum type (question asked by user NikMos on StackOverflow)

http://stackoverflow.com/questions/33910829/switch-case-on-enum-type

43. user akatsuki174. SwiftにおけるSwitchまとめ translation jp-en: Switch in Swift

Summary, from Qiita (2015)
http://qiita.com/akatsuki174/items/2720ebc369a6c1d9f629

44. Swift: Multiple intervals in single switch-case using tuple (question asked by user

iiFreeman on StackOverflow)

http://stackoverflow.com/questions/38385464/swift-detect-music-playing-whether-its-spotify-or-itunes
http://stackoverflow.com/questions/38385464/swift-detect-music-playing-whether-its-spotify-or-itunes
http://stackoverflow.com/questions/26521583/in-swift-how-do-you-check-if-an-object-anyobject-is-a-string
http://stackoverflow.com/questions/26521583/in-swift-how-do-you-check-if-an-object-anyobject-is-a-string
http://www.appcoda.com/grand-central-dispatch/
http://supereasyapps.com/blog/2015/8/7/how-to-search-for-a-character-in-a-string-with-swift-2
http://austinzheng.com/2015/09/23/pmatch-control-flow/
http://austinzheng.com/2014/12/16/swift-pattern-matching-switch/
http://stackoverflow.com/questions/3904746/mpmusicplayercontroller-not-posting-notifications
http://qiita.com/hachinobu/items/392c96820588d1c03b0c
http://stackoverflow.com/questions/33910829/switch-case-on-enum-type
http://qiita.com/akatsuki174/items/2720ebc369a6c1d9f629

!38
http://stackoverflow.com/questions/25165123/swift-multiple-intervals-in-single-switch-case-
using-tuple

45. What are “intervals” in Swift ranges? (question asked by user Chéyo on StackOver-

flow)

http://stackoverflow.com/questions/25308978/what-are-intervals-in-swift-ranges

46. How to write method to calculate average in Swift-Playground (question asked by

user “user1898829” on StackOverflow)
http://stackoverflow.com/questions/24117119/how-to-write-method-to-calculate-average-in-
swift-playground

http://stackoverflow.com/questions/25165123/swift-multiple-intervals-in-single-switch-case-using-tuple
http://stackoverflow.com/questions/25165123/swift-multiple-intervals-in-single-switch-case-using-tuple
http://stackoverflow.com/questions/25308978/what-are-intervals-in-swift-ranges
http://stackoverflow.com/questions/24117119/how-to-write-method-to-calculate-average-in-swift-playground
http://stackoverflow.com/questions/24117119/how-to-write-method-to-calculate-average-in-swift-playground

	ABBREVIATIONS AND ACRONYMS
	Introduction
	Structure
	Project history
	Similar Projects
	Neurowear Product range
	Competing project
	Figure 1. Model Julie Watai wearing a mico headset[6]
	Basics of project creation
	Figure 2. Brainwaves[7]
	Preliminary research
	Figure 3. Emotions arranged in relation to brainwaves[8]
	Equipment
	Figure 4. Construction of MUSE Headband[9]
	Development environment and target platform
	Setup
	App design
	Main window
	Figure 5. Application layout (main window)
	Legal information and Usage instructions windows
	Figure 6. Pop-ups
	Settings
	Figure 7. Settings menu
	Connection
	Figure 8. Menu for connecting the headband
	Inner workings and code
	Main file (ViewController.swift)
	Figure 9. Code for declaring the needed objects
	Figure 10. Code for connecting interface elements with code and declaring mood values
	Figure 11. Code for selecting mood
	Figure 12. Code for filtering songs
	Determining mood (Data.swift)
	Figure 13. Code for declaring the brainwave values for moods
	Figure 14. Code for average value of brainwaves
	Figure 15. Code for determining the mood
	Conclusion
	References

