
Maciej Bukowski

THE APPLICATION OF NFC TECHNOLOGY TO CREATE A MOBILE

CLOCK-IN/OUT INSPECTION DEVICE.

Case: SPR

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

March 2018

ABSTRACT

Centria University

of Applied Sciences

Date

March 2018

Author

Maciej Bukowski

Degree programme

Degree programme in Information Technology

Name of thesis

THE APPLICATION OF NFC TECHNOLOGY TO CREATE MOBILE CLOCK-IN/OUT

INSPECTION DEVICE. Case: SPR.

Supervisor

Dr Grzegorz Szewczyk

Pages

33 + 2

Supervisor

Dr Grzegorz Szewczyk

Working-life supervisor

Jari Isohanni

Access mode control in many companies is a basic data necessary for payment purposes. Though

computers are present in our everyday life, no low cost and easy to use access mode solution exists. To

date, employees at the second hand shops of the Finnish Red Cross (SPR) manage this by signing on

paper lists. Afterwards, somebody has to spend a lot of time and energy preparing reports.

The aim of the thesis is to create and develop an application for an Android device which will be a part

of a system for access mode control. The application will cooperate with the Firebase database and Web

Management Panel. This application will allow the collection of data about the time employees start

and end their working day. This data will be saved to the database, from where it will be accessible via

the Web Management Panel, which will allow the generation of reports for any given period of time,

without the obligation to re-calculate everything. Another very important feature of this system will be

that it is quite simple to develop and maintain. In addition, it will be extremely reasonable to install at

the destination locations, due to the fact that it is wireless and does not need any particular terminals.

The terminal can be almost any Android mobile device, which is consistent with the requirements.

Key words

Access mode control, NFC, TAG

ABSTRACT

Centria University

of Applied Sciences

Data

Marzec 2018

Autor

Maciej Bukowski

Kierunek

Informatyka Stosowana

Temat pracy

WYKORZYSTANIE TECHNOLOGII NFC DO BUDOWY PRZENOŚNEGO URZĄDZENIA

KONTROLI CZASU PRACY. Przypadek: SPR.

Instruktor

Dr inż. Grzegorz Szewczyk

Strony

33 + 2

Promotor

Dr inż. Grzegorz Szewczyk

Opiekun

Jari Isohanni

Podstawą wypłacania wynagrodzeń pracowników najemnych jest zawsze ewidencja czasu pracy. Taka

ewidencja jest również prowadzona w sklepach z artykułami używanymi, których właścicielem jest

Fiński Czerwony Krzyż – Suomen Punainen Risti (SPR). Dotychczas, w tej instytucji ewidencja czasu

pracy była prowadzona za pomocą papierowych list imiennych, na których pracownicy zaznaczali

godzinę przyjścia do i wyjścia z pracy. Następnie, listy te były zbierane w okręgu działania SPR i

znajdujące się na nich dane były wprowadzane do centralnego systemu ewidencji czasu pracy, co było

procesem żmudnym i długotrwałym.

Celem tej pracy było zaprojektowanie i wykonanie aplikacji pracującej pod systemem operacyjnym

Android, której zadaniem jest zautomatyzowanie ewidencji czasu pracy w Fińskim Czerwonym

Krzyżu. Aplikacja współpracowałaby z bazą danych Firebase i Internetowym Panelem

Administracyjnym. Aplikacja pozwoli na zbieranie danych o czasie rozpoczęcia i zakończenia pracy

przez pracowników. Dane będą zapisywane do bazy danych skąd będą one dostępne dla Internetowego

Panelu Administracyjnego, który pozwoli na generowanie raportów z dowolnego okresu czasu, bez

konieczności żmudnego, ręcznego przetwarzania danych.

Inne bardzo ważne cechy systemu to względna prostota produktu i łatwość obsługi. Aplikacja pracująca

pod popularnym systemem Android będzie mogła komunikować się z centralną ewidencją czasu pracy

SPR w sposób bezprzewodowy, a także nie będzie wymagać specjalistycznego urządzenia końcowego.

Terminalem może być dowolne urządzenie pracujące pod kontrolą systemu operacyjnego Android,

spełniające wymagania opisane w pracy. Przy takich założeniach koszty instalacyjne i eksploatacyjne

aplikacji będą bardzo niskie, co z punktu widzenia klienta stanowi ważny argument.

Słowa kluczowe

Kontrola czasu pracy, metka, NFC

ACRONYMS

1. NFC – Near Field Communication

2. SPR – Suomen Punainen Risti (Finnish Red Cross)

3. DAO – Data Access Object

ABSTRACT [English]

ABSTRACT [Polish]

ACRONYMS

CONTENTS

1 INTRODUCTION .. 1

2 NFC COMMUNICATION.. 2
2.1 Overview ... 2
2.2 Causes of NFC utilization .. 2

3 APPLICATION DESIGN ... 3
3.1 Requirements .. 3

3.1.1 Functional requirements ... 3
3.1.2 Non-functional requirements .. 4
3.1.3 System requirements .. 4

3.2 Use cases .. 4
3.2.1 Diagrams ... 5
3.2.2 Descriptions .. 5

3.3 Class selection process ... 8
3.4 Class diagram ... 10
3.5 User interface design .. 11
3.6 Flow of data between modules of the entire system .. 11
3.7 State diagram. ... 12

4 APPLICATION DEVELOPMENT AND IMPLEMENTATION .. 14
4.1 Design patterns used .. 14

4.1.1 Bridge .. 14
4.1.2 Singleton .. 15
4.1.3 Observer .. 16

4.2 IDE and additional libraries used ... 17
4.3 Database operations ... 17

5 APPLICATION TESTS .. 20
5.1 Release notes ... 20
5.2 Conclusions on applied database solution and concept of development 20

6 MANUAL .. 22
6.1 System requirements .. 22
6.2 Installation manual .. 22
6.3 User manual .. 22

REFERENCES .. 24

APPENDICES

GRAPHS

TABLES

GRAPH 1. Use cases diagram .. 5
GRAPH 2. Class diagram ... 10
GRAPH 3. State diagram .. 13

FIGURES

FIGURE 1. Main screen.. 11
FIGURE 2. Direction screen ... 11
FIGURE 3. Notification screen ... 11
FIGURE 4. Flow of data in the entire system ... 11
FIGURE 5. Bridge pattern (OODesign) ... 15
FIGURE 6. Singleton pattern (OODesign) ... 15
FIGURE 7. Observer pattern (OODesign) .. 16
FIGURE 8. Database's structure ... 19
FIGURE 9. Screens in the application .. 23

SOURCE CODES

SOURCE CODE 1. PropertyName annotations in the code ... 17

TABLE 1. Lexical analysis of requirements ... 9
TABLE 2. State diagram description .. 12
TABLE 3. Assumptions adopted and results obtained in the tests ... 20

1

1 INTRODUCTION

SPR - Suomen Punainen Risti (fin. Finnish Red Cross) “The Finnish Red Cross is one of the largest civic

organizations in Finland. The objective of the Finnish Red Cross is to help those who need it most both

in Finland and abroad (Suomen Punainen Risti).” The aim of this project is to develop a system to

calculate the working time of employees at the second hand shops of the Finnish Red Cross. This solution

will replace the current usage of paper attendance lists, which are very inconvenient to use, unreliable

and time consuming when preparing reports for payment purposes. The advantages of this system will

be ease of use, the ease and low cost of installation (does not require any wires and external services,

only 3G or Wi-Fi internet), and portability – the collection devices are totally wireless so it is not a

problem to change the location of a shop without incurring any additional costs.

The system will consist of a web service for data management and report generation, an Android

application for collecting data about the working time of employees using NFC, an online database to

store data about employees, their assignment to particular shops, and overtime by each employee, and

personal identification cards containing an NFC tag for each employee.

The SPR mobile application will transform any mobile device (smartphone / tablet) with an Android

Operating System into a terminal used for collecting data about the employee’s working time. The

application will work in kiosk mode, locked on the screen. The application will provide information

about the current status of the employee and will allow the employee to change the status.

The SPR web service will allow managers to manage users’ personal data, assign and manage personal

ID numbers, view and manage data about overtime by employees, and compile periodic reports.

Development of the SPR mobile application is commissioned by Centria University of Applied Sciences

Research and Development in Kokkola, Finland (APPENDIX 1).

2

2 NFC COMMUNICATION

2.1 Overview

Near Field Communication (NFC) was invented and developed by an association of Nokia, Sony and

Philips established in 2004 called the NFC Forum. Nowadays the number of NFC Forum members is

much bigger and still growing. Almost all the bigger digital technology companies can be found on the

list of members. (NFC Forum) Near Field Communications is a contactless means of communication

for short distances of up to 10 centimetres.

“Near field communication, or NFC for short, is an offshoot of radio-frequency identification

(RFID) with the exception that NFC is designed for use by devices within close proximity to each

other. Three forms of NFX technology exist: Type A, Type B, and FeliCa. All are similar but

communicate in slightly different ways. FeliCa is commonly found in Japan (Square, Inc.).”

Near Field Communication technology can be used in three possible modes: Tag Reader / Writer, Peer

to Peer and Card Emulation.

2.2 Causes of NFC utilization

For the purposes of this project a passive version of NFC was employed, which uses an NFC tag. A tag

is a kind of stick that consists of a coil and a microprocessor. Passiveness means that the tag does not

contain any energy supply; energy is generated by the coil. The other advantage of this solution is that

tags are very cheap, so their cost can practically be omitted when calculating system costs. Some of the

alternative solutions are much more expensive. Another possible solution was to use a barcode, but it is

more time consuming to using barcodes due to the necessity of taking a sharp photo of the barcode for

readout. The advantage of an NFC tag in this case is that the orientation presented to the device

containing the employee ID tag does not matter unlike the above-mentioned barcodes. According to one

of the client requirements to be able to use this application on most modern smartphones, it was not

possible to use any of the other RFID solutions, because they are not commonly implemented in

smartphones. In light of these advantages and features of NFC tags in this case, it was decided together

with the client to use this technology for identifying employees.

3

3 APPLICATION DESIGN

Application design is a very complex process which leads to the development of an application

responding to clients’ requirements. Application design consists of elicitation of requirements,

identifying use cases, class selection process, designing user interfaces, projecting flow of data inside

the application and exchange of data with external systems if needed. Software engineers basing on

properly specified requirements and eligible behaving of the application are able to design classes, user

interfaces and flow of data inside the application considering the need of interaction with external

systems. Previously mentioned steps are also mandatory to properly construct tests.

3.1 Requirements

Recognition of requirements is an important part of software design. Very well specified requirements

are a base for the whole design and development process. More time spent on the identification and deep

analysis of requirements leads to software that suits the client needs much better. Tools such as

interviews with the client and studies of similar software currently existing on the market can be used to

specify the requirements. As a result, requirements can be determined in detail and tell the developers

precisely what the application should do and what the limitations should be. (Sommerville, 2011, pp.

88-111)

3.1.1 Functional requirements

FR001 The application shall be able to display the user’s current work status.

FR002 The application shall show a screen with a current status indicator and two buttons for

choosing an action.

FR003 The application shall be able to display a notification when an action cannot be executed.

FR004 The application shall show a clock and information about the required action from the

user on main screen.

FR005 The user shall choose one of the two given directions.

FR006 The application shall show a notification with information on which action was executed.

FR007 The application shall identify the user by the NFC tag number.

FR008 The application shall use the device ID to identify in which shop this device is working

in order to exchange data with the database.

4

3.1.2 Non-functional requirements

NFR01 The application shall show a screen with buttons to choose the direction of logging for 10

seconds.

NFR02 The application shall show a screen with notification about the direction sent to the

database for 3 seconds.

NFR03 The application should have access to the Internet for at least 20 minutes per month.

NFR04 The database of one shop should be less than 10 MB.

NFR05 The application shall be able to work offline.

3.1.3 System requirements

SR001 The application shall work on platforms above Android 5.0.

SR002 The application shall use an NFC module.

SR003 The application shall work on devices with a screen with a diagonal of at least 5.7 inches.

3.2 Use cases

Use cases are used to illustrate the actions that the user has to perform to achieve the intended goal.

Interactions with other actors in the system are also shown in the use case. This tool also allows software

engineers to present all possible exceptions and, something that is even more valuable, what actions will

be performed by the system to solve the undesirable situation. (Sommerville, 2011, pp. 124-126)

5

3.2.1 Diagrams

GRAPH 1. Use cases diagram

3.2.2 Descriptions

Use Case ID: 001

Use Case Name: Readout of the tag

Actors: Employee

Description:

Trigger:

Pre-conditions:

Normal Flow: The user shows the NFC tag to the device; the device reads the tag and delivers

the event to the application.

Alternative Flows:

Exceptions:

Post-conditions: Number of the tag is known.

6

Use Case ID: 001

Use Case Name: Readout of the tag

Includes:

Frequency of Use:

Special

Requirements:

Assumptions:

Notes and Issues:

Use Case ID: 002

Use Case Name: Verification of the tag

Actors: Database

Description:

Trigger: NFC event from operating system.

Pre-conditions: Correctly read NFC tag

Normal Flow: The application asks the database for data on the tag.

The application displays the actual status of employee access and number of the

tag. [Exception: Tag Does Not Exist], [Exception: Tag Out of Date]

Alternative Flows:

Exceptions: Tag Does Not Exist: Shows the number of the tag and short description. The

application returns to the idle state.

Tag Out of Date: Shows the number of the tag and short description. The

application returns to the idle state.

Post-conditions: Tag is valid.

Includes:

Frequency of Use:

Special

Requirements:

Assumptions:

Notes and Issues:

7

Use Case ID: 003

Use Case Name: Press “In” Button

Actors: Employee

Description:

Trigger: Verification of the tag

Pre-conditions: Read and verified tag

Normal Flow: User presses the “In” button. [Exception: User Not Responding]

Alternative Flows:

Exceptions: User Not Responding: The application returns to the idle state.

Post-conditions:

Includes:

Frequency of Use:

Special

Requirements:

Assumptions:

Notes and Issues:

Use Case ID: 004

Use Case Name: Press “Out” Button

Actors: Employee

Description:

Trigger: Verification of the tag

Pre-conditions: Read and verified tag

Normal Flow: User presses the “Out” button. [Exception: User Not Responding]

Alternative Flows:

Exceptions: User Not Responding: The application returns to the idle state.

Post-conditions:

Includes:

Frequency of Use:

Special

Requirements:

Assumptions:

8

Use Case ID: 004

Use Case Name: Press “Out” Button

Notes and Issues:

Use Case ID: 005

Use Case Name: Save Data to Database

Actors: Database

Description:

Trigger:

Pre-conditions:

Normal Flow: The application sends the log (tag number, access mode, status update) to the

database. [Exception: New State is the Same as Actual]

Alternative

Flows:

Exceptions: New State is the Same as Actual: A log is sent with opposite access mode to

the database. A log is set with correct access mode.

Post-conditions: Access control data added to the database.

Includes:

Frequency of Use:

Special

Requirements:

Assumptions:

Notes and Issues:

3.3 Class selection process

For this purpose the author used “natural language analysis” invented by (Abbot, 1983) and popularized

by Grady Booch. This method relies on underlining and mapping different parts of speech to object

model components, therefore, as the use cases descriptions are quite poor in this case, focus was placed

only on classes and attributes that were mapped according to rules from nouns.

9

TABLE 1. Lexical analysis of requirements

Use case

number

 Use case name Use case description

002 Verification of the Tag The application asks the database for data on the tag. The

application displays the actual status of employee access

and the number of the tag.

003 Press “In” Button User presses the “In” button.

004 Press “Out” Button User presses the “Out” button.

005 Save Data to Database: The application sends the log (number of the tag, access

mode, and status update) to the database.

Observed nouns: Application, Database, Tag, Application, Status of access of employee, Number of the

Tag

As a result of the preliminary analysis, the following classes were received: Application, LogModel,

Tag, Database as well as the attributes: Status of access of employee, Number of the Tag.

10

3.4 Class diagram

GRAPH 2. Class diagram

11

3.5 User interface design

During interviews with the client it was specified that this application will have a UI, based on three

views: main, one used to choose the access mode, and one used for notifications (APPENDIX 2). Images

of the screens are presented below.

FIGURE 1. Main screen

FIGURE 2. Direction screen

FIGURE 3. Notification screen

The main screen of the application – always shows the current time and information about action

required to go further (FIGURE 1). The screen on which the current status of the employee and his/her

tag number are shown and two buttons for selecting the action to start or finish work (FIGURE 2). The

notification screen – on this screen all information is shown on executed actions like the changed current

status of the employee; also used to show notifications about failures (FIGURE 3).

3.6 Flow of data between modules of the entire system

FIGURE 4. Flow of data in the entire system

12

This system is to consist of the SPR application, the Firebase database and the Web Management

Service. The Firebase database is at the core of the whole system, while the other components

communicate with the database in both directions (FIGURE 4).

3.7 State diagram.

Software engineers can use state diagrams for the event-driven modelling of an application. Event-

driven modelling shows how a system responds to external and internal events (Sommerville, 2011, p.

135). State diagrams consist of states, activities performed in these states, and events that cause

transitions from one state to another. A state diagram does not show the flow of data in the application

but may include some additional information about calculations performed in particular

states. According to the fact that in state modelling, the number of states increases very quickly, in

bigger system models some less important details should be hidden. (Sommerville, 2011, pp. 135-138)

TABLE 2. State diagram description

State name State Description

Idle Main state of application. Application is waiting for the tag to be presented by

the user.

Direction choice The application will save the data to the database. A notification will be displayed

about successful changed user access mode to “out” for 3 seconds. After this time,

the application will go into idle state.

Logged “out” Application will save data to Database. And will display a notification about

successful changed user access mode to “out” by 3 seconds. After this time

application will go to the Idle state.

Logged “in” The application will save the data to the database. A notification will be displayed

about successful changed user access mode to “in” for 3 seconds. After this time,

the application will go into idle state.

Tag does not exist The application will display a notification that the tag does not exist for 3 seconds.

After this time, the application will go into idle state.

Tag is out of date The application will display a notification that the tag is out of date for 3 seconds.

After this time, the application will go into idle state.

13

GRAPH 3. State diagram

14

4 APPLICATION DEVELOPMENT AND IMPLEMENTATION

4.1 Design patterns used

Design patterns are general solutions for problems that are quite common. Using a design pattern

invented for a particular problem which occurs and should be solved guarantees that it is the most cost-

effective solution. Design patterns can be mixed and developed without any limits. They give software

engineers a skeleton of behaviour, so instead of inventing a similar solution again from scratch they can

focus on fitting it to the current problem. This helps to save a lot of money, time for development and

also to produce a code which will be more stable and less expensive to test.

“The pattern is a description of the problem and the essence of its solution, so that the solution

may be reused in different settings. The pattern is not a detailed specification. Rather, you can

think of it as a description of accumulated wisdom and experience, a well-tried solution to a

common problem. (…) Using patterns means that you reuse the ideas but can adapt the

implementation to suit the system that you are developing. When you start designing a system, it

can be difficult to know, in advance, if you will need a particular pattern. Therefore, using patterns

in a design process often involves developing a design, experiencing a problem, and then

recognizing that a pattern can be used. This is certainly possible if you focus on the 23 general-

purpose patterns documented in the original patterns book. However, if your problem is a different

one, you may find it difficult to find an appropriate pattern amongst the hundreds of different

patterns that have been proposed (Sommerville, 2011, pp. 189-193).”

4.1.1 Bridge

The bridge is a design pattern used to separate abstraction and implementation and to allow them to

change independently.

15

FIGURE 5. Bridge pattern (OODesign, Bridge)

The bridge pattern was used to separate the main part of application from the concrete implementation

of the database. This will enable a way of developing this application in the future to change the present

database solution to a completely different one and make the changes only in objects directly cooperating

with the database without drowning the other parts of the application (FIGURE 5).

4.1.2 Singleton

The singleton pattern is a creational pattern to enable the creation of a single instance of a class object

in the whole application. In order to achieve this goal, all constructors must be private, and the function

of returning a singleton instance must be static (FIGURE 6).

FIGURE 6. Singleton pattern (OODesign, Singleton)

16

The singleton pattern was used to ensure that two or more objects of the class used for working with the

database are not created. This may cause difficulties with the offline Firebase, which may decrease the

maximal size of offline copy. The Firebase offline copy can be stored in the cache only if it is smaller

than 10MB. If this size is exceeded, then the last data used are purged, which means that in offline mode

users would not be able to check their status, and also any change of status without a known real current

state may cause damage to the database. In addition, in the case of many references to the database if

one reference were set up for a listener to retrieve data and the operation of saving data were occurring

on another one, then it might cause a not entirely predictable effect. To avoid these consequences, the

application has only one object with one reference to the database in the memory at one time.

4.1.3 Observer

The observer pattern is another design pattern used for communicating between objects in the application

via events. It is achieved using two basic object types: observable – objects on which we would like to

obtain some information, and observer – objects that are waiting for a notification about the change of

state of the observable object. When the observable object changes its state, then it informs all its

observers about this change (FIGURE 7).

FIGURE 7. Observer pattern (OODesign, Observer)

Due to the fact that mostly operations on the database take quite a long time, they are carried out in

asynchronous way. The advantage of this solution is that the main thread of the application is not frozen

17

at the time of operations on the database. However, as a consequence it is not possible to simply pass

data to another function, so it can be resolved by using an observer pattern, and the event is thrown when

the operation on the database is completed. Then the application can work on this data just at the time

they are delivered.

4.2 IDE and additional libraries used

Since the client required that this application be developed in Java for an Android operating system, it

was decided to use Android Studio for this purpose due to the fact that the author had earlier used some

IDEs supplied by Jet Brains. All their products are consistent and quite similar in use regardless of the

supported technology.

The EventBus version 3.1.1 library designed by greenrobot was also used. It is a high performance, well

optimized, very popular, very simple-to-use implementation of the observer pattern (GreenRobot, brak

daty).

4.3 Database operations

SOURCE CODE 1. PropertyName annotations in the code

Adding data from log object to the database is realized by passing a LogModel type object to Firebase’s

setValue(Object) function. This function converts it to JSON using Firebase’s “PropertyName”

descriptions in the Log Model class (SOURCE CODE 1) and it is appended to the specified node.

18

The Firebase database was supplied by the client, so there was no opportunity to change the structure,

as the Web Management Service was almost complete and any changes in the structure would have

caused errors. This is described in more details below in the Observations section. Please see the diagram

of the structure of the supplied database in FIGURE 8. Three dots mean that the object on the right side

can be multiplied many times.

19

FIGURE 8. Database's structure

20

5 APPLICATION TESTS

Since this application does not contain any complicated logic, no unit tests were prepared. Instead, tests

were carried out using all possible scenarios. This table contains all the scenarios performed with adopted

assumptions and obtained results (TABLE 3). To sum up, all of the above tests were carried out correctly.

In addition, the acceptance tests were performed with the client's participation. The application fulfills

all the client requirements and expectations (Centria Univerity of Applied Sciences Research &

Development).

TABLE 3. Assumptions adopted and results obtained in the tests

Tag

exists

Tag is

current

Current

status

Performed

action
Expected result

Test

result

no ----------- -------- ----------- Notification that tag does not exist PASS

yes no -------- ----------- Notification that tag is out of date PASS

yes yes in nothing
After 10 seconds application will go

back to initial state
PASS

yes yes in

change access

mode status to

“out”

Notification that change of access

control status performed correctly.

Added proper records to database.

PASS

yes yes out

change access

mode status to

“in”

Notification that change of access

control status performed correctly.

Added proper records to database

PASS

yes yes in

change access

mode status to

“in”

Notification that change of access

control status performed correctly.

Added proper records to database

PASS

yes yes out

change access

mode status to

“out”

Notification that change of access

control status performed correctly.

Added proper records to database

PASS

5.1 Release notes

There are no issues affected work flow of application, which should be included to release notes.

5.2 Conclusions on applied database solution and concept of development

Usage of the Firebase database was one of the client’s requirements. However, during the development

of this application it was noticed that it would be a good idea for the future to change the Firebase

database to another solution for several reasons. Firstly, Firebase is a “server-less” solution, which means

21

that the whole code to manage and maintain the database has to be written in the application. This would

entail that all changes in the structure of the database would bring with them compulsory updating of

the application. Also, independently, it would cause the necessity for changes to the Web Management

Panel. Secondly, Firebase downloads all subtrees on load, which means that the data are not downloaded

according to needs. Thirdly, another of the client’s requirements was that the application should work

properly and without breaks even without an Internet connection. For this purpose, in the Firebase case,

the copy of the data on the device has to be smaller than 10 MB. After exceeding the limit, more recent

data will be removed from the device after being synchronized with the server. This means that, in the

event of a loss of Internet connection, the offline database on the device will work on non-current data,

which can cause serious mistakes in the database. Therefore, it is the duty of the system

manager/administrator to frequently generate reports and remove data from the database.

22

6 MANUAL

6.1 System requirements

1. Operating system: Android 5.0 or newer.

2. NFC module.

3. Internet connection.

4. Screen with diagonal of 5.7 inches or greater.

6.2 Installation manual

1. Make sure that your device meets all the requirements.

2. Before you start the installation, please find out the Android ID of your device (for this purpose

you can use one of the free applications from Google Play Store). It will be necessary to add your

device to the shop in the Web Management Panel.

3. The application is delivered as an installable file with an .apk extension. Copy this file to your

device.

4. Open file manager on your phone, go to the directory with the copied file.

5. Select the application, and choose “install”. Afterwards accept all permissions required by the

application.

6. Enable Internet connection, NFC module and Kiosk Mode.

7. Run the application.

8. Pin the application on the screen in Kiosk Mode.

9. Congratulations! The application is ready for use as soon as you have completed the

configuration of the store unit in the Web Management Panel.

6.3 User manual

Every time the application is idle then you can check the current time on the clock (1). To check

or change your current access mode status, please show your tag. The color of the indicator (2)

represents your current access mode status: red – “not working”, green – “working”. You can

see the number of your tag (3). You can change your status by choosing one of the direction

buttons (4). If you do not choose either of them, then after 10 seconds the application will return

23

to the beginning state. If you made a selection, then you will see screen (5) with information that

the change of status was correct.

FIGURE 9. Screens in the application

24

REFERENCES

Abbot, R. J. (1983). Program Design by Informal English Descriptions. Research Contributions.

Retrieved December 1, 2017, from

https://greenbay.usc.edu/csci577/fall2009/site/coursenotes/ep/Program%20Design%20by%20I

nformal%20English%20Descriptions,%20Russell%20Abbott.pdf

Centria Univerity of Applied Sciences Research & Development. (n.d.). Retrieved 05 15, 2018, from

https://tki.centria.fi/project/Xnet%20–

%20digitalisaatiota%20edistävät%20verkkosovellukset/1121/news/4345

GreenRobot. (n.d.). Retrieved 03 2018, 01, from https://github.com/greenrobot/EventBus

NFC Forum. (n.d.). NFC Forum. Retrieved 05 18, 2018, from NFC Forum Members: https://nfc-

forum.org/about-us/our-members-2/

OODesign. (n.d.). Bridge. Retrieved 03 01, 2018, from https://www.oodesign.com/bridge-pattern.html

OODesign. (n.d.). Observer. Retrieved 03 01, 2018, from https://www.oodesign.com/observer-

pattern.html

OODesign. (n.d.). Singleton. Retrieved 03 01, 2018, from https://www.oodesign.com/singleton-

pattern.html

Sommerville, I. (2011). Software engineering.

Square, Inc. (n.d.). NFC. Retrieved 05 18, 2018, from NFC: http://nearfieldcommunication.org/how-it-

works.html

Suomen Punainen Risti. (n.d.). punainenristi. Retrieved November 21, 2017, from what-finnish-red-

cross: https://www.redcross.fi/node/1556/what-finnish-red-cross

APPENDIX 1

APPENDIX 1/2

APPENDIX 2

	1 INTRODUCTION
	2 NFC COMMUNICATION
	2.1 Overview
	2.2 Causes of NFC utilization

	3 APPLICATION DESIGN
	3.1 Requirements
	3.1.1 Functional requirements
	3.1.2 Non-functional requirements
	3.1.3 System requirements

	3.2 Use cases
	3.2.1 Diagrams
	3.2.2 Descriptions

	3.3 Class selection process
	3.4 Class diagram
	3.5 User interface design
	3.6 Flow of data between modules of the entire system
	3.7 State diagram.

	4 APPLICATION DEVELOPMENT AND IMPLEMENTATION
	4.1 Design patterns used
	4.1.1 Bridge
	4.1.2 Singleton
	4.1.3 Observer

	4.2 IDE and additional libraries used
	4.3 Database operations

	5 APPLICATION TESTS
	5.1 Release notes
	5.2 Conclusions on applied database solution and concept of development

	6 MANUAL
	6.1 System requirements
	6.2 Installation manual
	6.3 User manual

