

Kasra Ariyaeimehr

FLIGHT LOGGING ENTRY FORM

Creating a form and results table for flight logging purposes

FLIGHT LOGGING ENTRY FORM

Creating a form and results table for flight logging purposes

 Kasra Ariyaeimehr
 Bachelor’s thesis
 Spring 2018

 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author(s): Kasra Ariyaeimehr
Title of Bachelor´s thesis: Developing a web Application using ReactJS frame-work
Supervisor(s): Lasse Haverinen, Pekka Alaluukas
Term and year of completion: Number of pages:

The purpose of this thesis was to develop an interactive front-end for an already developed API,
and already established development environment. The project was commissioned as a thesis
project by the owner and moderator of cavokeapp.com which is an aviation related website for
both enthusiasts and professionals.

Based on client’s recommendation, a JavaScript Library called ReactJS was chosen as the main
tool to create the interface of the project. Other tools include Bootstrap CSS library. The objective
for this project was to create an interactive front-end for an application that recorded and logged
flight information for pilots who either fly aircrafts with engine or, glider. This application already
exists but the full form is incomplete and lacks the necessary field required by the EASA
documentation [1] page 31 and 32. The client also wanted this application to be done (both the
full-form and glider form) using the ReactJS framework. Both the API and the development
environment for this application had been implemented prior to commissioning of this project,
therefore in this thesis the main focus will be on technologies involved in creating the interfaces.

Out of the goals set for this project, creating a form that can handle the user’s entry for motorized
aircrafts and also display the result from database in an orderly fashion that can be further edited
or deleted was accomplished. Due to various circumstances not all the objectives set for this
project were accomplished. Those circumstances are further discussed in the conclusions
section.

Keywords:

ReactJS, JavaScript, Bootstrap, MVC, Library, open source

4

TABLE OF CONTENTS

 ABSTRACT ... 3

 TABLE OF CONTENTS ... 4

 FIGURES ... 5

1 INTRODUCTION ... 6

1.1 Background…………………………………………………………………………….7

2 TOOLS .. 8

2.1 Overview……………………………………………………………………………….8

2.2 JSX…………………………………………………………………………………….8

2.3 One-Way Data Flow………………………………………………………………….9

2.4 Virtual Document Object Model…………………………………………………….11

2.5 NPM…………………………….…………………………………………………….12

2.6 Webpack Module Bundler…….…………………………………………………….13

2.7 Symfony………………………..…………………………………………………….14

2.8 Bitbucket………………………..…………………………………………………….14

2.9 Axios………………………………………………………………………………….14

3 IMPLEMENTATION ... 15

3.1 From Entry User Interface….……………………………………………………….15

3.1.1 From Entry User Interface….……………………………………………………….15

3.1.2 Implementation…………..….……………………………………………………….16

3.2 Post Request to the API…….……………………………………………………….20

3.3 Fetch and Display…….…….……………………………………………….……….21

3.3.1 GET request……………..….……………………………………………………….21

3.3.2 Display & Edit View……..….……………………………………………………….22

4 CONCLUSION ... 25

5 REFERENCES .. 26

5

FIGURES

Figure 1 Babel transpilers demo…………………………………………………………..…… 8

Figure 2 Babel transpilers demo 2…………………………………………………...…...……. 9

Figure 3 Functional Component with props demonstration ……………………………..…... 10

Figure 4 Class Component with state and props.. 10

Figure 5 Package.json dependencies …………..…………………………………………….. 12

Figure 6 Webpack.config.js entry & output………………………………………...………..… 13

Figure 7 Flight Long Form User Interface ………………………….……...…...…......……… 15

Figure 8 import syntax, App.js……………………...……………………...……...…………… 16

Figure 9 constructor and state variables…………………...………...………………..……… 17

Figure 10 App.js render ()……………………….…………………………………..….……… 18

Figure 11 DatePicker Component ...…..... 18

Figure 12 DATE select………………….……..…………………………...………..….……… 19

Figure 13 saveDate() called…………………..……………………………...……...….……… 19

Figure 14 Axios POST request..….... 20

Figure 15 API address for CRUD operations……..……………………………….......……… 21

Figure 16 Get Request……………………………..…………………………………….…...… 21

Figure 17 EasaFlightLog…………………….……..…………………………………....……… 22

Figure 18 EasaLogRow….. 22

Figure 19 handleEditFlight………………………....…………………………………………… 23

Figure 20 Table View/Edit Mode…………………..…………………………………………… 24

Figure 21 Date component View/edit mode toggle……..…………………………………….. 24

6

1 INTRODUCTION

Cavoke.com is a flight management service targeting both armature and professional pilots. This

application as it pertains to this project include, flight-information logging for both glider and

single/double engine plane pilots based on standards defined by the EU. Below is a list of tasks

that will be accomplished during this thesis project.

 Completing the form UI done in previous project

 Integrating a entry form UI created in the previous project, with the existing application.

 Creating a POST request to the API in order to insert data from the log-form entry to

database.

 The user should be able to modify and save each individual data output from where the

data is being displayed.

 Creating a shorter data entry form for glider pilots. This work includes re-creating the

current data-entry form with the ReactJS and API integration. The user should then be

able to toggle between a glider entry-form and a full form. This option has to be also

saved in user preferences.

 The result from both forms should be saved and displayed appropriately.

 Implementing flight statistics for the long-entry form (not a priority).

 The “Invoice now” and “Export log” buttons should be implemented for the long entry

form.

 The pilot/co-pilot or, trainer/trainee flight hours should be saved individually/separately in

designated areas.

To mimic the working application environment we are using Vagrant. In a nutshell, Vagrant is a

tool for managing virtual machines (more details in section 2). Vagrant installs a virtual machine

on a system which then allows the user to run/configure applications (in this case the cavokeapp)

in a virtual environment. ReactJS, which is a JavaScript library, is also used to create the front-

end and the Symfony PHP framework is used to create the API on the back-end.

7

1.1 Background

Due to advances made in JavaScript technologies that allowed for creation of various JavaScript

based libraries e.g. Angular.js [2], ReactJS [3] etc, simple front-end development with static

pages and simple styling are no longer the industry standard. In the past JavaScript was mainly

used to create animations and interactive styling on Static pages. But, thanks to these

advancements, that follow the MVC (Model-View-Controller) approach to the software

development, not only developers can create interactive and modular front-end views that far

exceed the traditional UIs both in terms of user experience and speed. But also utilize a more

modular and compartmentalized approach to the user interface development.

Currently there are three main JavaScript libraries that mimic the MVC model in usage,

Angular.js, Node.js [4] and of course ReactJS. The debate over the superiority of any of the

above technologies over the other is well-established and on-going. The reason ReactJS was

chosen to implement the front-end for this application was simply due to clients’ requirements.

ReactJS is more of a library than a framework. It provides a speedy client and server side

rendering with a one-way data flow. It also allows programmers to create and utilize different

components with different functionalities multiple times. Buttons, tables and fields can be created

and utilized many times over. All these features make ReactJS the best candidate for this project

development.

8

2 TOOLS

Since the author’s role in this project was to create a new user interface for an already existing

application and, the client provided the necessary tools and development environment, in this

chapter it is mainly focused on the inner workings of ReactJS and its utilization.

2.1 Overview

ReactJS is an open-source JavaScript library which is used for creating interactive user

interfaces. It was first created by Jordan Walke, a software engineer at facebook. The first

utilization of ReactJS was on Facebook’s newsfeed in 2011 and later on Instagram.com in 2012.

One of the main advantages of ReactJS is allowing developers to create large scale web

applications which can change data, without having to reload the page. This feature allows for

fast, scalable and rather simple creation of large applications.

2.2 JSX

In ReactJS, it is recommended to use JSX for creating templates. JSX is an XML/HTML-like

syntax used by ReactJS for creating templates. It simply allows for co-existence of XML/HTML

text within JavaScript code. These syntaxes are then put through pre-processors (i.e. transpilers

such as Babel) to convert/transform the HTML/XML texts found in JavaScript code into standard

JavaScript objects, which can then be parsed by JavaScript engine. Using Babel’s embedded

editor [5] it is possible to demonstrate this feature via a simple example. Bellow we have shown a

variable that contains a simple list with two items.

FIGURE 1. Babel transpilers demo

9

If the above code (Figure 1) is put through Babel, it will be transformed to JavaScript objects as

demonstrated below (Figure 2). In other words, whenever JSX is included into code, it is

considered as a shorthand call for React.createElement() .

FIGURE 2. Babel transpilers demo 2

2.3 One Way Data Flow

ReactJS utilizes a unidirectional data flow. This means that in ReactJS applications, a pyramid-

like hierarchy is followed. In ReactJS applications, lower ordered child components are often

nested within higher ordered parent components. The parent component will house a container

that keeps track of the state of the application. In ReactJS the term “state” refers to an immutable

set of variables that is stored inside the parent component. The state is owned and its scope is

limited to/within the parent component where it was first declared. The state values can then be

passed down to lower nested children components via read-only “props”. The children are then

10

able to communicate changes in state via button or form bound callbacks. In the example below

this feature is demonstrated [Figure 3]

In ReactJS it is possible to create components in two different ways. The simplest way to define a

ReactJS component is to write a JavaScript function. In the example provided in Figure 3, both

components are defined via this method. Both “SayHi” and “App” components are functions and

accept a single “props” object argument with some data and they return a ReactJS element in the

JSX form. These types of Components are called “functional” because they are essentially

JavaScript functions. The below snippet returns: “Hello, Sara”

FIGURE 3. Functional Component with props demonstration

FIGURE 4. Class Component with state and props

11

In the example above (Figure 4) there is a parent component in “App”. App is a “Class

Component” and a “State-Full Component”. Although not always necessary, Class Components

can have states as well. If a Class component has state values, then it is referred to as a “state-

full Component”. Inside the Constructor, state variables are initialized. The super()method is

called if the component has a constructor. It is not possible to initialize the state before calling

super() method because this before super() is uninitialized. In Figure 4 similar to

Figure 3, the values (In this case state values) are passed down to the child Component via

props. Inside the constructor, if we are going to call this.props, we have to pass props to

super.

2.4 Virtual Document Object Model

DOM is an abbreviation for Document Object Model. DOMs are in essence an abstraction that

take the page’s HTML structure of the page and represent it in a hierarchical/tree-like structure

wrapped in an object, while maintaining the parent/child relationship between the pages.

Since DOMs were originally designed to handle static UIs, as web applications became more

complex and demanding, DOMs became quite inefficient and slow because upon every change

the DOM has to go through every node and look for changes and update. This style of data

update detection is referred to as “Dirty Checking”. The other method is referred to as

“observable” or “fast”. In the observable method, the different components of the application are

responsible for listening for any accruing changes that occur. In this method the data is saved into

the state and the component simply listens to events in the state for any updates.

The ReactJS engine utilizes what is called a Virtual DOM. A virtual DOM is simply a light-weight

copy of the actual DOM but unlike the real DOM, VDOM does not have the ability to update or

write to the page. In ReactJS a new VDOM is created every time an element is re-rendered. Right

before the page is rendered, ReactJS takes a snapshot of the DOM state. This snapshot is then

used against an updated VDOM before re-rendering the page again. When VDOM is updated,

ReactJS uses a “diffing” algorithm to compare changes in order to detect any updates in the

components and, update those elements that have changed.

12

2.5 NPM

NPM is a package manager for Node.js. According to the official NPM website [6] NPM is the

largest software registry with approximately 3 billion downloads per week and it is installed along

with Node.js. In Node.js, a “package” contains all the files required to create a “module”. The

module is a JavaScript library that can be imported and used in a project therefore speeding up

the development process.

NPM packages can be download via the npm install [package-name]

command. The first time this command is run, NPM creates a folder named “node_modules” in

the parent directory where the first installed package and all the packages to be installed in the

future will be placed. When installing packages, if we add a -- save flag is added at the end

of the install command, the name and the version of the package is automatically added to the

“package.json” file. The package.json file contains the name and version of all dependencies in

the project.

FIGURE 5. Package.json dependencies

13

When it comes to sharing the project with team-mates, having a list of dependencies and their

versions is very important. When this project ispushed into a repository, the “node_modules”

folder can be ignored since it could contain hundreds of dependencies depending on the number

of packages that have been installed. When someone clones this repository and begins working

on it, all they have to do is to run the npm install command. All this command does is to

look through package.json dependencies and install all the packages that is listed.

2.6 Webpack Module Bundler

Webpack is a very powerful tool for JavaScript developers. Webpack works by creating a

dependency graph of all the dependencies in this application. The process starts from the config

file (Webpack.config.js) and builds a dependency graph of all the modules that is required for the

application. All the modules are then packaged into a small number of bundles to be loaded by

the browser.

FIGURE 6. Webpack.config.js entry & output

Webpack setup could have one or many entry points. As mentioned before, the entry point tells

Webpack where to start building the dependency graph. In this project, since the config file has

already been set-up (Figure 6), all that has to be done is to set a new entry point inside entry:

{…}. We will do so by adding flightlog: “./webApps/flightLogApp.js”,

inside the curly brackets. When npm run build is run, Webpack starts processing the

14

module at the defined entry point. From this point, it searches for other modules that depend on

the entry module. This process continues until all direct/indirect dependencies have been found

and configured. In a Webpack setup, also an (only one) output must be defined. After the bundles

have been created, the output lets Webpack know where to place the bundle(s) and how to name

them. In the example above (Figure 6) the bundle file is created via filename:

‘[name]Bundle.js’ inside the output.

2.7 Symfony

Symfony is a PHP framework. Symfony aims to accelerate the creation and maintenance of a

web application and also to replace recurrent coding tasks. Symfony achieves this by using a set

of components and libraries

2.8 Bitbucket

Bitbucket is a web-based hosting service for projects that use either Mercurial or a Git version

control. It not only allows for a safe storage of one’s work but also allows for easy work flow

monitoring and collaboration with other team members

2.9 Axios

Axios [9] is a Promise-based HTTP client for JavaScript which can be utilized in the front-end of

this application for CRUD (create, read, update and delete) operations. Axios allows for easy

creations of asynchronous HTTP requests to our REST endpoints. Axios provides the following

features (according to the official website [9])

 Making XMLHTTP Requests from the browser

 Making HTTP requests from node.js

 Supporting the Promise API

 Intercepting requests and response

 Transforming request and response data

 Canceling requests

 Automatic transforms for JSON data

15

3 IMPLEMENTATION

3.1 Form Entry User Interface

FIGURE 7. Flight Long Form User Interface

The above image shows the long-form view of the flight entry interface. This form was created

based on specifications provided by the EU aviation safety agency.

3.1.1 Code-Splitting

In ReactJS applications JavaScript bundling solutions such as Webpack (chapter 2.3) or

Browserify, are used to bundle all imported files and creating a single file that can be

imported/included in the project. Bundles help to keep track of the applications dependencies, but

as the application grows so does our bundle, especially if third-party libraries are used. And this

will have an accumulating affect on the speed and performance of the application. In these types

of situations it is possible to rely on a feature that bundling tools such as Webpack offer called

“Code-Splitting” splitting allows to create multiple bundles that can be loaded dynamically at

runtime. By using the dynamic import() syntax. According to ReactJS documentation [7],

dynamic import() syntax is a ECMAScript (proposal) not currently part of the language

standard. But, it is expected to be part of the language in the near future.

16

3.1.2 Implementation

The file structure for the flight long flight form consists of two main files. App.js witch happens to

be the highest parent component of the project. Previously it was mentioned that in ReactJS

applications the parent component is where the state variables are defined and later on passed

down as props to children. But sometimes it is possible for children components, at least for some

of them, to have constructors and state values. App.js can be divided into four parts. In the top

most part using the import () syntax we import all the necessary bundles are imported

(Figure 8).

FIGURE 8. import syntax, App.js

App.js is a state-full component. Inside the App class a constructor is defined to initialize the state

variables. Since we define a constructor for this class is defined, it is crucial that we call

super() inside the constructor will be called before this is called since this is initialized

by super() (Figure 9)

17

FIGURE 9. constructor and state variables

Inside the state we define an array of variables mainly string variables, some arrays and also

Date, are defined. The entire variables are empty inside the state. In the next step, inside the

render () function of the App component, the state and a set of setter functions are passed

to the PageOne.js (Figure 10) as props. logbook={this.state} will allow us to access

all the state values inside pageOne.js via e.g. this.props.logBook.Date. Similarly, it

is possible to access the setting functions inside PageOne.js e.g.

this.props.handleDateChange. handleDateChange() will call the

saveDate() setter function inside App.js

18

FIGURE 10. App.js render()

In ReactJS there is, a wide array of reusable, pre-made components created by third parties.

These components can be downloaded via NPM and used readily inside this project. If “Date”

value and how it is set as an example, the “React BootStrap based Date Picker” [8] package can

simply be installed by running npm install react-bootstrap-date-picker. Inside

PageOne.js we then import/require the component is the imported/required via let

DatePicker = require(“react-bootstrap-date-picker”);

Inside the render () function in PageOne.js, we simply include the date component is simply

included as shown in FIGURE 11 below:

FIGURE 11. DatePicker component

19

The Date-picker component (Figure 11) accepts a value and an onChange() parameter. Inside

the value the state is passed and inside onChange()the date setter function is passed. Upon

clicking on the “Date” inside the form and selecting a date (Figure 12), the saveDate() inside

App.js gets called which intern sets the Date value via setState() (Figure 13)

FIGURE 12 DATE select

FIGURE 13. saveDate() called

setState() can be thought of as a request to the ReactJS engine to update the component

and its children. This action includes adding the changes to the component’s state and telling

ReactJS that this component needs to be updated. setState() in ReactJS is a primary

method that is used to provoke UI changes in response to event handlers/server responses. It is

important to know that ReactJS does not guarantee an immediate UI change after

setState() is called. React may delay the UI update after setState() is called for a

better performance hence setState() is considered more as a request rather that a

command.

For this very reason, ReactJS does not recommend reading this.state right after

setState(). Instead, a componentDidUpdate method or a setState()

20

callback must be used. Using these two methods will guarantee an immediate update after calling

setState()

3.2 Post Request to the API

After parent component’s state has been updated, the data must be posted to the API. Since in

this project the API has already been made to handle all CRUD actions, all that has to be done is

to utilize on Axios HTTP client to create and send a post request. Axios can be installed into this

project via NPM and import/include the application can be imported/included inside our project.

Here is how the post request looks like inside App.js

FIGURE 14. Axios POST request

21

Axios.post accepts two parameters; the first parameter is the API URL for POST that has been

defined in file flightLogReact.html.php as shown in FIGURE 15 below:

FIGURE 15. API addresses for CRUD operations

 The second parameter inside the request is an Array of variables to be sent and set to the

database. Since all these variables are state variables, the values are fetched via

this.state.[name]. After these two parameters have been set, the then() method

returns a Promise. The then() method takes up to two arguments: callback functions to

indicate the success or failure of the Promise

3.3 Fetch and Display

3.3.1 GET request

In order to be able to display the user-entry first, a get request must be created to the API. Similar

to the POST request, using the Axios HTTP client a new get request is created.

FIGURE 16. Get Request

In the above request a GET request is sent to the pre-defined API address at

newApiAddresses.flightsGet. Using a map function the output is looped through

22

and the outputs are stored as an array. Inside the map function we also do any conversions

necessary for Date and Time values are made. After the data is fetched, we set the state value

for pilot flights with our newly created array are set. Calling the Get request inside

componentDidMount() will ensure that the get method is invoked immediately after the

component is mounted. When we call setState() is called inside from

componentDidMount(), this will cause an extra rendering. This rendering will take place

before the browser updates the screen. Although this method is not recommended, in some

cases it can be necessary especially for cases such as modals and tooltips.

3.3.2 Display & Edit View

FIGURE 17. EasaFlightLog

In order to display the user data a full advantage of modularity of ReactJS must be taken.

<EasaFlightLog /> is the child of the parent component <App />. Inside

<EasaFlightLog /> exist <EasaLogRow /> which contains a set of individual cells,

each containing a component representing either the view or edit version of a single data point.

FIGURE 18. EasaLogRow.js

23

Inside <EasaFlightLog /> (Figure 17) an array is passed containing flights fetched from

database, two functions, one for editing the dataset and another to delete.

handleEditFlight={this.handleEditFlight} (Figure 19) will receive a

newly edited flight log from <EasaFlightRow /> passed up as a parameter and use the

received set of data to reset the pilot Flight array with the newly set state. deleteFlight =

{this.props.deleteFlight} will simply pass up the flight id to App.js and passes

a request to the delete function in the API

FIGURE 19. handleEditFlight()

As mentioned earlier, each table cell representing a data point is represented as a separate state

–fewer components (Figure 18) that will accept a state variable

editModeActive={this.state.editModeActive} as props that will determine

whether the cell component (Figure 20) will display the view mode or edit mode.

24

FIGURE 20. Table View/Edit Mode

When the user presses the edit button, a function toggleEditMode () is called, which in turn sets

the editModeActive state variable to either true or false. The editModeActive is passed as props

to each individual table cell component. If for instance one needs to consider how the Date view

mode is set inside the date component (Figure 21) the following shows how the component

toggles between the edit and view mode

FIGURE 21. Date component View/edit mode toggle

25

4 CONCLUSION

The main objectives to be accomplished for this thesis have been listed in the Introduction

chapter. Out of these tasks, I managed to accomplish four of them and the last three tasks (the

other being optional) where not accomplished. The not accomplished tasks are listed below.

 Creating a shorter data entry form for glider pilots. The user should then be able to toggle

between a glider entry-form to a full form. This option also has to be saved in user

preferences (Note: this section is the exact replica of the long-form section but shorter)

 Implementing flight statistics for the long-entry form (not a priority)

 The “Invoice now” and “Export log” buttons should be implemented for the long entry

form

 The pilot/co-pilot or, trainer/trainee flight hours should be saved individually/separately

into designated areas

 The main reasons behind the project being incomplete are first, my lack of knowledge about the

technologies utilized in this project as well as the lack of adequate planning and time

management. Another reason that can be listed as a catalyst would be continual changes that

needed to be made, parts and features being added and later removed. Since the beginning,

there was no agreement on how the UI should look like and what it should include. Another factor

that added to the problem was me continuing to work on the development version of ReactJS as

well as creating the API for the POST and GET request instead of installing and working with the

development environment created by the customer and included API.

Doing this project I gained valuable knowledge about developing with a very popular JavaScript

library in ReactJS as well as the workings of virtual environments such as Vagrant and how a

JavaScript library such as react can be utilized in such an environment. I also learned a lot about

the version control software Bitbucket and how such an environment can be utilized for effective

team work.

26

5 REFERENCES

1. EASA (European Aviation Safety Agency). Date of retrieval 08.05.2018,

https://www.easa.europa.eu/sites/default/files/dfu/AMC%20+%20GM%20to%20Regulatio

n%201178%20of%202011-Revision-June%202016_V03.pdf

2. AngularJS official website. Date of retrieval 08.05.2018, https://angularjs.org/

3. ReactJS Official Website. Date of retrieval 08.05.2018, https://reactjs.org/

4. NodeJS Official Website. Date of retrieval 08.05.2018, https://nodejs.org/en/

5. Babel Official Documentation. Babel transpilers. Date of retrieval 16.05.2018,

https://babeljs.io/repl/

6. NPM Official Website. Date of retrieval 18.05.2018, https://www.npmjs.com

7. ReactJS Official Documentation. Date of retrieval 20.05.2018,

https://reactjs.org/docs/code-splitting.html

8. React Bootstrap Date picker. Date of retrieval 20.05.2018,

https://www.npmjs.com/package/react-bootstrap-date-picker

9. Axios HTTP Request. Date of retrieval 25.05.2018,

https://www.npmjs.com/package/axios

https://www.easa.europa.eu/sites/default/files/dfu/AMC%20+%20GM%20to%20Regulation%201178%20of%202011-Revision-June%202016_V03.pdf
https://www.easa.europa.eu/sites/default/files/dfu/AMC%20+%20GM%20to%20Regulation%201178%20of%202011-Revision-June%202016_V03.pdf
https://angularjs.org/
https://reactjs.org/
https://nodejs.org/en/
https://babeljs.io/repl/
https://www.npmjs.com/
https://reactjs.org/docs/code-splitting.html
https://www.npmjs.com/package/react-bootstrap-date-picker
https://www.npmjs.com/package/axios

