

REAL-TIME INTERACTIVE

ANIMATED VISUALISATIONS FOR

MUSIC PERFORMANCES

Comparing Blender Game Engine and

TouchDesigner

Markku Laskujärvi

Bachelor’s thesis
May 2018

Degree Programme in Media

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in Media and Arts
Interactive Media

Laskujärvi, Markku:
Real-time interactive animated visualisations for music performances:
Comparing Blender Game Engine and TouchDesigner
Bachelor's thesis 37 pages
May 2018

New possibilities for media artists appear constantly with the development of technology.
Increasing processing power has made real-time performances with high resolution pos-
sible for less money spent on equipment. Additionally, much of the needed software is
available for free.

This thesis takes a look at two software which can be used for creating new media art
experiences, namely live music visualisations as part of an event. The two pieces of soft-
ware are somewhat different in their behaviour and introduce different plans for the user
depending on whether they are being paid or not. One of these programmes is a game
engine fitted inside a 3D production programme, and the other is a more general-purpose
creative programming tool leaning towards building live interactive experiences.

The study was done by comparing these two software and building a similar programme
with both of them, to be used in visualizing live music. The study acts as a guide for
making simple interactive media art pieces, not going into too much detail however.

Key words: new media art, creative computing, user experience, vjing

3

CONTENTS

1 INTRODUCTION ... 6

2 WHAT IS VJING? .. 7

3 NEW MEDIA ART ... 8

4 NODES .. 10

5 REAL-TIME RENDERING ENGINES ... 11

5.1 Derivative TouchDesigner ... 11

5.2 Blender Game Engine .. 12

6 TOUCHDESIGNER ... 13

6.1 Installation & license ... 13

6.2 User interface ... 13

6.3 Operators .. 14

6.3.1 Components .. 15

6.3.2 Channel operators.. 15

6.3.3 Texture operators .. 16

6.3.4 Surface operators ... 16

6.3.5 Material operators ... 17

6.3.6 Data operators ... 17

6.3.7 Controller connectivity.. 17

6.4 Perform mode .. 18

7 BLENDER GAME ENGINE .. 19

7.1 Installation & license ... 19

7.2 User interface ... 19

7.3 Game Logic .. 20

7.3.1 Sensors .. 20

7.3.2 Controllers ... 21

7.3.3 Actuators ... 21

7.3.4 Properties .. 22

7.3.5 External controller connectivity .. 22

7.4 Properties panel .. 22

7.5 Running the game engine... 22

8 BUILDING MUSIC VISUALIZATION APPLICATIONS USING
TOUCHDESIGNER AND BLENDER GAME ENGINE 23

8.1 Using images and setting up rhythmic input ... 23

8.1.1 TouchDesigner .. 23

8.1.2 Blender Game Engine ... 25

8.2 Displaying video .. 27

4

8.2.1 TouchDesigner .. 27

8.2.2 Blender Game Engine ... 28

8.3 Manipulating 3D objects .. 29

8.3.1 TouchDesigner .. 29

8.3.2 Blender Game Engine ... 30

8.4 Applying 2D effects ... 31

8.4.1 TouchDesigner .. 31

8.4.2 Blender Game Engine ... 32

8.5 Outputting .. 33

8.5.1 TouchDesigner .. 33

8.5.2 Blender Game Engine ... 34

9 DISCUSSION ... 36

REFERENCES .. 37

5

ABBREVIATIONS AND TERMS

TAMK Tampere University of Applied Sciences

USB Universal Serial Bus, a standard for connecting external de-

vices to computers

MIDI Musical Instrument Digital Interface, a standard for connect-

ing musical instruments

VGA Video Graphics Array, a standard for video connectivity

full HD a video resolution standard of 1920 by 1080 pixels

GPL GNU General Public License

GPU the Graphics Processing Unit of a computer

icosphere a spherical 3D structure made up of triangles

vertex a point on any 3D object

shader a program which tells the GPU how to draw graphics

6

1 INTRODUCTION

Computers are increasingly necessary tools in current-day society. Their integration into

being part of more people's lives has produced software that supports extensive creative

use of computer technology. Live music events can host visual creative computing by

projecting the outputs or by displaying them on screens. This thesis looks into what kind

of interactive graphical applications can be built for visualizing live music events using

computers.

Comparing two pieces of software, TouchDesigner and Blender, this thesis aims to de-

velop an understanding on how a live visual performance can be built, what restrictions

may occur in either software and what kind of usability they offer. To meet these goals,

a test application was built using both software. This test application appears similar on

both platforms for the purpose of finding out differences between making applications

with each software.

The first part of the thesis takes a look at VJ culture as well as some new media art theory,

followed with going into rendering engines. Finally, a detailed description of setting up

both Blender and TouchDesigner for music visualization purposes is presented.

7

2 WHAT IS VJING?

VJing is the act of live manipulation of image as it relates to sound. A VJ often accom-

panies a musician at an event, creating a performance together for the audience. Most of

the time the content is either projected or displayed via monitors. (Spinrad 2005)

The color organ from late 1800s is often thought as one of the starting points for live light

performance. However, this can be considered as lighting equipment, since it had no

means to produce a recognizable picture.

In the 1950s, overhead projectors were used to generate “wet shows”. This is a perfor-

mance method with its own visual capabilities from the mixing of different color paint

and oil on a glass surface.

In the late 1960s, projected video was first introduced into light shows. However, the

equipment required, such as television projectors, was prohibitively expensive at the time.

This changed after VCR technology emerged in the late 1970s and made moving image

manipulation more affordable. (Spinrad 2005)

Computerized video manipulation caught on in the 1980s with the Fairlight Computer

Video Instrument, a video processing unit with the capability of applying effects on video

in real-time. (Spinrad 2005)

Computer-based image manipulation has since become a basic task for personal computer

systems. The post-rendering age is evident in game development with the likes of Epic

Games’ Unreal Engine Blueprint programming system and Neil Blomkamp’s Adam se-

ries of short films made in real-time with a realistic look to them.

However, these advances in technology can seem like an obvious development when con-

sidering the amount of time human interest has lied in audiovisual relationships. Particu-

larly important medium preceding real-time image manipulation for a VJ to consider is

cinema. Films can be interpreted in musical terms by the VJ and then be applied to the

work they put out while performing. (Spinrad 2005) Combined, visual arts and music

theories span hundreds of years of material to be considered by the contemporary VJ.

8

3 NEW MEDIA ART

New media art can be difficult to define, its name containing three words subject to on-

going and possibly rather large changes in meaning over time. Often using cutting-edge

technology, new media art could be considered to reside within contemporary art.

Christiane Paul states that new media art is most often defined as computational and based

on algorithms. She goes on to describe new media art as process-oriented, time-based,

dynamic and, real-time; participatory, collaborative and, performative; modular, variable,

generative, and customizable. Paul also reminds that these features do not all have to be

evident in an artwork but rather they can appear in varying combinations. (Paul 2007)

Lev Manovich describes four principles of new media:

- numerical representation

- modularity

- automation

- variability

The first principle is numerical representation. All new media objects can be described

numerically. For example, digital images consist of a certain amount of pixels whose

color can be described with a hexadecimal string of numbers. Another example would be

the vertex points of a 3D model, which can be described numerically by their coordinates

on the X, Y and Z axes.

Secondly, new media objects are modular, consisting of elements made up of units such

as pixels, polygons, voxels, characters or scripts. These elements can be rearranged to

make new combinations. An example of this could be a video file that would work as a

standalone piece of media, but which could be attached to a 3D model by using the video

as a texture.

The third principle is automation. One example of this would be the Shiv Integer bot, or

artificial intelligence, capable of coming into conclusions based on input which it receives

and runs through algorithms embedded within it. In the case of Shiv Integer, the input and

output are 3D models which are posted on the thingiverse.com -website.

Manovich’s fourth principle is variability. For example, new media objects can be scaled

in size, such as 3d objects or fonts. (Manovich 2000)

9

Thus, using computer programs for VJing could prove as an act of new media art. New

media art provides theories to reflect on how VJing can be done using computers. Time

is very evident in VJing with music being the starting point for this form of art. It is

participatory, collaborative and performative in nature with the audience following the

performance and the musician and VJ working together. Modularity, variability, genera-

tivity and customizability reside within the computer and the software being used by the

VJ to put out visuals in a live event. The real-time aspect of VJing in software is executed

by software frameworks often called “engines”.

10

4 NODES

Since both Blender and TouchDesigner make use of a concept known as “node-based

programming” it could prove useful for the reader of this thesis to be described in more

detail here. Simply put, a node is a unit of reference in a data structure (NIST 2018). What

this means in both the case of Blender and TouchDesigner is that the user can build data

structures, or programs, using these preset nodes and connecting them together with “noo-

dles”. In the aforementioned software, nodes are graphically presented to the user with

having certain labels and inputs and outputs for connecting different nodes to each other.

The main gist of nodes is that the user can make up complex programs visually, without

necessarily typing any code.

PICTURE 1. A network of nodes with flow of data and execution illustrated (Laskujärvi,

2018)

11

5 REAL-TIME RENDERING ENGINES

Real-time rendering in computer graphics is an interactive process in which the user gives

input to the computer which then very rapidly produces images based on algorithms run

according to this input. By contrast, non-real-time graphics rendering, also referred to as

offline rendering, is more concerned with providing high detail to each frame and perhaps

applying lighting effects that would be impossible to calculate in real-time. This means

that offline rendering often takes time to create an output of an animated film. (Salvator

2018).

The frames per second unit of fps or Hertz is used to determine the real-time rendering

system’s performance, where changes in fps above 72 are considered effectively unde-

tectable by a human observer. (Haines 2002)

Video games have been typically rendered at 30 to 60 fps, because of the monitor stand-

ards gaming systems used earlier (Gregory 2009).

“Engine” is a reference to the video game industry, which uses the term “video game

engine” to describe a software framework used to build video games and enabling the

reuse of code in this framework for making new games. (Gregory 2009)

So here real-time rendering engines stand for software frameworks that give the user

components to produce interactive real-time rendering applications. Below are introduced

two of them, both of which are rather unique and different from each other in their user

experiences and capabilities.

5.1 Derivative TouchDesigner

Touchdesigner is a visual programming application where nodes, also referred to as op-

erators, are being used to create applications by linking these pre-built software compo-

nents together. Extensions can be made with Python scripting as well. The application

being created in TouchDesigner can be altered while it is running. TouchDesigner enables

the user to extensively composite and manipulate image and video in real-time. A 3D

engine is also included. (Derivative 2018)

12

5.2 Blender Game Engine

“The Blender Game Engine (BGE) is Blender’s tool for real time projects, from architec-

tural visualizations and simulations to games.” (Blender Manual 2018)

The Blender Game Engine, or BGE, resides within the 3d modeling and animation soft-

ware suite Blender. This means 3d models and animations can be made within the same

software that is then used to build interactivity for these objects. Interactive applications

made in BGE need to be compiled before running.

Programming in BGE can be done by connecting pieces of existing software components

known as Logic Bricks, a type of nodes. Extensions can be made with Python scripting

as well. (Blender Manual 2018)

13

6 TOUCHDESIGNER

6.1 Installation & license

TouchDesigner can be downloaded from https://www.derivative.ca/099/Downloads/.

Supported operating systems for TouchDesigner version 099 include Microsoft Windows

and macOS.

TouchDesigner Non-Commercial is free to use, given that the user is not using the soft-

ware to do paid work. (Derivative 2018)

There are some differences between licenses regarding the available features.

PICTURE 2. Different license types of TouchDesigner, a screen capture from the Touch-

Designer wiki (Laskujärvi, 2018)

6.2 User interface

The default user interface of TouchDesigner upon startup is the Network Editor window.

In addition to this, there are windows and pop-up dialogs for handling geometry, anima-

tions, text editing, performance monitoring, MIDI device mapping and beat detection

among others. The default interface shows frames per second at the top of the screen for

quick performance monitoring. The amount of frames that are being looped through is

shown in the bottom of the screen, along with the tempo.

14

PICTURE 3. Screenshot of TouchDesigner running on macOS with some nodes placed

in the Network Editor (Laskujärvi, 2018)

6.3 Operators

Operators are the basic building blocks of applications made with TouchDesigner. Both

“node” and “operator” are used somewhat interchangeably in the TouchDesigner docu-

mentation, defined as follows: “Node is generic, operator is the specific entity that does

the work of generating the data output of the node.” Operators are pieces of software,

“filter” operators taking inputs and producing outputs and “generator” operators taking

no inputs, creating data as their output. Parameters of operators can be altered to affect

their functionality. TouchDesigner uses six families of operators, organized and color-

coded according to their tasks (Picture 4). Operators of the same family can be connected

together straight away. Connecting operators from different families requires a specific

node to convert data. (TouchDesigner wiki 2018) New operators are added by double-

clicking an empty area on the Network Editor and selecting the desired operator from the

menu that pops up.

15

PICTURE 4. The six operator families represented from left to right: Component, texture

operator, channel operator, surface operator, data operator and material operator (Touch-

Designer wiki, 2018)

6.3.1 Components

Component nodes can contain networks of nodes inside them. Complicated networks can

be simplified using Components such as Containers or Bases. Component inputs and out-

puts are determined by the operators contained within them. Thus, a component could

have inputs and outputs for many different families of operators. A Component node dis-

plays its output on the preview window on the node by default.

6.3.2 Channel operators

Color-coded in green, channel operators handle motion, audio, animation and control sig-

nals. Channel operators or CHOPs output data as raw samples, meaning arrays of num-

bers. An example of a CHOP would be an LFO, or low-frequency oscillator, which puts

out a numerical value that oscillates between defined numbers overtime.

16

PICTURE 5. Screenshot of two LFO CHOPs outputting their numerical data as different

waveform types at different frequencies. (Laskujärvi, 2018)

6.3.3 Texture operators

Texture operators, or TOPs, handle image manipulations, such as displacement, scaling,

compositing and cropping. 3D objects are rendered to images using a “Render” TOP.

With TouchDesigner Non-Commercial license, the maximum output resolution is limited

to 1280 by 1280 pixels. TOP nodes can be identified by their purple color.

6.3.4 Surface operators

Surface operators are used to generate, import and manipulate 3D objects inside Touch-

Designer. SOPs can also be used for creating particle effects. A few primitive shapes are

available in TouchDesigner by default, such as a torus, a cube and a polygonal grid sur-

face. These objects can then be subdivided and deformed in real-time using Surface op-

erators. TouchDesigner lacks an efficient solution for hands-on mesh editing such of that

in Blender. Likewise, TouchDesigner by default has no physics engine to simulate rigid

body physics events or collisions of 3D objects. Precise modeling or animation work

should therefore be done using another software beforehand. SOPs are blue in color.

17

6.3.5 Material operators

Material operators work together with the SOPs to provide shading for the 3D objects

being rendered. Physically-based materials, wireframe materials and Phong materials are

available among others. MATs have yellow color.

6.3.6 Data operators

Data operators, shortened as DATs, can hold text data like tables or scripts. DATs are

pink in color.

6.3.7 Controller connectivity

External controllers such as MIDI keyboards, game controllers and VR headsets can be

connected to a computer running TouchDesigner and their input data can be used in a

TouchDesigner network with specific CHOPs. Setting up a MIDI controller, one has to

first set their connected device up in the MIDI Device Mapper dialog. The “MIDI In”

CHOP can then receive incoming MIDI data, so that values can be adjusted by whatever

human interface offered by the controller. Usually MIDI controllers feature buttons, po-

tentiometers and sliders, offering a tactile way of controlling TouchDesigner creations.

PICTURE 6. Akai Professional LPD8 -USB MIDI controller (Laskujärvi, 2018)

18

6.4 Perform mode

In addition to using the Network Editor, TouchDesigner applications can be operated in

“Perform mode”. The default editor view for TouchDesigner is referred to as “Designer

mode”. Perform mode uses less of the computer’s resources, only displaying a control

panel configured by the user. The user can create a control panel for their Perform mode

by using Component operators found under the type “Panel”.

19

7 BLENDER GAME ENGINE

7.1 Installation & license

The Blender Game Engine comes bundled with Blender which is available at

https://www.blender.org/download/. Blender is available for Linux, macOS and Mi-

crosoft Windows. On Linux and Windows, the user can choose between 32-bit and 64-

bit versions. On Windows, the user can choose to have a “portable” zip-file download

which is unpacked and works without an installation procedure.

Blender itself is “free software”, released under the GNU General Public License. The

file output from Blender (.blend -files) is considered property of the creator, who can

freely license or monetize on their creation. These are not covered by the GPL license.

However, when making a standalone program out of a Blender Game Engine -based

game, the user has created a GPL-licensed work. (Blender 2018)

7.2 User interface

The Blender Game Engine is an individual rendering engine within Blender. Setting up

BGE as the renderer is done via the drop-down menu (Picture 7, highlight 2). A preset

layout to optimize the Blender interface for game development can be chosen from the

screen layout menu. This layout exhibits the Outliner for managing assets on the left, the

3D View window in the center of the screen, Text Editor on the right for scripting and the

Game Logic panel in the lower third of the screen. On the bottom right is the Properties

panel, not to be confused with the properties tab within the Game Logic window.

20

PICTURE 7. Blender user interface, with the view menu (1), renderer menu (2), game

menu (3), Game Logic panel (4), Game Properties tab (5) and Text Editor panel (6) high-

lighted (Blender Manual, 2018)

7.3 Game Logic

The Game Logic panel in Blender hosts the visual tools for scripting for each game object.

Game objects in Blender can be any 3D objects in a scene. Three different types of “logic

bricks” can be added and connected within the Game Logic panel. The Game Logic panel

also hosts the Properties tab, which can contain variables to store data. These variables

are referred to in Blender as “properties”.

7.3.1 Sensors

The Game Logic panel is organized in three columns, with the first one from the left being

reserved for sensors. Sensors are event listeners, standing by while the game is running

and sending pulses to the game logic once they are triggered. An example would be a

collision sensor, which detects when an object gets hit by another object and sends a pulse

to the rest of the game logic chain on the frame of the collision event.

21

7.3.2 Controllers

Controllers are logic nodes which take the sensor pulses as their inputs and compare these

according to their settings before sending a pulse forward in the game logic. For example,

an AND controller requires all of its sensor inputs to be active simultaneously, before

passing a signal forward for the game logic to continue. Controllers can also host Python

scripts.

PICTURE 8. A screenshot of a table depicting the different controller states in the Blender

Game Engine (Laskujärvi, 2018)

7.3.3 Actuators

Actuators execute actions based on the game logic input they get from controllers. This

can be movement, animations or toggling object visibility, to name a few. For example,

the Message actuator can send a message within the game while its running, and a Mes-

sage sensor somewhere else in the game can catch this message, setting an event in mo-

tion.

22

7.3.4 Properties

Properties can be used for storing and accessing data, much like variables in other pro-

gramming languages. Each game object can have a set of properties assigned to it. The

types of properties available include integer values, floating point values, boolean values,

strings of characters or timers.

7.3.5 External controller connectivity

USB game controllers are supported by BGE with the Joystick sensor. However, no MIDI

controller support is available for the user within the list of sensors.

7.4 Properties panel

The Properties panel is used for setting up additional settings in BGE. Largely remaining

the same as when using other rendering engines, the Properties panel hosts settings for

object materials, textures, physics, world and rendering settings among others.

7.5 Running the game engine

From the Properties panel Render tab, a Blender game can be run either embedded within

Blender in the 3D View panel or in a window with the standalone player. While running

a game, the Blender interface itself becomes unresponsive until the game is stopped.

23

8 BUILDING MUSIC VISUALIZATION APPLICATIONS USING TOUCHDE-

SIGNER AND BLENDER GAME ENGINE

8.1 Using images and setting up rhythmic input

The main focus in making VJ applications with BGE and TouchDesigner for this thesis

was that the user should be able to express rhythm in a direct manner, such as with musical

instruments. This means having buttons which trigger visual events instantaneously, last-

ing for various amounts of time. Topmost was also the idea of the user being able to “let

go” of the controls after they had entered a rhythmic sequence of key presses which they

liked.

8.1.1 TouchDesigner

Bringing an image to TouchDesigner happens by using a “Movie File In” TOP, which

has the file path for the image or video as its first property. Clicking the plus icon next to

the file path opens up a graphical file search dialog (Picture 9.).

PICTURE 9. The “Movie File In” TOP in closer inspection with its parameter window to

the right (Laskujärvi, 2018)

24

In TouchDesigner the ease of implementing a MIDI controller as a control surface made

it an obvious choice for a user input device. For this practical test, the Akai LPD8 was

used. In practice, making an Akai LPD8 MIDI controller trigger visual elements first

requires a “Midi In” CHOP. Then the channel related to a particular button is picked from

the midi input with a “Select” CHOP, outputting a floating point number value between

0 and 1 determined by the velocity at which the button is hit. This output value can be

routed through a “Math” CHOP, rounding up the floating point value from between 0 to

1 to be either 0 or 1. Now this value can be exported to control an opacity value of a

“Movie File In” TOP through a “Level” TOP, as illustrated in Picture 10.

PICTURE 10. Controlling the opacity of an image with a MIDI control signal in Touch-

Designer (Laskujärvi, 2018)

Making a sequencer based on user input is also relatively straightforward with TouchDe-

signer. Shown in Picture 11, MIDI inputs are used to record a sequence that the user

creates while holding down one button and making a rhythmic pattern with another but-

ton. Another button resets this pattern. Additionally, beat detection is added with a tap

tempo functionality to get an average tempo of the music playing. With the first button,

the user can tap to the beat and get an estimate of the tempo of the music. A second button

is used to reset time evaluation between taps.

25

PICTURE 11. A sequencer for taking tap input from an external MIDI controller with the

video file color level being controller by the incoming tap signals (Laskujärvi, 2018)

8.1.2 Blender Game Engine

With BGE, using image and video can be achieved by applying textures on 3D objects

such as planes. Blender has an add-on for importing images as planes, otherwise the pro-

cess requires UV unwrapping for the mesh, creating a material for it and then applying

the image as a texture. Using video requires a bit more involvement as explained in the

next chapter.

26

PICTURE 12. Importing an image as a plane using the ”Images as Planes” addon which

is installed into the file import menu of Blender (Laskujärvi, 2018)

In the Blender Game Engine a rhythmic element could be implemented by key framing

an animation for an object and then controlling that object with game logic. In the image

below, two key frames are set for the plane object with an image texture of a grid. The

plane is set to scale up along its two axes of y and x from the first frame until frame 10.

This animation is then controlled with a keyboard sensor triggering an Action actuator

once the spacebar is pressed. In this case, the Action actuator mode is set to Flipper,

meaning it “rewinds” back to the first frame of the animation once the keyboard sensor is

not active.

27

PICTURE 13. Setting up a keyboard sensor trigger for driving an animation real-time in

the Blender Game Engine (Laskujärvi, 2018)

8.2 Displaying video

8.2.1 TouchDesigner

In TouchDesigner, the “Movie File In” TOP can be used to import both image and video

files. Many properties for the video can be adjusted in the parameters view, such as play-

back speed, cue points along the video and trimming the start and end points of the video.

“Transform” and “Level” TOPs were then added to the pipeline following the imported

video file to adjust size and color respectively.

28

PICTURE 14. Parameters for the “Movie File In” TOP (Laskujärvi, 2018)

8.2.2 Blender Game Engine

In the Blender Game Engine, importing video files requires a few Python scripts and a

logic setup that loads a video file onto a material of a 3D object. The original setup was

downloaded from blenderartists.org website and is authored by Monster. A major prob-

lem with displaying video in the Blender Game Engine is the resolution. A 1080p full

high-definition video would lower the framerate in the game engine to being unacceptably

slow. After trial and error, a resolution of 640 by 360 pixels for the video kept Blender

Game Engine within an acceptable average frame rate of 60 fps. However, this kind of

low-definition leaves much to be desired in 2018. Besides this, switching from one video

to another on the same object in real-time is impossible.

29

PICTURE 15. 3D plane object on the left with Monster’s applied Python script for dis-

playing video in the Blender Game Engine partially shown on the right (Laskujärvi, 2018)

8.3 Manipulating 3D objects

8.3.1 TouchDesigner

TouchDesigner offers SOP or surface operator nodes to manipulate geometry. In the ap-

plication built for this thesis a rectangle object was first subdivided to make noise effects

more evident. Next, a “Transform” SOP was added to enable the user to control the 3D

rectangle with a MIDI controller. Lastly, “Noise” SOP was added to the end of the pipe-

line before rendering. Parameters on the “Noise” SOP received inputs from the MIDI

controller, so the user can adjust the depth and roughness of the noise effect.

30

PICTURE 16. Subdividing a 3D rectangle object, scaling it and applying noise in Touch-

Designer (Laskujärvi, 2018)

8.3.2 Blender Game Engine

With Blender, a plane was added as the 3D surface to render the video content on. This

plane was then subdivided in Edit Mode so that it would react to noise properly. A mod-

ified noise-generating Python script originally found from the Blender Stack Exchange

website was applied on the plane object and its values were connected to properties so

that driving those values manually with the keyboard would be possible. Before discov-

ering this script, using bones and animated noise from the Graph Editor was the first

option to make the surface vertices appear moving randomly.

PICTURE 17. Screenshot of Blender Game Engine running the noise script applied on

the 3D plane object. Python script partly visible on the right, with the control parameters

in the below panel. (Laskujärvi, 2018)

31

An animated Empty object with a trigger to emit objects was added into the scene to add

more random elements with Rigid Body physics objects. The Empty object is not visible

in the scene while the program is running but can have size, orientation and location val-

ues as well as hold and execute logic. In this case, the Rigid Body object emitted is an

icosphere which changes its graphical appearance into that of another object once it col-

lides with the video plane surface.

PICTURE 18. The collision icosphere object on the left and a human head object on the

right, which is the appearance of the icosphere once the game is run and it collides with

the video plane surface. Bottom third of the screen shows the Logic nodes for changing

an object’s graphical appearance to that of another mesh. Physics properties for the ico-

sphere visible on the far right. (Laskujärvi, 2018)

8.4 Applying 2D effects

8.4.1 TouchDesigner

Two-dimensional effects applied in this TouchDesigner project included transformations,

color level adjustments, blur effects and a composition node. The grid layer scale trans-

formations are driven by the looping pulses recorded from the MIDI input. The grid

brightness is then adjusted in the following “Level” TOP by using a knob on the MIDI

controller. The grid is finally connected to the “Composite” TOP where its added to the

32

rendered 3D plane object. Like the grid layer, the 3D plane render goes through level

adjustments for fading in and out with the MIDI controller. Before going to the main

composition, the image goes to a “Blur” TOP, where a blur effect can be applied using

the MIDI controller.

PICTURE 19. An image showing the final network of the VJ application in TouchDe-

signer (Laskujärvi, 2018)

8.4.2 Blender Game Engine

Applying 2D effects in the Blender Game Engine can be achieved by using OpenGL

scripts that describe to the graphics processing unit of one’s computer how to render the

output. Learning to program OpenGL scripts, or “shaders” as they are most often referred

to as, can be a tedious task. Luckily an add-on called “Post-processing filters” has been

made available by Tim Crellin for the Blender Game Engine which gives the user a drop-

down menu of several shaders to choose from and then apply to the program. These ap-

plied scripts are then automatically added to the Logic. These shader scripts can also be

easily modified by the user in the Text Editor view.

33

PICTURE 20. A blur effect applied to the final render. On the right, the menu for choos-

ing, applying and deleting shaders that come with the “Post-processing filters” -addon.

Bottom half: Logic view with the shader nodes. (Laskujärvi, 2018)

8.5 Outputting

8.5.1 TouchDesigner

In the TouchDesigner project for this thesis an output was added to display the final ren-

der on a separate screen using the “Window” Component node. Any TOP operator can

be dragged and dropped over the “Window” COMP, determining the output. The user

can then make changes to the network on their primary display while the output is dis-

played on the other screen. Other useful options for output window adjustments include

resizing to a custom resolution and ratio as well as choosing not to draw any borders for

the window.

34

PICTURE 21. “Window” COMP’s parameter panel showing the different options for

controlling external display setups. (Laskujärvi, 2018)

8.5.2 Blender Game Engine

The Blender Game Engine output for rendering happens from the render settings in the

Properties panel. The user can choose to either run their application with the Embedded

Player or a Standalone Player. The Standalone Player option automatically pops out a

window of a defined resolution, or takes up the full screen if this tick box is selected in

the render options. The Standalone Player full screen mode uses the main system display

by default. Using an additional display in extended desktop mode is possible, however a

workaround is required if one wants to run their Blender Game Engine application on a

separate full screen window. The Embedded Player occupies the 3D View panel once it

is run. In Blender, panels can be popped out into separate windows by holding down Shift

and dragging on either of their marked corners with the left mouse button. This separate

window can then be placed on the external display on the extended desktop. The key

combination of Alt and F11 toggles windows into full screen mode and back. Then the

application can be run using Embedded Player by pressing P while hovering the mouse

over the external 3D View window. However, setting up the correct view can be tedious

because of having to manually adjust the view within camera objects.

35

PICTURE 22. Embedded Player and Standalone Player options in the rendering settings

(Laskujärvi, 2018)

36

9 DISCUSSION

Blender and TouchDesigner are both very capable pieces of software for producing

graphics and animations and running them in real-time. They have simple interaction de-

sign tools in a user environment with otherwise steep learning curves. However, these

more in-depth tools like bone systems for animation in Blender or particle systems in

TouchDesigner enable the user to tweak everything just right thanks to their complexity.

Blender was originally oriented as a modelling and animation tool for film production

industry. The greatest part of making interactive visualization applications derives from

this as well: It is very simple and easy to change something down the line even if the user

is already building logic for their application. They can go back to the drawing board with

modelling and animation whenever they like and retain their control scheme already built

for the interactions.

In TouchDesigner, building a network of nodes that can be easily adjusted later is possi-

ble, but changing details in 3D models or their animations may require the use of an ex-

ternal software, such as Blender. Blender falls short with the more complex logic patterns,

where the display space runs out or gets messy very quickly. Therefore, using both

Blender and TouchDesigner together could be one fruitful way of benefiting from some

of the better possibilities offered by these software. For example, the Blender Game En-

gine render output could be captured and brought into TouchDesigner, with the more

advanced physics and collision detection available while utilizing TouchDesigner’s ef-

fective MIDI controller integration.

Considering the future, TouchDesigner currently is the safer bet to get into doing real-

time interactive graphics processing. This is because the Blender Game Engine has al-

ready been removed from the upcoming version 2.8 of Blender.

37

REFERENCES

Blender. 2018. Read 1.2.2018. https://www.blender.org/

Blender Manual. 2018. Read 12.2.2018. https://docs.blender.org/manual/

Derivative. 2018. Read 2.2.2018. http://www.derivative.ca/

Esaak, Shelley. 2017. Get the Definition of Contemporary Art. Read 4.3.2018.
https://www.thoughtco.com/what-is-contemporary-art-182974

Gregory, Jason. 2014. Game Engine Architecture. Boca Raton: CRC Press.

Haines, Eric. 2002. Real-Time Rendering. Boca Raton: CRC Press.

Manovich, Lev. 2000. The Language of New Media. Read 3.3.2018. https://www.medi-
amatic.net/en/page/9283

National Institute of Standards and Technology. 2017. Dictionary of Algorithms and Data
Structures. Read 2.2.2018. https://xlinux.nist.gov/dads/

OpenGL Wiki. 2017. OpenGL Shading Language. Read. 1.1.2018.
https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language

Paul, Christiane. 2008. New Media in the White Cube and Beyond: Curatorial Models
for Digital Art. Read 1.2.2018. http://atc.berkeley.edu/201/readings/Christi-
ane_Paul_Reading.pdf

Salvator, Dave. 2001. ExtremeTech 3D Pipeline Tutorial. Read. 3.3.2018.
https://www.extremetech.com/computing/49076-extremetech-3d-pipeline-tutorial

Spinrad, Paul. 2005. The VJ book: Inspirations and practical advice for live visuals per-
formance. Los Angeles: Feral House.

TouchDesigner 099 wiki. 2018. Read. 3.1.2018. https://docs.derivative.ca/

	1 INTRODUCTION
	2 WHAT IS VJING?
	3 NEW MEDIA ART
	4 NODES
	5 REAL-TIME RENDERING ENGINES
	5.1 Derivative TouchDesigner
	5.2 Blender Game Engine

	6 TOUCHDESIGNER
	6.1 Installation & license
	6.2 User interface
	6.3 Operators
	6.3.1 Components
	6.3.2 Channel operators
	6.3.3 Texture operators
	6.3.4 Surface operators
	6.3.5 Material operators
	6.3.6 Data operators
	6.3.7 Controller connectivity

	6.4 Perform mode

	7 BLENDER GAME ENGINE
	7.1 Installation & license
	7.2 User interface
	7.3 Game Logic
	7.3.1 Sensors
	7.3.2 Controllers
	7.3.3 Actuators
	7.3.4 Properties
	7.3.5 External controller connectivity

	7.4 Properties panel
	7.5 Running the game engine

	8 BUILDING MUSIC VISUALIZATION APPLICATIONS USING TOUCHDESIGNER AND BLENDER GAME ENGINE
	8.1 Using images and setting up rhythmic input
	8.1.1 TouchDesigner
	8.1.2 Blender Game Engine

	8.2 Displaying video
	8.2.1 TouchDesigner
	8.2.2 Blender Game Engine

	8.3 Manipulating 3D objects
	8.3.1 TouchDesigner
	8.3.2 Blender Game Engine

	8.4 Applying 2D effects
	8.4.1 TouchDesigner
	8.4.2 Blender Game Engine

	8.5 Outputting
	8.5.1 TouchDesigner
	8.5.2 Blender Game Engine

	9 DISCUSSION
	REFERENCES

