

Saunaxio
Sauna monitoring and remote-control platform

Lauri Korte

Bachelor’s thesis
May 2018
Technology, Communication and Transport
Degree Programme in Software Engineering

Description

Author(s)

Korte, Lauri
Type of publication

Bachelor’s thesis
Date

May 2018

Number of pages
128

Language of publication:
English

 Permission for web

publication: x

Title of publication

Saunaxio

Sauna monitoring and remote-control platform

Degree programme

Software Engineering

Supervisor(s)

Luostarinen Hannu, Hämäläinen Raija

Assigned by

Rintamäki Marko “NarsuMan”

Description

The assignment came from a private person. The assignor needed a monitoring and remote-
control solution for sauna environment, which he had built in his leisure time. The said
sauna is an independent structure fitted with wheels, allowing movement with a normal
agricultural tractor. The requirement specification was made together with the assignor,
along with clear use cases for the system.

The project was started by mapping out the existing solutions in general and researching the
solutions specifically made for sauna environment in order to create a better understanding
of possible and usable technologies and possible tools for the system. The careful research
allowed the construction of a whole and functioning solution under the requirement
specification and use cases defined for the system.

The selection of tools was confirmed at the beginning of the project. The IoT nature of the
system was built with Raspberry Pi hardware, allowing independent operating in sauna
environment with Node-RED and Home Assistant tools. The latter operated as integration
point for the speech recognition system Snips AI allowing the use of voice when operating
the connected components, such as applying water onto the stove or operating the music
player whilst inside the sauna. The ambient surroundings for the sauna were provided by
Mopidy’s music player and Festival’s TTS service. The data gathered from the local IoT
device was sent to cloud infrastructure for monitoring and analys, while the data transfer
between the local services was handled by MQTT protocol.

The assignment was finished and it met the requirements and use case specifications in
total. The modifications to the initial design were executed with reliability and usability in
mind. The finished project acted as a demo, which later was deployed to the final placement
in sauna environment.

 Keywords (subjects)
IoT, sauna, Node-RED, Home Assistant, Snips AI, monitoring, TTS

Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5b%5d=format%3A%220%2FDatabase%2F%22&lng=en-gb%22﷟HYPERLINK%20%22http://vesa.lib.helsinki.fi/

Kuvailulehti

Tekijä(t)

Korte, Lauri
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2018

Sivumäärä

128
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Saunaxio

Saunan monitorointi ja etähallinta alusta

Tutkinto-ohjelma

Ohjelmistotekniikan koulutusohjelma

Työn ohjaaja(t)

Luostarinen Hannu, Hämäläinen Raija

Toimeksiantaja(t)

Rintamäki Marko “NarsuMan”

Tiivistelmä

Toimeksiantajana toimi yksityishenkilö. Toimeksiantajalla oli tarve toteuttaa monitorointi- ja
etähallinta ratkaisu saunaympäristöön. Kyseinen sauna oli toimeksiantajan vapaa-ajallaan
rakentama liikuteltava kokonaisuus, jota tarvittaessa voitaisiin siirtää erilaisille tapahtuma-
alueille. Tarkastelun kohteena oleva sauna on itsenäinen pyörillä varustettu rakennus, jota
voidaan liikuttaa normaalin maataloustraktorin voimin. Vaatimusmäärittely rakennettiin
yhdessä toimeksiantajan kanssa, jolloin muodostuivat myös selkeät käyttötapaukset toteu-
tettavalle työlle.

Pohjatyö aloitettiin kartoittamalla olemassa olevia ratkaisuja sekä yleisesti että nimenomaan
saunaympäristöön toteutettuja sekä näiden pohjalta mahdollisia käytettäviä teknologioita.
Työ suunniteltiin valitsemalla mahdollisia työkaluja vaatimusmäärittelyn ja käyttötapauksien
valossa; työkalujen yhteyksiä tutkittiin, jotta voitaisiin saavuttaa eheä kokonaisuus.

Toteutuksen alkuvaiheessa valikoituivat varmistuneet työkalut, joilla työtä lähdettiin toteut-
tamaan. Kokonaisuuden IoT-luontainen olemus rakennettiin Raspberry Pi -laitteistolla, jonka
itsenäinen toiminta varmistettiin Node-RED ja Home Assistant -ympäristöillä. Jälkimmäinen
työkalu toimi myös liitoskohtana puhetunnistukseen erikoistuneelle Snips AI -palvelulle, joka
mahdollisti äänen käytön komponenttien hallinnassa saunaympäristössä, kuten löylyveden
annostelussa ja musiikkisoittimen käytössä. Saunaympäristön ambienttinen puoli toteutet-
tiin Mopidy-musiikkisoittimella sekä TTS- teknologiaa hyödyntävällä Festival-ohjelmistolla.
Datan keruu IoT-laitteelta ohjattiin pilvipalveluun datan monitorointia ja analysointia varten,
paikallisella laitteella työkalujen välisestä kommunikaatiosta vastasi MQTT-protokolla.

Toimeksianto saatiin päätökseen vaatimus- ja käyttötapausmäärittelyiden täytyttyä ko-
konaisuudessaan. Muutokset alkuperäiseen suunnitelmaan toteutettiin toimintavarmuutta
ja käyttäjäystävällisyyttä silmällä pitäen. Työ toteutettiin demona pöytäympäristöön siir-
rettäväksi myöhemmin varsinaiseen toimintaympäristöön.

Avainsanat (asiasanat)

IoT, sauna, Node-RED, Home Assistant, Snips AI, monitorointi, TTS

Muut tiedot

http://www.finto.fi/

1

Contents
Terminology .. 7

1 Introduction .. 9

1.1 Overview and client .. 9

1.2 Thesis goals ... 10

2 About the solution .. 12

2.1 Designing the solution ... 12

2.2 Existing solutions .. 12

3 Technologies .. 13

3.1 Internet of Things .. 14

3.1.1 Background ... 14

3.1.2 Basic structure ... 15

3.1.3 Address pool size .. 15

3.1.4 IoT security ... 16

3.2 Cloud Computing ... 17

3.2.1 Cloud types .. 17

3.2.2 IaaS, PaaS & SaaS .. 18

3.3 Automation .. 19

3.3.1 Background ... 19

3.3.2 Home automation ... 20

4 Sauna ... 21

4.1 Background .. 21

4.2 Operating principle ... 22

4.3 As an environment .. 23

5 Tools in development .. 24

5.1 Home Assistant .. 25

5.2 Node-RED ... 26

5.3 Snips ... 28

5.4 Mosquitto and MQTT ... 29

2

5.5 Mopidy ... 29

5.6 Festival TTS ... 31

5.7 DigitalOcean .. 31

5.7.1 InfluxDB .. 32

5.7.2 Grafana .. 33

6 Hardware ... 34

6.1 Raspberry Pi .. 34

6.2 Sensors and components.. 35

6.2.1 Temperature sensors .. 37

6.2.2 Humidity sensors .. 41

6.2.3 RuuviTag .. 42

6.2.4 Ultrasonic sensor .. 43

6.3 Sound ... 44

6.3.1 Speaker ... 44

6.3.2 Microphone ... 45

6.4 Fieldbox ... 46

7 Building the solution ... 50

7.1 Software architecture .. 50

7.2 Raspberry Pi .. 53

7.2.1 Installation and backup .. 53

7.2.2 Internet connection ... 54

7.2.3 Configuration ... 56

7.3 Connecting the hardware ... 58

7.3.1 Sensors .. 59

7.3.2 Other hardware ... 61

7.4 Node-RED ... 62

7.4.1 Upgrading Node-RED .. 62

7.4.2 Installing required nodes .. 63

7.4.3 Configuring Node-RED ... 66

7.4.4 Building flows .. 68

7.5 Mosquitto ... 74

7.6 Home Assistant .. 76

3

7.6.1 Configuration ... 77

7.6.2 Adding components ... 78

7.6.3 Customisation .. 82

7.6.4 Automation ... 86

7.7 Cloud services ... 88

7.7.1 Influx database .. 88

7.7.2 Grafana install and configuration ... 91

7.7.3 Adding data source to Grafana .. 94

7.8 Audio system ... 96

7.8.1 Connecting Bluetooth speaker .. 96

7.8.2 Audio output ... 97

7.8.3 Audio input.. 99

7.8.4 Text-To-Speech ... 100

7.9 Mopidy .. 103

7.10 Snips AI ... 107

7.10.1 Configuration .. 107

7.10.2 Assistant .. 109

7.10.3 Using Snips AI ... 112

7.10.4 Assistant installation problem ... 113

8 Evaluation ... 115

9 Future development .. 116

10 Conclusion ... 117

References ... 119

Appendices .. 123

Appendix 1. Block diagram of the system .. 123

Appendix 2. Fieldbox layout with circuit board ... 124

Appendix 3. Sequence diagram of Snips AI function .. 125

Appendix 4. Hardware list .. 126

Appendix 5. Hardware placement inside the sauna ... 127

Appendix 6. QR-code for the Github repository (URL included) 128

4

Figures

Figure 1. Sauna environment ... 9

Figure 2. Idea of the Internet of Things .. 15

Figure 3. Pizza as a Service (Barron 2014) ... 18

Figure 4. Example of a smoke sauna (Smoke sauna 2004) .. 22

Figure 5. Example of Home Assistant overview ... 26

Figure 6. Flow example for RuuviTag in Node-RED .. 27

Figure 7. Node-RED Dashboard view .. 27

Figure 8. View from Snips Console .. 28

Figure 9. Mopidy Musicbox Webclient user interface .. 30

Figure 10. InfluxDB command line interface ... 32

Figure 11. Dashboard view of RuuviTags in Grafana .. 33

Figure 12. Raspberry Pi 3 Model B used in the solution.. 34

Figure 13. Raspberry Pi specifications for different models (Benchoff 2016) 35

Figure 14. Example of sensor casing ... 37

Figure 15. Both versions of the DS18B20 sensor ... 38

Figure 16. Thermocouple K-type with MAX6675 converter ... 40

Figure 17. DHT22 temperature and humidity sensor .. 41

Figure 18. RuuviTag with waterproof casing... 42

Figure 19. Waterproof ultrasonic sensor AJ-SR04M ... 44

Figure 20. UE Roll 2 Bluetooth speaker ... 45

Figure 21. USB microphone used in solution ... 46

Figure 22. Fieldbox before installations with battery connected 47

Figure 23. 8 Relay Module used in solution.. 48

Figure 24. DC/DC converter used in solution .. 49

Figure 25. Circuit board constructed for the setup ... 50

5

Figure 26. Flowchart of the system ... 51

Figure 27. Raspberry Pi 3 GPIO pins as seen from gpio... 57

Figure 28. Raspberry Pi 3 GPIO layout (Raspberry Pi 3 Pinout 2016) 59

Figure 29. Flow to handle RuuviTag data .. 68

Figure 30. Inject and trigger nodes .. 69

Figure 31. Message from the RuuviTag node ... 70

Figure 32. Function node for message modification ... 70

Figure 33. Switch used to sort out RuuviTags ... 71

Figure 34. Creating InfluxDB node connection ... 72

Figure 35. Node-RED's MQTT broker node .. 73

Figure 36. Exec node for system commands .. 74

Figure 37. Time&Date component in Home Assistant .. 79

Figure 38. Executable scripts in Home Assistant ... 82

Figure 39. Group view of Home Assistant ... 83

Figure 40. Customisation view of Home Assistant .. 84

Figure 41. Custom UI showing last_active in the Home Assistant 85

Figure 42. Trigger for automation.. 87

Figure 43. Action for automation.. 87

Figure 44. Measurement for RuuviTags ... 91

Figure 45. Adding a notification channel for Grafana ... 93

Figure 46. Alert rules for RuuviTags ... 94

Figure 47. Creating graph for RuuviTags .. 95

Figure 48. Graph for RuuviTag temperatures ... 95

Figure 49. D3 Gauges used for RuuviTag singlestat .. 96

Figure 50. Mopidy-Moped UI .. 105

Figure 51. Mopidy-Mopify UI view.. 106

Figure 52. Creating skills in Snips Console .. 110

6

Figure 53. Training the skill with training examples ... 111

Figure 54. Query for the new skill ... 112

Figure 55. Snips speech recognition flow ... 113

Figure 56. Message shown after download fails .. 114

Tables

Table 1. Functional requirements .. 11

Table 2. Used components and parts .. 35

Table 3. Additional Node-RED node installations .. 64

7

Terminology

ALSA Advanced Linux Sound Architecture. An API for Linux kernel’s

sound card device drivers.

API Application Programming Interface. A method allowing different

software to communicate with each other.

ASR Automatic Speech Recognition. Speech recognition that allows the

use of normal human language to control a computer device.

BLE Bluetooth low energy. A short range Bluetooth technology used by

many wireless devices, such as RuuviTag beacon.

GPIO General Purpose Input/Output. A general purpose pin found on

computer boards, such as Raspberry Pi.

IoT Internet of Things. A technology, where appliances may be

connected together and to the Internet, gathering data or

functioning for some advantage for the user. Connected devices are

recognised with identifiers, such as an IP address.

JACK JACK Audio Connection Kit. A sound server daemon for audio data

using its API, supporting the ALSA driver.

MPD Music Player Daemon. An open-source music player software, with

player and user interface separated from each other. Possibility for

user interface with client softwares.

MQTT Message Queuing Telemetry Transport. A light-weighted publish-

subscribe messaging protocol requiring a message broker to

function. Designed to work with limited bandwith.

NLU Natural Language Understanding. An engine for parsing a query in

text format used by Snips AI.

8

TLS/SSL Transport Layer Security, formerly Secured Sockets Layer. An

encryption protocol for secure communication over network.

TTS Text-to-Speech. A technology, where normal human language text

is turned into synthesised speech.

UI/GUI User interface and graphical user interface.

9

1 Introduction

1.1 Overview and client

The market for the Internet of Things has been vastly increasing, with the basic

idea of different devices or appliances, the ‘things’ in the IoT world,

communicating together and gathering data for some advantage. The growing

demand open numerous possibilities for many amateur projects, whether it be a

small, personal weather station or something more complex, such as a fully

automated and controllable home. Whatever the implementation may be, the

estimated number of ‘things’ connected in a way of the Internet of Things, is well

over 11 billion by the end of year 2018, according to Gartner. (Gartner Newsroom

2017)

The traditional Finnish sauna is an old one and not much technology can be found

within. The conventional setup can be broken, as it will be in this Bachelor’s

thesis work. Many are the people who may object bringing technology inside the

sauna, and many rightfully so. The aim is not to turn the basic sauna into full-on

technology centre, but to implement an IoT solution in a way it does not affect the

conventional nature of the sauna (Figure 1).

Figure 1. Sauna environment

10

The thesis containing the said solution was assigned by the writer’s former

teacher Marko Rintamäki at JAMK University of Applied Sciences. The client had a

vision of an IoT solution implemented into sauna environment, and in this case,

into a mobile sauna. This mobile sauna, built on a trailer, was well suitable as a

development environment for the IoT solution. The writer was happy to accept

offered work and together with the client the basic background knowledge of said

solution was easily acquired.

1.2 Thesis goals

Thesis work had a main goal of developing a functioning solution for a sauna

monitoring and remote-control system and building the platform for this

purpose. The monitoring was to be handled by data gathering from sensors on

the local machine and presenting the data in a cloud service, as well as on the

local machine for more current data, while the monitoring service in the cloud

would show change for longer period of time.

The sauna had to be functional with and without the central core of operations

and its services and the technology inside the sauna should not be exceedingly

visible to the bather inside. The sauna structure in whole, including the

technological parts, was to withstand not only the sauna environment but also

the surrounding environment of the structure, given the characteristics of the

said structure being external from a house with no base heating. The system

would continue to operate off battery, whenever the mains would be

disconnected.

The hardware inside the sauna structure, including the ones in the fieldbox, was

to be removable or replaceable at leisure due to desire or error occurrence within

the devices. The bather should be able to control the devices, with either browser

or mobile application, when outside the sauna, whilst inside the controlling

should be done with speech recognition service.

Use case specification and requirement specification were done with the client at

the start of the project, with modification made during the development. The

11

initial use cases are listed below and referenced in thesis in corresponding places,

where the said use case or requirement was addressed.

Table 1. Functional requirements

Req. # Description

RE100 System operates independently, limitedly without Internet connection

RE200 Steam amount can be adjusted manually with a switch

RE201 Possibility for automated steam adjustment

RE210 Steam adjustment with a voice command

RE300 User may enquire current temperature with a voice command

RE301 User may enquire current time of day with a voice command

RE302 User may enquire current relative humidity with a voice command

RE400 User may control lights

RE410 User may control lights with a voice command

RE500 User may control music player

RE501 User may select playlist for music player

RE510 User may change track with a voice command

RE511 User may play and pause the track with a voice command

RE512 User may change player volume with a voice command

12

2 About the solution

2.1 Designing the solution

The initial design of the solution was done during the Autumn of 2017. The

designing consisted of researching different possibilities of making the solution

described, finding the correct platforms and tools for cloud services and for the

hardware. Many IoT projects with similarities of the project at hand was found in

different sources. Some of the tools to be used, such as the Node-RED and Home

Assistant, as well as the cloud service provider and the platform to build the IoT

project on, the Raspberry Pi 3, were predefined, as they were preferred by the

client.

The initial design of an IoT solution was as described earlier. An independently

operating system inside the sauna, with little to none technology visible for the

bather inside, who could operate the specified functions with either own voice

commands or remotely with mobile application or from a browser. The data sent

to the database could be monitored by the user and shown on a screen outside

the sauna, on the outer wall.

The specifications provided a good platform from where to start building and

developing the final solution. The potential additions or changes made during the

building and developing of the system are described in the actual building part of

thesis work (See Chapter 7).

2.2 Existing solutions

Many similar IoT projects, about monitoring, automation and remote controlling,

can be found around the Internet as simple or more complex projects, some even

very close to the setup built in thesis. Below are three easily found examples of

similar versions concerning the IoT projects built in a sauna environment.

One solution found monitors the temperature of a sauna or steam room and

sends notifications for the bather about temperature readings to notify the bather

13

the room temperature is at preferred level. Similarly, the notifications are sent if

the temperature exceeds the set levels, at which point the heater could be turned

off (Internet Sauna & Steam Room Alert 2016.)

Another solution offers closer similarities than the ones specified for the thesis.

While this solution has no automation available, the temperature is monitored

and shown on graphs to the user. The solution uses the DS18B20 temperature

sensor, fitted inside the wall panelling. Notifications are sent based on the current

temperature, when the sauna is ready, heated to a proper level, or when the

temperature exceeds a certain point (Marjamaa 2016.)

Third solution is closest to the one in thesis work, considering the requirements.

In this IoT solution the temperatures are monitored from different sources, from

inside the sauna, from inside and outside of the house and the current water

temperature of a nearby lake. The Home Assistant is used to operate appliances

with the Z-Wave wireless communications protocol. As the core of system both

Raspberry Pi and Arduino are used for different locations, Arduino being used

where Raspberry Pi’s size or power is excessive. The communication between the

devices is handled with MQTT protocol (Mäkinen 2016.)

While IoT projects are mostly designed for normal environment, either indoors

or outdoors, the examples above were all designed for the sauna’s environment,

with the first of said examples designed to function more in a business manner,

while the other two examples were projects for more private surroundings.

3 Technologies

As the device to be inside the sauna reads the sensors and sends the data to be

monitored in a cloud service, as well as the device having the possibility of having

automated functions, and some remote controlled in that matter, describing what

the technologies are is essential for the understanding of the solution. The main

technologies are opened in the chapters following. The environment for the

solution, the sauna, is described in its own chapter.

14

3.1 Internet of Things

3.1.1 Background

Internet of Things, or IoT for short, is, as a term, still quite young. According to

writing in Postscapes the term was first used by a man named Kevin Ashton in

one of the presentations he held in 1999. Although the basic idea is that the

devices, the ‘things’, communicate together over the Internet and gather data for

some purpose, the described setup is older than the term and the Internet (IoT

History 2016.)

Approximately 200 years ago, in the second quarter of the 19th century, the first

fully functional electromagnetic telegraph was invented and for the first time in

history two devices could communicate together with the use of electricity, which

in return was quite new technology as well. However, this communication

between the telegraphs was made possible by the machine users interacting with

them directly, which is some way of from the Internet of Things idea; devices

being able to communicate and function separately and individually, yet in whole,

without the potential interference of a human factor (IoT History 2016.)

In 1926, a man named Nikola Tesla gave an interview for the Colliers magazine,

stating that "When wireless is perfectly applied the whole earth will be converted

into a huge brain, which in fact it is, all things being particles of a real and rhythmic

whole...". Although this statement considered the wireless telegraph and not the

Internet, the idea itself was futuristic and, when thinking about today’s world and

all the IoT devices and implementations, even surprisingly quite accurate (IoT

History 2016.)

In present day this old idea has been applied into many different appliances and

purposes. With the global Internet access many of these devices can function on

their own and the collected data can be accessed by the user from basically

anywhere on the planet.

15

3.1.2 Basic structure

The Internet of Things consists of ‘things’ (Figure 2). These ‘things’ can be

anything, from alarm clock to a watch or even the user of these said appliances, as

well as anything found in the world. For a ‘thing’ to be able to gather any

information about the user or the surroundings it needs sensors to sense. The

countless different sensors developed for different purposes are implemented

into these ‘things’ according to the specific use case.

Figure 2. Idea of the Internet of Things

Each ‘thing’ connected to the Internet can be identified via a unique identifier,

such as a numeric or alphanumeric string, and usually an IP address in that

matter. Devices can identify others, thus sending and sharing the data with those

specific devices as intended. This also helps humans to identify the specific device

to interact with (Rouse 2016.)

3.1.3 Address pool size

The currently leading IPv4 protocol has its own limitations when talking about

the number of IP addresses available for use, the available number being just

16

over 4,2 billion because of the 32-bit system it uses. For normal use, computers

and such, this is still adequate, however, from IoT’s perspective it is quite small.

With the IPv6 and its 128-bit system, the number of addresses immensely go up.

With unlimited amount of possible addresses to be given for different devices of

IoT nature, the world can be filled with different implementations, creating

unlimited possibilities of monitoring the living or the surroundings for some

advantage (Rouse 2016.)

3.1.4 IoT security

With said possibilities of unlimited IoT implementations in the world one cannot

ignore the importance of the security of said implementations. The basic

knowledge of, for example software development, is to design the software or

system to be secure from the start, not to implement the security part later on

when it is already too late or extremely hard to implement correctly. This can be

tedious but, especially for IoT devices that can monitor or control the user and

one's life, also very important.

One basic security matter is to have secure authentications and correct

authorisations for the device itself and the network, where said IoT devices

operate. There is a difference between authentication and authorisation. The

former is to identify the user, who is using or accessing the devices. The latter is

to give certain permissions of what one can do while using or accessing the IoT

device. With a proper implementation of correct safety features the possibility of

third-party member gaining access to the devices are minimised (Gite 2012.)

The same setup may be used once the IoT implementation is potentially outside

the secured local area network, for example in the mobile network. While the

mobile network is not secured as the local area network would be, a greater

thought is to be laid on the IoT device itself.

As part of the IoT nature, the IoT device must be able to send the gathered data

safely, without the third-party member intervening with it. With the secured IoT

17

device itself and the connection between the device and the database, all that

remains is to secure the database in the cloud (See Chapter 7.7.1).

3.2 Cloud Computing

3.2.1 Cloud types

On the surface the cloud computing is usually divided into three groups; public,

private and hybrid clouds. Each of these types has its own strengths and

weaknesses.

The most used cloud type is probably the public cloud. In public cloud the service

provider is responsible for making the resources, for example applications and

storage, available for a large mass on the internet. This type can be free, at least to

some point, or it can be chargeable by the use (What is cloud computing.)

The second type, the private cloud, has the same benefits as the public cloud, the

scalability being one of them, but instead of it being available to basically the

whole crowd on the internet, the private cloud is only available to either one

person or a single organisation. The private cloud is best used for organisations

who want to be in control of what is happening in the cloud. Because of this the

security matter can also be addressed more rapidly than in a public cloud. The

cost for private cloud is higher, since the organisation usually maintains and

updates all the needed resources by themselves (What is cloud computing.)

The third type is the hybrid cloud. As the name implies, the hybrid cloud is a

combination of the first two cloud types. The combination grants the possibility

to use the public cloud for less important or sensitive data while using the private

setup to store the important and more sensitive information, without paying any

more that is necessary (What is cloud computing.)

18

3.2.2 IaaS, PaaS & SaaS

When examining the lower levels and meaning of cloud computing, different

models, the Infrastructure as a Service, Platform as a Service and Software as a

Service, can be found, each having their own characteristics. To simplify the

terms, see the picture (Figure 3).

Figure 3. Pizza as a Service (Barron 2014)

The traditional and old version of the cloud service, for example a server

machine, is to have the machine on personal possession (far left on figure above).

This allows full control over the services running on said machine but also leaves

the responsibility of its maintenance and safety to the user. As opposed to this

method, the IaaS, PaaS and SaaS offer different approaches when building the

cloud services.

The first one, the Infrastructure as a Service, offers virtualised computing

resources for the user in a safe environment. As the security and maintenance is

handled by the service provider the user can concentrate on building and

19

developing their own IT platforms. The charge for the service is low and usually

based on the use and the service is highly scalable, should there be need for more

space or power. An example of IaaS, to be used in thesis work as well, is the

DigitalOcean, providing the cloud service for the database to store the future data

(What is IaaS.)

The second model is the Platform as a Service and it lands on top of the IaaS. In

addition to the service provided by the IaaS service provider, the environment on

which to build applications and share them over the Internet, is also provided by

the service provider. The PaaS can provide operating systems, server software,

storage, design and development tools and overall support for the user. Such

services used are for example the Heroku that user can use to run and develop

their own software and make it available for others to use (What is PaaS.)

The final model is the Software as a Service and is the simplest model for the

user. With this model the user rents or buys the software itself, which is on top of

the PaaS and IaaS. This is the most used one and many use the SaaS without even

knowing it's there. Users subscribe to the software and are charged on monthly

basis or by the use. Some of the biggest used software are, for example, the

Netflix, Office 365 and Google Apps (What is SaaS.)

3.3 Automation

3.3.1 Background

Automation is a large concept that has been part of the world for centuries. The

basic idea of automation is to have a process to accomplish on its own, without

needed interaction of human nature after the initial setup of the automation

process.

One of the first 'automated' contraptions were simple steam powered devices

developed by the ancient Greeks but served little to none purpose. In the Middle

Ages first mechanical clocks started to arrive to Europe, with a weight to keep the

clock operating as an automation (Groover 2018.)

20

The Industrial Revolution increased the number of steam powered devices. Early

steam engines and the pressure inside was handled manually, as the boiler would

explode were the pressure to increase above certain limit. This was later

automated with a regulator valve that operated based on the current pressure

inside the boiler and would decrease the pressure to maintain proper level,

ensuring automatically the boiler would not explode and the running speed and

power of the steam engine could be managed (Groover 2018.)

3.3.2 Home automation

The home automation is quite young concept, as it has been around for about 80

years. According to Jennifer Tuohy's writing in Network World (2015), the

concept was first introduced in Chicago World's Fair in 1934 as 'home of the

future'. The idea back then was to connect devices and appliances together into

centralised control panel inside the home, where the devices could be used

remotely, without touching the device directly.

In 1975 one of the first moves towards larger home automation was made with

the introduction of the X10 protocol. With the X10 all devices connected together

with electrical wires could be communicated with and controlled. The X10

transmitter's signal consists of numerical code with the information of command

being issued, an identification code to the device commanded and finally the

command what the device should do. Designed to be fast communication, in

reality the channels could get stuck and jammed of several messages and because

of the electricity itself in the wires, resulting in false commands for false devices

(Edmonds, Chandler.)

The regulator valve described earlier is based on negative feedback, or balancing

feedback, a method that is used on many automated devices and processes.

Today a common sight is a thermostat to handle the current and desired

temperature of a room or home. The thermostat functions with the negative

feedback; when the temperature drops below the set level, the switch activates

turning on the heaters, increasing the temperature back to desired level and then

switching back off. This method is simple and effective automation which can be

21

pictured as pendulum effect, where, in this case, the temperature decreases and

increases relatively smoothly around the desired level (Groover 2018.)

As of the Internet of Things, increasing numbers of different devices and

appliances in home environment can be implemented into smart home concept.

In smart home concept the previously centralised home automation being

controlled from a control panel, is brought to the user's smartphone on an

application to handle the devices and appliances from basically anywhere with an

Internet connection. This enables the mobility of the services; the home

monitoring can be accessed from work and appliances activated and deactivated

from outside the home's local area network. Strong security is, as in many cases,

essential as previously described in the IoT section of thesis work.

4 Sauna

4.1 Background

Since the term ‘sauna’ is quite large as it may signify many relatively different

things and places, first it is important to know what ‘sauna’ means in this thesis

work. The sauna in this case specifically is a Finnish sauna.

The sauna is believed to have developed from the ancient dwellings, larger holes

in the ground covered up with leathers and sprigs. These dwellings were kept

warm with fire inside and the best way to reserve the warmth was with stones.

The fire was kept under the stones, which could then heat up the space for a long

time after the fire had extinguished. The fire was usually close to the door, so that

the smoke could easily escape the dwelling.

At some point water was 'invented' to be added on the stones, thus creating

steam and sweating, which in addition could erase even the hardest of dirt on a

person and increased the cleanliness of inhabitants, as they could easily bathe on

benches higher up in the sauna. These three main elements remain till present

day; stones to reserve heat, water, or löyly, to maintain the warmth feeling and

bench, laude, to sit and bathe on.

22

Sauna spread across the European continent and was quite popular as heating

source. After more established buildings with fixed fireplaces were erected,

saunas lost their meaning as places to bathe. In Northern and Eastern Europe

sauna was still considered as an ideal place to bathe and keep warm, as the

people used to travel a lot, and no actual buildings were present.

The traditional sauna version was the smoke sauna, savusauna (Figure 4),

described earlier, till the very end of 19th century, when people slowly started to

prefer more modern woodburning stoves, with electric heater version starting to

arrive in mid 20th century. The most used versions today are the woodburning

and electric heater stoves, with the former being the one used in thesis work

setup as well (Saunan kehitystä 1997/1999.)

Figure 4. Example of a smoke sauna (Smoke sauna 2004)

4.2 Operating principle

This chapter concentrates on woodburning sauna and its basic operating

principle but applies on many parts to the electric version as well.

23

The stove, or kiuas in Finnish, produces heat to heat up the stones on top of the

stove. These stones reserve the heat and are used to control the warmth and feel

of the heat inside the sauna. Water, or löyly, thrown onto the stones create steam,

increasing the humidity of the sauna and making the air feel warmer. The normal

relative humidity readings vary between 10 and 30 percent, with the

temperature normally staying between 70 and 100 degrees Celsius.

Air circulation is essential for the well-being of the bather and also for the

woodburning stove. The supply air pipe is usually located somewhere close to the

stove and potentially slightly above the stove. The colder air drops down and

starts circulating with the warmer air rising from the stove, giving fresh air for

the bathers. If the air supply is located close to the floor, the air should be

channelled up, closer to the stove top (Saunan rakentaminen – Tuloilma

1997/1999.)

The exhaust air pipe is usually located at the back of the room, under the benches.

As the air circulates the room, air drops down and exits through the exhaust air

pipe, giving steadier temperature readings around the sauna room and healthier

experience (Saunan rakentaminen – Poistoilma 1997/1999.)

No pre-defined time is present for the bathing session, as the sauna experience is

individual. Depending on the person's own likings, the bathing can last from just

couple of minutes to hours. Longer periods of time in a sauna is unhealthy, and

bather must take regular breaks to cool off and rehydrate.

4.3 As an environment

The sauna is not a conventional environment for an IoT project. As the normal

room temperature of ~20°C is the 'normal' environment, the components and IoT

devices are usually designed for this specific environment as well. While the

temperature and humidity increases, a special care is needed when selecting the

correct devices and components for the project, in order to ensure good life

expectancy and safety of said devices.

24

Many sensors found for sale in various stores are designed to cope the stress of

high temperatures and humidity, at least for the sauna standards. Components

are easy to select from specific category and measuring range but more complex

devices, such as speakers and microphones are harder to find, from the lower

price categories.

The continuous exposure to high temperature and humidity can affect some of

the devices and components on such level these devices stop functioning as

intended. To prevent such from occurring the more delicate devices have to be

located in a secluded area outside the immediate danger zone. As of the mobile

nature of the sauna, being built on a trailer, not only is the environment inside the

sauna a problem but also the environment outside the structure. The sauna

structure will be located outside throughout the year, and during the coldest

periods of time in winter, certain components or devices can be removed from

the sauna, if not needed, to prevent unnecessary damage or wearing, the more

delicate devices being the Raspberry Pi 3, the speaker and the microphone. The

latter is quickly removed due to the USB connection to the Raspberry Pi.

The mobile nature of the sauna causes problems for the power of the devices and

for the Internet connection. For this reason, the sauna structure is fitted with

solar panels to address the power problem, and network router for the Internet

address, to which the Raspberry Pi is connected either physically with a cable or

with WiFi connection.

5 Tools in development

This chapter concentrates on the major tools and technologies chosen for the

development and building of the solution. The used hardware is specified later.

The tools were selected with a few basic requirements. All of the tools were to be

easy to install and implement, easy to use and modify, and all of the tools were to

be open-source to keep the cost of the project as low as possible, except for the

cloud infrastructure provided by DigitalOcean, which was charged monthly. The

25

pool of tools available for use is large and the selection of the following tools was

made with usability and relevance in mind for this specific solution.

To see the architecture and reasons behind the major tools used in the project see

the software architecture (See Chapter 7.1).

5.1 Home Assistant

The Home Assistant is an open-source home automation platform that runs on

Python 3. Designed to be used on the Raspberry Pi, the Home Assistant can track

and control numerous devices located in the same network. The Home Assistant

functions on modular bases, as the implementation of new component

integrations are made easy. While other automation platforms may need to use

the power of cloud services to operate and handle the automations, the Home

Assistant runs only on the local device, whether it be a normal PC or Raspberry

Pi, with only limiting factor being Python and its compatibility of said devices.

Home Assistant has possibility for browser-based (Figure 5) automation and

monitoring but can also be accessed through mobile application for more

mobility (Brown 2016.)

26

Figure 5. Example of Home Assistant overview

In thesis work the Home Assistant is used to control and track all available

components inside the sauna, from Mopidy MPD music player to lights and water

pump. Certain components may be used from Snips AI, a speech recognition

system, as well, as the possibility of handling a smartphone in a sauna for a longer

period is bleak.

5.2 Node-RED

The Node-RED is a graphical flow-based programming tool to wire up different

IoT devices and services. The different modules, whether physical devices,

application programming interfaces (API) or online services, can be connected to

create complex flows for IoT purposes. Built on the Node.js the Node-RED can be

accessed and operated from a browser environment (Figure 6). While probably

the most used environment is on a physical device, usually on a Raspberry Pi in

that matter, the Node-RED can also be implemented into cloud environment. The

Node’s package repository contains well over 200,000 modules, which can be

added at leisure to further increase the possibilities with the Node-RED. Node-

27

RED also offers a bunch of UI nodes to implement a simple UI (Figure 7) for easy

access to current data (Node-RED 2017.)

Figure 6. Flow example for RuuviTag in Node-RED

Figure 7. Node-RED Dashboard view

In the solution the Node-RED is used to gather the data from the sensors, modify

the data to match preferred template and to send the data to the cloud database.

Node-RED also handles the data transferring to Home Assistant with Mosquitto

MQTT to show the latest data, without the necessity of getting the data from the

database. In addition, some of the shell commands are executed from the Node-

RED.

28

5.3 Snips

Snips Voice Platform allows to have AI powered voice interaction in many

different devices. The platform contains Hotword detection, Automatic Speech

Recognition (ASR) and Natural Language Understanding (NLU), which all run

using deep learning locally on the device, meaning the cloud services are not

needed.

The Snips' function is based in bundles, which contains intents that all have their

own purpose. The Snips Console can be used to add or modify either readily-

made bundles and intents or to make own bundles with own intents to work on

(Figure 8). The Assistant is downloaded and installed on the local device, which is

used in the speech recognition.

The Snips Platform detects when a hotword, or a wake word, is captured and

takes user speech as input. The input is then transcribed, analysed for intents

from the installed assistant and finally searched for special slots in the intents. At

this point the results can be handled by the user's code as seen fit. The

communication between the different Snips services is done with MQTT broker

(Snips Voice Platform 2018.)

Figure 8. View from Snips Console

29

The Snips Voice Platform is the core of operations while inside the sauna, as the

only way to interact is with voice, since use of a smartphone is hard and even

dangerous, as the battery could easily explode under heavy stress of high

temperatures. The microphone inside the sauna can be activated and deactivated

to disable unwanted hotword detection during normal conversation, for example.

The intents captured by Snips are handled in the Home Assistant.

5.4 Mosquitto and MQTT

Eclipse Mosquitto is an open source, lightweight message broker that uses MQTT

(Message Queuing Telemetry Transport) protocol that can be used on low power

devices or in large servers.

The MQTT is used to publish and subscribe messages to different topics. The

configuration for said topic is not needed, as the topic is created on the first

publish message. The clients connect to the same broker and use the subscribed

topics as seen fit. Sending data to database over the MQTT allows for quick

additions of new data points to publish on same topic (Light.)

The MQTT sends data from the sensors read by the Node-RED directly to Home

Assistant. Home Assistant shows the latest data gathered and this data can be

used to automate functions or by Snips to enquire, for example, sauna's

temperature by voice. One broker handles all the traffic coming to the MQTT,

Snips AI uses the same way to communicate between its different services. The

broker can be protected with user credentials, in which point Snips fails to

operate, for the credentials cannot be implemented to be used by Snips, at least at

the time of writing. Because of this, the broker is usable and accessible only on

the localhost for a low level of protection.

5.5 Mopidy

Mopidy is a music server written in Python, it can be used straight from the

terminal or as a background service on Linux and Mac based devices. Normally

functioning as MPD (Music Player Daemon) and a HTTP server, Mopidy can also

30

be implemented with additional frontends (Figure 9) to better suit needs. Mobile

applications can also be used for better access to the MPD.

As vanilla version, Mopidy can be used to play music from the local disk and from

the radio streams. With extensions, Mopidy can play music from different online

music sources, such as Spotify, or to stream straight from video sources, for

example, YouTube. The most popular device to run Mopidy on is the Raspberry

Pi, though on older versions the service can occasionally be rather slow (Mopidy

2018.)

Figure 9. Mopidy Musicbox Webclient user interface

Mopidy is used to play music from different sources, with the default source

being the Spotify. Spotify searches can be made within the Mopidy for artists,

albums and playlists, with user's own created playlists available as well. Snips AI

can be used to control the Mopidy service and the music play, such as changing to

the next or previous songs and controlling the volume. Selecting the playlist via

voice input is not possible at the time; however, as the Snips intents refuse to

communicate with Mopidy as such. The playlist may be selected from a mobile

application used with e.g. a smartphone located on the outside wall of the sauna

structure, as bather enters the sauna.

31

5.6 Festival TTS

Text-To-Speech (TTS) is a technology where the written, normal language text is

transferred into synthesised speech. There are numerous TTS services available

for many different languages but for Finnish not so many. The best candidate

after a quick research was the Festival Speech Synthesis System and its Finnish

language library Suopuhe.

The Festival was developed at Centre for Speech Technology Research (CSTR) in

the University of Edinburgh to address the need for better speech synthesis. The

Festvox is a platform for the Festival to build new voices and languages on. The

Festival and Festvox have preinstalled languages, with the most advanced one

being the English language. By default, good coverage for French and Spanish.

Building a new voice with the Festbox for English language will take a few days.

However, building a new language and a voice for it can take months or even

years to achieve a proper level (Festival – Festvox 2017.)

Suopuhe was a project funded by TEKES and was developed for speech synthesis

of Finnish language in 2003. Suopuhe consists of two voices, male and female, and

the voice generating is done with pre-recorded phone pairs that are modelled

with linear prediction used in mobile phones, a method called diphone synthesis

(Loponen 2005.)

5.7 DigitalOcean

DigitalOcean is used as the main cloud infrastructure platform, or server, for the

setup. DigitalOcean is an IaaS (Infrastructure as a Service) provider, hosting

virtual machines for the service buyers to use. DigitalOcean offers machines of

different sizes and power for different purposes, such as running a database.

Services can be scalable, scaling according to the current need of said service.

DigitalOcean comes with several pre-built distributions and applications, which

can quickly be fired up in, e.g. testing purposes (DigitalOcean 2018.)

32

The cloud services installed and operating in DigitalOcean are the InfluxDB

database and visualisation and monitoring tool Grafana. Both services are

described more specifically below, with installation instruction in the section of

building the solution.

The DigitalOcean machine runs on Linux Ubuntu 16.04, providing 1GB of RAM

and 25GB of storage with 2.4GHz processor, which should be more than enough

for the cloud, since the database and Grafana are not huge on the memory side.

The data incoming to the database is small and the storage for this purpose

should last for a long time.

5.7.1 InfluxDB

InfluxDB is a light-weight, open-source time series database written in Go

programming language. Designed for fast and high-availability storage for

timestamped data, the InfluxDB is useful when used to store IoT device data,

which usually comes in large amounts. With the DigitalOceans machine the

InfluxDB can do approximately 5 000 field writes per second. InfluxDB uses

queries similar to SQL (Structured Query Language) (InfluxDB 2018.)

The InfuxDB can be accessed through the command-line interface (CLI) to

manage the database as either normal user or admin. The before supported

Admin UI, accessible from the browser, is no longer available after the InfluxDB

v1.5 and the changes to the InfluxDB service or the database must be done on the

CLI side as an admin user (Figure 10).

Figure 10. InfluxDB command line interface

The measurements, or tables, are created as the data first arrives to the database

from the Node-RED nodes. Each node represents own measurement for the

specific data sent.

33

5.7.2 Grafana

The data is sent to be monitored and visualised in Grafana, an analysation and

visualisation tool designed for timeseries databases to make the incoming data

more readable by the user.

Grafana offers different in-built visualisation options, varying from normal

timeseries graphs to single stat gauges (Figure 11). The user can define alerting

rules for important data, such as in this case for temperature readings, should the

temperature rise above the set level a message can be sent to the user to notify

about the status inside the sauna. The dashboards created inside the Grafana can

be made more dynamic with the help of templates and variables, changing the

values to show data from a different source in the same dashboard for example

(Grafana Labs 2018.)

Figure 11. Dashboard view of RuuviTags in Grafana

Grafana shows the data from InfluxDB timeseries database. Multiple dashboards

are created to show data from different sensors and/or measurements. Some

values are also viewable through the same dashboard with the use of variables,

though the whole is easier to see when sensors are shown separately on own

tables and gauges.

34

6 Hardware

The hardware was carefully selected from vast variety of possibilities. The

hardware gathered for the thesis work had specific requirements; to be able to

function without any errors under high temperature and humidity loads, as well

as to withstand the potential harsh environment surrounding the sauna itself.

The following chapters describe the hardware selected, including the sensors and

other physical devices implemented and connected to the sauna. Some of the

devices are predefined, given to the writer’s use by the client from personal

collection, while other devices and components were either bought locally or

ordered through the Internet from global suppliers.

6.1 Raspberry Pi

Raspberry Pi (Figure 12) is a small and affordable single-board computer

designed for different user projects. These devices can be used as any other

computer, provided all the power that a bigger computer delivers is not needed.

First introduced in 2012 with the initial version, the Raspberry Pi has sold over

12 million devices, with all the version included, in its five-year career, according

to Circuit Breaker blog in March 2017. (Miller 2017)

Figure 12. Raspberry Pi 3 Model B used in the solution

35

Raspberry Pi by default runs on Debian based Raspbian operating system. The

version used in thesis, the Raspberry Pi 3 Model B (Figure 12), is the most sold

version at the time of writing. It delivers enough power to handle all the needed

components for the project. With built in Bluetooth and WiFi connections it can

also operate on the Internet and connect to a speaker without the necessity of

additional cables. Technical specifications of the Raspberry Pi 3 Model B can be

seen in the figure (Figure 13).

Figure 13. Raspberry Pi specifications for different models (Benchoff 2016)

In whole the Raspberry Pi functions as the core for processes and services in the

final solution, being responsible of gathering the data from numerous sensors

and then sending it through the Internet into a cloud service to be stored and

monitored as one sees fit.

6.2 Sensors and components

The used components and/or devices are listed in the table (Table 2) and are

later referred to with the ID of said entry. The table is also shown in Appendix 4

for easier access.

Table 2. Used components and parts

ID Function Description Location

36

M1 Moisture DHT22 Upper left wall

M2 Moisture DHT22 Lower left wall

T1 Temperature DS18B20 Left wall

T2 Temperature DS18B20 Concrete, below stove

T3 Temperature Thermocouple K-type Roof, above stove

T4 Env. sensor RuuviTag Air income pipe

T5 Env. sensor RuuviTag Roof insulation

SP1 Speaker UE Roll 2 Under sauna benches

MIC1 Microphone USB microphone Close to bather

US1 Ultrasonic AJ-SR04M Top of water tank

RL1 Relay 8-channel board Fieldbox

CON1 Converter Step-Down converter Fieldbox

BT1 Button Microphone activation Close to bather

BT2 Button Emergency kill switch Wall

TB1 Term. block Terminal block Fieldbox

CB1 Circuit board Circuit board Fieldbox

FB1 Fieldbox Fieldbox Sauna back end

WP1 Water pump Water pump Near water tank

L1 Light Light 1 Left wall

L2 Light Light 2 Back wall

37

Sauna is fitted with some casings, which can be used as installation points for

sensors inside the sauna, e.g. for the humidity sensors (Figure 14). For a visual

view of the hardware placement see the Appendix 5.

Figure 14. Example of sensor casing

6.2.1 Temperature sensors

A large amount of the sensors are temperature sensors. These sensors vary in

preferred measuring areas and are located accordingly inside the sauna. With the

normal temperature inside the sauna being somewhere between 70 and 100

degrees Celsius, these sensors have been selected with a high temperature

operating range in mind.

Most of the sensors can measure up to 125°C and after that should be functional

to at least 150°C. However, continuous exposure to such high temperatures may

influence the sensor. Because of this, all the sensors inside are made to be easily

replaced, should one or more fail.

The pool of available sensors was defined by the preferred use of digital sensors,

because of the Raspberry Pi's digital GPIO pins, allowing measurements without

AD-converters. Another definition was that only three wires were possible to be

used for the sensors, due to the cables running inside the sauna. Use of only

38

digital sensors limits the operating range of said sensors, analogue sensors being

able to sense higher temperatures. The temperature of +125°C was still adequate

for the sauna environment.

DS18B20 (T1, T2) sensors are relatively small and effective digital temperature

sensors. These sensors operate between -55°C and +125°C, with the accuracy of

±0.5°C between -10°C and +85°C. Outside this range the accuracy may decrease

to ±2°C, which in the case of a sauna is adequate.

Sensors come in two variations, one version being open to the elements and other

encased (Figure 15). The latter one is surrounded with stainless steel metal

casing with PVC wrapped around the three wires of the sensor, ensuring the

device remains waterproof. Because of the PVC plastics nature this version is

prone to some deformation under certain temperatures, starting around 100°C, if

applied too much pressure, and the final total melting point being close to 200°C.

In used environment these temperatures should not occur under any normal

circumstances, with the highest temperature being present just above the stove,

where another sensor with higher heat resistance is used (PVC Heat Distortion

Temperature.)

Figure 15. Both versions of the DS18B20 sensor

39

The DS18B20 sensors are used to measure the basic temperature of the sauna,

much like a normal analogue temperature gauge would do. Sensor has three

wires, GND, data and VCC, with either 3.3V or 5V input. DS18B20 can also operate

without external power input, in so called ‘parasite-mode’, where the power is

drawn directly from the data pin, thus operating with only two pins. While this

wiring method may sound intriguing, it is advised to use external power source,

as it will produce more precise measurements, for the parasite-mode may cause

excessive warmth issues with the sensor. As it is possible to use three pins for the

sensor in this case, the normal connection is used.

A resistor of 4.7k to 10k is needed between the external power and data pins,

same resistor can be used for multiple DS18B20 sensors. The DS18B20 also has

an advantage over many other sensors; it has a 64-bit serial code, which means

that multiple sensors can be connected via the same data pin and identified by

their unique code. This can be convenient in larger solutions, where the need for

numerous sensors is present.

Thermocouple (T3) sensors are temperature sensors, which can operate in

relatively high temperatures. The sensor consists of two electrical conductors of a

different nature, forming electrical junctions based on the current temperature.

The voltage varies accordingly, thus giving the possibility of high accuracy

temperature readings.

The thermocouple sensor used in the setup is of a K-model (Figure 16), which is

capable of measuring temperatures approximately between 0 and 1024 degrees

Celsius, with sensing accuracy of 0.25°C. This model is formed with chromel-

alumel junctions, giving it a high temperature range for the usage in the sauna

environment. The normal temperature of a sauna varies between 70 and 100

degrees Celsius. In this case, however, the sensor is installed in the ceiling above

the sauna stove, where the temperature can exceed the preferred sensing area of

other used sensors, which could result in a lowered life expectancy or even a

breakdown of said sensors. The Thermocouple sensors use a special

thermocouple wire, extension cables being available for purchase if necessary. In

this case, the sensor is connected via a normal cable to the Raspberry Pi, as the

40

thermocouple wire is not long enough. This can influence the accuracy of the

sensor if used on longer distances, but under the distances in a sauna the

accuracy should remain approvable.

Figure 16. Thermocouple K-type with MAX6675 converter

Thermocouple sensor needs a Thermocouple-to-Digital converter, which in this

case is provided by MAX6675 converter. The converter can be directly connected

into Raspberry Pi 3 via its five pins, with VCC of 3.3V and GND coming from the

circuit board. The converter does need a driver to operate, which can be found as

open-source from Github, licensed free to use and modify as seen fit, provided the

said license is included in made variations as well. (Hefnawi 2014)

The driver is easy to use, with an available example code to run. The example

code reads the measurement from the thermocouple, from specific GPIO pins, and

prints it on the terminal. One addition needed to be made into original code,

however, as it would not function correctly without it. Before reading the sensor

reading the software needs to sleep for at least 200 milliseconds, as stated in the

issues of said Github page. With no sleep time between the initialisation and

reading, the sensor could send either zero or last successfully measured reading,

thus making the sensor useless.

41

6.2.2 Humidity sensors

In addition to temperature sensors, the other important sensor type is the

humidity sensor. Humidity sensors traditionally measure the relative humidity

readings from the surroundings. Inside the sauna, this reading is important for

the well-being of the bather and sauna as well.

A normal absolute humidity, depending on the temperature in the sauna, is

somewhere between 30 and 40 grams per a kilogram of air, which as relative

humidity percentage is between 10% and 30%. To achieve the specific desired

humidity in sauna, water must be applied accordingly on the stove. Higher

temperature requires higher amount of water applied (Lämpötila ja löyly 1997.)

DHT22 (M1, M2) is the primarily used relative humidity sensor, which can also

measure temperature readings (Figure 17). DHT22 has four pins, with 3.3V to 5V

power input, data pin and GND, one of the pins being a no-connect one. Sensor

comes with a normal 4.7k to 10k-pullup resistor, which connects between VCC

and data pin, much like described before with the DS18B20 temperature sensor.

Figure 17. DHT22 temperature and humidity sensor

In the solution the sensor has an additional board connected into it, with the

required resistor built in, thus leaving only three pins to be connected directly

42

into Raspberry Pi 3. These sensors are in the inside wall panelling off the sauna

on different heights to get accurate readings on different levels.

6.2.3 RuuviTag

RuuviTag (T4, T5) is an open-source sensor beacon platform that can measure

temperature, humidity, air pressure and acceleration in X, Y and Z axles (Figure

18). By default, the RuuviTag can be used as a small weather station with

Eddystone or iBeacon features but it can also be used to more complex solutions.

The RuuviTag uses BLE (Bluetooth low energy) technology to provide the data

for devices within the broadcasting range.

RuuviTag is usable straight from the box. It comes with preinstalled firmware and

a battery of 3V (CR2477), which is said to last somewhere between 5 to 10 years,

depending on the environment and RuuviTag's mode. Should the battery fail

sooner, the holder allows for quick battery replacement. The software is easy to

update, no physical connection between the tag and a computer is needed as it

can be flashed from a smartphone. In basic URL mode it can measure

temperature, relative humidity and air pressure, acting as, for example, an

Eddystone proximity beacon, with the data accessible in the Eddystone URL

(RuuviTag.)

Figure 18. RuuviTag with waterproof casing

43

In thesis setup the RuuviTag is set to RAW mode, which in addition to

measurements of above, can also collect acceleration and battery voltage data.

RuuviTag can measure temperatures roughly between -40°C to +85°C but is

recommended to be maintained from -20°C to +60°C for longer life expectancy

and battery life. The casing around the RuuviTag is waterproof and the whole has

been tested multiple time in saunas and even in boiling water at around 100°C

with positive results (Ruuvi: Weather Station 2016/2017) (Official RuuviTag

Firmware 2017.)

In sauna the RuuviTag is not solely used to measure data from inside the sauna as

other sensors are but instead to measure the incoming air temperature and with

the possibility to measure temperatures inside the ceiling insulations as well to

monitor that the temperature there stays within accepted range. Both locations

are easily accessed for the device to be removed or replaced.

6.2.4 Ultrasonic sensor

The ultrasonic sensors (US1) send out signals to ping an object and measure the

time between the signal sent and signal received, thus creating the measurement

of distance.

In thesis work, the AJ-SR04M waterproof ultrasonic sensor (Figure 19) is located

on the top half of the water tank under the sauna. With the measurement from

the ultrasonic sensor the amount of water can be measured and used to

determine, whether it is safe to automatically, or manually, throw water on the

stones on the stove. The measurement range of the sensor is between ~20 to

~400 centimetres.

44

Figure 19. Waterproof ultrasonic sensor AJ-SR04M

The sensor is read with C++ code and ran at specific intervals with other sensors

in Node-RED service. The measurement is in centimetres, increasing as the water

amount in the tank diminish. With the knowledge of the radius and height of the

water tank, this measurement can be converted to litres for easier readings.

The measurements are accurate enough for the purposes of the thesis work.

While the sensor reading may vary drastically on some occasions, the average

value of those readings can be considered accurate. Analogue water gauge can be

added, should errors start to happen with the ultrasonic sensor.

6.3 Sound

6.3.1 Speaker

As predefined piece of hardware the selected speaker (SP1) was UE Roll 2 (Figure

20). A small, yet big on sound speaker was a good choice for audio output. The

speaker can be moved around the sauna, at least on the benches, as the

connection between Raspberry Pi 3 and the speaker is handled with Bluetooth.

The exact procedure to enable this is described in own section. While the

Bluetooth connection is preferred standard, connecting the speaker via 3.5mm

jack is also possible, provided the cable is long enough.

45

Figure 20. UE Roll 2 Bluetooth speaker

Speaker is IP67 rated, able to withstand humidity values inside the sauna, as well

as total submerging in water. The high temperatures cause the outer casing of the

speaker becoming hot but should not affect the speaker itself. The battery inside

the speaker also depletes more quickly in high temperatures, as the one in a

smartphone would, but because of the easy movability of the speaker, it can be

removed from sauna when not needed, thus improving life expectancy.

6.3.2 Microphone

Finding a functioning microphone (MIC1) under the environment of a sauna is

not easy. The microphones proofed to work under high temperature and

protected against humidity are rare, at least from the cheaper category.

The best solution was to have a cheap and easily replaceable USB microphone

(Figure 21), which can be connected either directly to the Raspberry or, in this

case, via extension cable, so that the microphone could be located in a way that

the speech can be heard clearly. The heat and humidity matter may influence the

USB microphone; higher temperature and humidity may cause the microphone to

stop working. The heat and humidity may also affect the USB ports directly, again

resulting in a failure. Thus, both components, the extension cable and

microphone are easily replaced if needed. The microphone used is made of ABS

plastic, which should withstand higher temperatures than PVC (PVC Heat

46

Distortion Temperature) but as the microphone is not officially protected against

the environment the life expectancy is hard to define.

Figure 21. USB microphone used in solution

The exact USB microphone model is hard to define, however, when using the usb-

devices command, the manufacturer is stated being C-Media Electronics Inc. but is

not confirmed knowledge. Any USB microphone should be compatible with the

Raspberry Pi 3 and thus function correctly.

6.4 Fieldbox

Fieldbox (Figure 22) is located in the back end of sauna structure. The fieldbox is

secluded from the temperature and humidity issues of the sauna interior and is

where the more delicate devices are located. These devices are the Raspberry Pi

3, as described earlier, a relay board for using the lights and water pump, and a

DC/DC step-down converter to be used for the Raspberry Pi.

47

Figure 22. Fieldbox before installations with battery connected

The devices located in the fieldbox are attached on a panel, which in whole can be

removed from the fieldbox for maintenance. This panel includes the Raspberry Pi,

the circuit board (CB1), the relay board (RL1), the DC/DC converter (CON1) and

the terminal block for the cables (TB1).

A relay board (RL1) is used to handle the additional appliances, such as lights

and water pump. The specific relay board consists of 8 relays and accepts

voltages from 5VDC to 250VAC (Figure 2). A car battery (12V) is located under

the sauna, which provides the needed power for the appliances connected to the

relays to function.

48

Figure 23. 8 Relay Module used in solution

The relays are only used from the Home Assistant directly, configured in the

Home Assistant's configuration file with corresponding GPIO numbers for each

relay to initialise. No external driver is needed to operate the relay board, only

specific GPIO numbers in the Home Assistant or Node-RED.

DC/DC step-down converter (CON1) (Figure 24) is used to convert the power

supply to accepted level for the Raspberry Pi 3 from the 12 volts of a car battery.

The Raspberry Pi normally uses the official power supply of 5V/1A but with the

car battery the power input would be enough to burn the circuits and render the

Raspberry useless. The DC/DC converter lower the voltage from 12 V to 5V and

the amperage to 3A maximum. As with other electric devices the voltage is the

more important part with the power supply as the Raspberry Pi only takes as

much amps as needed.

49

Figure 24. DC/DC converter used in solution

With the used converter the input voltage of 12 volts is connected to the two

wires seen in the figure. The output of 5V is delivered through the female USB

port to the Raspberry Pi 3. An extension USB cable is needed to connect between

the converter and the Raspberry Pi's microUSB port.

The cables running inside the sauna connect to the terminal block (TB1), from

where the connection is handled with jump wires to the Raspberry Pi 3. The relay

board is connected to the Raspberry Pi with jump wires, the cables run from the

relays to the lights and water pump, with 12V power supply applied.

Circuit board (CB1) (Figure 25) built for the solution provides the power supply

for the sensors, both the 3.3V and 5V, for the relay board, of 5V, and for the two

switches, or buttons, both of 3.3V. The DS18B20 temperature sensors (T1, T2)

connect to a 4.7k resistor between the power pin and data pin. Same resistor can

be used for several DS18B20 sensors. The buttons, one to set microphone either

on or off and other to act as a kill switch in case of emergency, are both behind a

single 4.7k-pulldown resistor.

50

Figure 25. Circuit board constructed for the setup

7 Building the solution

This chapter describes the process of building the solution and platform for the

project in its entirety to offer an understanding of what was achieved and

executed during the thesis work. The building of the actual system, with the

components and devices described before, as well as the installation and

configuration of the needed tools and services, are explained in the following

chapters.

7.1 Software architecture

The software architecture is explained for a better understanding of why the

certain tools were selected amongst many. The flowchart (Figure 26) simplifies

the architecture, showing the connections between certain larger parts of the

system, with smaller, yet as important parts being explained.

51

Figure 26. Flowchart of the system

The core for the system is provided by the Raspberry Pi 3 Model B. With the

requirement (RE100) of being able to function independently with or without the

Internet connection, at least limitedly on the latter part, the used tools were

selected accordingly. One tool addressing this requirement was the Node-RED.

The idea of using the Node-RED as the controller for the sensors and components

connected to the Raspberry Pi, as well as for the connection between the device

and the server, occurred when first conversations of the project were held with

the client. Node-RED could easily be used to handle the codes and scripts for

different purposes on the device, with a great selection of user-made nodes for

different components, such as the used sensors. This meant that no external and

additional code had to be constructed for the sensors to work. The same applied

also to the database connection, what normally would be done with either C++ or

Python was now handled by Node-RED. For some components additional scripts

or codes had to be implemented, one being the button for applying water onto

stove (RE200). The automated Internet connection was controlled with the Node-

RED, as Raspberry Pi may drop the WiFi connection at certain points or the sauna

could be moved to a different location, where the previous network is not

available.

52

Another large requirement for the system was to be able to control some of the

components with voice commands (RE210, RE300, RE301, RE302, RE410,

RE510, RE511, RE512). Many speech recognition services are available, e.g. the

Google Assistant's API.ai or Amazon Echo's Alexa. Both of the named need an

access to the cloud services, which requires continuous Internet connection.

Should these services be used in the sauna, voice control system would fail

immediately in case of a network error. Therefore, a service that could function

without the Internet connection was needed. The Snips AI was chosen for largely

growing popularity and for its private-by-design and on-device principles, as well

as for a good documentation regarding the installation and usage. The Snips AI

communicates internally between its different services with MQTT messages,

which are also used to communicate with other services running on the local

device.

The Home Assistant was first noticed during the conversations with the client at

the start of the project. Home Assistant was recognised as a great choice for the

automation and remote controlling of the system, due to its simple UI, which

allowed many possibilities for remote controlling (RE400), and easy-to-make

automations. Creating configurations for the Home Assistant proofed easy and

addressed many of the requirements together with the Snips AI, being able to

handle all current and to-be automations (RE201). The Home Assistant is used to

access the current data, which is sent to MQTT broker from Node-RED. The Snips

AI use this data from the Home Assistant to provide information to the user when

desired. The Mopidy Music Player is implemented into Home Assistant to access

and use the service from either Home Assistant’s UI or through Snips AI (RE500).

The cloud infrastructure is provided by DigitalOcean, as it turned out to be the

best choice for IaaS service for the project. The database, InfluxDB, was chosen as

the database due to its light weight and compability with timeseries data from

IoT devices. The Grafana was selected as the visualisation tool for the sauna data,

mainly for the easy usage and monitoring. Grafana was seen as sensitive choise

for data analysation and visualisation, as former knowledge of the software was

present.

53

The following chapters describe in detail the installations, configurations and

usage of tools and hardware alike, in order to achieve the setup for the system.

7.2 Raspberry Pi

7.2.1 Installation and backup

The installation of the Raspberry Pi 3 is an easy enough procedure to do as there

is a fine documentation found on Raspberry's own homepage. The mainstream

installation, however, was as follows.

A fresh, out of the box Raspberry Pi 3 usually comes with the micro-SD card

already including the installer software. This version is referred as NOOBS (New

Out Of the Box Software) and is the easiest way of installing. This method is not

available for the installation of the image used in thesis. The image used is

Hassbian, and as opposed to the Raspbian image, comes with no graphical user

interface (GUI) possibility.

The Hassbian Image is found on the Home Assistant's own homepage and needs

to be flashed to the micro-SD card. This can be done with the use of Etcher, a very

user-friendly flashing software. Some machines have no option to insert the SD

card for flashing directly. In such cases only way to do it is to use a USB flasher

and connect the SD card via the USB port (Install Home Assistant.)

Flashing will take from approximately 5 to 10 minutes. Once done, the micro-SD

card can be connected into the Raspberry Pi 3, with correct Raspberry Pi power

supply. While starting the Raspberry Pi for the first time it is advised to have a

monitor connected to the Raspberry Pi via the HMDI output. The monitor can be

used throughout the system building if possible but SSH connection can also be

used for the same purpose from another computer.

At some point, it is wise to copy the micro-SD card of the Raspberry Pi 3 in case of

data corruption or physical breaking of either Raspberry Pi or the micro-SD card

itself. The dd command can be used to make an image of the micro-SD card to

another computer. As before, the card is inserted either in the internal card

54

socket, or if not available, to the external USB flasher and connecting it to the

computer.

See the name of the SD card filesystem

$ df –h

Locate SD card, in this case /dev/sdb2

Filesystem Size Used Avail Use% Mounted on

/dev/sdb2 15G 5,8G 8,2G 42% /media/.../3f...

Make image of the card

$ sudo dd if=/dev/sdb2 of=/home/user/rpi_image.img bs=1M

The command above makes an image of the specified SD card and saves it to the

specified directory with given name. The bs argument is used to control the block

size of read and write operations. The operation can easily take up to 15 minutes

on 16GB micro-SD card. The length depends on the speed of the USB drive and

the size of the micro-SD card.

7.2.2 Internet connection

The Raspberry Pi is connected to the Internet via the Ethernet cable or with WiFi

connection, the former is easier as it requires no additional configuration. The

wireless connection is configured in /etc/wpa_supplicant/wpa_supplicant.conf.

List available networks

$ sudo iwlist wlan0 scan

Edit /etc/wpa_supplicant/wpa_supplicant.conf

…

network={

ssid="ESSID_OF_NETWORK_1"

psk="PASSWORD_FOR_NETWORK_1"

priority=1

id_str="network_1"
}

network={

ssid="ESSID_OF_NETWORK_2"

psk="PASSWORD_FOR_NETWORK_2"

priority=2

id_str="network_2"
}
…

The wpa_passphrase can be used to generate a more secure password and to

remove the plain text password.

55

$ wpa_passphrase "network_ssid" "verySecurePassword"

This prints the configuration on the screen, from where the psk can be copied to

the wpa_supplicant.conf file.

The file above is used in the /etc/network/interfaces to have either static or DHCP

(Dynamic Host Configuration Protocol) distributed IP address. By default, the IP

is distributed by the DHCP and the configuration file is as follows:

Edit file /etc/network/interfaces

…

auto lo

iface lo inet loopback

auto eth0

allow-hotplug eth0

iface eth0 inet dhcp

auto wlan0

allow-hotplug wlan0

iface wlan0 inet dhcp

 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

…

The sauna structure is fitted with a router to be used when the home network is

not reachable. The priority of connection is for the home network and secondly

for the router inside the sauna itself. The prioritisation is done in the

/etc/wpa_supplicant/wpa_supplicant.conf. The router configuration is not

handled in thesis as the network providers offer guides for various routers and a

specific guide is not needed in this case.

To access Raspberry Pi from an external computer the SSH (Secure Shell) can be

enabled from the raspi-config, as SSH is usually disabled by default. At this point,

if not done already, the default password should also be changed into more

secure one.

The Raspberry Pi has a hostname given through the installation of the Hassbian

image, the default hostname being in this case hassbian. This can be changed to

56

something more suitable by consulting two files, /etc/hosts and /etc/hostname.

This name can be used to access the services running on the Raspberry Pi

through the browser by giving the port to the specific service, such as in this case

sauna.local:8123/ would be the address for the Home Assistant service inside the

local network. This makes it easier to connect to the services without the

knowledge of the current IP address of the Raspberry Pi.

During longer times of uptime, with the Raspberry Pi active but not connected to

the router via WiFi connection, the WiFi on the router entered a stand-by mode,

similar to a sleep mode. Wired connection worked with a computer from the

router, however, connecting the Raspberry Pi to the router with WiFi failed. This

was also tested with a mobile device. Restarting the router solved the problem.

This problem should not occur normally, as the Raspberry Pi should always be

connected to the router, if no home network is available in range, thus the router

should not enter sleep mode.

The Raspberry Pi’s WiFi module may at some point enter sleep mode, in which

case the wlan0 interface needs to be restarted. This can be done with following

commands.

 $ sudo ifdown wlan0

 $ sudo ifup wlan0

 # Alternatively

 $ sudo service networking restart

Should the restart of the interfaces fail for some reason, e.g. due to modifications

made to the /etc/wpa_supplicant/wpa_supplicant.conf, the networking service can

also be restarted, as this reloads the configuration files for network interfaces.

7.2.3 Configuration

Several configuration files are modified during the setup of the system. These

files, with the services in question, are handled on that specific service’s section

of the following chapters.

57

The GPIO pins on the Raspberry Pi are not readable by default, as additional

software needs to be installed for this purpose. To read and use the GPIO pins the

wiringPi software is cloned and built.

Clone wiringPi

$ git clone git://git.drogon.net/wiringPi

Build wiringPi from the directory

$./build

After the steps above the GPIO pins can be read with the gpio readall command.

This prints the name and status of each individual pin, as well as the physical, wPi

and the BCM pin numbers, as seen in the figure (Figure 27).

Figure 27. Raspberry Pi 3 GPIO pins as seen from gpio

The gpio command is mainly used to check the pin numbers, as the nodes for the

sensors in Node-RED may use different number of each pin, for example the

DHT22 (M1, M2) node uses the BCM number while the Ultrasonic sensor’s (US1)

C-code uses the wPi number. The gpio shows different GPIO numbers than the

Raspberry Pi 3 header figure (Figure 28), the BCM value is equivalent to the GPIO

numbers in the latter figure.

58

The DS18B20 (T1, T2) temperature sensor support the 1-wire technology and the

same data pin can be used to read several sensors. The default pin number for

this purpose is PIN 7 and is configured in the /boot/config.txt file in Raspberry Pi.

Add to the end of file in /boot/config.txt

…

dtoverlay=w1-gpio

To change pin number

dtoverlay=w1-gpio,gpiopin=x

…

This addition allows the Raspberry Pi to use the temperature sensor’s 1-wire

functionality, as specified earlier on said sensors chapter (See Chapter 6.2.1).

7.3 Connecting the hardware

The hardware described earlier consists of different devices and appliances.

Together with the tools used in the solution, the system is made to operate

independently, monitoring the surroundings of the sauna and outside world and

to be controlled by the user when needed and seen appropriate. The GPIO layout

is referred to in the hardware installation (Figure 28).

59

Figure 28. Raspberry Pi 3 GPIO layout (Raspberry Pi 3 Pinout 2016)

For a better view of the whole setup, the block diagram is found in the appendices

(See Appendix 1).

7.3.1 Sensors

The sensors, as described before (See Chapter 6.2), are powered from the

Raspberry Pi’s power supply pins, either from the 3.3V pin or the 5V pin. All

sensors, apart from the Ultrasonic sensor used for water level measurements, use

the 3.3V power supply. The 3.3V GPIO pin is used for two DHT22 sensors (M1,

M2), two DS18B20 sensors (T1, T2) and for the Thermocouple K-type sensor

(T3). The Ultrasonic sensor (US1) uses the 5V power supply to get more accurate

measurements.

60

Most of the sensors are located behind the terminal block (TB1), with the cables

inside the sauna structure connecting to it, while the connection between the

terminal block and the Raspberry Pi is handled with smaller wires.

The two humidity sensors, the DHT22, are connected to the 3.3V power supply

delivered to the circuit board. These sensors have in-built resistors but can be

read only from separate GPIOs. The sensors are connected to the GPIO 17 and 27

(See Appendix 1), physical pins 11 and 13. The DHT22 node for Node-RED uses

the GPIO, or BCM, numbering for the sensors.

The primary temperature sensors, the DS18B20 (T1, T2), share the input power

of 3.3V with the DHT22 humidity sensors. The 4.7 kOhm resistor is set between

the power and data pins, both sensors using the same resistor. Unlike the

humidity sensors, the DS18B20 sensors connect to the same data pin with 1-wire

technology (See Chapter 7.2.3), which then connects to the Raspberry Pi's

physical pin 7 (GPIO 4). No GPIO pin numbers are needed for Node-RED’s node.

Thermocouple K-type (T3) has additional converter located inside the fieldbox.

The cables running inside the sauna structure connect to the converter,

connecting with the Thermocouple sensor's own cable at the other end. The

power input of 3.3V is drawn from circuit board's pin, while the CS, SCK and SO

connect directly to the Raspberry Pi's pins 15, 18 and 22 (GPIO 22, 24 and 25).

The sensor is read with Python script executed in Node-RED, available on the

project's Git repository. (Saunaxio – thermocouple 2018)

The Ultrasonic sensor (US1) is attached to the panel inside the fieldbox, with

sensor cable running to the water tank, where the sensor is attached facing down

to the water surface. The power of 5V is drawn from the circuit board, while the

ECHO and TRIG connect to the Raspberry Pi's pins 16 and 32 (GPIO 23 and 12).

Sensor uses C++ code to measure the distance, code is available in full in project's

Git repository. (Saunaxio – ultrasonic 2018)

61

7.3.2 Other hardware

In addition to the sensors the Raspberry Pi, the circuit board, relay board,

speaker, microphone, the switches and the DC-to-DC converter placement is also

described. The layout can be seen in the fieldbox layout (See Appendix 2).

The hardware inside the fieldbox is attached to a panel, which is removable in

case of maintenance. The Raspberry Pi is located centrally in a way the other

surrounding hardware is easily connected to it with jump wires. The power

supply of 3.3V and 5V is connected to the circuit board (CB1) with said wires to

provide the input power for components connected to it (See Appendix 2).

The DC-to-DC converter (CON1) is attached to the panel, close to the Raspberry

Pi's power input port. The converter's power of 5V/max. 3A is delivered via USB

cable to the Raspberry Pi. The power cables to the converter are connected to a

terminal block, from where the cables continue to the car battery of 12V.

From the terminal block the 12V power output continues to the relays on the

relay board (RL1) to supply the appliances, the lights and water pump, with the

needed power. The relay board is directly connected to the Raspberry Pi with all

GPIO pins, with the power input of 5V from the circuit board. The relays from the

first to last relay connect to pins 36, 38, 40, 37, 35, 33, 31 and 29 (GPIO 16, 20, 21,

26, 19, 13, 6 and 5). First three relays are used to control both of the lights and

the water pump, the rest relays act as a reserve. Relays' initialisation, as well as

the main usage, is done inside the Home Assistant, with toggling made possible in

the Node-RED with the gpio command.

The circuit board (CB1) is attached close to other hardware inside the fieldbox,

similarly to the Raspberry Pi, making use of jump wires easier considering the

length of said wires. Circuit board serves as a connection point between the

Raspberry and other components, including the terminal block.

The speaker (SP1) and the microphone (MIC1) are located inside the sauna, both

being easily removed when so desired. The speaker is connected with Bluetooth

connection, so no physical connection to the Raspberry Pi is needed.

62

Alternatively, the speaker can also be used via cable to the 3.5mm jack (See

Chapter 7.8.2). Speaker can be placed as seen fit, with some distance to the

microphone to minimalize unintentional hotword detection. The microphone is

connected to the Raspberry's USB port via an extension cable and attached close

to user at own specified place.

For visual description of the setup, see Appendix 1 and 2.

7.4 Node-RED

The Node-RED is pre-installed in Raspbian, or Hassbian, images but is of an older

version, which causes problems during the installation of some nodes and is

advised to be upgraded. Upgrading the Node-RED, Node.js and npm is the

solution to avert the problems from occurring.

7.4.1 Upgrading Node-RED

During the building of the system the Node-RED was upgraded to a newer

version. By default, the Node-RED is installed in the Raspbian image, in this case

Hassbian image, and is usable from the start. However, the older version

distributed within the images had problems with some of the installed nodes, e.g.

with the DHT22 sensor node.

The easiest way to remove all older version from the Raspberry Pi was to

uninstall the Node-RED with all dependencies. This way no old version would

remain to conflict with newer version.

$ sudo apt-get uninstall –purge nodered npm node

The files created by the Node-RED, the ~/.node-red/ and ~/.node-gyp/, as well as

.npm/ were removed to make way for a clean installation. These folders are

usually located in the user’s home directory.

The newest stable version of Node-RED can be installed with the apt package

manager. The npm is also installed in the same line. Node.js is installed inside the

63

Node-RED package. The node is installed with npm and upgraded to latest stable

release, as some npm installation may require newer version.

$ sudo apt-get install nodered npm

Upgrading latest stable release of npm globally

$ sudo npm install npm@latest –g

Latest stable node

$ sudo npm install n -g

$ sudo n stable

Check version of nodejs, node and npm

$ nodejs -v && node -v && npm -v

After the installation the Node-RED, npm and nodejs should all be in the latest

stable version and thus work as intended for the rest Node-RED nodes to be

added. Version number for Node-RED at the time of writing was v0.18.4, for

nodejs v4.8.2 and for npm v5.6.0. The node version was v9.8.0.

7.4.2 Installing required nodes

Node-RED is used to gather the data from the sensors and to send it to the cloud

database, to handle data transfer directly to Home Assistant for quick usage with

Snips Voice Platform and also to show current data for the user, viewed from the

mobile application or computer's web browser.

Adding nodes in Node-RED is made relatively easy with in-built Manage palette.

Most of the nodes were installed using this method, as it is the easiest and also

the safest way, as the Node-RED service and npm handles the installation and no

potential errors during manual installation could happen. Not all nodes are

available from the Manage palette, however, as for example the node to read data

coming from the RuuviTags can only be installed manually and directly to the

Node-RED's directory, since no 'official' is available at the time of writing.

The available nodes installed in addition to the base nodes from the Node-RED's

palette directly are listed in the table (Table 3), with a short description of

contents and the used version number. The nodes installed with this method are

64

installed and located in the ~/.node-red/node_modules.

Table 3. Additional Node-RED node installations

Node Description v.

dht-sensor DHT22 node, temperature and humidity 1.0.1

ds18b20-sensor DS18B20 node, temperature 1.3.5

hostip IP address 0.0.3

influxdb InfluxDB connection and queries 0.2.1

noble BLE scan for RuuviTags 0.3.0

dashboard Dashboard/UI nodes for Node-RED 2.8.2

openweathermap OpenWeatherMap node 0.2.1

smooth Number rounding 0.1.0

stoptimer Stoptimer to auto redeploy flows 0.0.7

The influxdb, noble and stoptimer are more precisely described in the example

flow for the RuuviTags, while others are not shown in use. The use of other nodes

is following.

The dht-sensor and ds18b20-sensor are used to read the humidity and

temperature sensors. The former node requires a node per sensor attached, while

the latter can read all DS18B20 sensors attached. The hostip is simply used to get

the current IP address; this could also be done with hostname -I command.

The node for Node-RED’s Dashboard, dashboard, is used to provide a simple UI

for user to access the most current data from the sensors. This UI is not used in

large scale, as the one in Grafana is more visually attractive. The Node-RED UI can

still be used, when no Internet connection is available, and no data is available

from the InfluxDB and Grafana.

65

The openweathermap gathers weather data from OpenWeatherMap’s API, with

API key implemented into node. This weather data is sent over MQTT to Home

Assistant to be viewed from UI or used by Snips AI, when enquiring for weather

forecast. The smooth node is used to round-up numbers, mostly used for Node-

RED’s dashboard view.

While the other nodes are easy to install, the RuuviTag node is a bit more

complex. The RuuviTag node's functioning depends on the noble node installed

correctly; this can be installed from the Manage palette, as seen in the previous

table.

To install RuuviTag node, the repository from Github needs to be cloned.

Repository can be cloned to own home directory. (Jousimaa 2017)

Clone repository in ~/git-clones/

$ git clone https://github.com/ojousima/node-red.git

In folder with the package.json

$ sudo npm link

In ~/.node-red directory

$ npm link node-red-contrib-ruuvitag

The link command links the repository and the needed packages to other Node-

RED packages located in the ~/.node-red/node_modules and the RuuviTag node

appears, if correctly installed, in this directory as any other node would.

The BLE scan on the Raspberry Pi 3 may sometimes fail and refer to not having

the permissions to start BLE scanning, with the following error message seen in

the Node-RED’s debug tab:

 ‘Unable to start BLE scan. Adapter state: Unauthorized’

This error occurs because of the root privileges missing from the node binary,

making it unable to start or stop the BLE scan. The following command gives the

root/sudo privileges to the node binary, after Raspberry Pi reboots. (Noble – BLE

central module 2015)

 $ sudo setcap cap_net_raw+eip $(eval readlink -f ‘which node’)

66

The previous command assumes the setcap is installed. If not, it can be installed

as an apt package: sudo apt-get install libcap2-bin.

7.4.3 Configuring Node-RED

After restarting the Node-RED service, the installed nodes are available for use

from the list on the Node-RED editor and the flows can be created. To enable the

Node-RED service to start upon the Raspberry Pi start-up, the service is enabled

in systemctl :

$ sudo systemctl enable nodered.service

In some cases, the Node-RED may run out of memory and due to this, some

actions may fail. The default value for allocated memory before Node-RED is

ordered to clean up space is 128MB. On Raspberry Pi 3 and especially if no other

high memory services are running, this value can be upped to 256MB to give

Node-RED more space to operate.

Edit /lib/systemd/system/nodered.service

…

Nice=5

Environment="PI_NODE_OPTIONS=--max_old_space_size=256"

…

Reload configuration

$ sudo systemctl daemon-reload

After restart, the Node-RED is allowed to use up more space if needed. The

default of 128MB should suffice in smaller flows but during the thesis work Node-

RED crashed several times but, after increasing the allocated memory, remained

stable.

Node-RED is protected with user credentials. These credentials are set in the

.node-red/settings.js under the adminAuth: section. The username can be inserted

here as plain text, but the password is generated with node-red-admin hash-pw

command, which, if not installed, can be installed globally with the npm.

$ npm install –g node-red-admin

$ node-red-admin hash-pw

67

This asks the user for the password and will generate the hashed password to be

used in the settings.js file below. After service restart, the Node-RED editor is

accessed with the credentials made.

Edit .node-red/settings.js

…

adminAuth: {

 type: "credentials",

 users: [{

 username: "<username>",

 password: "<generated_password_hash>",

 permissions: "*"

 }]

},

…

A problem noticed during the use of Node-RED was that the flows may stop

working under certain circumstances, for example, when the Raspberry Pi is not

used for a longer period of time and the Bluetooth module, BLE used by

RuuviTags, may enter sleep mode. Normally re-deploying the flows works in this

situation, however this requires modifications to be made to the flows, moving

the nodes or adding new nodes to the flow. As this method is unsuitable for an

independent system, a curl command can be used to automatically re-deploy the

flows without interacting with them.

As the Node-RED is protected with credentials the curl POST needs to be

authorised as well. An access token is needed for the command and it can be

generated with the following command:

$ curl http://localhost:1880/auth/token --data 'client_id=node-

red-

admin&grant_type=password&scope=*&username=<username>&password=

<password>'

This generates the access token, which can be used with the curl command as

followed.

68

$ curl –H "Authorization: Bearer <access_token>" -X POST

http://localhost:1880/flows -H "Content-Type: application/json"

--data @flows_<flowname>.json

The flowname is the name of the flows created, in this case flows_sauna.json, and

is found in the .node-red/ directory. The curl command itself is executed as a

shell script, used with the stoptimer node (See Table 3) to run the script if

RuuviTags have not been sending data for 10 minutes. The stoptimer resets

whenever new message is received, continuously counting down until no data is

received.

7.4.4 Building flows

The flows are built from the editor by dragging the nodes from the left panel to

the canvas in the middle. The desired nodes can be connected together by wiring

them either from the left or right side of the node. Once the wanted nodes are in

place and the configuration if separately needed, is done, the now constructed

flow can be deployed from the Deploy button at the top. By default, the

deployment deploys all of the flows in active workspace, meaning all of the tabs

as well, if multiple tabs for flows were created.

Since the flows created for the solution are large and the produced JSON code

would be immense to present on thesis work, the full flows can be found on the

project’s Git repository (Saunaxio – NodeRED flow 2018). As an example of flow

building, the flow for RuuviTags is shown, with the data sent to the MQTT broker

for Home Assistant, and to the InfluxDB in DigitalOcean’s machine (Figure 29).

Figure 29. Flow to handle RuuviTag data

69

The flow for reading the RuuviTag is easy to accomplish in a manner shown in the

figure (See Figure 29). The flow starts, much like any other flow, with an inject

node, at far left. The inject is a timer, which sends a signal at specific intervals, at

this point every 30 seconds. The signal is sent to the trigger node, which sends a

signal scan: true to the noble, a BLE scanner, node to activate the scan sequence

(Figure 30). The trigger delays the next message for a period of time and

afterwards sends scan: false to stop BLE scanner. This method must be used in

order to the BLE scanner to work, continuous scanning will have a negative effect

on the Bluetooth module and at some point BLE scanner will jam and the

Bluetooth speaker with it.

Figure 30. Inject and trigger nodes

The noble node scans the surroundings for BLE devices, finding every Bluetooth

device in the vicinity. The scan result is sent to the RuuviTag node, which parses

the data specifically for RuuviTag entries. The RuuviTags send temperature,

humidity, air pressure, battery voltage and acceleration data to the msg.payload,

which can be easily used in the future (Figure 31). By default, RuuviTag entries

are identified by only the peripheralUuid, which is the RuuviTags MAC address.

The devices can be named if desired but for easier adding of new RuuviTags it is

wiser to handle the devices with just MAC addresses.

70

Figure 31. Message from the RuuviTag node

The RuuviTags in use are specified in the deviceNaming function. Functions in

Node-RED are written in Javascript, which allows basically any modifications to

be made if deemed necessary. In this case the peripheralUuid is set as

msg.payload.topic for easier database use in InfluxDB. Only the RuuviTags

specified in the function are allowed to send data to the MQTT and the database

(Figure 32).

Figure 32. Function node for message modification

The if statement in the function can also be executed with a switch node, where

the confirmed and allowed peripheralUuids are set as following (Figure 33). The

switch is placed and connected before the function, with both of the outputs

connected to the function node.

71

Figure 33. Switch used to sort out RuuviTags

After specifying the devices, the data can be sent to the InfluxDB (See Chapter

7.7.1). The influx output node requires specification of the database. New

database connection is added to the node, with address and port of the InfluxDB

service. The database name, along with the credentials to said database are given

to the node (Figure 34). If the SSL/TLS connection is active in InfluxDB, the

certificate and private key must be configured to the node (See Chapter 7.7.1) in

.pem format, as Node-RED only supports this format. The certificates can either

be uploaded to the Node-RED or used from local files.

72

Figure 34. Creating InfluxDB node connection

While the InfluxDB node handles the data sending to the database, having the

RuuviTags to show the most current data in Home Assistant without a new

database connection is achieved with MQTT.

MQTT nodes, both input and output, are in-built with the Node-RED installation.

The setup uses the output node to send current data to Home Assistant, with each

sensor to own topic (Figure 35). With the MQTT broker not being protected, as

configured to only function on localhost, the setup consists of only server address

and port number, which are added to the node’s broker connection.

The message payload is sent through a switch, which ensures that correct

RuuviTag sends data to correct MQTT broker topic. The validation is done with

the help of peripheralUuid, as described before.

The topic is subscribed to in the Home Assistant to get the latest data to show on

the Home Assistant’s UI and for the Snips AI to use. This is specified in Home

Assistant’s and Snips AI’s chapters (See Chapters 7.6.2 and 7.10.1).

73

Figure 35. Node-RED's MQTT broker node

As explained before, the Node-RED’s flows may stop from working, if the device is

not used for a longer period of time. This is especially noticed with the noble node

and the BLE scanning, resulting in a failure with Bluetooth devices.

The stoptimer node was placed to counter the problem. The stoptimer is set to a

certain amount of time, in this case 10 minutes. With each BLE scan from the

noble node, the timer resets and restarts the countdown process. Should the BLE

scan fail, the stoptimer reaches the end and activates the following nodes. The

switch between the stoptimer and the exec node (Figure 36) ensures the message

payload of ”1” passes through to the system command in exec node. The system

command runs the curl command specified earlier (See Chapter 7.4.3).

74

Figure 36. Exec node for system commands

Same flow method is used around Node-RED with sensor related flows. These

other flows are not shown on the thesis writing; however, the final flows are

available in project's Git repository (See link at start of Chapter 7.4.4).

7.5 Mosquitto

Mosquitto MQTT broker is used by Home Assistant and Snips AI, former to show

the current data from Node-RED and the latter to send messages, intents, and to

communicate between different services of Snips AI.

The broker service is provided by Eclipse's Mosquitto. Mosquitto is installed on

the Raspberry Pi and can be installed as an apt package, both Mosquitto and

Mosquitto clients command line tools.

$ sudo apt-get install mosquitto mosquitto-clients

By default, the MQTT broker is not protected with user credentials. Because of

this, the broker can be accessed by anyone from anywhere inside the local

network. This can be problematic, as the network may also be available to larger

audience, and MQTT open for attacks and foul use. Since both services, the Home

Assistant and the Snips AI, use the same MQTT broker to transfer messages,

protecting the broker comes difficult. Home Assistant's configuration for the

MQTT broker supports the user credentials, both username and password. This is

75

not the case with the Snips AI. At the time of writing the user credentials cannot

be implemented into Snips' services and protecting the MQTT broker with

credentials results in a failure, when starting the Snips AI services.

An alternative way of protecting the MQTT broker is to have it configured to

function only on localhost. This allows only services running on the localhost to

access the broker, while connecting from remote machine, when in the same

network, results in a failure.

Edit /etc/mosquitto/mosquitto.conf

…

bind_address localhost

The MQTT broker can be tested by sending a test message to the broker, while

reading the topic at the same time. Over the SSH, the possibility of having two

terminals open is the easiest way.

Subscribe to test topic

$ mosquitto_sub -h localhost -p 1883 -t 'test'

On another terminal, publish to topic test

$ mosquitto_pub -h localhost –p 1883 –t 'test' -m 'Hello'

The message 'Hello' is published to the broker topic test and can be seen when

subscribing to the topic. The same method is used by the Home Assistant and

Snips AI. Node-RED publishes a message, containing the measured data in JSON

format, to a certain topic, while the Home Assistant subscribes to said topic and

presents the data in more readable form in the UI. Snips AI uses the MQTT to

communicate between Snips’ services and handle the intents executing actions

according to user inputs.

The Node-RED's MQTT node uses the topics similarly to the example above, each

sensor publishes the message to a certain topic, to which the Home Assistant

subscribes to get the latest data to the UI and for the Snips AI. The MQTT node is

explained in Node-RED's chapter (See Chapter 7.4.4)

At some point during the development the MQTT service entered failed state,

trying to re-establish the connection to the broker. This resulted in Node-RED's

76

MQTT nodes to lose connection and dropping the data for Home Assistant. Snips

AI, being dependent of the MQTT broker, also failed. The Mosquitto trying to

establish the broker took about 100% of the CPU's power, breaking almost every

service on the Raspberry Pi. This problem may result from the lost Internet

connection to the router's WiFi module, as described earlier (See Chapter 7.2.2),

during the period of time with wired connection to another network, while the

router is active. Restarting the Mosquitto service and / or rebooting the

Raspberry Pi, as well as making sure the Internet connection is available, should

fix the problem.

7.6 Home Assistant

Home Assistant is pre-installed on the Hassbian image and is usable and

accessible from the start, at hassbian.local:8123 by default but can be changed to

another hostname if necessary (See Chapter 7.2.2).

Home Assistant uses own user to run the service, by default homeassistant. The

configuration files of the Home Assistant are all located under homeassistant

user's home directory at /home/homeassistant/.homeassistant/. The

configuration files use .yaml data serialisation language. By default, the

configuration.yaml is the file containing all the needed configuration for the Home

Assistant.

As all the configuration will be in the same file, the configuration may grow

exceedingly large and hard to read and maintain. The Home Assistant supports

the dividing of the configuration to separate files, under the same directory that

can then be referenced in the main configuration file, the configuration.yaml. For

clarity of the configurations, the sensors, the relays and the intent scripts for

Snips AI, are in separate files amongst others.

Home Assistant also supports a more secure way of handling the confidential

data, such as tokens, passwords and keys. While the text is still in plain text, the

data can be stored into separate file, the secrets.yaml, which can be ignored, for

example, when pushing the files to Github. This way the configuration files of

77

different components can be shared for others to use, while the confidential data

of tokens, passwords and keys is kept apart.

The Home Assistant is protected with a password for the UI on the browser. This

password is defined in the secrets.yaml in plain text. As the Home Assistant is by

default only accessible from the local network, the protection of the network

itself is important. When exposing the Home Assistant to a larger network,

through a DuckDNS for example, other safety measures should be taken into

consideration. In this setup, the base level protection for the Home Assistant will

suffice.

7.6.1 Configuration

The main configuration file is the configuration.yaml located in the

/home/homeassistant/.homeassistant/ directory. Other configuration files created

separately for each component used in the Home Assistant are similarly located

and are used by including them in the configuration.yaml file.

In configuration.yaml

homeassistant:

…

The secrets.yaml is referenced for password

http:

 api_password: !secret api_password

…

group: !include group.yaml

switch: !include switch.yaml

intent_script: !include intent_script.yaml

…

With the Hassbian installation the Home Assistant is enabled to start on

Raspberry Pi’s boot. No configuration is needed for the Home Assistant service

itself, however, the configuration files for the components must be created

accordingly. The full configuration files used in the Home Assistant can be seen

from the projects Git repository. (Saunaxio – Home Assistant 2018)

78

While executing shell_commands inside the Home Assistant, some may fail due to

permission problems. This is corrected by adding homeassistant user into

sudoers, thus giving permission to execute shell commands as sudo without

continuous password prompts, when sudo is needed.

Add homeassistant to sudoers

$ sudo visudo

…

homeassistant ALL=(ALL) NOPASSWD: ALL

…

7.6.2 Adding components

While using the Hass.io image, Home Assistant’s official image for devices such as

Raspberry Pi, the components are added from within the browser UI. As this

image is not used, in Hassbian the components are added from the configuration

files by either adding the component entry to the main configuration file, the

configuration.yaml, or by creating new .yaml file for the component. For example,

adding of the Time & Date and MQTT sensor components are described.

The available components for the Home Assistant can be seen from the

Components section on their homepage (Home Assistant – Components 2018). By

searching for the wanted component, the arguments for said component are

described, with example use cases as well. To add the Time & Date component,

the needed configuration is added to the sensor.yaml configuration file.

New file sensor.yaml

- platform: time_date

 display_options:

 - ‘time’

 - ‘date’

In configuration.yaml include the new .yaml file

…

sensor: !include sensor.yaml

…

The Home Assistant supports some actions through the browser UI. The

configuration file can be checked for possible errors or problems under the

79

Settings and Configuration section of the UI. If the configuration created before

passed, the service can be restarted from within the UI. After the restart, the

newly added component should be visible in the Overview tab (Figure 37).

Figure 37. Time&Date component in Home Assistant

If the instruction of above were followed, the view should be different from the

above, as by default the sensor components are presented in a circular form.

This form works, when presenting temperature, time or status of some service.

When adding multiple sensors, however, the view will get hard to read.

Therefore, the Home Assistant offers customisation for the components to be

viewed as shown in the figure above. The components can be divided into

separate groups in separate views (See Chapter 7.6.3).

As Home Assistant is used to present the data sent by the Node-RED via MQTT,

the main component used in Home Assistant is the MQTT sensor. The MQTT

sensor subscribes to the state_topic of the MQTT message, e.g.

sensors/ruuvitag/ruuvi_b created in the Node-RED MQTT node, and shows the

data with value_template in the Home Assistant’s group. The configuration

example of such MQTT sensor is following.

Edit sensor.yaml file

…

RuuviTag_1

- platform: mqtt

 state_topic: ’sensors/ruuvitag/ruuvi_b’

80

 name: ’ruuvi_air_temp’

 unit_of_measurement: ’ °C’

 value_template: ’{{ value_json.temperature }}’

…

Same configuration model is used for all MQTT sensors, all of which are located in

the same file. The MQTT sensors will appear in circular form at the top of the

Overview tab. Similarly to the Time & Date component, the group is added to make

the measurements easier to read.

The component needed by Snips AI is the intent_script, which is used to handle

the intents created for the Snips skills in Snips Console (See Chapter 7.10.2). The

intent scripts are located in a separate .yaml file and are included to the main

configuration.yaml file like any other component. Home Assistant's Snips AI

component is activated with snips: in the configuration.yaml.

The configuration file for the intent_scripts is large, with every intent created for

the Snips skill having own actions when executed. As an example of the file

construction, the handling of a Snips skill for lights is described. The skill used is a

ready-made bundle from the store, forked under own user for possible

modifications.

configuration.yaml

…

snips:

 feedback_sounds: true

intent_script: !include intent_scripts.yaml

…

intent_scripts.yaml

…

lightsTurnOnSet:

 action:

 service: switch.turn_on

 data_template:

 entity_id: switch.light_1, switch.light_2

LightsTurnOff:

 action:

 service: switch.turn_off

81

 data_template:

 entity_id: switch.light_1, switch.light_2

…

The intent recognised by Snips AI activates the intent_script component,

executing the service for entities in data_template. If the user desires to be

notified on such actions, the shell_command can be used to send audio

notifications with puhu. The shell_commands are configured in an own file, in a

same way the intent_scripts are.

shell_commands.yaml

puhu: puhu {{ puhu }}

Use in the lightsTurnOnSet example

…

lightsTurnOnSet:

 action:

 - service: switch.turn_on

 data_template:

 entity_id: switch.light_1, switch.light_2

 - service: shell_command.puhu

 data_template:

 puhu: "Valot päällä"

…

The puhu notifications are used for an intent searchWeatherForecast from Snips'

bundle. The weather forecast is pulled in Node-RED from openweathermap node

and sent to MQTT broker to be used in Home Assistant. The intent_script speaks

the weather forecast out loud, updating from OpenWeather API approximately

every 30 minutes. The API requires an API key, which is free and acquired from

OpenWeatherMap's webpage after registration. (OpenWeatherMap – API)

In case of a failure in one or more services running on the Raspberry Pi, the script

component could be used to restart said services from within the Home Assistant

UI. Such additions were, e.g. Node-RED, Snips AI, Mopidy and networking

services, the latter in case of force restart, if the configuration for the Internet

access was modified. Each scritp executed a shell_command, with the executable

script on the Raspberry Pi. The script component was added to the group.yaml in

order to view it on the UI panel (Figure 38).

82

Figure 38. Executable scripts in Home Assistant

7.6.3 Customisation

Adding the components into separate groups improves the reading and using of

the components. The group configuration is added into own group.yaml

configuration file, located in the same directory with other similar files, and

included into the configuration.yaml file as previously described with the

sensor.yaml file. The following configuration shows the two described

components in separate groups in Overview’s Home tab.

New file group.yaml

default_view:

 view: yes

 icon: mdi:home

 entities:

 - group.timedate

 - group.ruuvitag_1

timedate:

 name: Time and Date

 entities:

 - sensor.time

 - sensor.date

83

ruuvitag_1:

 name: Incoming air

 entities:

 - sensor.ruuvi_air_temp

The naming of the groups and entities must be noted, if done falsely group will not

show up on the default_view, or Home, tab (Figure 39).

Figure 39. Group view of Home Assistant

While most of the customisation done for the Home Assistant in thesis work is

done in similar manners as above, the names of the sensors, such as in figure (See

Figure 39) for the Incoming air temperature, as well as the icons are set in the

Home Assistant’s internal customisation section.

The customisation is accessed from the left-side panel under the Configuration

and Customization. The customisation can be done to either groups or

components, in this case for the Incoming air RuuviTag sensor measurement

(Figure 40).

84

Figure 40. Customisation view of Home Assistant

The Home Assistant supports the use of MDI (Material Design Icon) icons. Icons

can be found from MDI’s webpage and any icon can be used from a vast variety

for specific purposes. (Material Design Icons)

Optionally, a state_card_custom_ui can be added to provide more customisation

options. These state cards are installed manully to the Home Assistant’s directory

and can be retrieved from Github. (Custom UI – Home Assistant 2018)

The custom UI was not used in large scale but was used for the switches, the

lights and water pump, to show the time since last active or activated on the

frontend UI, as this functionality is not supported by default in Home Assistant

(Figure 41).

85

Figure 41. Custom UI showing last_active in the Home Assistant

The custom UI installed consists of two .html files and .gz packets, which are set

in the newly created directory www/custom_ui/, contents being following.

$ ls /home/homeassistant/.homeassistant/www/custom_ui/

state-card-custom-ui-es5.html state-card-custom-ui.html

state-card-custom-ui-es5.html.gz state-card-custom-ui.html.gz

By installing the custom UI manually, updated versions must be installed

manually the same way as above. The custom UI is activated in the

configuration.yaml as follows.

Edit configuration.yaml

…

homeassistant:

 customize_glob:

 switch.*:

 custom_ui_state_card: state-card-custom-ui

frontend:

 javascript_version: latest

 extra_html_url:

 - /local/custom_ui/state-card-custom-ui.html

 extra_html_url_es5:

 - /local/custom_ui/state-card-custom-ui-es5.html

…

86

In this case, to get the last_active object to show, it must be activated from the

Cuscomization section, from the drop-down of the specific switch. Home Assistant

updates the object reading every 30 seconds by default but may fail to do so, in

which case the last_active may show false info and refresh of the UI page is

needed.

7.6.4 Automation

The automation for some functionalities, e.g. the automatic water pump

deactivation and determining, whether the sauna is being stolen or not, are done

in the Home Assistant’s in-built Automation section. The automation can also be

done directly to the automations.yaml in Home Assistant's directory, however,

the UI is significantly easier to modify. Created automation will appear in the

automations.yaml nonetheless, and may be modified there also.

The idea of automation in Home Assistant is to have a component respond as

instructed, when certain conditions are fulfilled. This process is started by a

trigger.

Triggers are based on actions or statuses of components, such as when certain

humidity limit is exceeded, or when a switch is switched on. The trigger executes

the action either directly or when certain conditions are met. Conditions are

optional and may be used to restrict the triggering from happening.

Such conditions may be e.g. the corresponding temperature measurement being

too high for the triggering humidity reading, or that another switch is already

switched on. When the conditions are fulfilled, the automation moves to last

section, the action.

Actions are executed by the trigger, after possible conditions are met. When

humidity drops below the set limit, and the current temperature is within the set

conditions, the action of TTS activates, stating that more water should be applied

on the stove. Similarly, the water pump could be activated to automatically pump

water on the stove.

87

The automation is used to automatically switch off the water pump after

activated with either voice command or manually from Home Assistant's UI. The

automation is triggered, when the state of the switch.water_pump changes from

off to on (Figure 42)

Figure 42. Trigger for automation

The action is triggered afterwards. The action contains a delay of 3 seconds,

which can be changed according to the water pump's power and the actual water

amount pumped from the tank. After the delay, the switch.water_pump is

switched back of, the state returns to off (Figure 43).

Figure 43. Action for automation

The automation described before can be executed with another automation based

on the current temperature and humidity. These could either be hardcoded into

the automation, or set with an input_number, a slider, which can be adjusted to

preferred temperature and humidity levels. The puhu command could be used to

88

notify the user when applying water onto stove is appropriate, according to the

set levels with the sliders. Similarly, the system could notify when preferred

temperature is reached, or when a break would be in order.

7.7 Cloud services

To start gathering the data from the Node-RED the cloud services must be

installed and configured. As the cloud infrastructure is provided by the

DigitalOcean, the configuration needed for the cloud infrastructure itself is

minimal. The used machine is not the most powerful one but presents enough

resources to handle the needed services with ease.

The server machine can be rented from the DigitalOcean's homepages after

providing the necessary billing information. The machine used had 1GB of RAM,

2.4GHz processor and about 25GB of storage, costing at around $5 per month at

the time of writing in April 2018. Operating system in this case was Linux Ubuntu

16.04, according to the machines info (DigitalOcean – Pricing 2018.)

After the information for the DigitalOcean is in order, the specifications of the

rented machine are received via the specified route. The most important part of

this information is the address and the password for the machine. The server

machine can be accessed via SSH connection, after which the password should be

changed into more secure one. After password changing the server is ready for

other service's installation.

7.7.1 Influx database

The database is installed on the DigitalOcean machine. The installation of the

InfluxDB is done with few quick steps, which install the latest stable version of

the InfluxDB, version v.1.5.1 at the time of writing, for Linux Ubuntu 16.04. The

following installation method is valid at the time of writing.

$ curl –sL https://repos.influxdata.com/influxdb.key | sudo

apt-key add -

$ source /etc/lsb-release

89

$ echo "deb https://repos.influxdata.com/${DISTRIB_ID,,}

${DISTRIB_CODENAME} stable" | sudo tee

/etc/apt/sources.list.d/influxdb.list

$ sudo apt-get update && sudo apt-get install influxdb

$ sudo service influxdb start

After the database installation, configuration needs to be done properly to secure

the database from free access. The InfluxDB uses a configuration file located in

/etc/influxdb/influxdb.conf, where modifications can be made accordingly.

For the safe use of the database, an SSL (Secured Sockets Layer), or TLS

(Transport Layer Security) certificates are added to enable the HTTPS connection

to the database and to authorize actions to and from the database. The SSL

certificates are created with openssl command found on many machines by

default. The InfluxDB mainly supports two types of certificates, either the CA-

signed certificates, issued by the certificate authority, or self-signed certificates,

which are created on the local machine. The latter method was used to create two

files, the private key and a self-signed certificate, with the following command.

$ sudo openssl req -x509 -nodes -newkey rsa:2048 -keyout

private.pem -out certificate.pem -days <number_of_days>

The openssl command creates the self-signed certificate, private.pem, and private

key, certificate.pem, with the –days as the number of days before the certificate

expires. The number can be up to around 11 000 days, which is about 30 years, to

prevent key from expiring for quite some time. Larger numbers can break the SSL

certificate, resulting in a failure during the command.

Both files are moved to the /etc/ssl/influx/ directory, which, if not present

already, is created for this purpose. The certificate and the key both needs to be

in .pem format, as the InfluxDB node used in the Node-RED can only use these

files, according to the description of said node.

To enable the HTTPS for InfluxDB the influxdb.conf configuration file in

/etc/influxdb/ is modified. No other modifications are needed than the ones

shown below.

90

Edit [http] section in /etc/influxdb/influxdb.conf

…

[http]

 auth-enabled = true

 https-enabled = true

 https-certificate = "/etc/ssl/influx/certificate.pem"

 https-private-key = "/etc/ssl/influx/private.pem"

…

The database needs to have an admin user and the database should be used with

another user, with no admin privileges. The admin user is created from the

InfluxDB CLI, with admin privileges, together with the normal user. Because of

the SSL secured connection the Influx CLI is no longer accessible as previously

but instead needs to be opened as below.

$ influx –ssl –unsafeSsl

Admin user

> CREATE USER <username> WITH PASSWORD '<password>' WITH ALL

PRIVILEGES

New non-admin user

> CREATE USER <username> WITH PASSWORD '<password>'

Grant READ / WRITE privileges to <username>

> GRANT ALL PRIVILEGES TO 'username'

Authenticate as admin user

> auth

username: <username>

password: <password>

> CREATE DATABASE <database_name>

Move into database

> USE <database_name>

Creation of the measurements is done from the Node-RED when the first data is

sent to the database. The measurement is named at the same time.

After the measurements are created inside the database, the InfluxDB CLI can be

used to see the measurements, if needed. Otherwise, the need for the InfluxDB

CLI use is not present, as the data queries for monitoring is done from the

Grafana visualisation tool. The InfluxDB CLI can be used to quickly view the latest

91

data from a measurement inside the database, for example from RuuviTags

(Figure 44).

Figure 44. Measurement for RuuviTags

7.7.2 Grafana install and configuration

Grafana is installed on the DigitalOcean machine together with the InfluxDB. The

following installation is for the Ubuntu 16.04 and installs the latest stable version

of Grafana, version 5.0.4, at the time of writing.

$ wget https://s3-us-west-2.amazonaws.com/grafana-

releases/release/grafana_5.0.4_amd64.deb

$ sudo apt-get install -y adduser libfontconfig

$ sudo dpkg -i grafana_5.0.4_amd64.deb

Start service

$ sudo systemctl daemon-reload

$ sudo systemctl start grafana-server

To enable service start on system startup

$ sudo systemctl enable grafana-server.service

The Grafana is accessible on the server machine at port 3000 as default. The

configuration for the database connection is done within the browser UI.

The system built can send email notification and alerts, based on certain

boundaries set, to the user. This needs to be enabled in the configuration file for

Grafana, in /etc/grafana/grafana.ini. The email notification channel described

supports the Google’s Gmail email service, but other configurations are also

available for preferred notification channels. (Grafana alert notifications 2017)

92

Edit [smtp] section in /etc/grafana/grafana.ini

…

[smtp]

enabled = true

host = smtp.gmail.com:465

user = <user_email_address>

password = <device_password_from_gmail>

skip_verify = false

from_address = <notification_sender_address>

from_name = <notification_sender_name>

…

The password for the smtp service is made in Google Gmail by enabling the 2-Step

verification and adding a device password for custom application. This is done in

the Gmail's user settings, under the Sign-in & Security section and following the

instructions (Google 2-Step verification 2018.)

After the 2-Step verification is functioning as intended the password can be

created for a specific application. Under the Security and Signing in to Google, the

app password is created, and the 16-digit code can be used as password in the

Grafana configuration file in /etc/grafana/grafana.ini (Google – App passwords

2018.)

Once the above steps are done correctly the notification channel of email type can

be added under the Alerting and Notification channels (Figure 45). The alerts and

notifications can be sent to any email address, regardless of the service provider.

Multiple addresses can be added with a ‘;’ separator.

93

Figure 45. Adding a notification channel for Grafana

The Alerts for which the Notification channel is used are created under each

graphs Alert tab, where specific boundaries for, e.g. temperature, can be set and

notifications or alerts can be sent accordingly (Figure 46).

94

Figure 46. Alert rules for RuuviTags

7.7.3 Adding data source to Grafana

The InfluxDB is found in the Grafana by default and can be added as a data source.

To add a data source the user must have admin privileges, as editor or viewer

have no privileges to access the more delicate parts of Grafana service. The first

user used to access the Grafana should have admin privileges.

The data source is added from the Configuration section on the left panel of the

UI. The used InfluxDB is found by default from the list of available data sources.

The data source is given a name, which can be used later when creating queries.

By default, the URL for the database is localhost, as in this setup, as both services

run on the same machine. The authentication settings can be chosen as seen fit,

with the basic authentication of user credentials for the InfluxDB. The user used

for accessing the InfluxDB should not be admin user of the database, since the

non-admin user cannot accidentally drop all the measurements, thus deleting all

the gathered data. The InfluxDB details are added at the end of the Data Sources

page.

Once the data source is successfully added, the data can be shown on a graph or

singlestat panel in a dashboard. This is done by making a new dashboard, if not

95

already made, and by adding a new graph to show the timestamped data on

(Figure 47).

Figure 47. Creating graph for RuuviTags

The query of above generates a timeseries graph, which presents the data from

specified time range on the top right corner of the UI. In this case, the graph was

created to show the data from RuuviTags (Figure 48).

Figure 48. Graph for RuuviTag temperatures

Similarly, the data can also be presented as singlestat data, showing only the

latest measurement or median of a number of latest measurements. In the setup a

custom-made D3 Gauge plugin, found from the official Grafana plugin list, was

used to show the singlestat data on (Figure 49).

96

Figure 49. D3 Gauges used for RuuviTag singlestat

The singlestat gauges are customised similarly to the graphs, where the threshold

colours can be changed accordingly and the size of different components, for

example the fonts and labels. No larger instructions for the customisation of the

Grafana dashboards is present in thesis, as the customisation is easily done by

testing out different values and settings.

7.8 Audio system

The audio system includes the configuration of the UE Roll 2 Bluetooth speaker

(SP1) and the USB microphone (MIC1) to be used in the solution, as well as the

Text-to-Speech (TTS). Service specific configuration for audio use is handled in

each service's section separately.

The audio output from the Raspberry Pi 3 can be done with either physical

connection via the 3.5mm audio jack, provided the speaker has its own power

source, as the Raspberry Pi can supply little to none power through the jack, or

with a Bluetooth connection, which in comparison needs more configuration.

7.8.1 Connecting Bluetooth speaker

The Bluetooth connection between the Raspberry Pi 3 and a Bluetooth speaker is

relatively easy if the GUI can be used. As this is not available on Hassbian, the

connection needs to be done via terminal with a few commands. This works on

Raspberry Pi 3 Model B and on its in-built Bluetooth module.

Install bluetooth, bluez and bluealsa

$ sudo apt-get install bluetooth bluez bluealsa

97

Pair bluetooth speaker

$ bluetoothctl

> scan on

> info <speaker_mac_address>

> pair <speaker_mac_address>

> trust <speaker_mac_address>

> connect <speaker_mac_address>

> quit

After the previous steps the Bluetooth speaker should be connected as intended,

and with the speaker used in thesis, the UE Roll 2, a sound confirmation can be

heard when connection is successfully established. The Bluetooth speaker should

automatically connect when powered on, if the Raspberry Pi is already active.

Otherwise, if Raspberry Pi is booted and the speaker is already on, the speaker

can be restarted as well. A script to automatically execute this can also be used,

which runs the steps shown above.

7.8.2 Audio output

As the integration support of ALSA (Advanced Linux Sound Architecture) and

Bluez was removed after Bluez 5.0, the Bluetooth audio output needs to be

handled with ALSA's Bluetooth integration bluealsa. Normally the conventional

configuration would be adequate but during the developing one major error, or

rather a problem was noticed. The Bluetooth speaker handles one audio stream

with ease but when another audio stream is directed to the same speaker, for

example from TTS module, the audio vanishes from the latter source, as the

device is already in use. As the sauna uses Snips AI and various TTS produced

sounds and normal audio files, the problem of having only one audio stream at

one time was unsuitable.

Simultaneous audio streams were handled with JACK Audio Connection Kit. JACK

is a sound server daemon to provide sound integration across several platforms.

In this case, JACK is used to handle the ALSA sound, combining different audio

sources together, enabling to have Mopidy, TTS and other sounds working in one

whole from one speaker.

98

JACK is installed as apt-package. This is the easiest way to install and the

configuration is done afterwards.

Install jackd

$ sudo apt-get install jackd

The configuration for the ALSA to use JACK as audio output is done in ALSA's

configuration file in /etc/asound.conf. (Saunaxio – ALSA 2018)

After configuration of the ALSA to use JACK by default, the JACK service must be

started in a specific way to use ALSA as the audio backend. A script made for this

purpose runs in the background and starts the jackd service whenever the

Bluetooth speaker is active and available for use.

Start jackd, executed in /etc/rc.local

…

su pi –c 'nohup bash /home/pi/scripts/audio/jacktivate.sh >

/dev/null 2>&1 &'

…

The script is executed as pi user, as other services using the audio output and

JACK may fail if executed without the specified user. The service specified

configuration considering the audio is described on the said services chapter.

Script used for JACK enables audio output only through Bluetooth device

specified in /etc/asound.conf. Should the user desire the audio output through

audio cable from 3.5mm jack, the script needs to be modified and the device must

be removed in order to activate the default of audio jack. The modified script does

not update automatically; a reboot is needed after modifications.

Edit /home/pi/scripts/audio/jacktivate.sh

…

jackd –t 10000 –p 500 –d alsa –r 32000 –n 3 –p 2048

…

The command has a timeout -t of 10 000 milliseconds and a maximum of -p 500

ports available for JACK to manage. The audio interface backend -d is set to alsa,

99

which has additional options of sample rate -r of 32 kHz, number of periods of

playback latency -n 3 and number of frames between JACK process calls 2048.

The Bluetooth device is normally specified after alsa as playback "-P uerollraw",

without this the default device, the audio jack, is activated as audio output. The

output device for Bluetooth audio is specified in the /etc/asound.conf.

7.8.3 Audio input

One of the main features is the speech recognition system used to control the

Home Assistant components with voice while inside the sauna. The voice input

requires the USB microphone correctly configured to function with the Raspberry

Pi's audio setup and for the Snips to recognise the audio input device.

The USB microphone is connected normally to the Raspberry Pi, either directly

or, in this case, with an extension cable to bring the microphone closer to the

user. The microphone and speaker placement are done in a manner that speaker

does not affect the recognition of words for Snips AI, nor does it unintentionally

activate the Snips AI with a probable hotword.

Once the microphone is connected to the Raspberry Pi the USB devices are listed

with the usb-devices command. Best way to determine the correct device is to run

the command, disconnect the USB and run the command again, to see which of

the devices is absent. This information is not necessarily needed for the

configuration in this setup to work.

The microphone is configured in the /etc/asound.conf file, same as the audio

output. The audio input is set as a capture device and to play through JACK. Both

JACK and Snips AI have capture_ports defined to make service hear the audio. The

full configuration for the microphone in asound.conf is found in the project's Git

repository. (Saunaxio – ALSA 2018)

100

7.8.4 Text-To-Speech

The TTS is mainly used by the Snips AI and the Home Assistant to notify the user

and to provide answers to the users enquires. The TTS is provided by the Festival

Speech Synthesis System, which is installed as apt package, together with other

needed components.

$ sudo apt-get install festival festvox-suopuhe-common festvox-

suopuhe-lj festvox-suopuhe-mv

The Festival can be used with either echoing the text to Festival or writing the

text into Festival's CLI. The latter method is not used in thesis, as the easier way is

to echo the wanted text into Festival.

The configuration file for the Festival is in /etc/festival.scm. Festival uses aplay to

play the sound and because of the JACK configuration will not work properly as

default. Aplay is given parameters to properly play the Festivals files. This is done

at the end of the configuration file. (Saunaxio – Festival 2018)

Edit /etc/festival.scm

…

;;

(Parameter.set 'Audio_Command "truncate -s +8000 $FILE && cat

$FILE | aplay -D jack -q -c 1 -t raw -f s16 -r $SR")

(Parameter.set 'Audio_Method 'Audio_Command)

…

Aplay uses JACK as the device for audio output and raw as file type. The file

format by default is s16. The sample rate is as variable, coming from the JACK in

jacktivate.sh script described earlier. The truncate command is needed to

increase the size of the audio file, if not applied the voice will cut out as the file

ends too early.

By default, Festival will be speaking English. To test Festival is in working order

the following can be typed, provided the sound configuration of before is done

properly.

101

Test Festival with echo

$ echo "Hello World" | festival --tts

Using Finnish language, or any other in that matter, arguments can be given to

the Festival in the command above.

Finnish language

$ echo "Hei Maailma" | festival --language finnish --tts

$ echo "Jyväskylä" | festival --language finnish --tts

While this method works with words without the diaeresis letters (å, ä, ö), once

these letters are applied the Finnish voice will leave those letters out, replacing

them with unknown characters. This can be corrected with following method.

$ echo "Jyväskylä" | iconv -f UTF-8 -t ISO8859-1 | festival --

language finnish --tts

By converting the text from UTF-8 encoding to ISO8859-1 encoding, the diaeresis

letters can be heard as intended. Because this method produces a long command

to be used, in thesis work an own command was made for this Festival setup. The

command puhu, Finnish for speak, is located in the /usr/bin/puhu file with the

following content. The name for the command should be something unique, as for

example speak may be used by some other software and thus create

complications between the two.

New file /usr/bin/puhu

#!/bin/bash

sanat=$@

sudo –u pi bash –c "echo \"$sanat\" | iconv -f UTF-8 –t

ISO8859-1 | festival --language finnish --tts"

This command allows the use of the Festival TTS by using the puhu in place of

echo.

$ puhu Jyväskylä

The TTS is used in notifications for the users, from either Node-RED or Home

Assistant. The TTS is set to speak only Finnish, which in cases of English

102

sentences will speak with a Finnish accent. This accent is hard to understand, due

to which all notifications are set to Finnish.

While the speaker is active, e.g. Mopidy is playing music, the TTS produced

messages can be heard but depending on the volume of the speaker itself, may be

rather quiet. The problem is noticed, when TTS activates while the speaker is

playing audio, and Festival's voice is barely heard over the audio. The Festival

supports an in-built ability to increase the volume and it is defined in the

Festival’s configuration file. The volume can be changed accordingly to the

speaker, in this case value of 0.9 was used.

Edit /etc/festival.scm

…

;; Increase the volume for Festival

(set! default_after_synth_hooks

 (list

 (lambda (utt)

 (utt.wave.rescale utt 0.9 t))))

…

The Festival has a problem when activated numerous times in a short period of

time. One way of recreating this is to activate and deactivate the microphone for

the Snips AI by pushing the button repeatedly. This causes the TTS messages to

jam the Festival and at the same time also the JACK audio server, as too many

requests are being handled at the same time. This problem is avoided by turning

the TTS messages that are used more often into audio files, in this case to .wav

files. These audio files can be played with aplay and, with an addition to the

festival.scm configuration file, are generated with the puhu command described

earlier. The script used to generate .wav files is found in the Git repository.

(Saunaxio – scripts 2018)

…

;; Generate audio files with ‘puhu’

(Parameter.set ‘Audio_Command “truncate -s +8000 $FILE && mv

$FILE /home/pi/Music/tts/audio”)

…

103

The line above needs to be commented out when the normal puhu command is

used. If not, puhu will instead only write audio files and no sound can be heard.

7.9 Mopidy

Mopidy is the music player used in the solution. Mopidy can be used to play music

from either local device, a stream, such as YouTube, or from Spotify. The latter

method is the most used and preferred one.

Mopidy is installed as apt package, along with the used extensions. The

configuration for the Mopidy is described later.

$ wget -q -O - https://apt.mopidy.com/mopidy.gpg | sudo apt-key

add -
$ sudo wget -q -O /etc/apt/sources.list.d/mopidy.list

https://apt.mopidy.com/stretch.list
$ sudo apt-get install mopidy
$ sudo systemctl enable mopidy.service

By default, the Mopidy service is running under the mopidy user but because of

the configuration done for the ALSA and JACK, mopidy is not allowed to access the

audio output. Therefore, the service must be started as pi user, this can be

changed in /lib/systemd/system/mopidy.service by changing the User under

[Service] to pi.

Mopidy supports many extensions that can be installed similarly to the main

software or with pip. The extensions vary from different file and mixer extensions

to backend and frontend extensions. The YouTube, Spotify and MusicBox

Webclient were installed as backend and web extensions. The installed web

extension is used to access the Mopidy service from a browser, in this case

sauna.local:6680/musicbox_webclient.

Show available extensions
$ pip search mopidy
$ sudo pip install Mopidy-YouTube Mopidy-Spotify Mopidy-

MusicBox-Webclient Mopidy-Moped Mopidy-Mopify

The YouTube extension allows streaming from YouTube content to Mopidy by

providing the URL address. The Spotity requires a non-Facebook linked user

104

credentials, as well as a client_id and client_secret provided on the Mopidy's

webpage (Mopidy – Spotify authentication 2018).

The configuration file for the Mopidy is in /etc/mopidy/mopidy.conf. The default

configuration is generated at installation but must be modified for Mopidy to

function as intended. The essential changes to the configuration are following,

with correct audio output, Spotify and access configurations. The full

configuration file is available on the Git repository. (Saunaxio – Mopidy 2018)

…
[audio]
output = jackaudiosink

[mpd]
enabled = true
hostname = ::
port = 6600
max_connections = 200
connection_timeout = 600000

[http]
enabled = true
hostname = ::
port: 6680

[local]
enabled = true
media_dir = /own/music/directory/here
excluded_file_extensions = # enable all of the default

[youtube]
enabled = true

[spotify]
enabled = true
username = spotify_user_name
password = spotify_password
client_id = client_id
client_secret = client_secret
private_session = true
allow_cache = false
…

The MPD and HTTP are by default set to only listen to localhost, partly as a safety

measure since no password is set and unwanted third-party members could gain

access to the service. While only listening to localhost, the web client or the MPD

105

cannot be accessed. Therefore, the hostname is set to listen to all interfaces, the

IPv4 and IPv6, which allows the web client to be accessed and used.

While the Mopidy-Musicbox-Webclient is the basic web client used, other web

extensions were also installed, mainly to address the need for easier usage with,

for example Spotify, or on mobile devices. One of such extensions was the

Mopidy-Moped, a friendlier UI for mobile usage (Figure 50). This web client could

easily be used to browse local audio files or locally saved streams from, e.g.

YouTube. For easier Spotify usage the Mopidy-Mopify offered a Spotify-like UI,

with the possibility to search own playlists or other playlists from Spotify, along

with artist, albums and tracks (Figure 51). The latter also installs the Mopidy-

Local-Images, which is used to present the pictures for album covers or artists in

Spotify.

Figure 50. Mopidy-Moped UI

106

Figure 51. Mopidy-Mopify UI view

Adding local audio files proofed to be complex procedure, as Mopidy must have

certain privileges over the directory used for local files. For Mopidy to recognise

the new files, Mopidy's mopidyctl can be used to scan for local files in the

specified media_dir directory. A script was constructed, which could be run after

adding new local audio files. Script is also available in Git repository. (Saunaxio –

scripts 2018)

#!/bin/bash
chmod –R 777 /music/directory/here
sudo mopidyctl local scan
sudo chmod –R 777 /var/lib/mopidy
sudo service mopidy restart

The script, or the commands above, must be run whenever new addition are

added to the media_dir, as the privileges of the directory change back to default

after any modifications made.

While the Mopidy can be accessed and easily used from a web browser, the

Mopidy Mobile application, available from e.g. Google Play, can be used for better

mobile experience and easier use for the bather. The Mopidy Mobile scans for

open MPD servers from local network and automatically connects to one. The

application can be used in similar way to the web client on a browser. The

application is also used to select the playlist when entering the sauna, as the

speech recognition for a playlist is not supported in the setup.

107

 During testing various audio files, .wav, .opus and .mp3, were used along with

Midi files. Playing other audio files than the .mid ones was easy, and no problems

occurred during the play. When playing the .mid files, the Raspberry Pi's sound

cut off, due to hard load on the processor and soundcard. This was noticed while

all other services were running on the Raspberry Pi and may result of high CPU

and memory usage on the device.

7.10 Snips AI

The installation of the Snips AI was done several times due to problems with

installation guides and device related matters. The installation method used

installs the Snips AI platform with a few modifications to the original installation

guide.

$ sudo apt-get install dirmngr –y

$ sudo bash -c 'echo "deb

https://raspbian.snips.ai/$(lsb_release -cs) stable main" >

/etc/apt/sources.list.d/snips.list'

Find key D4F50CDCA10A2849 from pgp.mit.edu

$ sudo apt-key add

Add key, Ctrl+D to save

$ sudo apt-get install snips-platform-voice –y

Installation can also be done with Snips' CLI manager Sam (Snips Assistant

Manager). The Sam is installed with npm on external machine in the same

network with the Raspberry Pi. It can be used to install the Snips AI platform,

Snips skills and the Snips Assistant. This method is not described in detail, as it

was not used in setup.

7.10.1 Configuration

After the installation the configuration must be correctly executed in order to

activate the Snips' services. By default, the configuration can be found in

/etc/snips.toml, where every service can be configured separately. The main

concern in the configuration file is to have the Assistant and MQTT broker

108

configured properly. The full configuration file is found on the project's Git

repository. (Saunaxio – Snips AI 2018)

The MQTT broker is installed separately, as described before, and all services

using the MQTT must use the same broker running at 1883 port. Snips AI is

configured to use this broker in the configuration file.

[snips-common]

bus = "mqtt"

mqtt = "localhost:1883"

assistant = "/usr/share/snips/assistant"

The assistant is the Snips Assistant created in the Snips Console and the path,

where the Assistant is installed, by default under /usr/share/snips/ directory, as

seen above. This can be changed to any directory, provided the Assistant is

located in the accordingly.

The hotword for Snips AI is set in the Snips Console from a few version, the one

used in the setup being "Jarvis", for this was the most easily recognised by the

microphone for Snips, and easy to pronounce with Finnish accent. During the

writing Snips added the possibility of implementing own hotwords, however, this

was not done for the setup.

[snips-hotword]

model = "/usr/share/snips/assistant/custom_hotword"

sensitivity = "0.9"

Hotword is located under Assistant, in this case the custom_hotword is used

instead of the default one. The sensitivity is upped to 0.9 from default of 0.5 to

make Snips' hotword detection more sensitive in recognising hotwords. With the

hotword of “Jarvis”, the Snips AI will also react to very similar words, such as

“Varis” or “Jari”, due to higher sensitivity.

Snips AI has in-built TTS service, which can be used to notify the user about

various matters and to ask additional questions or confirmations for executable

intents set in the Snips Console. The TTS is selected from three options, with the

customtts being the one used in this case. The puhu command created for the

109

Festival's TTS is also used by Snips AI to allow possible communication by Snips'

TTS service.

[snips-tts]

provider = "customtts"

customtts = { command = ["puhu", "%%TEXT%%"] }

While not often used as notification channel, the TTS service is still configured to

be available for use when needed. Most of the notifications to the user are done in

the Node-RED and Home Assistant as shell_commands.

The Assistant has in-built audio files for start_of_input, end_of_input and error

notifications defined in /usr/share/snips/assistant/custom_dialogue/sound/

directory, which can be replaced with any other audio file, preferably of a .wav

format. The audio files are configured under the same directory in config.json,

should the name of the audio files change. Having exceedingly long audio files is

not advised, since the snips-audio-server will prevent the other services from

activating and the usage of Snips will suffer.

Audio notifications are disabled in Snips by default and must be activated via

MQTT message to the hermes/feedback/sound/toggleOn topic, with the message

of the current siteId, where Snips audio feedback is to be activated.

$ mosquitto_pub –h localhost –p 1883 –t

hermes/feedback/sound/toggleOn -m '{"siteId":"default"}'

The audio notifications can be deactivated by sending the message to …/toggleOff

topic. Snips AI still stays active and functioning, only the audio notifications are

not heard. This also affects the in-built TTS but as this is not used, replaced by

Festival TTS’ puhu via Home Assistant, it is not a main concern.

7.10.2 Assistant

The Snips AI's Assistant is created in the Snips Console from a browser

environment. The Snips Console requires registration with a valid email address,

as the verification is sent to said email. Once the profile is created user can create

new Assistant, with a unique name, in case of creating several different assistants.

110

The language used is selected from the available options, in this case English was

used.

After creation the usable hotword is selected, as described earlier. At this point

new skills are added from existing bundles, or by creating a new skill from scratch

(Figure 52).

Figure 52. Creating skills in Snips Console

Each skill consists of intents, which in addition can hold several intent slots to

more precisely handle the actions triggered by Snips. In this setup the slots were

not used, though some of them were created for future possibilities.

The Assistant's skills are trained by training examples created by the user or by

community for a fee. The training examples are written in the same language the

Assistant is configured to use, as set before in Assistant creation. Official skill

bundles found in the store can hold up to 1 000 training examples, the more

examples the more precise and better the Assistant is with the said intent. The

skills created for the setup hold around 20 training examples, which is enough, if

the variety of the examples is high (Figure 53).

111

Figure 53. Training the skill with training examples

After saving the created intents, the Assistant is trained, which can be seen on the

right side of the UI. After training has finished, the newly created Assistant can be

tested by writing queries to the Assistant. The Assistant should response by

showing the corresponding intent with the probability of how certain the

Assistant is about the captured input (Figure 54). After a successful query, the

Assistant is downloaded and installed either manually, the way described below,

or with Snips Assistant Manage (Sam), which is not described in the thesis work.

112

Figure 54. Query for the new skill

The Assistant is downloaded as an .zip file, which, once copied onto Raspberry Pi

with scp, can be unzipped with unzip command. To ease the burden of installing

the Assistant in the correct directory, to /usr/share/snips/, a script was made, to

which the name of the Assistant could be given as an argument. The script can be

found on the projects Git repository. (Saunaxio – Assistant install 2018)

 $ sh scripts/snips/installSnipsAssistant.sh proj_xxxxxxx

The script removes the old Assistant directory from /usr/share/snips/, unzips

and installs the new Assistant to the same directory, restarting the services and

activating the audio for Snips.

7.10.3 Using Snips AI

After the Assistant is installed, by default in the /usr/share/snips/, Snips is ready

for use with voice commands. The Assistant skills are used from intent_scripts in

Home Assistant, which handles the actions inside the service (See Chapter 7.6.2).

Snips is activated with a hotword, in this case "Jarvis". After the hotword is

recognised an audio confirmation is played, if sound feedback is active, and the

voice command can be given to Snips. If the intent is recognised from the

captured sentence, another audio confirmation of a successful recognition is

113

heard. If not, an error sound is played, after which the Snips returns back to

hotword detection. A successfully captured intent will activate the corresponding

actions from Home Assistant's intent_scripts. After a few seconds the Snips

returns to hotword detection, waiting for a new command.

The Snips AI and its functions can be monitored with snips-watch –vvv command,

where the –vvv define how much knowledge is shown to the user. This produces

the ouput seen in the figure (Figure 55). If not installed by default, it can be

installed as an apt package, similarly to other Snips services.

Figure 55. Snips speech recognition flow

For a sequence diagram of Snips AI see Appendix 3.

7.10.4 Assistant installation problem

After an update to the Snips Console during April 2018, downloading the

Assistant proved to be harder than before. The own, newly created skills were

operating correctly, however, some of the intents in the bundles installed from

the store had a problem and the download of the Assistant failed (Figure 56).

The error was tracked to the intents in the ready-made bundles by Snips, as

creating own skill, with imported intents from the ready bundle, failed to

download as well. This error happened with the Music Player by Snips, which was

needed for the Home Assistant’s MPD component to control the Mopidy music

player. Creating own skill to control the MPD removed the error.

114

Figure 56. Message shown after download fails

While the error would occur from time to time, when new version of the Assistant

was being downloaded, most of the problems could be sorted by removing all of

the skill in the Assistant and adding them back one by one, as stated in the error

message, while testing the download after every skill added. This method works

only if the first added skill was added from a bundle rather than from own

created skills. No notice of such problems was found on the Snips’ community

and the problems could be with either the Snips’ servers or with user’s own skills,

however, when creating the skills, no shown errors occurred, which could imply

this was the case.

Adding a skill for the MPD created by other user than Snips also worked as

intended and was used in the setup for better recognition quality. The same

occurred with the other skills, the Smart lights, Time and Date and Weather, as

these were also added from store's bundle.

115

8 Evaluation

The project was finished on schedule during Spring 2018. At the end of the

project, the system had been functioning for a month with the latest setup, with

little to none maintenance periods. The stability of the system had thus been

tested and the problems had been either directly addressed or noted for future

development.

The final stage of the project was the installation of the system to the sauna

environment, done outside the official project time, due to which no

documentation of the actual installation was written. However, possible

problematics noticed with the installation or with the system itself were to be

noted with the client, later to be addressed by either the writer, client or potential

future developer.

The initial functional requirements (See Table 1) for the system were fulfilled

almost without any modifications.

The system was able to operate independently and steadfastly (RE100), with

ability to address problems related to Node-RED’s flow errors or loss of the

Internet connection, as well as with ability for the user to restart services from

the Home Assistant’s UI. The bather was able to apply water on the stove either

manually by pressing a button or a switch on the wall, or with a voice command

to the Snips AI (RE200, RE210), which then executed wanted actions through

Home Assistant’s components. These components could control any device

connected to the Home Assistant, whether physical or not. Control over the lights

was possible with either Home Assistant’s UI or with a voice command (RE400,

RE410). Similarly, the system was able to answer to enquires made by the user,

concerning the temperature, humidity or current time (RE300, RE301, RE302).

The user was able to control the music player with either Mopidy Mobile

application for smartphone or with voice commands, controlling the volume,

setting next or previous track and pausing and resuming the track (RE500,

RE510, RE511, RE512). The possibility of selecting a playlist with just a voice

116

command was not accomplished, as the setup used with MPD and Home Assistant

did not support this. As a workaround, the playlist was selected from the mobile

application (RE501) when entering the sauna, with the rest control over the

music player being done by voice commands.

Automation for applying water onto stove (RE201) was not accomplished and

was moved to the future development.

9 Future development

The project leaves many possibilities for future development, acting as a basic

platform to where add components, services and functionalities. The future

development was discussed with the client during the project, as the ever

growing pool of ideas were not executable in the period of time given for the

project.

Such additions for the sauna were some sort of HUD or reflection screen to show

data on, as the visible screens or any other technology inside the sauna was not

desirable. A better sound system for the sauna was also on the list, together with

more ambient environment with help of more clever usage of the Snips AI and

Festival’s TTS service.

The integrity of the existing system could be improved, creating the possibility to

use Snips AI through snips-skill-server rather than through Home Assistant’s

intent_scripts. This could improve the amount of available controllable objects, as

well as make voice controlling easier to do, with no more need for the Home

Assistant’s involvement.

The client had also a vision of a sauna conference implementation. In this vision

the bather could take part in conference meeting with other people, who would

also be seated in a sauna environment at the time.

These and many more improvements, additions or modifications would be done

by future bachelor’s thesis writers or other project workers. The base platform

117

created in the project offers good standings for future development, with either

the same tools or new that may be better suited for the platform at given time.

10 Conclusion

Building an IoT solution for a sauna environment proofed to be an interesting

assignment. The ‘normal’ IoT projects made, by others and by writer himself,

were all designed for ‘normal’ surroundings. These projects were usually

accessible at any given time, should something fail in the system, being as simple

as losing the Internet connection. The device could be accessed and the problem

could be addressed. With the device located in a sauna, the system had to be

different.

The sauna provided extra problems when considering the usability and

functionality in sauna’s environment. As the device had to be independent, even

for long periods of time, the approach in developing such system was different

from normal. This created some headache for the writer when trying to map out

the needed services to achieve such goal. Luckily, the writer was not alone with

the matter, as the client provided great ideas over the period of developing the

solution.

The challenges provided by the project, some even provided by the writer

himself, helped to achieve a better understanding of IoT systems, whether they be

located in a sauna or in normal room environment. The challenges faced during

the development provided fine knowledge for a young Software Engineer starting

his career in the big world. The previously acquired knowledge from studies

proofed to be helpful, especially the knowledge gained from different projects

during the past four years and from past two summers in Challenge Factory and

WIMMA Lab.

As a thesis work, the project was a great introduction to different technologies

and tools available for use when considering creating an IoT solution of any kind.

It even created an interest of building some sort of automation and remote-

control system to writer's own home, as the use of Home Assistant proofed to be

118

easier than it at first seemed. The independent work at the beginning of the

project created fine knowledge and increased the interest regarding the

assignment. Though not everything ended up as intended at the first place, the

final solution was still something to be proud of.

119

References

Barron, A. 2014. Pizza as a Service. 30.7.2014. Accessed 3.4.2018. Retrieved from
https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-
service/ .

Benchoff, B. 2016. Introducing the Raspberry Pi 3. 28.2.2016. Accessed 25.2.2018.
Retrieved from https://hackaday.com/2016/02/28/introducing-the-raspberry-
pi-3/ .

Brown, E. 2016. Home Assistant: The Python Approach to Home Automation.
20.6.2016. Accessed 20.3.2018. Retrieved from
https://www.linux.com/news/home-assistant-python-approach-home-
automation-video .

Custom UI – Home Assistant. 2018. Accessed 9.4.2018. Retrieved from
https://github.com/andrey-git/home-assistant-custom-ui .

DigitalOcean – Pricing. 2018. Accessed on 2.4.2018. Retrieved from
https://www.digitalocean.com/pricing/ .

DigitalOcean. 2018. Accessed on 15.2.2018. Retrieved from
https://www.digitalocean.com .

Edmonds, M. Chandler, N. n.d. How Smart Homes Work. Accessed 24.3.2018.
Retrieved from https://home.howstuffworks.com/smart-home1.htm .

Festival – Festvox. 2017. Accessed 20.3.2018. Retrieved from
https://github.com/festvox/festvox .

Gartner Newsroom. 2017. Gartner Says 8.4 Billion Connected "Things" Will Be in
Use in 2017. 7.2.2017. Accessed 5.3.2018. Retrieved from
https://www.gartner.com/newsroom/id/3598917 .

Gite, V. 2012. Difference of Authentication and Authorisation. 28.2.2012.
Accessed 2.2.2018. Retrieved from
https://www.cyberciti.biz/faq/authentication-vs-authorization/ .

Google – App passwords. 2018. Accessed 20.2.2018. Retrieved from
https://support.google.com/accounts/answer/185833 .

Google 2-Step verification. 2018. Accessed 20.2.2018. Retrieved from
https://support.google.com/accounts/answer/1085463 .

Grafana alert notifications. 2017. Accessed 4.3.2018. Retrieved from
http://docs.grafana.org/alerting/notifications/ .

Grafana Labs. 2018. Accessed 25.2.2018. Retrieved from
https://grafana.com/grafana .

https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/
https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service/
https://hackaday.com/2016/02/28/introducing-the-raspberry-pi-3/
https://hackaday.com/2016/02/28/introducing-the-raspberry-pi-3/
https://www.linux.com/news/home-assistant-python-approach-home-automation-video
https://www.linux.com/news/home-assistant-python-approach-home-automation-video
https://github.com/andrey-git/home-assistant-custom-ui
https://www.digitalocean.com/pricing/
https://www.digitalocean.com/
https://home.howstuffworks.com/smart-home1.htm
https://github.com/festvox/festvox
https://www.gartner.com/newsroom/id/3598917
https://www.cyberciti.biz/faq/authentication-vs-authorization/
https://support.google.com/accounts/answer/185833
https://support.google.com/accounts/answer/1085463
http://docs.grafana.org/alerting/notifications/
https://grafana.com/grafana

120

Groover, M. P. 2018. Automation. 16.3.2018. Accessed 26.3.2018. Retrieved from
https://www.britannica.com/technology/automation .

Hefnawi, A. 2014. 3.5.2014. MAX6675 driver and code. Accessed 3.4.2018.
Retrieved from https://github.com/draco003/max31855 .

Home Assistant – Components. 2018. Accessed 20.3.2018. Retrieved from
https://www.home-assistant.io/components/ .

InfluxDB. 2018. Accessed 24.2.2018. Retrieved from
https://www.influxdata.com/time-series-platform/influxdb/ .

Install Home Assistant. n.d. Accessed 14.2.2018. Retrieved from
https://www.home-assistant.io/getting-started/ .

Internet Sauna & Steam Room Alert. 2016. 19.7.2016. Accessed 19.11.2017.
Retrieved from https://www.scandiamfg.com/internet-sauna-steam-room-
alarm/ .

IoT History. 2016. 1.2.2016. Accessed 13.9.2017. Retrieved from
https://www.postscapes.com/internet-of-things-history .

Jousimaa, O. 2017. Node-RED RuuviTag node. 4.7.2017. Accessed 22.2.2018.
Retrieved from https://github.com/ojousima/node-red .

Lämpötila ja löyly. 1997. Accessed 14.2.2018. Retrieved from
http://www.saunasite.com/tekstit/loyly.htm .

Light, R. n.d. MQTT man page. Accessed 22.3.2018. Retrieved from
https://mosquitto.org/man/mqtt-7.html .

Loponen, T. 2005. Suopuhe. 11.11.2005. Accessed 20.3.2018. Retrieved from
https://www.tivi.fi/Arkisto/2005-11-11/Suopuhe-3082175.html .

Mäkinen, J. 2016. Having Fun With IoT. 12.11.2016. Accessed 25.11.2017.
Retrieved from http://www.juhonkoti.net/2016/11/12/having-fun-with-iot .

Marjamaa, M. 2016. Flow: More with less. 17.10.2016. Accessed 25.11.2017.
Retrieved from http://flow-morewithless.blogspot.fi/2016/10/iot-for-saunas-
zwave-thermometer.html .

Material Design Icons. n.d. Accessed 23.3.2018. Retrieved from
https://materialdesignicons.com/ .

Miller, P. 2017. Raspberry Pi sales. 17.3.2017. Accessed 24.1.2018. Retrieved
from
https://www.theverge.com/circuitbreaker/2017/3/17/14962170/raspberry-
pi-sales-12-5-million-five-years-beats-commodore-64 .

Mopidy – Spotify authentication. 2018. Accessed 23.2.2018. Retrieved from
https://www.mopidy.com/authenticate/#spotify .

https://www.britannica.com/technology/automation
https://github.com/draco003/max31855
https://www.home-assistant.io/components/
https://www.influxdata.com/time-series-platform/influxdb/
https://www.home-assistant.io/getting-started/
https://www.scandiamfg.com/internet-sauna-steam-room-alarm/
https://www.scandiamfg.com/internet-sauna-steam-room-alarm/
https://www.postscapes.com/internet-of-things-history
https://github.com/ojousima/node-red
http://www.saunasite.com/tekstit/loyly.htm
https://mosquitto.org/man/mqtt-7.html
https://www.tivi.fi/Arkisto/2005-11-11/Suopuhe-3082175.html
http://www.juhonkoti.net/2016/11/12/having-fun-with-iot
http://flow-morewithless.blogspot.fi/2016/10/iot-for-saunas-zwave-thermometer.html
http://flow-morewithless.blogspot.fi/2016/10/iot-for-saunas-zwave-thermometer.html
https://materialdesignicons.com/
https://www.theverge.com/circuitbreaker/2017/3/17/14962170/raspberry-pi-sales-12-5-million-five-years-beats-commodore-64
https://www.theverge.com/circuitbreaker/2017/3/17/14962170/raspberry-pi-sales-12-5-million-five-years-beats-commodore-64
https://www.mopidy.com/authenticate/

121

Mopidy. 2018. Accessed 15.2.2018. Retrieved from https://www.mopidy.com .

Noble – BLE central module. 2015. Accessed 3.3.2018. Retrieved from
https://github.com/noble/noble#running-without-rootsudo .

Node-RED. 2017. Accessed 20.3.2018. Retrieved from https://nodered.org/ .

Official RuuviTag Firmware. 2017. Accessed 23.2.2018. Retrieved from
https://lab.ruuvi.com/ruuvitag-fw/ .

OpenWeatherMap – API. n.d. Accessed 4.4.2018. Retrieved from
https://openweathermap.org/api .

PVC Heat Distortion Temperature. n.d. Accessed 13.2.2018. Retrieved from
http://www.pvc.org/en/p/heat-distortion-temperature-softening-temperature .

Raspberry Pi 3 Pinout. 2016. 2.6.2016. Accessed 4.3.2018. Retrieved from
https://myelectronicslab.com/raspberry-pi-3-gpio-model-b-block-pinout/ .

Rouse, M. 2016. Internet of Things. July 2016. Accessed 25.10.2017. Retrieved
from http://internetofthingsagenda.techtarget.com/definition/Internet-of-
Things-IoT .

Ruuvi: Weather Station. 2016/2017. Accessed 20.2.2018. Retrieved from
https://f.ruuvi.com/t/official-ruuvi-app-weather-station/17/8 .

RuuviTag. n.d. Accessed 19.2.2018. Retrieved from https://tag.ruuvi.com/ .

Saunan kehitystä. 1997/1999. Accessed 16.3.2018. Retrieved from
http://www.saunasite.com/index-fi/kehitys.htm .

Saunan rakentaminen – Poistoilma. 1997/1999. Accessed 16.3.2018. Retrieved
from http://www.saunasite.com/index-fi/poisilma.htm .

Saunan rakentaminen – Tuloilma. 1997/1999. Accessed 16.3.2018. Retrieved
from http://www.saunasite.com/index-fi/tuloilma.htm .

Saunaxio – ALSA. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/audio/alsa .

Saunaxio – Assistant install. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/scripts/snips .

Saunaxio – Festival. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/audio/festival .

Saunaxio – Home Assistant. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/home-assistant .

Saunaxio – Mopidy. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/audio/mopidy .

https://www.mopidy.com/
https://github.com/noble/noble
https://nodered.org/
https://lab.ruuvi.com/ruuvitag-fw/
https://openweathermap.org/api
http://www.pvc.org/en/p/heat-distortion-temperature-softening-temperature
https://myelectronicslab.com/raspberry-pi-3-gpio-model-b-block-pinout/
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://f.ruuvi.com/t/official-ruuvi-app-weather-station/17/8
https://tag.ruuvi.com/
http://www.saunasite.com/index-fi/kehitys.htm
http://www.saunasite.com/index-fi/poisilma.htm
http://www.saunasite.com/index-fi/tuloilma.htm
https://github.com/saunaxio/Saunaxio/tree/master/audio/alsa
https://github.com/saunaxio/Saunaxio/tree/master/scripts/snips
https://github.com/saunaxio/Saunaxio/tree/master/audio/festival
https://github.com/saunaxio/Saunaxio/tree/master/home-assistant
https://github.com/saunaxio/Saunaxio/tree/master/audio/mopidy

122

Saunaxio – NodeRED flow. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/node-red .

Saunaxio – scripts. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/scripts/audio .

Saunaxio – Snips AI. 2018. Accessed 21.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/snips-ai .

Saunaxio – thermocouple. 2018. Accessed 19.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/codes/thermocouple

Saunaxio – ultrasonic. 2018. Accessed 19.5.2018. Retrieved from
https://github.com/saunaxio/Saunaxio/tree/master/codes/ultrasonic .

Smoke sauna. 2004. 28.3.2004. Accessed 16.5.2018. Retrieved from
https://upload.wikimedia.org/wikipedia/commons/b/b8/Smoke_sauna.JPG .

Snips Voice Platform. 2018. 14.2.2018. Accessed 22.3.2018. Retrieved from
https://github.com/snipsco/snips-platform-documentation/wiki .

Tuohy, J. 2015. What is home automation and how do I get started?. 26.1.2015.
Accessed 10.10.2017. Retrieved from
https://www.networkworld.com/article/2874914/internet-of-things/what-is-
home-automation-and-how-do-i-get-started.html .

What is cloud computing. n.d. Accessed 25.10.2017. Retrieved from
https://www.interoute.com/what-cloud-computing .

What Is Home Automation and How Does it Work?. N.d. Accessed 9.10.2017.
Retrieved from https://www.safewise.com/home-security-faq/how-does-home-
automation-work .

What is IaaS. n.d. Accessed 25.10.2017. Retrieved from
https://www.interoute.com/what-iaas .

What is PaaS. n.d. Accessed 25.10.2017. Retrieved from
https://www.interoute.com/what-paas .

What is SaaS. n.d. Accessed 25.10.2017. Retrieved from
https://www.interoute.com/what-saas .

https://github.com/saunaxio/Saunaxio/tree/master/node-red
https://github.com/saunaxio/Saunaxio/tree/master/scripts/audio
https://github.com/saunaxio/Saunaxio/tree/master/snips-ai
https://github.com/saunaxio/Saunaxio/tree/master/codes/thermocouple
https://github.com/saunaxio/Saunaxio/tree/master/codes/ultrasonic
https://upload.wikimedia.org/wikipedia/commons/b/b8/Smoke_sauna.JPG
https://github.com/snipsco/snips-platform-documentation/wiki
https://www.networkworld.com/article/2874914/internet-of-things/what-is-home-automation-and-how-do-i-get-started.html
https://www.networkworld.com/article/2874914/internet-of-things/what-is-home-automation-and-how-do-i-get-started.html
https://www.interoute.com/what-cloud-computing
https://www.safewise.com/home-security-faq/how-does-home-automation-work
https://www.safewise.com/home-security-faq/how-does-home-automation-work
https://www.interoute.com/what-iaas
https://www.interoute.com/what-paas
https://www.interoute.com/what-saas

123

Appendices

Appendix 1. Block diagram of the system

124

Appendix 2. Fieldbox layout with circuit board

125

Appendix 3. Sequence diagram of Snips AI function

126

Appendix 4. Hardware list

127

Appendix 5. Hardware placement inside the sauna

128

Appendix 6. QR-code for the Github repository (URL included)

Saunaxio – Github repository https://github.com/saunaxio/Saunaxio .

https://github.com/saunaxio/Saunaxio

