

Tetiana Tykhomyrova

Real world Docker applications

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

17 April 2018

 Abstract

Author
Title

Number of Pages
Date

Tetiana Tykhomyrova
Real world Docker applications

25 pages
17 April 2018

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of Department

Docker is one of the fastest developing modern technologies. The purpose of this thesis is
to showcase Docker use across multidisciplinary applications with intention of helping be-
ginners to learn and understand more about this technology.

Keywords Docker, React, Container

Contents

1 Introduction 1

1.1 Background 1

1.1.1 Unix v7 1

1.1.2 FreeBSD Jails 1

1.1.3 Linux VServer 2

1.1.4 Oracle Solaris Containers 2

1.1.5 Open VZ 2

1.1.6 Process Containers 2

1.1.7 LXC 2

1.1.8 Warden 3

1.1.9 LMCTFY 3

1.1.10 Kubernetes 3

1.2 History of Docker 3

1.3 Objective of the thesis 4

1.4 Installation 4

1.5 Windows vs Linux 4

2 Docker technology 5

1.1 Images 5

2.5 DockerHub 6

3 Docker use 7

3.2 VR 7

3.2.1 Problem: 7

3.2.2 Solution: 7

4.2 Visa 8

3.2.3 Problem 8

3.2.4 Solution 8

3.3 Kadaster 8

3.3.1 Problem 8

3.3.2 Solution 9

3.4 ADP 9

3.4.1 Problem 9

3.4.2 Solution 9

3.5 Cornell university 9

3.5.1 Problem 9

3.5.2 Solution 10

3.6 BBC News [9] 10

3.6.1 Problem 10

3.6.2 Solution 10

4 First Docker container 10

5 Usual Docker commands 12

6 Docker compose 15

6.2 Structure of a yemo file 16

7 Dockerizing React application 17

8 Writing Dockerfile for a React App 18

9 Pushing images into Docker Cloud 21

10 Docker Networks 24

11 Creating a custom network 25

12 Using Docker in production 27

13 Conclusion 28

References 29

1

1 Introduction

Docker is an implementation of container-based virtualization technologies. Main differ-

ences between virtualization technology and pre-virtualization technology are cost,

speed of deployment and ease of migration from one machine to another.

With hypervisor-based virtual machines it’s a lot more cost efficient and easy to scale

since no applications are stored locally. All the technology can be installed in the cloud

which makes scaling a lot faster. Even though with all the benefits of hypervisor-based

virtual machines over pre-virtualization technology there are still some limitations.

This is a time when Docker comes into the picture. [1]

1.1 Background

The concept of containers is not new, to be more precise the concept was born back in

1979. I would like to discuss about some of them to give clear picture of the topic and

why I choice it. [2]

1.1.1 Unix v7

With the development of Unix V7 chroot (change root) system was introduced. It is an

operation which changes root directory for the current processes and their children. [3]

1.1.2 FreeBSD Jails

FreeBSD is an operating system which used to power servers, desktops and embedded

systems.

In early 2000’s a shared-environment hosting provider came up with a concept of sepa-

ration between customer environment and its own. FreeBSD Jails lets administrators to

2

partition a FreeBSD computer system into smaller systems with their own IP addresses

and configuration.

1.1.3 Linux VServer

Similar to FreeBSD Jails it is a concept which allows partition of file systems, network

addresses and memory. It became available in 2001 and it is implemented by patching

the Linux kernel. It is still possible to use but last stable patch was released in 2006.

1.1.4 Oracle Solaris Containers

In 2004 Oracle introduced Solaris Container which provides system recourse controls

and boundary separation which is provided by zones. Zones are completely isolated vir-

tual servers running in the same operating system instance.

1.1.5 Open VZ

Open Virtuzzo (Open VZ) was not released as part of the official Linux kernel. It is an

operating system virtualization technology for Linux which takes care of isolating and

recourse management using patched Linux kernel. Technology was created in 2005.

1.1.6 Process Containers

Launched by Google in 2006 was introduced to limit and isolate usage of memory, CPU,

network for a combination of processes. It was eventually merged to Linux kernel.

1.1.7 LXC

LinuX Containers (LXC) was first implementation of Linux container manager. It was in-

troduced in 2008 using cgroups (previously called Process Containers) and Linux

namespaces.

3

1.1.8 Warden

In 2011 CloudFoundry started Warden first using LXC and later on replacing it with their

own implementation. Warden is able to isolate environments in any operating system

and provides API for container management.

1.1.9 LMCTFY

Let Me Contain That For You (LMCTFY) started in 2013 as an open-source implemen-

tation of Google’s container stack. Deployment stopped in 2015, when core parts started

being used in libcontainer which is now part of Open Container Foundation.

1.1.10 Kubernetes

It is an open-source system for automating deployment and scaling of containerized ap-

plications. It supports very complex classes of applications. Kubernetes and Docker op-

erate on different levels of stack and even can be used together.

1.2 History of Docker

Docker was released as an open-source project by dotCloud in 2013. Like previously

mentioned technologies it relies on namespaces and cgroups to be able to take care of

recourse isolation. It allows to write an application in any language on any Linux distri-

bution and then move it from a laptop to a test environment or production if needed.

Before Docker was introduced you could never be sure that you could move your appli-

cation without a problem from one environment to another.

According to Docker one month after launching a tutorial about 10000 developers tried

it out. In a year Amazon started supporting Docker and by June 2014 Docker was down-

loaded more than 2 million times.

4

In 2014 CoreOS introduced another container technology called Rocket which is now

the main competitor for Docker. [4]

1.3 Objective of the thesis

Docker provides great user interface and it is really easy to use. Although the technology

has quite a downflow of not being really stable in production.

Docker’s success made me very interested in the technology. While writing this thesis I

would like to explore reasons for its popularity and to check with my own experience how

easy and fast it is to use for a beginner.

1.4 Installation

The steps required to install Docker vary depending on the operating system you use.

On Docker documentation page there is a lot of information which guides user through

the process so it becomes rather straightforward. In the beginning of my project I was

using VM, but later on I switched to local machine using Linux. Installation took about 10

minutes. Here are the steps taken in order to install Docker.[5]

1.5 Windows vs Linux

Docker works similarly on both operating systems but there are some differences which

I would like to talk about. First of all installation is different on both systems. As user

guide explains for Windows you can just download a user friendly installation wizard

when for Linux you have to write commands. When you use Linux you install only Docker

engine and management tools, no need to create virtual machine because docker con-

tainers will handle the setup for you. As for WIndows Docker creates a virtual based

Linux machine, but user doesn’t have to worry about it since all the process is happening

in the background. All Docker commands are same for both operating systems.

5

I tried to install Docker on Windows 10 Home edition, but I wasn’t able to run it at all. I

found out that home edition doesn’t support Hyper-V, which was needed in order to run

Docker, so I couldn’t run it. I found a way around by using VirtualBox version , but there

are so many forums which discuss problems connected to Docker that you can solve

pretty much any problem you face with the help of fellow developers.

2 Docker technology

1.1 Images

There are two most important concepts of Docker technology : images and containers.

Images are read only templates and they are used to create containers. They are created

with the docker build command. Images are designed to be composed of layers of other

images allowing a minimum amount of data to be sent when transferring data over a

network. Images are stored in a Docker registry.[6]

2.2 Containers

Containers are runtime objects. They are lightweight and portable components of envi-

ronment in which we run applications. Containers are created from images. Inside a con-

tainer it has all dependencies which are needed to run the application.

2.3 Registry

Registry is a place where we store images. User has a choice of hosting his own registry

or using Docker’s public registry called Docker Hub.

6

2.4 Repository

Inside a registry images are stored in repositories. Docker repository is a collection of

different docker images with the same name but different tags. Usually each tag repre-

sents a different version of the image.

2.5 DockerHub

DockerHub is a registry service on the cloud which allows you to download Docker im-

ages or share yours with other users. [7]

You can see how many stars are given to particular repository, how many pulls there

are, and details of all repositories.

Figure 1 Docker Hub interface

7

3 Docker use

I think it’s always interesting to know which companies use Docker since it brings some

kind of special vibe to the whole picture. To name a few companies:

VR Group - Finnish Railways, Paypal, General Electric, BBC News, Business Insider,

Spotify, The New York Times, badoo. Next I would like to tell more about cases from

different industries which shows how Docker can be used in different work environ-

ments.[8]

3.2 VR

Here I would like to focus on the case study of VR, since I am sure that almost everyone

who ever been to Finland used their services.

3.2.1 Problem:

First of all VR had high operating cost since supporting many different platforms makes

it complicated to make system efficient. Adding problems with quality delivery and simply

how long it took for the applications to be ready made team look for alternatives.

3.2.2 Solution:

VR started working with Accenture to make a new common application platform based

on Docker EE. Together they rewrote some applications and while that was happening

they migrated already existing applications. Commuter services app went live in

June 2017 and new reservation system went live in August 2017.

So what changes exactly happened? Operation cost savings went up to 50%, better

visibility of the system which made quality go up, same platform for all the application in

VR which makes it a lot easier and faster to develop and improve across the teams.

8

4.2 Visa

Second case study I would like to share is Visa since it is one of the most known brands

in the world.

3.2.3 Problem

First of all company was making huge investments into virtualization but the outcome

wasn’t meeting the efforts. Maintenance of the system was taking way too much time.

In order to improve its operations.

3.2.4 Solution

Visa started working with Docker by building two applications for payment processing.

So what changes happened? Scalability increase. Visa has hundreds of thousands

transaction going through its services every day, with two application and only 100 con-

tainers. In the peak time Visa can scale up to 800 containers in order to meet customer

needs. Maintenance of the whole system became a lot faster and easier.

3.3 Kadaster

Kadaster is a registry governmental organization in Netherlands. They register property

and land rights, aircrafts, ships.

3.3.1 Problem

Back in 2012 the biggest challenge they had was to be able to maintain different tech-

nology stack applications in the cloud.

9

3.3.2 Solution

Today there are about 250 Docker EE nodes which run Kadaster applications, removing

the problem of not being able to use different technologies in the same space.

3.4 ADP

ADP is the largest company which provides human capital management solutions. It has

more than half a million clients with more than 35 million users all over the world.

Needless to say the compony is quite big.

3.4.1 Problem

ADP faced problems with security, since they treat sensitive data like social seurity num-

bers. ADP is cloud based, which means they have to be able to scale their system fast

in order to handle changes. Over the years company developed many applications which

had thousands of lines of code.

3.4.2 Solution

Using Docker solved problem with security and workflow. In order to scale the application

company relies on Universal Control Plane/Swarm. This way teams have the ability to

do each part of the application in little Docker engine swarms rather than in one huge

swarm per application.

3.5 Cornell university

Ivy league university which was founded in 1865.

3.5.1 Problem

Spending too much time and money on things that could be automated. They wanted to

make sure they would be able to handle all the microservices in order.

10

3.5.2 Solution

Now university team is able to host their Docker images securely allowing only people

who have access to use them. Docker ensures that even if an instance of application

gets broken with the help of Docker Trusted Registry they can be always sure that appli-

cations are still available.

3.6 BBC News [9]

3.6.1 Problem

BBC had challenges with speed. Since BBC delivers news in about 30 languages with

huge amount of information it was lagging behind.

3.6.2 Solution

Docker let BBC speed grew higher, eliminated waiting time and let jobs run simultane-

ously.

4 First Docker container

To make sure Docker is installed it is possible to run a command [10]

$ docker version

Docker can be run from terminal. Docker run command will create the container using

the image user specifies, then spin up the container and run it.

Simple example of giving a command to run docker image can look like this:

$ docker run hello-world

11

When we use the image to run a container docker first looks through local box to find the

image. If docker can’t find image locally it will look for a download from remote registry.

To check if there are any images we have locally we can type in

$docker images

The outcome of the command in my terminal looked like this:

As seen on the picture, docker downloaded an image from repository “hello-world”, with

a tag name “latest”. Images have unique ids.

The specifications for the command can be more precise in a form of

$docker run repository:tag command [arguments]

and the output for the command

$docker run busybox:1.24 echo “What’s up” is:

We can see that image wasn’t found locally, and it was pulled from remote registry.

If we run the command again the execution will happen a lot faster since now the image

is located locally.

Figure 2 Docker images command

Figure 3 Running busybox image

12

The -i flag starts an interactive container. The -t flag creates a pseudo-TTY that attaches

receiving or reading input such as stdin(standard in) and printing output such as

stdout(standard output).

Implementing command:

$docker run -i -t busybox:1.24

Will put us right inside the container.

5 Usual Docker commands

- $docker ps

Command is used to show all the running containers.

- $docker ps -a

Shows all the containers which stopped as well.

In order to give a container specific name we can use a command

$docker run --name ello busybox:1.24

This will give a particular name to the container.

13

Docker containers can be run in a browser. This can be accessed by a command:

$docker run -it -p 8888:8080 tomcat:8.0

I had to use IP address given in Ubuntu console, since I was using cloud in order to

access Docker and Linux distribution system.

$docker logs

This command will show any running containers.

When we create a container, we add a thin image layer on top of all underlying layers. It

is called writable container layer. All changes made into the running containers will be

written into the writable layer. When the container is deleted, the writable layer is also

deleted, but the underlying image remains unchanged. This means that many containers

can have different files but all of them have same underlying image.

There are two ways in which docker image can be built. One way is to commit changes

made in a Docker container.

There are three main steps to be done in order to achieve the goal. We have to spin up

a container from the base image, install Git package in the container and commit

changes made in the container.

Figure 4 Container names

14

Docker commit is a command used to save the changes made to the Docker container

file system to a new image.

Another is to write a Dockerfile. A Dockerfile is a document where user provides all the

instructions to assemble the image. Each instruction creates new image layer to the im-

age. Docker build command takes the path to the build context as an argument.

By default, docker would search for the Dockerfile in the build context path. Docker exe-

cutes all the instructions written in the file. Then it creates a new container from the base

image. Docker daemon runs each instruction in a different container. For example, for

instruction, Docker daemon creates a container, runs the instruction, commits new layer

to the image and removes the container.

Each run command will execute the command on the top writable layer of the container,

then commit the container as a new image. As well as each run command will create a

new image layer. It is important to remember to update packages alphanumerically. This

way the process will be going faster. CMD instructions specify what command user wants

to run when the container starts up, otherwise if CMD instructions are not specified in

the Dockerfile, Docker will use default command defined in the base image.

If instructions do not change Docker will use same layer when building an image. ADD

instruction let’s not only to copy file but also allow to download file from internet and add

it to the container.

All the dependencies are managed by Docker, so there is no need to install, for example,

Python on the local machine in order to work with it.

15

6 Docker compose

Container links allow containers locate each other and securely transfer information

about one container to another container. When we set up a link we create a pipeline

between the source container and recipient container. The recipient container can then

access select data above the source container. In our case the rattus container is the

source container and our container is the recipient container. The links are established

by using container names.

The main use for docker container links is when we build an application with a micro-

service architecture, we are able to run many independent components in different con-

tainers. Docker creates a secure tunnel between the containers that doesn’t need to

expose any ports externally on the container.

Docker compose is a very important component which is made in order to run multi-

container Docker applications. With the help of Docker compose we can define all the

containers in a single file called yemo file.

You can check if you have Docker compose installed simply by running a command:

As we clearly see you will be told if installation is required. Next step is to create docker-

compose.yml file.

Figure 5 Checking if Docker-compose is installed

16

6.2 Structure of a yemo file

There are three versions of docker compose file, version 1 which is legacy format which

does not support volumes or networks, version 2 and version 3 which is the most up to

date format and it is recommended to use it. Next we define services to make up our

application for each service. We should provide instructions on how to build and run the

container in the application. We have two services: example and redis.

The first instruction is the “build” instruction. The “build” instruction tells the path to the

file which will be used to build docker image. Second instruction is “port” which defines

what ports to show to external network. “Depends on” is the next part since in this exam-

ple docker container is the client of redis and we need to start redis beforehand.

Figure 6 Docker-compose file

17

7 Dockerizing React application

There are bunch of articles which can help building applications and deploy react appli-

cations, well basically any applications. The most important steps are explained be-

low.[11]

Step 1

$ npm install -g create-react-app

Someone who has worked with React might see this steps as very familiar.

Step 2 (creating a folder)

$ mkdir myApp

Step 3 (get inside the folder)

$ cd myApp

Step 4 (create a react folder)

$ create-react-app frontend

Then we are creating a Dockerfile.

18

8 Writing Dockerfile for a React App

So what does the code mean? [11]

FROM node means start from node base image

ENV NPM_CONFIG_LOGLEVEL warn means less messages during build

ARG app_env means that app environment can be set during build

ENV APP_ENV $app_env means that an environment variable is set to app_env argu-

ment

RUN mkdir -p /frontend means that frontend folder is created

WORKDIR /frontend means that all commands will be run from this folder

COPY ./frontend ./ means that the code from the local folder is copied into container’s

working directory

RUN npm install installs dependencies

CMD if means If the arg_env = production then http-server will be installed, and then

build. Otherwise used create-react-app hot reloading tool (basically webpack — watch)

EXPOSE 3000 means that app runs on port 3000 by default

Next commands in order to run the app are :

Figure 7 Writing Dockerfile

19

$ docker build ./

Type $ docker images to find out image id

After following command you should be able to run your container in localhost:3000

$ docker run -it -p 3000:3000 -v [put your path here]/frontend/src:/frontend/src [image id]

To build a production image run:

$ docker build ./ --build-arg app_env=production

To run the production image:

$ docker run -i -t -p 3000:3000 [image id]

And worry not if you make a mistake in your file, the image won’t be built.

Next is Docker build.

Figure 8 Letter A is a mistake in the file

20

Current Docker images situation.

Getting the image to run inside the container.

Figure 9 Docker build

Figure 10 Docker images

Figure 11 Getting inside the container

21

This what your Terminal will show if everything goes fine.

As a result React app is up.

9 Pushing images into Docker Cloud

Important thing to know from the beginning Docker Cloud does not provide cloud ser-

vices. Docker cloud however has more added features then Docker Hub but it is built on

top of Docker Hub. If you push an image to Docker Hub it will be automatically in Docker

cloud. [12]

Figure 12 Successful Docker build

Figure 13 React app interface

22

Figure 14 My repository in Docker Cloud

Next step is to login into Docker Hub. You will be able to see your image in both Docker

Cloud and Docker Hub.

Push an image.

Figure 15 Login into Docker Hub

Figure 16 Image push

23

If you wish to find my image in Docker Hub just search for game_theory, this is what you

can find.

Figure 17 Docker Cloud repository interface

Figure 18 Docker Hub repository interface

Figure 19 Repository interface

24

10 Docker Networks

Docker has three built in networks: [13]

• bridge

• host

• none

You can specify which network you want to use with --net command.

None network means that the container is isolated. To make it run use:

$docker run -d --net none [your image]

None network provides the most protection.

Containers in the same network can connect to each other. Containers from other net-

works can’t connect to containers in the given one.

Bridge is the default network. If network is not specified this the the network type you are

creating. Usually this kind of network is created in single containers which need a way to

communicate.

Figure 20 Docker networks

Figure 21 Creating none network

Figure 22 Checking if none network is isolated

25

Host is a network that removes network isolation between the container and the Docker

host. Least protected network. This kind of containers are usually called open containers.

Overlay network connect multiple Docker daemons and enables swarm services to talk

to each other. It allows communication for two single containers on different Docker dae-

mons.

Macvlan network allows assigning a MAC address to your container, which shows your

container as a physical device on your network. It’s usually best choice when dealing

with application that have to be directly connected to the physical network.

11 Creating a custom network

In order to create a custom network use command: [14]

$docker network create --driver [you driver choice] [your network]

If we check networks again:

In a bridge network containers can have access to two network interfaces.

• Loopback interface

• Private interface

Figure 23 Creating custom network

Figure 24 All the networks available

26

Containers in the same network can communicate with each other. We can define

networks in docker-compose file as well.

Networks are defined similar to other services, with sub being the name of my

network. Network should be defined as well in other sections where it is being

used.

You can create two networks which will provide network isolation between ser-

vices.

Figure 25 Including network into Docker-compose file

Figure 26 Including network to Docker-compose file

27

12 Using Docker in production

Opinions are divided whether it is safe to use Docker in production environment or not.

Main concerns are that Docker is missing important security and data management. On

the other hand, Docker is being developed at a very fast pace. In the case studies men-

tioned previously it can be verified that Docker in production can work and is in fact quite

efficient.

Technically it is possible to run many different processes in one container, but it is better

to run one specific process in each. It is easier to use containers with only one function-

ality. You can always spin up container to use in some other project, but you can’t really

spin up container which already has your database and you don’t need it in another

place. It is also easier to debug and find mistakes in one component out of the whole

application than the whole application. Benefit of docker containers is their small size, so

it is good to keep it that way especially when many containers have to be deployed and

updated at the same time. The most important part though is to remember about security.

Figure 27 Including more networks into Docker-compose

28

Once you deploy your containers to production be careful of the network vulnerabilities

and make sure your data is protected.

13 Conclusion

The purpose of this thesis was to document learning of the Docker technology and re-

search its apparent success. As a result, I can sum up that Docker is a very powerful tool

which helped many companies to overcome their difficulties in recourse management,

isolation of environments, security issues and moving into the cloud. Since information

is being received and sent as fast as ever before it is essential for services providers to

ensure that they can give the best assistance for the customers.

Documenting my learning was not easy, since I had to remember to take screenshots of

the code. In my opinion it is very important to see an example of a code as a beginner

either as a picture or a short video. I tried to make my explanations as easy as possible

for new Linux users as well. I covered all the topics necessary in order to be able to run

Docker in test environment.

Overall, I think that Docker documentation and pool of developers provides good support

for new Docker users.

.

29

References

1 Tao W. Docker Technologies for DevOps and Developers. E-material.
<https://www.udemy.com>. Watched 10.09.2017

2 Rani Osnat. A Brief History of Containers: From the 1970s to 2017. E-material.

<https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-

docker-2016>. Read 25.03.2018

3 ArchWiki. Change root. E-material. <https://wiki.archlinux.org/in-

dex.php/change_root>. Read 25.03.2018

4 Nick Martin. A brief history of Docker Containers’ overnight success. E-material.<

https://searchservervirtualization.techtarget.com/feature/A-brief-history-of-

Docker-Containers-overnight-success>. Read 28.03.2018

5 Docker documentation. About Docker CE. E-material.
<https://docs.docker.com/install/>. Read 10.09.2017

6 Tao W. Docker Technologies for DevOps and Developers. E-material.

<https://www.udemy.com>. Watched 10.09.2017

7 Docker documentation. Definition of Docker Hub. E-material.

<https://docs.docker.com/search/?q=docker%20hub>. Read 11.09.2017

8 Docker documentation. Docker customers. E-material.

<https://www.docker.com/customers>. Read 20.09.2017

9 Benjamin Wootton. Who’s using Docker? E-material. < https://www.con-
tino.io/insights/whos-using-docker>. Read 25.09.2017

10 Tao W. Docker Technologies for DevOps and Developers. E-material.
<https://www.udemy.com>. Watched 10.10.2017

11 Josh McMenemy. React and Docker for Development and Production. E-mate-

rial. <https://medium.com/@McMenemy/react-docker-for-development-and-pro-

duction-6cb50a1218c5>. Read 25.11.2017

https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://wiki.archlinux.org/index.php/change_root
https://wiki.archlinux.org/index.php/change_root
https://searchservervirtualization.techtarget.com/feature/A-brief-history-of-Docker-Containers-overnight-success
https://searchservervirtualization.techtarget.com/feature/A-brief-history-of-Docker-Containers-overnight-success
https://docs.docker.com/install/
https://docs.docker.com/search/?q=docker%20hub
https://www.docker.com/customers
https://www.udemy.com/

30

12 Joel Koh. Docker hub vs Docker cloud. E-material. <https://stackover-

flow.com/questions/42735760/docker-hub-vs-docker-cloud>. Read 20.03.2018

13 Docker documentation. Networking overview. E-material.

<https://docs.docker.com/network/>. Read 21.03.2018

14 Tao W. Docker Technologies for DevOps and Developers. E-material.
<https://www.udemy.com>. Watched 25.03.2018

https://stackoverflow.com/questions/42735760/docker-hub-vs-docker-cloud
https://stackoverflow.com/questions/42735760/docker-hub-vs-docker-cloud
https://docs.docker.com/network/
https://www.udemy.com/

Appendix 1

 1 (1)

Appendix 2

 1 (1)

