

Karri Kivelä

The Design Process of an Open Source

Mobile Phone

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

23.5.2018

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Karri Kivelä
Avoimiin lähdekoodeihin perustuvan puhelimen
kehitystyö

32 sivua + 5 liitettä
23.5.2018

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Sulautetut järjestelmät

Ohjaaja

Yliopettaja Markku Nuutinen

Insinöörityön tarkoituksena oli suunnitella avoimen lähdekoodin piirilevy ja avoimen
lähdekoodin ohjelmiston suorittaminen laitteella.

GSM-modeemin ja muun laitteiston ohjaukseen valittiin avointen lähdekoodien
käyttöjärjestelmä Linux, jonka ydin myös käännettiin valitulle piirisirulle. Sen lisäksi
perehdyttiin käyttöjärjestelmäydintä käyttävät kirjastot ja ohjelmat sisältävän Linux-
käyttöjärjestelmälevyn muodostamiseen.

Puheluiden soittamista ja vastaanottamista varten kehitettiin Python-skriptejä, jotka
ohjasivat GSM-modeemia suorittimelta UART-väylää pitkin. Python-skriptit
vastasivat myös näppäimistön ja näytön ohjauksesta.

Proof-of-concept-soveltuvuusselvitys suoritettiin yhdistämällä suoritin- ja GSM-
laitteistokehityssarjat toisiinsa käyttäen ulkoista LED-valodiodia näyttönä ja yhtä
painiketta näppäimistönä. Kummankin laitteistokehityssarjan saatua virtansa ja
suoritinkehityssarjan käynnistyttyä Linux-käyttöjärjestelmä ajoi laitteiston ohjaukseen
käytetyt Python-skriptit.

Lopputyössä perehdyttiin myös piirilevyn kehityksen vaiheisiin. Kaikki projektin
kehitystyö tallennettiin avointen lähdekoodien hengessä julkisesti saataville git-
lähdekoodiversiointijärjestelmää käyttäen tunnettuun GitHub-palveluun.

Soveltuvuusselvitys osoitti, että niin puheluiden soittaminen kuin niihin vastaaminen
laitteella onnistui. Python-skriptikokoelmassa todettiin kuitenkin suunnitteluvirheitä,
joiden takia ohjelman jatkokehitys nykyisessä muodossa olisi haastavaa. Sen lisäksi
paljastui, että piirilevyn kehityksessä käytetyt piirisommittelun rajasäännöt eivät
sopineet piirilevyn valmistajalle eikä piirilevyä voitu valmistaa.

Koska piirilevysuunnittelu ja Python-skriptit ovat julkisesti saatavilla, kuka tahansa
voi vapaasti jatkaa laitteen ja se toiminnan hiomista eteenpäin.

Avainsanat Freescale i.MX233, SIM900, Olimex, sulautettu Linux

 Abstract

Author
Title

Number of Pages
Date

Karri Kivelä
The design process of an open source mobile phone

32 pages + 5 appendices
23rd May 2018

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded Software Engineering

Instructor

Markku Nuutinen, Principal Lecturer

This project’s primary aim was to develop an open source based GSM phone by
using open source PCB design, and running an open source software on the device
to control the hardware.

To control the GSM modem and other hardware components, the open source Linux
operating system was chosen, and the steps on how to compile the Linux kernel for
the specific CPU of this project were described. In addition, this project covered the
generation of a simple Linux system image that consists of a set of libraries and
binaries for user interfacing with the operating system.

Python scripts were developed in order to operate the GSM modem over the UART
bus from the CPU, and thereby allow making and answering calls. User interfacing
with a keypad and a screen were handled from the Python scripts as well.

The proof of concept was executed by physically connecting the hardware
development kits of both the CPU and the GSM chipsets, and adding a LED to act as
the screen and a button as they keypad. After both boards were powered up by
external power supplies, the operating system on the CPU development kit board
started running the main Python script.

The project also included designing the PCB for the end device. In the spirit of open
source, all the development work was saved in a git source tracking repository in the
public GitHub service.

The proof of concept showed that calls can be made, and can be answered, and that
incoming calls were indicated on the screen. However, it was found out that the
Python software had design flaws, so extending it for features might be challenging.
Also it was discovered that the PCB design did not match the design rules of the
fabrication house, and could not be printed.

Since the Python scripts and PCB design are publically available online, a basic GSM
phone system can be made by anyone, and the concept can be further developed.

Keywords Freescale i.MX233, SIM900, Olimex, Embedded Linux

Contents

Abbreviations

1 Introduction 1

2 Requirements and the Main Components of the Open Source Phone 2

2.1 Hardware System Architecture 2

2.1.1 Main CPU and Peripherals 2

2.1.2 GSM Modem 4

2.1.3 Main Communication Bus 5

2.2 Software System Architecture 6

2.2.1 Operating System 6

2.2.2 Linux Operating System 6

2.2.3 Operating System Drivers 7

2.2.4 Hardware Control 7

2.3 The Effect of Open Source on Device Requirements 8

3 How to Work with Hardware Development Kits 10

3.1 Using a Hardware Development Kit to Boost Design 10

3.2 Choosing the Hardware Development Kits Based on Requirements 11

3.2.1 Main CPU Board 11

3.2.2 GSM Board 12

4 Hardware Design 12

4.1 Hardware System Design 12

4.2 Main Circuit Board Logic Design 14

4.3 Main Circuit Board Layout Design 16

4.4 Circuit Board Printing 17

4.5 Circuit Board Assembly 17

4.6 External Keyboard 18

4.7 External Screen 18

5 Software Design 18

5.1 Operating System Required Parts 18

5.2 Linux Kernel Build Process 19

5.3 Operating System Image Generation 21

5.4 The Phone Application 22

6 Performing a Simple Proof of Concept 26

6.1 The Principle 26

6.2 Getting up a Working System on the Hardware and Running the Proof of
Concept 26

7 Conclusions 28

7.1 Proof of Concept Results 28

7.2 Hardware Design Failures and Lessons Learned 29

7.3 Python Infrastructure Design Failure and Lessons Learned 29

8 Improvements for the Proof of Concept and Potential Future Versions 30

Sources 31

Appendices

Appendix 1. Instructions for Building Kernel 4.4.1 for Olinuxino

Appendix 2. Instructions for Setting Up the Bootloader

Appendix 3. Instructions for Creating a Root File System

Appendix 4. Instructions for Creating a Bootable Linux SD Card

Appendix 5. Address to the git repository containing the development work

Abbreviations

API Application Programming Interface.

ARM Originally Acorn RISC Machine, later Advanced RISC Machine.

AT Attention.

ASIC Application Specific Integrated Circuit.

CPU Central Processing Unit.

DMA Direct Access Memory.

ELF Executable and Linkable Format.

GB Gigabyte.

GPIO General Purpose Input Output.

GSM Originally Groupe Spécial Mobile, or nowadays Global System for Mobile

Communications.

I2C Inter-Integrated Circuit.

IC Integrated Circuit.

LED Light Emitting Diode.

MB Megabyte.

MHz Megahertz.

MMU Memory Management Unit.

OS Operating System.

PC Personal Computer.

PCB Printed Circuit Board.

PCI Peripheral Component Interconnect.

RAM Random-access Memory.

SD Secure Digital.

SIM Subscriber Identity Module.

SMD Surface-Mount Device.

SMS Short Message Service.

UART Universal Asynchronous Receiver Transmitter.

USB Universal Serial Bus.

1

1 Introduction

The GSM (Global System for Mobile Communications) standard was initially developed

by the European Telecommunications Standards Institute (ETSI) in an attempt to find a

common wireless telephone service standard across Europe [1]. In the 1980s, a wide

variety of wireless radio systems was used by a large group of users, utilizing both private

and public networks. Officials and radio manufacturers alike started recognizing the need

for a shared radio spectrum between countries that would be reserved for a public

telephony system. Despite the difficulties in finding such a common standard, such as

the vetoing of each country for a technical standard that would be the easiest for its

industries to manufacture, most suitable for its projected usage and closest to the

systems used in its respective countries, and although the available radio spectrum

aligned all over Europe was small, a consensus was found and the success story of

connecting the whole world started. Since then, the use of mobile phones has become

widespread.

Embedded computers have been around the consumer market for several decades. In

today’s world, the cheaper processors used in these devices are becoming more

powerful, being able to power more advanced operating systems, and Linux, the best-

known and most-used open source operating system is often used on these devices in

some form, due to its ease of customization.

It is not just the processor integrated circuit market that has experienced a significant

evolution in the past years, but also the general semiconductor market, and especially

the wireless communication market. The world is moving towards “Internet of Things” –

more and more products for businesses and everyday consumers are connecting to the

internet. There are several technologies to connect to the internet wirelessly over a radio

channel, and the GSM-based technologies which are applied in cellular phones, offer a

direct connection from anywhere under the coverage of the local GSM cellular operator.

The objective of this final project is to take a low-cost processor and a GSM cellular

modem integrated circuit, and connect them to make a prototype of an open source

based phone. This prototype is running a Linux operating system, and is able to initiate

and receive calls. It is also a modular platform that can, for instance, be extended in

software for transferring data over the GSM cellular network. The goal is to come up with

2

a device that anyone at home can construct easily and develop further, and therefore,

both the hardware and the software running on top are open source.

In this essay, we will go through every step of the procedure, from choosing the right

processor and GSM IC, to building and compiling the Linux system, all the way to

demonstrating how the final software application is running on the processor and

controlling the hardware. Eventually, we will have a simple proof-of-concept of an

embedded Linux system that is able to initiate and receive cellular phone calls.

Additionally, we will review the custom hardware design, and analyze the difficulties that

emerged during the process.

2 Requirements and the Main Components of the Open Source Phone

2.1 Hardware System Architecture

2.1.1 Main CPU and Peripherals

A CPU (central processing unit) is a microprocessor, or more precisely, a machine that

consists of electronical components, that executes the orders that are given to it by the

memory, decodes them and generates the required control signals to perform them [2].

The components that build up a CPU are basic logical gates essentially implemented by

single transistors. Logical gates compare two input signals, and output one signal based

on this comparison. In the case of systems that consist of several logical gates operating

on interdependent signals that must be synchronized, such as the case of a CPU, the

output change is done by the change of the system clock pulse.

Eventually, when putting such input signals in parallel, a bus of signals is created.

The system bus width is an important factor in CPUs, defining the bit width of the CPU,

usually referred to as the “CPU architecture” (e.g. the usual 64 bit CPU architecture

used in Intel PCs) [3]. The orders that are received by the CPU are given in the width of

the CPU bus. In addition, the CPU always uses different input and output values to

operate on. These values and the location they are saved in adhere to the CPU bus

width as well. A smaller bit width requires fewer transistors to implement the logic, and

thus the CPU is more power efficient. However, a smaller bus width also means that

there will be fewer available instructions in the set of CPU commands, less possible

3

operations happening in only a single cycle without any follow-up cycle needed, smaller

values that can be handled in one cycle, a smaller amount of memory that can be

pointed to in a single cycle, and ultimately, a higher amount of CPU instructions and

cycles will be required in order to perform a single action. Smaller buses, if so, are less

efficient in terms of the operations they perform to achieve an end result.

The CPU is often perceived as the main core that performs the basic arithmetic

calculations and logical operations on input values, receives the next operation from the

memory, fetches the input values, and saves the output. However, in order to operate,

the CPU needs peripheral devices around the core. Examples of such peripherals are

basic communication buses, keyboard, screen, sound card etc. Usually, these peripheral

devices refer to the CPU as a memory address, and therefore, the CPU can access them

as it would access any regular memory device. Depending on the CPU architecture,

there could be only the simplest peripherals in the core CPU silicon, and the CPU would

expose several external buses for the purpose of adding different peripherals in a

modular and unconstraint way. Alternatively, the CPU core could have many peripherals

included in the silicon (system on a chip), instead of letting the user build the end system

on the PCB, and requiring less modularity in terms of the buses it exposes [4]. The

regular x86 IBM PC CPU architecture used in personal computers does not directly

expose any peripherals, but a high speed internal bus that is then used to communicate

to an external control chip. This chip could control memory and peripherals, but it also

has wide modularity through the buses it exposes for the user. Some examples of such

buses include the USB bus for on-the-air plug ‘n play of slower user devices (e.g.

keyboard, hard drive, sound card), as well as the PCI bus for extremely fast peripherals

(e.g. graphics card, networking card), with quick access to the RAM memory over DMA

controllers. At the other end are the current ARM processors used for cellphones and

other hand held and low power devices. These usually include everything on the same

silicon with the CPU, from graphics controller and network controller, to even the actual

data modem of the cellphone network.

No matter how many peripherals surround the CPU, it must always be connected to

external interfaces. The logic the user requires from the CPU is not always possible,

efficient or even economic to pack inside the same CPU chip. There is an endless

amount of different use cases, each with its own specific hardware implementation.

Additionally, some of the logic in the chip might require a complicated, higher voltage or

higher current analogical circuit which might even be impossible to implement with the

4

microscopic technology inside a silicon chip. In these cases, in order to power the chip,

the IC exposes signal lines between the chip and the external circuit. For these reasons,

a connection outside the chip through connection pins is often required [5]. During the

phases of design, prototyping and testing, easy access to these pins is crucial, and even

in the production phase it can be important, depending on the production method.

In the case of a mobile phone, one extremely important factor is the amount of power

that the CPU consumes from the portable battery. Thus, the most power saving CPU is

the most desirable one, as long as it answers the user’s additional needs from the

system. If the purpose of the design is not only cellular use, but necessitates calling for

an operating system and internet browsing, the required CPU will be more complicated

and power consuming.

When searching for a specific CPU IC for product development, the important properties

are how much external circuitry is required, and how good is the reference design

available for that IC. Also important is the memory bus, and what constraints does it have

from the PCB. For prototyping, easy soldering of the CPU IC, as well as of the external

RAM memory will be a useful feature.

2.1.2 GSM Modem

A GSM modem is a device that is used for creating and maintaining a wireless connection

to the mobile phone operator’s base network through the usage of certain radio bands

and channels [6]. It handles the user identification and communication to the base

network. The user initiates and receives calls through the modem, and exchanges SMS

(Short Message Service) text messages. The modem can also be used for the transfer

of data by connecting the device to the Internet.

Since the introduction of the Hayes command set (a set of commands that is named after

the Hayes Microcomputer Products Company that defined it, and that is employed by

most modem software), widely referred to as the AT (abbreviation for Attention)

command set, most data modems have exposed the communication to the host CPU

through the use of AT commands over a serial connection [7]. This means that the only

requirement from the host CPU is the ability to use a universal asynchronous receiver-

transmitter (UART) device.

5

The cardinal properties one has to look for in a GSM IC for product development are

similar to those we focus on when looking for a specific CPU IC for the same purpose –

The required external circuitry and the quality of reference design available for the IC

should be primarily considered. Here, too, for the purpose of prototyping, easy soldering

will be a useful feature.

2.1.3 Main Communication Bus

The most important function of a CPU that is used in a phone is to reliably communicate

with the cellular modem on one of its external buses. This means that the architecture of

the communication bus of the cellular modem must match with the buses available on

the CPU, and the CPU must be able to attend to the received data quickly enough, as

well as send responses in the defined time range, without data corruptions and errors on

the communication bus. Asynchronous serial ports have been in use in computers for

decades. The RS-232 (Recommend Standard n.232) based serial port has been widely

applied as the communication bus for the exchange of commands and data since the

early days of digital communications. The RS-232 is a hardware serial port protocol that

uses duplex communication, utilizing an independent signal line per each direction [8].

There is no separate signal line for clock signal, so the latching of the information on the

signal line is based on the clock of each of the devices. The lack of clock means that this

protocol requires a highly accurate clock on the devices using it, and it also means that

the practical speed limit is not very high, which, of course, was not a problem at the time

of introduction. The speed of the data, the baud rate, is chosen beforehand and same

rate is used on both devices. It is also possible to automatically detect the baud rate, but

this can obviously be done on one side only – the other side will always need to have a

predefined baud rate to allow baud rate detection. Although the most popular

asynchronous serial connection is based on the RS-232 standard, there are other serial

communication standards in the industry. When referring to all of these different

asynchronous standards, the term UART is used.

The protocol that is used by data modems for exchange of data and control is called the

AT command set. Each command would start with an AT-prefix. Nowadays, the AT

command set is a standard used by all data modems. It was made popular by the Hayes

modem manufacturing company in the 1980s. Up until then, every manufacturer had its

own set of commands to control the data modem. The command set could vary even

6

between different modems of the same manufacturer. The wide adoption of the AT

protocol happened accidentally, when Hayes was rushed to publish their 2400 baud

modem and to save time, kept the command set identical to their previous 1200 baud

model. Users that wanted to update their modems were able to do that without changing

their software. Other manufacturers started publishing modems mimicking the Hayes AT

command set, turning it into an industry standard [9].

2.2 Software System Architecture

2.2.1 Operating System

An operating system is a software running on top of a CPU, and controlling its usage and

the usage of other peripherals on the host device. The operating system controls the

hardware of the host device, and exposes an API for the end application to use for

implementing a certain functionality. With some operating systems, such as Linux, this

API can be supported in a wide range of CPU architectures, meaning that the same

application code can be easily compiled and run across physically different CPUs. The

operating system is in charge of scheduling different tasks, and in certain cases also of

the concurrent execution of tasks. In many advanced CPUs, it also separates the

application space into kernel space and user space. This practically means dividing the

running software into trusted and protected spaces, offering better runtime protection.

The operating system code and the drivers controlling the underlying hardware usually

have access to the trusted space, while end user applications are denied access to

certain spaces. This protects user applications from performing malicious, such as

accessing the memory of another running application, or accessing hardware while

someone else is using it, intentionally or accidentally.

2.2.2 Linux Operating System

The kernel is the Linux operating system core. It provides a static, unchangeable user

space API for any user space applications to work across any different Linux kernel

versions. The kernel also has internal APIs for trusted kernel application space programs

(i.e. drivers). The kernel’s job is to schedule different tasks, and to access or provide

means to operate the underlying hardware through registerable drivers.

7

Usually, the Linux kernel is distributed in a binary form along with the root filesystem and

user and system applications. A released version of the kernel is called a distribution

[10].

The Linux operating system is a perfect fit for mobile phones, due to its abundance of

capabilities, and since it is totally open-source. Linux offers many modules for hardware

control, higher level logic and user space applications. If the CPU architecture has Kernel

support, the mobile phone developer is mainly required to configure which GPIOs are in

use. If the CPU has many copies of a peripheral such as UART, the developer must

configure which peripheral instance is in use. These configurations are based on the

system design and connections on the PCB.

2.2.3 Operating System Drivers

2.2.4 Hardware Control

In Linux there are several hardware control modules. Individual drivers can be registered

to these modules in order for the operating system to be aware hardware’s existence.

User application can then access the kernel API to control the hardware.

The simplest way to access hardware from the user space is to expose a character

driver, i.e. a file handle that exists as a regular file system path. This way, any user space

application that has permissions to access that file in the file system can read and write

the file, and the actual driver in the kernel that is registered under this file will take the

written data, and put back data that the user can read. The only thing the user application

must know is the type of data the driver handle exchanges, i.e. what is the protocol the

driver expects the data to be in.

In Linux, another way to access the hardware is by using block devices. Block devices

are good for a fast and constant transfer of data between the user space and the device

driver. As the name indicates, block drivers allow transferring bulks of data between the

driver and the user [11]. For the integration of this project’s GSM-specific hardware, only

character based drivers will be used.

8

In this project, the controlled hardware are the cellular modem, the keyboard and the

screen. The cellular modem works over the UART bus, which has a character device in

Linux. The character device must be opened, and the specific UART bus connection

attributes of the port, such as the baud rate, must be set. This allows to read from the

character device, and write to it to operate the serial data connection. In the proof of

concept, the screen and keyboard are handled as single GPIOs; the screen is a single

LED, and the keyboard is a single button. Accessing a GPIO hardware is simple. Linux

supports GPIO control through the sysfs filesystem used to expose different hardware

through file handles. It is possible not only to set and read the value of the GPIO, but

also set other GPIO specific parameters, such as the direction and the edge of the

interrupt triggering. Once these parameters have been set up per GPIO, there is a single

file handle for each GPIO to access its value. Reading the file handle of the button returns

the button’s state - closed or open, depending on whether we placed the button between

the input pin and the voltage reference, or between the ground and the input pin. Writing

to the file handle of the LED simply controls whether the LED is on or off. If this prototype

is further developed in the future, the keyboard and screen could be connected over a

slow speed I²C bus. Possibly, both devices could even share the same slave I²C device.

The Linux kernel supports operating the physical I²C hardware, so the I²C device driver

developer should register the driver to use the Kernel’s I²C bus.

2.3 The Effect of Open Source on Device Requirements

The decision of going for an open source solution means facing a wide selection of

predeveloped open-source resources. The principle of open source is allowing anyone

to freely access any part of the project’s design, and often also making it legally possible

for the public to use the design and edit it limitlessly. This also includes using a new

design on top of the base open-source code for profit purposes [12]. In this project, the

meaning of open source is designing hardware that is freely available for anyone who

might be interested to further develop. It also means using an existing open source

software, as well as developing some additional open source software for the benefit of

the public.

To allow embedded developing, software (usually an operating system of some sort)

must run on the hardware. It could be a simple loop process that is a hard platform to

develop on for complicated runtime requirements and difficult to maintain in the long run,

9

or a complex operating system that will have a high initial development cost, but very

flexible and usually future-proof support for user needs. The main benefit of choosing an

open source platform is that it removes the need for most of the development around an

operating system for the device. Since Linux supports a wide range of embedded CPUs,

it is highly customizable, and new support and updates are very easy to handle.

This, however, comes at a price. The CPU and main memory requirements for running

Linux are particularly high. In order to run a regular Linux system in a comfortable

fashion, the CPU is generally required to have an MMU, and the CPU data bus

architecture should be at least 32 bit wide. Linux could basically run even on an 8-bit

CPU, but it would do so very slowly, as it would have to handle more than 8 bit numbers

and addresses most of the time. In addition, more time will be required to combine

several CPU operations for those larger numbers, due to the need to store temporary

results in the CPU registers.

The MMU requirement from the CPU is not as critical, and the Linux kernel even has a

build option that allows running Linux without an MMU support in the hardware. This,

however, will result in a low range of usable applications on the operating system. Both

of the above mentioned features make the Linux-compatible CPU hardware more

expensive to produce.

When looking for a solution that is easy to produce in small numbers and with small-

scale tools, it is also important to pay attention to the packaging of the main ICs (in this

case, the CPU, RAM and the cellular modem), and to their requirements for external

circuitry. For this project, the ICs must be available in a packaging type that can be hand-

soldered. In addition, the required external circuit should be reviewed carefully in the IC

datasheet. If the IC of the modem can be hand soldered, but requires an external line

encoder IC that cannot, it will not answer the requirements.

10

3 How to Work with Hardware Development Kits

3.1 Using a Hardware Development Kit to Boost Design

Once the main hardware requirements have been determined, in most cases it is

preferred to start the software work on real hardware. If the product is new, the

developing team is small and the CPU is available, starting the work on a hardware

development kit or on a hardware reference design is often the most efficient choice.

Oftentimes, especially with a CPU, the silicon manufacturer will publish its reference

design and the appropriate drivers around it, as well as software examples. When using

reference design, any support needed to bring up and maintain a custom own hardware

design will be much easier to acquire. This might also be the only way for small and mid-

sized customers to obtain support from the chip manufacturer if any issues arise.

A hardware development kit is developed by the chip manufacturer or by a third party, in

order to assist in the development process. There are a few purposes for a hardware

development kit. In almost all cases any integrated circuit requires at least some level of

support from an outside circuit. The external circuit could be anything from a few resistors

connected to the chip using a prototyping breadboard, to a very complicated external

circuit requiring dozens of external components and strict PCB tracing requirements. A

hardware development kit should answer the minimum requirement for an external circuit

to run the IC, with all the components neatly placed on a PCB and tested to work. The

simplest hardware development kits also expose the pins of the IC for the user in a more

easily accessible way. The more advanced hardware development kits offer additional

external circuitry to allow the users a wider range of components that they might

implement in their final product.

The most complete form of a hardware development kit are the hardware reference

designs. A reference design is a full design created by the IC manufacturer. It can be

considered a fully designed product, that in the case of a CPU reference design, even

comes with a wide variety of compatible software. This way, the developers can copy

the reference design into their own design, performing only minor changes where

needed. This also benefits the silicon manufacturers, as they can concentrate on the IC

product support, and even be assisted by the community to maintain that support.

11

3.2 Choosing the Hardware Development Kits Based on Requirements

3.2.1 Main CPU Board

In the requirements phase we have identified the need for a CPU that is able to run an

embedded Linux system. Olimex Olinuxino was selected for this project. It is a system

that is based on the Freescale i.MX23 ARM processor line. The CPU has a nominal clock

speed of 454 MHz, and the available RAM memory is 64MB. Olimex is manufacturing

and selling hardware development kits for a variety of different ICs and CPUs, offering

products that ease the prototyping of a single IC, or a whole hardware system board.

Olimex offers the hardware schematics for most of their development boards, as well as

at least simple software support to bring up the product in question, making it easy to

learn and develop their kits further to an end product. The original Olinuxino line with the

i.MX23 CPU was specifically planned to for simple use by home electronics enthusiasts,

as it is hand-solderable, its components are highly available, and it consist of a simple

two-layer PCB.

Figure 1 - Freescale multimedia iMX23 based Olinuxino Micro development board assembled and
manufactured by Olimex.

12

3.2.2 GSM Board

The GSM modem for this project is required to possess the capability to make phone

calls, and a basic data transferring functionality.

Figure 2 - A hardware development kit based on the SIM900 GSM chipset.

Ultimately, the SIM900 IC was selected for the project. It is widely available for a low

price, it is fairly easy to hand-solder, and it is commonly used, especially in hobbyist

projects. It uses a simple AT command interface over a serial port, and it is well

documented. It also includes the capabilities of a data modem providing a future proof

design for the product. The board has a socket that fits mini-sized SIM cards.

4 Hardware Design

4.1 Hardware System Design

The complete system design consists of choosing the ICs that match the product

requirements, and plotting them on a circuit board with their required external circuitry,

13

as well as the electrical connections between the ICs and other components. It also

consists of verifying that the mechanical dimensions of the PCB match, and that the

placed components will physically fit in the casing. In addition, it is essential to make sure

that the signal integrity is good, and that the noise ratio is low, especially for high speed

connections such as external RAM memory. The system design must also consider the

temperature challenges.

For this project, I used an open source electronic design automation suite called KiCad.

It includes the complete set of tools needed for every step of the design. It enables the

user to design the logical connections between components, to place the components

on the PCB, and to convert the final printing to a file that can be sent to the PCB

manufacturer for printing.

Olimex designed the Olinuxino as a hobbyist-friendly hardware project, and published

the hardware design (logic design) openly in their github repository online. While

designing the hardware for this project, I followed the Olimex example from their

Olinuxino micro product line. This enabled me to get a better idea of how to efficiently

design the PCB layout of the components.

Figure 3 - Olimex publishes the logic connections of the Olinuxino PCB.

14

4.2 Main Circuit Board Logic Design

In the logic design stage the electronical circuit is developed. The logic design describes

how different components are interconnected using isolated electrically conductive

tracks. It also defines how many components there are in the design.

From the logic design point of view, each component has the following required

attributes:

• Each component has a number of pins connecting it to the rest of the circuit.

• Each pin is defined to be of a certain electrical type, such as input, output,

bidirectional, power input or power output.

• Each component has a reference number, that will be incremented for any other

component added into the design. This would be the component’s name, and in

case of analogical components such as resistors, the value of the component will

make it easier for the eventual board assembler and the end user to work with

the board. As a part of the component creation, the component will also get a

symbol for the logic design.

Figure 4 - SIM900 chipset in KiCAD part editor.

15

Figure 5 - A part of the logic design of the GSM phone PCB.

After the components were obtained (either created by the user, or imported from ready-

made libraries), they can be added to the logic design. At this stage, the electrical

connections between the components must be plotted by placing wires between them.

Depending on the electrical type of the pins in the design, all of the pins must be

connected to another component. On a per-component basis, a pin can also be left

unconnected in the end design.

In the final stage of the logic

design, it is required to run the

Electrical Rules Check, to make

sure all the pins are connected,

and that the connections are

correct (e.g. no regular input

pins connected to power output

wires). Running the error

correction is a useful and easy

way to reduce redesign and

reprinting of a PCB. At the end

of the process, the logic design will be exported as a netlist, a list of the components

Figure 6 - Electrical rules check is an important process in the
logic design to reduce the amount of faulty PCBs.

16

which will be used as an input for the layout design, and can be also used as a Bill of

Materials for purchase of the project’s required components.

4.3 Main Circuit Board Layout Design

While the logic design defines connections between components and their pins, the

layout design dictates how and where the components are placed on the board, and

especially how the connections between components are drawn in the actual board.

Figure 7 – The GSM board PCB layout.

Once the required size of the physical board is reduced to a certain level, and the circuitry

and amount of components are complex enough, traces and components must be placed

on several layers. One layer is rarely sufficient, unless the circuit is very simple, as often

traces cannot be run around other traces and components, but must jump to the other

side of the circuit board. The easiest solution is to use the board’s other side as the

second layer. It is also possible to get more layers by stacking up boards, having several

internal layers with invisible traces running around. To connect to another layer, one

must drill holes called “vias”. These holes function as tunnels that channel the traces to

another layer of the board [13].

17

4.4 Circuit Board Printing

There are several circuit board printing methods. In boards that are entirely covered by

a metal layer, usually copper, the connections of component pins and the electrical

connections between components are made by etching lines into the metal layer, to

break metal surfaces from each other on the board.

Another method is to make a mask layer, essentially a drawing of the final circuit,

containing the drawn soldering points and the electrically conductive traces, and etching

the circuit with the assistance of chemicals. In this method, the circuit is printed on a

special paper that has a substance that protects the metal coper surface from the etching

chemical. After the printed circuit is put on the copper metal board, the copper covered

board is sank into a chemical etching liquid that will etch off all the copper except the

parts that are protected by the mask that was transferred from the printed circuit. The

same effect can also be reached with a special pen, by drawing the surface on the

copper. Eventually, the circuit board is mostly a plastic platform that has a metal surface

in specific places to allow connecting to components, and running the traces between

those metal pads [14].

4.5 Circuit Board Assembly

Once the circuit board is printed, it has all the electrical connections on it, as well as the

designated places or pads allowing connection to components and to external circuits.

The next stage is to assemble all the components onto the board. The components must

have an electrical connection with their respective pads on the circuit board. To achieve

this, soldering should be performed. The assembler will heat up both the pad on the

circuit board and the pin of the component, and apply the joining, gluing substance that

will melt into both the pin and the pad, keeping the component attached to the board

through its legs.

There are two types of connections of components to the board – The first type is the

SMD (surface-mount device) method, in which the component is mounted directly onto

the pad of the board. The second type is the through-hole connection, in which a hole is

drilled in the circuit board, and the component is then soldered onto the opposing side of

it.

18

4.6 External Keyboard

The keyboard of the system is placed on a separate PCB that is connected to the main

PCB. The keyboard is the interface that enables the user to control the device. In the

proof of concept device, there is a single button that is used as the keyboard. When

pressed, it either answers an incoming call, or initiates an outgoing call to a pre-saved

phone number.

4.7 External Screen

The screen is connected to the main PCB with an internal cable. The screen outputs

information for user about the current state of the device. In the proof of concept device,

the screen is a single LED. The LED is lit when the device is ready to make and receive

a call, and blinking when there is an incoming call.

5 Software Design

5.1 Operating System Required Parts

Before the CPU can start running the operating system code, it must first get to a stable

state, where all the core CPU hardware and peripherals have gone through an

initialization stage. Once this is accomplished, the CPU must also know where the start

of the operating system code resides. This is the job of the bootloader. When the power

of the device is turned on, the CPU will first start reading the program code from a

hardcoded, previously defined address. The bootloader will handle the loading of the

basic peripherals, and jumping to the beginning of the kernel code, which will also have

its own boot phase. In this phase, the bootloader will detect and initialize more generic

peripherals, such as full hard drive capabilities, bringing up more advanced graphical

modes of the display adapter, and detecting and configuring the network adapters and

other hardware elements present in the system. This will finally lead into running a set of

system and user binaries that run in the user space of the operating system, as defined

in the boot configuration, and the operating system will reach the final operating state.

19

In Linux, the operating system is divided into two parts – the kernel and the functions

around it. The kernel is in charge of accessing the hardware, protecting it from erroneous

usage as much as possible, and scheduling tasks that the user prompts. The kernel in

itself, however, does not provide the desired user functionality. Therefore, a basic set of

applications is required. Such set can be further divided into system applications and

user applications. The system applications implement logic that require a privileged

mode of execution in the operating system, such as direct configuration of the hardware.

The user applications execute user related tasks, such as interfacing with other

processes, or using the hardware through system provided libraries, such as drawing

something on the screen, or sending a packet to the network.

5.2 Linux Kernel Build Process

The kernel is basically the core of the operating system. Similarly to a car engine, it has

different programs that use the underlying hardware, such as CPU, memory, hard drive,

and graphics cards, making sure that the hardware and resources are used in an

organized manner. It then exports interfaces for the Linux system user to operate the

hardware and the system, resulting in a generalized way for applications to access the

operating system.

Most of the distributions publish the kernel as a prebuilt binary for the designated system.

In the case of an embedded computer with a different CPU architecture, many times it is

the CPU manufacturer that takes care of publishing the kernel binary. It is required,

however, to build the kernel independently if there are any changes that would need to

be performed, such as updating or fixing one of the drivers or modules that come with

the kernel, or writing a new module to be loaded with the kernel. It is possible, for

instance, to implement a driver module that handles the operation of the phone’s screen

hardware.

To be able to build the kernel, a compiler is, of course, required. Unless one has access

and patience to compile on the actual CPU that the kernel will eventually run on, a cross

compiler should be obtained. This compiler will not compile code into the CPU

architecture of the computer that the compiler is run on, but actually for a different CPU.

Thus, one can use a regular PC to compile code, for example, compiling code for ARM.

20

After the compiler is set, the next step is to download the kernel source code. The founder

of Linux, Linus Torvalds, has developed a source control system called git. This system

is used to control different versions of the Linux kernel source code. Git enables the user

to get the latest version of the kernel source code, possibly with the latest fixes, as well

as checking out an older version of the kernel source code that might be more stable on

a specific system.

Figure 8 - Git version control system is used to track and develop Linux kernel source code.

Before starting the compilation of the Linux kernel, the appropriate kernel module for

compilation should be selected out of the great amount of available kernel modules. Each

21

computer system has its own default configuration that defines what is built and what is

not, but the user can further edit the list of modules. This easiest way to do that is using

an interactive command line utility. Each module can have one of 3 states for the

compilation. First of all, the user can decide that the module will not be compiled nor

included in the kernel at all. If the user chooses to build a specific module, it can also be

determined whether this module is built statically into the kernel, or will it be built as a

loadable kernel module. For instance, one of the hardware buses on the board can be

utilized for a network chip with Wi-Fi capabilities, and thus, it is important to verify that

the driver module is compiled during the kernel build.

As a part of the kernel build, it is also required to setup the bootloader that handles the

initial boot of the system into the operating system. A usual way is to use U-boot, which

is an open source, widely supported software with several features. In this case,

Freescale also offers a simple bootloader called Bootlet, which is very CPU specific, but

takes care of the necessary steps to boot into the Linux kernel. The Bootlet is a simple

code running on the CPU, bringing the CPU and its peripherals to a state that the

operating system image can be loaded.

5.3 Operating System Image Generation

Distributions are publishing a solution with kernel and all the system and user

applications as a package of components predefined by the distributer. Most of the time,

the user can further customize the system using a package managing system, that

allows the user to download and install new features in an organized manner. In an

embedded system, this is not always feasible, since not all embedded systems have a

networking interface. In addition, it could be difficult to access and use the system

remotely in order to install new packages. It is also more convenient for the user of that

specific embedded system to get a customized version of a distribution, that can be used

without any further package managing or software updates. Thus, it is important to have

tools to customize a distribution. In this project, I was mostly interested in the ability to

run Python scripts for performing a part of the hardware control over them.

Special tools are needed in order to be able to make a distribution that will be used on a

portable ARM system that does not have internet access. Such tools exist for Linux, and

there are a few steps required to obtain a fully functioning system image. First, the user

22

must change the operating system root directory in a local shell session to the root

directory of the target device, such as the locally connected media that will be used on

the target device. Second, an emulation software is needed in order to emulate the

hardware architecture on the target system. This is required for running some

applications for image generation, such as basic shell commands. After the emulator is

in place, we can use the applications of the target device architecture for downloading

and generating the root file system.

5.4 The Phone Application

Every device with a CPU has a main application that is started in the beginning of the

CPU power on. After initializing and bringing up the hardware to an operating state, the

main application will start executing the application-specific code. Traditionally in

embedded application-specific computers, the main application is a single process in the

whole system, being executed line after line, containing the application specific code. As

embedded CPUs are getting more powerful, running an operating system on the CPU to

control the hardware and to schedule the tasks is becoming a popular method. This way,

the application or applications can be written as executable programs that are run and

scheduled by the operating system, and can be easily run on different hardware

platforms, providing that the operating system remains the same.

Several operating systems also have support of compilers for other languages than the

operating system’s native language. In this project, a Python application is run over the

shell of an embedded Linux. Python is a script-like, object-oriented programming

language that is quite easy and intuitive to use. It has a diverse selection of standard

libraries coming in the default installation, providing the developer with many usable

features.

The Python application used in this project is written in a single threaded, poll-based

architecture. After initializing and setting up the needed phone hardware, the main

application flow will run in a loop. In the beginning of the loop, the keyboard is polled to

determine whether there is any user action to take place. If a user action exists, the

action is read and then passed on to the action parser that will take the required action

and update the screen. The action could be, for instance, initiating a call based on the

user pressing the button. In this proof of concept stage, this is the only user action

23

supported. Next, the serial port is polled for any commands from the GSM modem.

Incoming commands are passed on to the AT commands parser module, which will then,

at the end of the loop, either result in an action for updating the screen, or for generation

of a command response to the modem.

The Python application is divided into different modules. The main module is responsible

for the initialization and calling of other modules, as well as the main application flow and

the main loop.

Figure 9 - The main Python process handles the main logic.

The AT commands parser module parses AT command strings, and turns them into

actions and vice-versa. The parsing and generation of the AT commands of the modem

24

are easily written in Python, which has good and clear standard library functions for string

manipulation.

Figure 10 - The AT command parser translates string messages from the modem into actions inside
the Python application.

The phone project has separate modules for both the screen and the keyboard. These

modules handle the hardware interfaces of those devices, and exposing API towards the

main module to use for user interface.

The serial module is a low level bus driver that communicates with the hardware serial

port through the open-source Pyserial library. It also takes care of opening the serial port

handle and configuring it at the initialization stage.

25

Figure 11 - The serial module of the application takes care of the communication with the serial
hardware.

The main Python process is configured to be run at Linux startup by the initialization

configuration. This way, when the power is applied to the device after the initial boot

stage of the operating system, the Python application of the main process is run in the

background of the operating system. This can be confirmed by observing the LED of the

device when it powers up.

26

6 Performing a Simple Proof of Concept

6.1 The Principle

A proof of concept is the practice of conducting a small-scale test to demonstrate that a

certain idea works. The conductor of the proof of concept might have planned a very

complex system that is rich with features and robust and stable enough in any

environment. However, as a proof of concept, the purpose is to simply show that the

main idea or feature of the system or product works, even if not even nearly in the final

form. In this project, I have set out a target of building an open source phone running a

Linux operating system. The phone’s planned capability was to receive and start calls. I

have chosen the target hardware (CPU and GSM chipsets). The proof of concept was

aimed to demonstrate an incoming and an outgoing call with the GSM development kit.

The CPU development kit running the Linux operating system, initiated a call through the

use of the serial port. The serial port was operated via user space device handle from

the Python application. The incoming call into the device from another regular GSM

phone, was answered on the proof of concept device by the press of a button, similarly

operating the Python application.

6.2 Getting up a Working System on the Hardware and Running the Proof of
Concept

In the proof of concept, the device is not a finished product, but rather a prototype that

has functionally the same hardware as the planned finished product. In this project, I am

using two separate boards, one for the CPU and its close peripherals, and a second

board for the GSM connectivity. The boards are connected together over a UART bus

for serial connection, and the command of the GSM modem is done from the CPU. Both

boards have their own 5-volt power supplies, and both are placed in a transparent plastic

box. The cover of the box acts as the user interface panel that consists of a button and

a LED.

27

Figure 12 - The proof of concept prototype enclosure, with GSM hardware development kit board (on
top), and the Olinuxino main CPU board below it, with the debug serial port coming out from the side
of the prototype enclosure.

After plugging in both power supplies, the board containing the CPU will boot on its own,

and the GSM board requires a push of a button on the development board in order to

continue booting the GSM modem. After both devices have fully powered up, the CPU

board has initiated a successful communication with the GSM board when the LED is

constantly on. At this point, when pressing the button on the user panel, a call is initiated

to a pre-determined phone number. If instead, the LED is blinking, it means that there is

an incoming call, which can be answered by the press of the button.

28

Figure 13 - The final proof of concept setup. On the left side the microphone and headphones for
verifying the GSM call. The user panel can be seen on to, with the button to answer and initiate a
call, and the LED as an indicator for user feedback.

The GSM development board has two separate connectors for audio devices, one for a

microphone and one for headphones. These are directly connected to an audio analog-

to-digital converter on the GSM modem. Using the microphone and headphones, it is

possible to verify that the phone call is actually initiated successfully.

7 Conclusions

7.1 Proof of Concept Results

The proof of concept was able to achieve the confidence that this idea works. During the

execution of the proof of concept, it was shown to be possible to initiate a call to the pre-

determined phone number promptly after pressing the button on the user panel, with the

LED indicating that the call is underway. It was also proved that an incoming call is being

notified by lighting the LED, and the call could be answered by the press of the button

on the front panel.

29

However, a limitation was discovered in the current form of the Python application, that

between any incoming or outgoing call, the devices must be reset.

7.2 Hardware Design Failures and Lessons Learned

The PCB for the end device was designed and sent to “Seeedstudio”, the PCB printing

company, for fabrication. Following their review of the project design, they responded

that it is not possible to manufacture the PCB in their facility. The reason for this was that

the distance between traces was too small for fabrication.

When starting the PCB layout design, it is possible to change the set of rules for the

layout of traces, pads and nets. The physical width of the traces on the board, as well as

their distance between them can be defined in the design rules. The meaning of these

rules is that it is not physically possible to plot the traces and other physical PCB layout

elements too close to other physical elements, as the rules define. Each manufacturer

has its own requirements for the minimum and maximum dimensions for each rule,

depending on the capabilities of its manufacturing equipment. In this project, these

requirements were overlooked in favor of getting a smaller PCB area size, and thus, an

error was made that resulted in a non-printable PCB.

7.3 Python Infrastructure Design Failure and Lessons Learned

Although the Python application is properly communicating with the GSM chipset, and

makes it possible to start and receive calls through the user interface, in retrospective,

not enough time was used for the overall planning of the Python application and

interaction between its modules. In the first place, it would have been important to fully

review current and future requirements, and based on that, to make a clear model that

includes interactions between modules and the attributes of each module. The current

implementation was made without a proper planned design before starting to write the

code, but instead with some basic features in mind.

The current Python application works for both initiating a call to pre-determined number,

as well as answering an incoming call. This is sufficient in order to complete the proof of

concept. However, after each time a phone action is finished, the user must reset both

30

devices. This happens because the Python application architecture was not well planned

before starting to write the code. The reason is that the abstraction of the states of the

modem in the Python application are not handled well, and the application is not stable

because AT commands are being interpreted while ignoring the current state of the

modem.

8 Improvements for the Proof of Concept and Potential Future Versions

The proof of concept prototype worked, and it was possible to make phone calls through

the device, as well as answer incoming calls. However, there are several missing

features that are required for the next version. In the current version, there is only a single

button that initiates a call to the preprogrammed phone number, and the same button is

used to answer calls as well. The device needs a better keypad, one that has at least

one button per each of the ten numbers. This way, the user could input the number to

call. In addition, some action buttons need to be added, such as a button for initiating

and answering a call, and a button for ending or rejecting a call.

In a similar way, the screen requires an update as well. The screen must be able to show

at least 10 to 15 characters, for the user to be able to view the outgoing and incoming

phone number.

In the proof of concept setup, the prototype boards required external power supplies. In

the next version, there should be a battery charging circuit and a battery to provide power

to the device.

The current Python architecture is mostly designed for a simple proof of concept

scenario, where either a call is being made or received, with the only user interface being

a single button and a single LED. Whenever a new requirement comes up, changes are

required system-wide in all the modules, and some significant rewriting is needed, so the

Python architecture should be planned well in a flow chart before continuing to the next

stage of the proof of concept, or the product itself.

31

Sources

1. Stasiak, Maciej. Modelling and Dimensioning of Mobile Networks : from GSM to
LTE. Chichester, West Sussex, U.K: Wiley, 2011.

2. Godse, A.P. Microprocessor, Microcontroller & Applications. Technical

Publications, Pune, 2008.

3. Heathcote, P. M. A' Level Computing. Ipswich: Payne-Gallway Publishers, 2000.

4. Clements, Alan. Principles of Computer Hardware. Oxford New York: Oxford

University Press, 2006.

5. Norton, Peter, and Scott H. Clark. Peter Norton's New Inside the PC.

Indianapolis, Ind: Sams, 2002.

6. Unnikrishnan, Srija, Sunil Surve, and Deepak Bhoir. Advances in Computing,

Communication, and Control: Third International Conference, ICAC3 2013,

Mumbai, India, January 18-19, 2013. Proceedings. Berlin New York: Springer,

2013.

7. Brooks, Charles J. A+ : Training Guide. Indianapolis, Ind: Que Certification, 2004.

8. Bai, Ying. The Windows Serial Port Programming Handbook. Florida: CRC

Press, 2004.

9. Cowley, John. Communications and networking : an introduction. New York

London: Springer, 2007.

10. Ciccarelli, Patrick. Networking Basics. New York: Wiley, 2013.

11. Simmonds, Chris. Mastering Embedded Linux Programming: Unleash the Full

Potential of Embedded Linux. Birmingham, UK: Packt Publishing, 2017.

12. Feller, Joseph. Perspectives on Free and Open Source Software. Cambridge,

Mass: MIT Press, 2005.

32

13. Manko, Howard H. Soldering Handbook for Printed Circuits and Surface

Mounting. New York: Van Nostrand Reinhold, 1995.

14. Robertson, Christopher T. Printed Circuit Board Designer's Reference: Basics.

Upper Saddle River, NJ: Prentice Hall Professional Technical Reference, 2004.

Appendix 1

 1 (2)

Instructions for Building Kernel 4.4.1 for Olinuxino

Download cross compiler package. Unpack package, and move to a place under a

system PATH:

wget https://launchpad.net/gcc-arm-embedded/5.0/5-2015-q4-major/+download/gcc-arm-none-

eabi-5_2-2015q4-20151219-linux.tar.bz2

tar jxf gcc-arm-none-eabi-5_2-2015q4-20151219-linux.tar.bz2

sudo cp -r gcc-arm-none-eabi-5_2-2015q4/* /usr/local/

Make sure the path /usr/local/bin exists in the system path environment variable:

printenv PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

Next step is to git clone the source code of the kernel that we will want to compile later:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

And checkout the corresponding kernel version. We should be good with the latest

“stable” – let’s not stay with a release candidate version but rather checkout the last

stable tag:

git checkout v4.4.1

For compiling the Linux kernel, we will need to decide what of the massive amount of

kernel modules we will want to compile into our kernel. First we will make the base

configuration file that will be used to parse what will be compiled and how:

make ARCH=arm CROSS_COMPILE=arm-none-eabi- mxs_defconfig

Appendix 1

 2 (2)

We can also further run an interactive shell application if we are not satisfied with the

defaults and to include or exclude additional modules:

make ARCH=arm CROSS_COMPILE=arm-none-eabi- menuconfig

There is not much that need customizing in the kernel building process. However there

is an important step related to image creation. As a part of the bootloader integration with

the kernel, the following options under “Boot options” menu need to be included as a part

of the kernel:

[*] Use appended device tree blob to zImage (EXPERIMENTAL)

[*] Supplement the appended DTB with traditional ATAG information

And below that there is field called “Default kernel command string”, where the following

line must be entered:

console=ttyAMA0,115200 root=/dev/mmcblk0p2 rw rootwait

After that I quit the tool, and continued onto compiling the kernel:

make ARCH=arm CROSS_COMPILE=arm-none-eabi- zImage modules

Now the compilation takes some time, at least some minutes. In the end I would get

something like this:

Kernel: arch/arm/boot/zImage is ready

Next thing we need to do is to make a device tree blob .dbt file. This file is a system

specific file that maps the kind of “static”, non-discoverable hardware for kernel use:

make ARCH=arm CROSS_COMPILE=arm-none-eabi- imx23-olinuxino.dtb

One last thing to do for the kernel is to merge the kernel and the .dtb file together:

cat arch/arm/boot/zImage arch/arm/boot/dts/imx23-olinuxino.dtb > arch/arm/boot/zImage_dtb

Appendix 2

 1 (2)

Instructions for Setting Up the Bootloader

A usual way is to use u-boot, which is an open source, widely supported software with

several features. Freescale also offers a simple bootloader called bootlet, which is very

CPU specific but takes care of the required to boot into the Linux kernel. The bootlet is

simple code running on the CPU that takes care of getting the CPU and it’s peripherals

to a state that the OS image can be loaded. We will need to compile the bootlet against

our kernel headers. We will also need elftosb2 (elf to bootstream) tool, which we will

download as a part of the private repository.

We will start by using git to check out a private repository (by a Freescale employee) that

has a useful patch for the bootlet, as well as the tool that converts from ELF to

bootstream.

git clone https://github.com/koliqi/imx23-olinuxino

Next, let’s go to the directory of elftosb-0.3, and make the elftosb2 tool appear under the

path that the compiler would be looking it for:

sudo ln -s `pwd`/elftosb2 /usr/sbin/

You can make sure that the compiler sees it correctly by doing:

which elftosb2

/usr/sbin/elftosb2

Next step is to take the source code for the bootlets and compile against the kernel

headers. A specific version of the source code is provided as an archive as a part of the

private repository. We will need to unarchive it, and apply a board specific patch:

tar xvzf imx-bootlets-src-10.05.02.tar.gz

Appendix 2

 2 (2)

cd imx-bootlets-src-10.05.02/

patch -p1 < ../imx23_olinuxino_bootlets.patch

Next thing is that we will need to have the zImage in the directory with the source code.

We will make a link to our file that we generated above after the compilation of the kernel

itself:

ln -s ../../kernel/linux-stable/arch/arm/boot/zImage_dtb ./zImage

Now we can finally start the compilation:

make CROSS_COMPILE=arm-none-eabi- clean

make CROSS_COMPILE=arm-none-eabi-

Finally the build process was outputting some prints about boot section, and the final line

being:

To install bootstream onto SD/MMC card, type: sudo dd if=sd_mmc_bootstream.raw

of=/dev/sdXY where X is the correct letter for your sd or mmc device (to check, do a ls /dev/sd*)

and Y is the partition number for the bootstream

The final output file for me is around 4MB in size (depends on how many kernel modules

were compiled into the kernel).

Appendix 3

 1 (4)

Instructions for Creating a Root File System

We will start by creating a local directory that we will use to temporarily hold the target

rootfs. We will download the base Debian system into it, using a tool called debootstrap.

It will download the base system packages for a target system inside another computer:

sudo debootstrap --verbose --arch armel --variant=minbase --foreign jessie

/home/karrister/imx23_project/sd-image/rootfs/

This command actually installs a basic Debian system on the specified directory, inside

a running system. This way we will be able to make the basic Linux system for our device.

After some time of downloading packages, the debootstrap is finished. Next we can

change the root directory of the host system locally on one shell window to the directory

of the mount on the SD card. The point of this is to move working from a different root,

with different system binaries as well. Thus, we will need an emulator of the target system

to be able to change root to one with binaries from different CPU architecture. We can

use emulator called QEMU. We will need to download QEMU and architecture specific

binaries to emulate the imx233 CPU environment, including the base qemu packet, as

well as the binfmt support which includes a script to register interpreters with the binfmt

kernel module (which needs to be included in the initial kernel build) for making the arm

executables work with QEMU:

sudo apt-get install qemu-user-static

sudo apt-get install binfmt-support

After we have the support for interpretor registration for binfmt, we’ll need load the binfmt

kernel module in the host system to be able to proceed with the chroot with the “foreign”

binaries. We will also need to copy a QEMU binary into the rootfs:

sudo modprobe binfmt_misc

sudo cp /usr/bin/qemu-arm-static /home/karrister/imx23_project/sd-image/rootfs/usr/bin

This is done since the binfmt support package has by default registered the emulator

binary to be under /usr/bin/qemu-arm-static for binaries of arm type. The command line

Appendix 3

 2 (4)

option “update-binfmts --display” can be used to find the path system is looking for this

binary. Next we will need to mount virtual filesystem devpts and proc, to make sure we

will have no compatibility issues of running binaries that would need to access these

device nodes:

sudo mkdir /home/karrister/imx23_project/sd-image/rootfs/dev/pts

sudo mount -t devpts devpts /home/karrister/imx23_project/sd-image/rootfs/dev/pts

sudo mount -t proc proc /home/karrister/imx23_project/sd-image/rootfs/proc

Now we have set up the emulator successfully and can continue with the configuration

of rootfs by changing the host root into the SD card root file system partition:

sudo chroot /home/karrister/imx23_project/sd-image/rootfs/

Next we should continue the debootstrap setup, meaning in a cross-arch setup

continuing into the second stage. The meaning is that during first stage all the packages

and files are downloaded, but because the downloaded binaries are of a foreign CPU

architecture, we must have first setup the emulator and done chroot correctly, before

continuing with the second stage, which will run some scripts to continue with setting up

the rootfs:

/debootstrap/debootstrap --second-stage

Eventually, after everything is finished we should get the following print:

I: Base system installed successfully.

I have no name!@imx233-gsm:/#

Now we have a basic rootfs system working, but we will still need to continue with the

configuration finalization. Let’s start by setting the default language (EN/US):

export LANG=C

Appendix 3

 3 (4)

Let’s set a password for root:

passwd root

Now we should start downloading and setting up some packages. Let’s first setup the

list of sources to look packages. We will need to add some package sources to the file

/etc/apt/sources.list. However, the problem is that it seems that we don’t even have vi/vim

or any text editing tool on this root system! After I listed the available binaries under /bin,

I thought maybe I could use echo to write to this file:

echo deb http://ftp.uk.debian.org/debian jessie main contrib non-free >> /etc/apt/sources.list

echo deb-src http://ftp.uk.debian.org/debian jessie main contrib non-free >> /etc/apt/sources.list

echo deb http://ftp.uk.debian.org/debian jessie-updates main contrib non-free >>

/etc/apt/sources.list

echo deb-src http://ftp.uk.debian.org/debian jessie-updates main contrib non-free >>

/etc/apt/sources.list

echo deb http://security.debian.org/debian-security jessie/updates main contrib non-free >>

/etc/apt/sources.list

echo deb-src http://security.debian.org/debian-security jessie/updates main contrib non-free >>

/etc/apt/sources.list

And it worked! And now also we need to update the indexing of packages:

apt-get update

Next up, let’s install some basic packages using apt-get, to widen our apt-get support

(apt-utils) and enable better setup script interface to user (dialog), as well as enable

localization support:

apt-get install apt-utils dialog locales

Appendix 3

 4 (4)

dpkg-reconfigure locales

Now we will install the most important packages for me:

apt-get install vim nano less cron man python python-serial

Now we should be done. We can write exit, to exit the virtual console, and get back to

the host system console

Appendix 4

 1 (2)

Instructions for Creating a Bootable Linux SD Card

First we will need a SD card of at least 4GB of size. We will partition it to two partitions,

one for boot and one for the root file system. We will start by using fdisk to delete all the

current partitions of the current SD card, and creating primary partition of 32MB, and

assigning the rest to the second primary partition. What is special is that we must write

the boot partition with a type of “OnTrack DM6 Aux” (0x53 in hexadecimal). At the end

we will write the configuration and exit fdisk. Next step is to format the rootfs partition into

Linux ext2 type (depending on the device node of the SD card media in the system):

sudo mkfs.ext2 /dev/sdc2

Next thing is to copy both kernel and rootfs (which we already created before) onto a SD

card. So first I wrote the kernel image file onto the first partition:

sudo dd if=sd_mmc_bootstream.raw of=/dev/sdc1

where sdc is the device name for my sd card. You could find yours by e.g. following

dmesg messages, running fdisk etc. You should make sure of the device name, and not

blindly use sdc. In the worst case, it could result in losing all the data on your computer!

Next thing is to also copy the rootfs. Let’s first mount the second partition:

sudo mount -t auto /dev/sdc2 /mnt/sd-rootfs/

Next up is to copy the loadable kernel modules into the rootfs. We will do it first locally,

and then copy the whole rootfs into the mounted partition on the SD card. Let’s go back

to the dir where we compiled kernel, and copy the loadable modules:

sudo make -j4 ARCH=arm CROSS_COMPILE=arm-none-eabi-

INSTALL_MOD_PATH=/home/karrister/imx23_project/sd-image/rootfs modules_install

Finally, we will copy the rootfs into the SD card’s rootfs partition:

sudo cp -R /home/karrister/imx23_project/sd-image/rootfs/* /mnt/sd-rootfs/

Make sure all files are synced, and unmount the rootfs:

Appendix 4

 2 (2)

sync

sudo umount /dev/sdc2

Appendix 5

 1 (1)

The address of the git repository containing the development work for PCB design in KiCAD and

for Python scripts developed that control the hardware:

https://github.com/karrister/imx233_gsm

