

Santeri Vaara

Client Software for Visualizing Test Automation

Result

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Thesis

7 September 2018

 Abstract

Author
Title

Number of Pages
Date

Santeri Vaara
Client Software for Visualizing Test Automation Result
47 pages
7 September 2018

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Smart Systems

Instructors

Juhana Sillanpää, squad group leader
Hannu Markkanen, researcher teacher

This bachelor’s thesis documents the development of client software as a part of a new test
analysis tool. The client software includes communication with the server for fetching data
and a graphical user interface for visualizing it. This project was conducted for a Finnish
telecommunications company operating globally.

As a starting point, software builds are tested daily with regression testing for ensuring that
software works the same way as it did before changes. The tests are made with Robot
Framework and they are executed in a Jenkins server. Jenkins server is used for continuous
integration, which enables test automation. After executing tests, the test results are seen
in a Jenkins build’s web-page with help of Robot Framework plugin. There are multiple Jen-
kins builds executing thousands of tests daily. The tester's job is to analyze the failed tests
and to ensure that test automation works. In addition to Jenkins web-page, the test results
are stored into a data storage server. Storage server contains over a year of unused test
result data.

The purpose of this thesis was to develop a client software for visualizing the test result data
from storage server. Client software is part of a new tool, which has got a server software
and a data manager software. Java was chosen as a programming language and JavaFX
for developing the graphical user interface. JavaFX is a Java software platform generally
used for creating computer desktop applications. JavaFX has a declarative way of coding
user interface elements similarly to hypertext markup language. This declarative way was
widely used in development of the graphical user interface. JavaFX offers lots of ready-made
classes for visualizing data. Using these classes was essential for visualizing test result data
with different charts and tables. User interface components could also be created with a
program called Scene Builder. Scene Builder enabled building the user interface by dragging
and dropping components from component menu.

As a result of the thesis, end-users can see summary of software build’s test results, statis-
tics and tests' history. Each of these features were created into the client software interface.
In addition to these features, client software supports other tools used in tester’s daily work
and it is able to retrieve data from the server.

Keywords Continuous Integration, Continuous Delivery, Jenkins, Robot
Framework, Test automation, Java, JavaFX, Graphical User
Interface, Client

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Santeri Vaara
Asiakasohjelmisto testiautomaatiotulosten visualisointiin
47 sivua
7.9.2018

Tutkinto insinööri (AMK)

Tutkinto-ohjelma tieto- ja viestintätekniikka

Ammatillinen pääaine Smart Systems

Ohjaajat

esimies Juhana Sillanpää
tutkijaopettaja Hannu Markkanen

Insinöörityössä kehitettiin asiakasohjelmisto, joka toimii osana uutta testien analysointityöka-
lua. Asiakasohjelmisto sisältää tiedonsiirron palvelimelta datan hakemiseen ja graafisen käyt-
töliittymän datan visualisointiin. Projekti toteutettiin maanlaajuisesti toimivalle suomalaiselle
televiestintäyritykselle.

Insinöörityön tilaajayrityksessä ohjelmistopaketit testataan päivittäin regressiotesteillä var-
mistamaan, että ohjelmisto toimii samalla tavalla kuin ennen muutoksia. Testit tehdään käyt-
täen Robot Frameworkia, ja ne suoritetaan Jenkins-palvelimella. Jenkins-palvelinta käytetään
jatkuvaan integraatioon, mikä mahdollistaa testiautomaation. Testien suoritusten jälkeen Ro-
bot Framework -liitännäinen mahdollistaa tulosten näkyvyyden Jenkinsin verkkosivulla. Jen-
kins suorittaa tuhansia testejä päivittäin, ja testaajan työ on analysoida epäonnistuneet testit
sekä varmistaa, että testiautomaatio toimii. Jenkins-verkkosivun lisäksi testien tulokset tallen-
netaan tiedontallennuspalvelimelle. Tallennuspalvelin sisältää yli vuoden verran dataa, jota ei
käytetä mihinkään.

Insinöörityön tarkoituksena oli kehittää asiakasohjelmisto, joka havainnollistaa tiedontallen-
nuspalvelimella olevat testitulokset. Asiakasohjelmisto on osana uutta työkalua, jossa on ole-
massa palvelinohjelmisto ja tiedonhallintaohjelmisto. Projektin ohjelmointikieleksi valittiin
Java, ja graafisen käyttöliittymän kehittämiseksi valittiin JavaFX. JavaFX on Java-ohjelmisto-
alusta, jolla voidaan luoda työpöytäsovelluksia. JavaFX:llä voidaan koodata työpöytäsovel-
lusten käyttöliittymiä deklaratiivisella tavalla, joka on samanlainen kuin hypertekstimerkintä-
kieli. Tätä deklaratiivista tapaa käytettiin laajalti projektin käyttöliittymän kehittämisessä. Ja-
vaFX tarjoaa paljon valmiita luokkia tiedon visualisointiin. Näitä luokkia käyttäen pystyttiin vi-
sualisoimaan testitulosten tietoja erilaisilla kaavioilla ja näkymillä. Käyttöliittymäkomponent-
teja pystyttiin myös luomaan Scene Builder -nimisellä ohjelmalla. Tällä ohjelmalla pystyi graa-
fisesti rakentamaan käyttöliittymänäkymiä raahaamalla ja pudottamalla komponentteja ohjel-
man komponenttivalikosta. Scene Builder -ohjelma kirjoitti automaattisesti siinä tehdyt muu-
tokset deklaratiiviseen muotoon käytetyssä tiedostossa.

Opinnäytetyön tuloksena asiakasohjelmiston loppukäyttäjät voivat tarkastella yhteenvetoa
ohjelmistopaketin testituloksista, tilastoista ja testien historiasta. Jokaiselle näille toiminnoille
luotiin näkymä asiakasohjelmiston käyttöliittymässä. Lisäksi asiakasohjelmisto tukee muita
käytettyjä työkaluja ja osaa hakea haluttuja tietoja palvelimelta.

Avainsanat jatkuva integraatio, jatkuva toimitus, Jenkins, Robot Framework,
testausautomaatio, Java, JavaFX, graafinen käyttöliittymä, asia-
kasohjelmisto

Contents

List of Abbreviations

1 Introduction 1

2 Test automation tools and technologies 2

2.1 Software development process 2

2.2 Jenkins 5

2.3 Robot Framework 5

2.4 Integration of Robot Framework and Jenkins 8

2.5 Problem presentation 10

2.6 Thesis objectives 11

3 Technologies of client software development 12

3.1 Java 12

3.1.1 Java architecture 13

3.1.2 Java development kit 13

3.2 JavaFX 14

3.2.1 JavaFX structure 15

3.2.2 JavaFX coding styles 17

3.3 Scene builder 20

4 Software implementation 22

4.1 Implementation of graphical user interface 22

4.1.1 GUI introduction 23

4.1.2 Resizing window 24

4.1.3 GUI component hierarchy 26

4.1.4 SearchPane 28

4.2 Client data fetching 29

4.2.1 Client-server communication 31

4.3 Data visualization 33

4.3.1 Visualization of build results 34

4.3.2 Visualization of test case results 35

4.3.3 Test case history 36

4.3.4 Support of other tools 37

5 Conclusion 39

References 40

List of Abbreviations

PCI Product Continuous Integration

CI Continuous Integration

CD Continuous Delivery

SCM Source Control Management

GUI Graphical User Interface

URL Uniform Resource Locator

ATDD Acceptance Test-Driven Development

API Application Programming Interface

OS Operating System

XML Extensible Markup Language

JVM Java Virtual Machine

RAM Random-access memory

OOP Object-Oriented Programming

IDE Integrated Development Environment

JDK Java development kit

JRE Java Runtime Environment

RIA Rich Internet Applications

AWT Abstract Window Toolkit

JFC Java Foundation Classes

CSS Cascading style sheet

SDK Software development kit

HTML Hypertext Markup Language

POM Project Object Model

TGZ Tar Gnu Zip

TCP Transmission Control Protocol

UDP Unix Datagram Protocol

1

1 Introduction

This bachelor’s thesis focuses on the development of client software for a new test anal-

ysis tool. The tool will be used for analyzing and visualizing software test results. The

thesis project is conducted for a Product Continuous Integration (PCI) team in Nokia

Solutions and Networks. Nokia Networks is a business unit of Nokia Corporation that

designs and manufactures equipment and software for telecommunications networks.

PCI team’s main responsibility is to keep test automation ongoing in continuous integra-

tion server and to test daily software builds with regression testing. The new test analysis

tool consists of backend server and a client. The client development is explained in this

thesis.

PCI team consists of testers, who ensures product quality by performing regression tests.

Regression tests are executed in a continuous integration environment. Continuous in-

tegration forms test automation. Most important tools of the tester’s work are Jenkins

and Jira. Jenkins is used for running tests in a CI server. There are lots of Jenkins jobs

for testing different domains of the product and they are all executed parallel with each

other. After all Robot Framework tests are executed with latest software build from

Source Control Management (SCM), the test results are visible in the Jenkins jobs. Logs

and test results are stored into a log server after Jenkins job executions. The log server

contains over a year of data and thus the test data is huge. Jira is a task management

software built for designing and monitoring workflow.

Since there are an enormous amount of tests running in multiple Jenkins jobs daily, it is

hard to keep track of all the test results. Also, analysis of the root cause for failed test

case is time consuming because of large amount of manual work. This thesis explains

how test result data is used in client side of this new test analysis tool for quickening

analysis time.

2

2 Test automation tools and technologies

This chapter presents the problem that this thesis will solve by implementing a new soft-

ware tool. Before the problem is presented, concepts of continuous integration, continu-

ous delivery, Jenkins, and Robot Framework will be clarified. These concepts are tools

and techniques which are important in presenting the project problem and essential in

making of this thesis.

2.1 Software development process

Normally product development with multiple developers is built by combining code

changes from developers into one source code repository. Source code repository is

built into a build package and then sent to testing server for final testing before product

release into production server (see Figure 1.). If there are any bugs found in testing

server, developers will be notified to fix the bugs and the cycle of building the product

will start again. This may be a fine development process and could work with small prod-

ucts with fewer commits.

However, if the product is huge and there are multiple developers, there can be problems

with this kind of development process. If there is a bug or a feature that breaks the prod-

uct, developers must wait till the complete software is re-developed and re-built for the

test results until they can implement more features for the product. This takes a long time

and it will slow down the product development process by a lot. Additionally, if the product

has huge amount of source code and testing fails, the developer would have to locate

the bug from entire source code of the software. Locating and fixing the bug could be

very time consuming which would also slow down the process a lot. If there are lots of

bugs, developers would have to consume time to fix bugs instead of developing new

features for the product.

3

Figure 1. Old style of development process [1].

These issues within software development process can be resolved with Continuous In-

tegration (CI). CI is a development practice enabling automatic software building, testing,

and deploying in a CI server. Developers commit their code changes into the source

code repository. CI server checks the source code repository for commits, subsequently

automatically pulls the commits from source code repository. After that, the whole soft-

ware package is built and tested. If there are any bugs in the code, developers will know

which commit has caused the bug instead of going through the whole source code of the

product. Locating malfunctioning code within the software is easier therefore fixing the

bugs is faster. With CI, every commit is tested. As a result, developers do not have to

wait a long time for test results. Figure 2 shows the CI process. First developers commit

to source code repository. Then source code is built and tested in a CI server. After

testing, developers get the feedback of how the product worked in tests. CI speeds up

the development process and therefore frequency of new working software releases is

increased. CI enables developers to get frequent feedback of their product’s status.

Overall, CI enables automated and fast software build testing and deployment. Everyone

can see the results and software can be maintained in one single source code repository.

This will even make it easy for anyone to get the latest version of software.

4

Figure 2. Software developers commit into source code repository which then is immediately
built and tested in CI server [2].

For CI to properly work, developers must commit very frequently into the source code

repository to reduce the number of bugs there might be. However, developers shouldn’t

push erroneous or untested code into the repository. In addition, testers should monitor

tests in CI machine. If defects occur, it is important to find root cause and report it for

fixing. Testers are responsible for keeping the CI process ongoing with automated test-

ing. The build could be broken in CI “trunk” by failing tests in the most important testing

levels. Trunk means the head branch of software repository.

CI is pre-requisite for Continuous Delivery (CD). As a continuous integration, continuous

delivery is a software development practice. It aims for building, testing, and releasing

software is short cycles. CD depends on automation process of CI, so that release cycle

can be fast with good quality. In CD, decision to release the build into production envi-

ronment is done manually. Releasing can also be automated but then, continuous deliv-

ery changes more into a term continuous deployment. Continuous deployment requires

no human intervention with releasing software builds. Releasing a build in continuous

delivery is a business decision requiring knowledge about the quality of the product.

Quality may be poor if regression tests have not gone well and therefore, the build cannot

be released into production. [3]

5

2.2 Jenkins

Multiple CI servers are available for use. Most popular CI servers are Jenkins, GitLab CI,

Bamboo and Travis CI. Jenkins is the chosen tool for test automation by the subscriber

of this project, Nokia. Jenkins is an open source automation tool with thousands of

plugins. Jenkins is written with Java and it implements CI with help of plugins. Plugins

make Jenkins very flexible and therefore can be configured into many purposes. Jenkins

is a cross-platform CI server with web-based Graphical User Interface (GUI). Jenkins

can hold lots of items depending on size of Jenkins server disk size.

Jenkins items are usually called Jenkins jobs and each job can be configured differently

and given input parameters for execution. If Jenkins jobs are used for CI, they must have

SCM, which fetches the newest commits from source code repository. Jenkins job does

not need to trigger only from SCM. Other jobs, Jenkins job Uniform Resource Locator

(URL) or manually building the project from web browser can trigger a Jenkins job. After

Jenkins job is triggered, it starts a new build with configured build step and given param-

eters. Build step executes any tests or scripts configured. After the build step is done,

post-build actions are executed. Post-build actions include archiving results, publishing

results, and triggering other jobs. [4]

2.3 Robot Framework

Robot Framework is a generic test automation framework for acceptance testing and

acceptance test-driven development (ATDD) [5]. Acceptance testing focuses on testing

that system meets the business requirements and whether it is acceptable for delivery.

Test cases are created to ensure that system works the way it was specified. The idea

for test automation in Robot Framework is to reduce manual labor work, execute tests

fast, reuse as much as possible to reduce complexity and most importantly be repetitive.

Test automation should also increase testing coverage for finding as much defects as

possible. Robot Framework implements testing with keyword driven testing approach. In

testing, keywords represent the functionality of the application. Figure 3 displays four test

cases: adding items, filter items, complete items and remove items. What these test

cases test is defined with keywords below test cases. Many of those keywords come

from Selenium library, which is a web testing library designed for automated testing of

web applications. Besides Selenium, Robot Framework has a lot of libraries with all sorts

6

of keywords for testing different functionalities. They are not just web testing libraries but

for variety of different applications. Designing test cases with keywords is easy since

keywords are reusable on multiple tests and they are easy to read and make. In addition

to Robot keywords, Robot Framework has a lot of application programming interfaces

(API) to help make custom keywords that can be developed with Python or Java.

Figure 3. Example of Robot test cases implemented for testing a web application with help of
Selenium2Library and Robot Integrated Development Environment (RIDE).

As a results of robot tests, output files are generated in the form of machine-readable

format, Extensible Markup Language (XML). By default, the generated XML file is called

output.xml. This output.xml contains lots of data about the test execution. For example,

there is start and end time of test case executions, timestamps, documentation, test case

name, keywords, tags, status (pass/fail) and error messages. Output.xml is difficult to be

read by user and that's why log.html and report.html files are generated based on the

output.xml. Log file contains lots of details about executed test cases. It shows test suite,

test case and keywords used in tests as seen in figure 4. A test suite is a collection of

test cases in a file. A test case is a collection keywords defined to test a specific func-

tionality in an application. Log files are useful for exploring which test case failed and

what keyword caused the test case to fail. Typically, every time failed test case is being

analyzed, tester goes through logs to find the root cause.

7

Figure 4. Robot log containing details about test cases and keywords.

Report.html contains the overview of tests execution results. It shows total number of

tests executed, pass, and fail numbers. Additionally, tags and all the names of test cases

with documentation, error message and duration are shown as seen in figure 5. Re-

port.html is useful for quickly seeing how many tests have failed and for what reason. If

there are multiple test cases failed with same error message, they might have failed for

the same reason and thus gives an idea of root cause before going deeper into logs for

analyzing. Report.html has a red background color if there are any failed tests and green

if everything is passed. Test cases can also be filtered by suite and tags.

8

Figure 5. Successful robot report containing summary of test case execution.

2.4 Integration of Robot Framework and Jenkins

Jenkins supports Robot Framework with a useful plugin, Robot Framework plugin. This

plugin allows publishing Robot Framework tests in a Jenkins job build. User can config-

ure Jenkins job to execute robot tests in build step by giving path to the robot tests di-

rectory and then execute them with robot command. Jenkins supports multiple Operating

Systems (OS) with their command window. For windows system, there is build step for

executing windows batch command and for Linux system, there is execute shell. After

fetching tests and executing them, publishing test results is done in post-build actions

with section "Publish Robot Framework test results". This section is from Robot Frame-

work plugin and may be selected from add post-build action button after installing the

plugin to Jenkins system. Robot Framework plugin requires a directory of where the robot

results are output after execution. As a result, Jenkins job page shows the robot results

as seen in figure 6. Threshold of build result percentage may be given, if different color

is wanted for marking job passed, failed or unstable.

9

Figure 6. Jenkins job page showing Robot results. [6]

10

2.5 Problem presentation

Testers in PCI team analyze Robot Framework test results from multiple Jenkins jobs

daily. In CI, several new software builds are available daily of which must be tested by

executing thousands of tests in multiple Jenkins jobs. Execution of tests is automatic,

but analysis of test results is not. Testers analyze the failed test cases manually by look-

ing for root cause in the logs. In addition to finding the root cause of the problem, failure

must be reported to developers for fixing with help of Jira.

Analyzing test results in CI is time-consuming. It is caused by manual work such as

clicking failed test results in Jenkins jobs, searching for root cause in logs and creating

or updating Jira tickets. Every time a Jenkins job has executed all tests, test results are

updated into a storage server called log server. All the data in log server was unused

and therefore, it was desired to create a new analysis tool that utilizes these unused logs

in test analysis. With history data of test results, testers could identify similar previously

occurred failure. Also, a summary of test results in one build could be easily observed

instead of going through every Jenkins job.

New analysis tool already has a backend server and data management for parsing data

from log server and storing it into a database. Database is located on the server. Data-

base has four collections: build collection, Jenkins job collection, test case collection and

a Jira collection. Build collection contains the software build id and version number. Jen-

kins job collection contains data from Jenkins job execution. Test case collection con-

tains data of all the test cases. Jira collection contains all the data of Jira tickets made

by testers. Data is there, but analysis tool has no client software for visualizing it. This

thesis solves this problem by implementing the client software as a part of the analysis

tool.

11

2.6 Thesis objectives

Objectives of this thesis was to study the design and implementation of a client software

based on features mentioned in the user stories. A user story is a brief and to the point

description of wanted feature told by the user. User stories are shown in listing 1.

User stories

As a tester, I would like the client to have a functional and easy to use graphical user interface for the end

users.

As a tester, I would like that client should be able to communicate and ensure data is fetched from server.

As a tester, I would like the client software to support legacy tools and their features.

As a tester, I would like that client should be able to visualize data with different charts and tables.

As a tester, I would like to see easily one test case execution history if pass or failed. If failed, I would like

to see which build failed and error code why failed.

As a tester, I would like to see if JIRAs created for this test case.

As a tester, if test case fails, I would like to see if there are changes in that domain test case repository

or software repository

As a tester, I would like to see domain test case success history, which test case failed and which build.

As a domain developer, I would like to have list of top 10 longest test case.

As a tester, I would like to see all test case results of build visualized

Listing 1. User stories of wanted features in client software.

12

3 Technologies of client software development

This chapter introduces the technologies used in the client software. This project is solely

programmed with Java. Java is not just a programming language, it is technology. Java

was chosen as the main technology for implementation since it works on multiple oper-

ating systems. This is due to code execution happening on Java Virtual Machine (JVM).

Java also has many useful libraries and one of them is JavaFX, which can make good-

looking user interfaces.

3.1 Java

Java technology contains both Java programming language and Java platform. A plat-

form is commonly defined as the hardware environment or software environment on

which programs are executed. Java platform differs from common platforms due to the

fact that it is a software platform on top of hardware platform. It consists of Java API and

JVM. Java is an Object-Oriented Programming (OOP) language which means that with

good planning, code is easily readable, reusable, and maintainable. Java is simple, dy-

namic, and robust and it all runs on JVM [7]. Java has many excellent libraries, frame-

works, tools, and integrated development environments (IDE) for an application devel-

opment.

When selecting a programming language, it depends on which purpose it will be used

for. For high speed and low memory requirements, low-level programming language like

C could be the best choice. For enterprise projects, higher-level language like Java is

often very good because applications are easier to deploy to any enterprise environment

and any platform. Portability is one of the best strengths in Java and key reasons why it

is so widely used in enterprises [8]. Also, portability is one of the reasons why it was

chosen as the programming language in this bachelor’s thesis

13

3.1.1 Java architecture

Java language code is saved as .java files. Java compiler converts these files into a Java

bytecode, which is not understandable by any platform except JVM. JVM resides in the

random-access memory (RAM) of an operating system. When JVM is fed with java

bytecode, it identifies the OS it is working on and converts the bytecode into native ma-

chine code for the processor as seen in figure 7. This makes compiled Java code OS

independent and runnable in all kinds of devices.

Figure 7. Architecture of Java program from Java source code to any OS machine code [9].

3.1.2 Java development kit

Java development kit (JDK) is the software development environment provided by Java.

Essentially, it is a bundle of software components used in Java applications. It contains

Java Runtime Environment (JRE), Java, Java compiler and development tools (see fig-

ure 8.). JRE is the implementation of JVM, but it also contains other libraries and files

e.g. browser plugins for applet execution. Executing Java programs only need JRE for

JVM and library dependencies. For Java programming, JDK is needed for its Javadoc,

Java Debugger, and Java compiler. Java compiler is given the Java source code for

compiling it into Java bytecode which is understood by JVM. Javadoc is needed for cre-

ation of documentation inside the source code. Java debugger is needed for develop-

ment of the source code since it can help with errors occurring in JVM.

14

Figure 8. Contents of JDK. JRE is needed for Java program to run but for Java development,
whole JDK is required [10].

Standard Java programming language and JavaFX is included in JDK. Both are heavily

used in implementation of this bachelor’s thesis with version 8 of JDK.

3.2 JavaFX

JavaFX is a Java software platform generally used for creating computer desktop appli-

cations. JavaFX can also be used to create Rich Internet Applications (RIAs) that resem-

ble desktop application but are web applications [11]. In addition to desktop applications,

JavaFX can be run in browser by adding Java applet plug-in. Generally, JavaFX is used

for creating good looking GUI applications. JavaFX works on wide range of devices like

computers, mobile phones, tablets. JavaFX works on multiple operating systems since

JavaFX is available on multiple JVM. These JVM have runtimes for windows, Linux and

macOS [12].

At first JavaFX version 1.0 was a scripting language used with Java. Intention for JavaFX

was to allow users to make user interfaces easier but there was too much complexity.

All of GUI components had to be built with large amounts of code with procedural way of

15

coding. This made code complex to follow and did not result in good looking user inter-

faces.

3.2.1 JavaFX structure

After version 2.0, JavaFX was no longer a scripting language. A declarative way of cod-

ing was introduced with JavaFX markup language (FXML). All of JavaFX functionality

was moved into a Java API. JavaFX API incorporated everything that the GUI needed.

Users could use normal Java syntax in creation of GUI applications [13]. Figure 9 shows

the JavaFX API architecture which contains various set of classes and interfaces that

rich internet applications need.

Figure 9. Architecture JavaFX API and its components [14].

For most important and essential functionalities of JavaFX is Animation, Cascading style

sheet (CSS), Event, Geometry, Stage and Scene. Most of these belong to the Scene

Graph. When designing JavaFX graphic implementation methods, levels of application

and their layout need to be considered.

There are multiple layers of structure in a JavaFX application. The application structure

is a hierarchy structure. Figure 10 shows JavaFX application structure, in which the low-

est level is the UI elements. UI elements are contained on a scene at the middle level.

16

At the top level is Stage. Stage is the container for JavaFX application. Stage can be

thought of being the application window e.g. a browser window. It can have different

styles. Decorated style for white background and platform specific decorations. Trans-

parent style for transparent background and no decorations. Undecorated style for white

background and no decorations. Stage cannot be seen unless it has platform specific

decorations on application window borders or no scenes on top of it. Every operating

system has different style of window decorations. Within the Stage is a scene. Scene is

an area where graphical content is laid out. In other words, scene is the container for UI

elements. There can be multiple scenes within a stage which is like a webpage in a

browser.

Figure 10. JavaFX application structure [15].

UI elements are in tree kind of structure. Root node at bottom, branch node in middle

and leaf node on top. A node is an UI element, which is visualized on a scene graph.

Root node is the parent node for all other nodes. Root node cannot have parent of its

own, only children. Children of root node are either leaf nodes or branch nodes. Leaf

nodes cannot have children because they already have some functionality therefore

nothing cannot be placed on top of them. Branch nodes are also children of root node

and they can have children of their own. Figure 11 shows group as root node, which has

three children: circle, rectangle, and region. Circle and rectangle are leaf nodes as they

17

cannot have children. Region is a branch node because it has two children: text and

image view.

Figure 11. Node structure in a scene graph [16].

Good examples of leaf nodes are for instance, Image View, MediaView, and any text

area. Branch nodes display an area in a form where more content can be put in. Its

children are either a branch node or a leaf node. For example, root node and branch

node are layout panes. Layouts are usually container classes called pane. Most common

layouts used in JavaFX applications are HBox, VBox, BorderPane, StackPane, An-

chorPane and a GridPane. Also, these layouts are much used in this thesis project. HBox

positions the nodes inside it into a horizontal row. VBox does the same, but in a vertical

row instead of horizontal. BorderPane positions nodes to top, bottom, left, right or center

of the layout. StackPane allows nodes to be put on top of another like a stack. With

Anchor pane, nodes can be anchored to specific distance from the pane. GridPane po-

sitions the nodes into a grid by rows and columns.

3.2.2 JavaFX coding styles

JavaFX can be both coded with a procedural way or with a declarative way. A problem

with procedural way is complexity. Every node must be created as an object from the

classes JavaFX API provided. Then assign events, actions, method calls to them in plain

code. Every action for one node object must be coded. This results in a large amount of

code in one Java file, and thus becomes hard to follow. Debugging errors would be night-

mare, even if IDE debugger helps to find the errors.

In listing 2, application is coded with a procedural style. When main method is called on

startup, it calls for launcher method. This constructs application class and then calls start

18

method which in turn creates a new thread for running the application. In start method,

stage is first created and then a button object is created and handed an event to print

out “Hello World!” in console. Afterward, root node StackPane is created and button is

added into it as its child node. StackPane is added into a new scene object with width

and height hardcoded. Stage window is given a title, scene and then called to show itself

to user.

import javafx.application.Application;

import javafx.event.ActionEvent;

import javafx.event.EventHandler;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

/**

 *

 * @author Santeri

 */

public class Demo2 extends Application {

 @Override

 public void start(Stage primaryStage) {

 Button btn = new Button();

 btn.setText("Say 'Hello World'");

 btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override

 public void handle(ActionEvent event) {

 System.out.println("Hello World!");

 }

 });

 StackPane root = new StackPane();

 root.getChildren().add(btn);

 Scene scene = new Scene(root, 300, 250);

 primaryStage.setTitle("Hello World!");

 primaryStage.setScene(scene);

 primaryStage.show();

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 launch(args);

 }

}

Listing 2. Procedural coding of simple JavaFX application code for printing “Hello World!” on
push of a button in GUI.

19

Another option is the declarative way with FXML. FXML is an XML based markup lan-

guage. Markup languages are widely used for storing and transporting data in both hu-

man-readable and machine-readable format. Basic XML does not actually do nothing but

hold data inside tags [17]. Many APIs has been developed based on XML and one widely

used is Hypertext Markup Language (HTML). HTML is used for creating web pages and

web applications. In addition to basic XML data storage, it has a functionality in displaying

data, but it has predefined tags that XML does not have. FXML works similarly with Ja-

vaFX scene graph. Nodes can be written into markup language in separate FXML file

and then they can be accessed from Java application code. In listing 3, same code func-

tionality is written as in listing 2, but in declarative way with FXML. Nodes being in tags

keeps the scene graph logic. Outermost node is the root node and inner indentations are

its children. Tagged nodes can have properties coded in them similar way as in HTML.

Also, event names can be declared in node tags. With event names in FXML, application

code knows which node and event method are linked together. For application logic code

to recognize nodes, there must be an fx:id defined to a node. Also, for CSS to recognize

a node, node must have a normal id. This way all the structure of GUI code is separated

from Java code used in creating the logic for application and it makes it easier to manage

components in GUI.

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="320"

xmlns:fx="http://javafx.com/fxml/1" fx:controller="demo.FXMLDocumentControl-

ler">

 <children>

 <Button layoutX="126" layoutY="90" text="Click Me!" onAction="#handle-

ButtonAction" fx:id="button" />

 <Label layoutX="126" layoutY="120" minHeight="16" minWidth="69"

fx:id="label" />

 </children>

</AnchorPane>

Listing 3. Declarative way of coding for printing button.

20

3.3 Scene builder

Application logic code is in java files. There is Java controller class for controlling the

FXML file. Also, another Java file for main method and start method, same as in proce-

dural JavaFX. After launch is called in main Java file, stage is set, and new scene object

is given a parent by FXMLLoader class from FXML API. FXMLLoader calls load method,

which loads the fxml file’s object hierarchy by parsing the FXML document and thus

building the scene graph. This links the fxml file to the application code. Every FXML file

must have a controller. Controller class file is defined to FXML file by fx:controller prop-

erty declared in the FXML file. As the FXML file is loaded, controller class is instantiated

by controllers initialize method. Initialize method handles nodes and their properties de-

clared in FXML file by having “@FXML” annotation in variables, events, and methods.

FXML style is preferred due to the lack of manual coding. It would be very time consum-

ing to code nodes into FXML file with procedural way of JavaFX. Oracle offers a GUI

building tool called Scene Builder. Figure 12 shows a scene builder program. Left side

of the scene builder shows different kind of nodes, hierarchy, and controller. Middle dis-

plays the GUI and on the right, there is node properties. All JavaFX scene graph nodes

and components can be graphically dragged and dropped into a scene graph hierarchy.

With Scene Builder, node properties, alignment, styling, layout and adding events can

be modified.

Basically, everything that can be done in FXML, can be done in Scene Builder. With

Scene Builder, no code needs to be written into FXML file. Scene Builder generates all

properties to nodes in FXML file upon saving the graphically built scene graph. CSS files

can be specified in Scene Builder, so user can see all the styling as scene graph is being

built. FXML file doesn’t need to be compiled every time change have been made to it, so

after dragging components to scene graph, hit save and the changes are there.

21

Figure 12. Scene Builder visualization tool.

22

4 Software implementation

This chapter explains the development of client software and its features described in

the user stories. Each subchapter explains in detail what was implemented, how they

work and what the use of them for the end users are.

4.1 Implementation of graphical user interface

The new tool consists of several different modules. Including client module, server mod-

ule, model module, data manager module and Jira fetcher module. Client and server

modules are standalone programs which can be build, run, or debugged. Most modules

depend on other internal modules. Each module has a Project Object Model (POM).

POM is an XML configuration file for a Maven build system. Maven enables working with

multiple modules by collecting modules to build and sorting them in correct building order

resulting modules being interdependent. After building modules, Maven compiles mod-

ules into jar binary files which can be executed with JVM.

In this work, the most important module to look at is the client module. Figure 13 shows

the general structure of the client which consists of main class, communication with

server, searching functionality and control of data visualization.

Figure 13. General structure of client software.

23

Client module has a main java class, which is first executed upon running the client soft-

ware. This main class is responsible for setting the stage and loading the main window

of the application into a scene. Main window is called GUIWindow.fxml. Main class gives

the stage a minimum width and minimum height which are the width and height applica-

tion window has on start. Also, main class uses a custom-made class called ResizeLis-

tener for resizing the GUI (see Figure 14.).

Figure 14. Implementation of main class in UML-chart.

4.1.1 GUI introduction

As a generic requirement, GUI should be easy to use for the end users. At the end of the

project, GUI looks like any desktop application and it has the same basic functionality

buttons as any browser does. Additionally, all the required features are accessible from

icons on left side (see figure 15.). Pressing an icon shows the content in the middle of

the application and highlights it. The content is shown on a node called StackPane. By

24

default, StackPane shows homepage which now only displays a welcome text. In future,

it could show news of software build releases. GUIWindow.fxml has a controller called

GUIWindowController which is responsible for every functionality of nodes in GUIWin-

dow.fxml. Content of StackPane is changed by a method in GUIWindowController called

setContent. SetContent closes searching window if it’s open, clears children of Stack-

Pane and adds content given to it by a parameter. Other methods can use this method

to change what is displayed in GUI. Also, when content is changed, there is a fading

animation for making the transition look smooth. This animation comes from custom

made class AnimationUtils.

Figure 15. The main window of the application GUIWindow.fxml.

4.1.2 Resizing window

Main class sets the stage style into transparent for making application window borders

custom styled instead of OS style. With transparent style, it means that there are no

operating system decorations on window borders. This introduces a problem. Window

cannot be resized since there are no borders. JavaFX has no way of handling resizing

on undecorated borders. Solution is to create a new custom-made java class called

ResizeListener in the same package as the main java class. ResizeListener object is

25

created in main class. Object takes stage, minimum width, and minimum height as pa-

rameters. ResizeListener will handle mouse events on window. Mouse_pressed,

mouse_moved and mouse_dragged events are needed for resizing the window (see list-

ing 4).

ResizeListener resizeListener = new ResizeListener(stage, MIN_WINDOW_WIDTH,

MIN_WINDOW_HEIGHT);

scene.addEventFilter(MouseEvent.MOUSE_MOVED, resizeListener);

scene.addEventFilter(MouseEvent.MOUSE_PRESSED, resizeListener);

scene.addEventFilter(MouseEvent.MOUSE_DRAGGED, resizeListener);

Listing 4. ResizeListener object created with event filters which will be called when scene re-
ceives event of specified type.

If the mouse is pressed on window borders, screen x and y values and scene width and

height are stored into variables. These are the starting point values. Mouse event

mouse_moved will check if mouse is moved on the borders and if stage is maximized. If

it returns true, then stage cannot be moved because window is on full screen. If false,

cursor type will be changed into corresponding cursor depending on how the cursor is

placed on the border (see figure 16).

Figure 16. Mouse moved over south east corner on application window changing cursor type.

Mouse_dragged event will change the window sizes upon dragging the mouse by calcu-

lating new width and height from the screen, scene, and mouse event variables. After

calculation, location of stage on screen and size of stage is set by JavaFX window library

class. Additionally, there are restrictions to limit window minimum width and height. Win-

dow has minimum width and height for keeping the GUI components in the right places.

26

4.1.3 GUI component hierarchy

AnchorPane is the parent node for GUIWindow.fxml. AnchorPane was chosen as parent

because it makes children of anchor pane be tied to the edges by AnchorPane con-

straints. This means that resizing the window also resizes child nodes inside anchor

pane. At the start of the project, this was a problem. Nodes would not resize upon resiz-

ing the window. Hardcoding child node constraints enables them to look cohesive and

they do not overlap with another node. GUIWindow has four important child nodes in its

hierarchy as is shown in figure 17. HBox for the header pane, StackPane for showing

content, StackPane for including searching functionality in VBox and a VBox for buttons

with icons on left side of the window.

Figure 17. Scene Builder view of node hierarchy in application's main window.

The header pane is made with HBox. HBox contains nodes used in undecorated window

header which is styled with Nokia blue color. There is a button for homepage, radiobutton

for checking connection status, Pane containing loading icon and previous button. Lastly,

there is minimize, maximize, and close buttons. Clicking previous button highlights the

previously selected icon and sets the content to previous content. If there is no previous

27

content, previous button is disabled. Previous content and previous selected attributes

are tracked by local variables such as previousParent and previousSelected. Previ-

ousSelected gets the highlighted selection from looking up nodes with class “.selected”

in CSS file. Whenever a node is selected, it is given a style class “selected”. When it is

not selected, style class is removed.

Since the stage is transparent, there are no existing header buttons for basic desktop

application functionality. Usual header buttons are: max window button, minimize win-

dow button, and close window button. In this project, these buttons are manually added

into the fxml file with help of Scene Builder and JFoenix. All three functionalities are in

JFXButtons with graphic as its children. Graphic can have children of imageView or an

icon from FontAwesomeFX library. These buttons are given a style class which is used

in the CSS file to provide the white color as seen in figure 18.

Figure 18. Buttons for minimize, full screen and close.

Adding the buttons into FXML file and coloring them does not give them any functionality.

Minimize, maximize, and close buttons has their own methods with "@FXML" annota-

tions. Methods are called minimize, toggleFullscreen and quit. They take ActionEvent

class from JavaFX event library as a parameter. ActionEvent represents variety of events

such as event of clicking a button or pressing a key. Minimize method sets the stage

iconified and toggleFullscreen checks if stage is already maximized. If it is not maxim-

ized, it will get the visual bounds of the screen and set the stages width and height to

match those values. Quit method is simple. Quit will close the stage and call system exit

which will terminate the currently running JVM.

28

4.1.4 SearchPane

The GUI needs a searching functionality since there are a lot of data at disposal. As a

solution, testers can search for builds and testcases with SearchPane. SearchPane is a

custom made FXML file included into the StackPane.

Parent node of SearchPane.fxml is a VBox. VBox contains a text field for search input,

a button for entering the input and a TabPane with two tabs for both software versions.

Both tabs have children of ListView, which is a list for displaying the data. As displayed

in Figure 19, there are two includes of SearchPane because two functionalities need it.

Buttons “Builds and “Test cases” open the SearchPane displaying different data for each

purpose. Each of these buttons has a toggle method in SearchPaneContainer class.

Whenever toggle is called, the chosen SearchPane opens and sets itself to active

SearchPane. If there is another SearchPane already open, it closes.

Figure 19. UML-chart showing SearchPane functionality.

29

SearchPane appears with another animation called transition animation. This animation

slides the SearchPane from left side under the icon pane into the front of the StackPane

(see figure 20.). SearchPaneController.java is the controller of SearchPane.fxml and it

handles filtering the list and updating it. Clicking on an item on the ListView opens content

on StackPane depending on which SearchPane was open. The content will be further

explained in data visualization subchapter.

Figure 20. SearchPane.fxml included in GUIWindow.fxml.

4.2 Client data fetching

To use the server data in client, data must have serializable object classes. These clas-

ses are called models in this project. There is a model for each database collection.

Models does not just contain the data but also helper methods. Models are used both in

client and server. Model module also has a command class. Command class contains

enums, which are data types for setting variables to predefined constants [18].

In order to show data in GUI, client must communicate with the server to get the data.

Client.java is used for requesting the data from server. Client has a method called re-

quest for it. Request uses command enum to tell the server what it wants server to do.

30

Server receives command and fetches data from database based on command it got.

Some commands need extra parameters that are send with the command enum. For

example, the FETCH_BUILD_LIST command takes a search query as only parameter

(see listing 5)

Client.request(CommandEnum.FETCH_BUILD_LIST, (List<DatabaseBuild> response) ->

{

 buildSearchPaneController.updateBuildList("version1", response);

}, new Parameters("PRODUCT", "VERSION1"));

Listing 5. Request method taking command enum and parameters for fetching a list of a model
type DatabaseBuild. Then updating SearchPane with list of builds.

Also, request can take a callback function that will be called after response from server

is received. If no callback has been given, client.java returns a future object. Future ob-

ject has a single method called get. When get is called, the caller thread will sleep until

the response has been received. Afterward, response is returned to caller. Difference of

callback and future is that callback will notify the caller once the response is received.

Caller can do other work while response is not yet received. Future will wait and block

until response is received or do some work and occasionally check if response is re-

ceived. Figure 21 shows how the process of data fetching happens in client.

31

Figure 21. Flowchart of data fetching.

4.2.1 Client-server communication

In order to obtain data transfer between client and server, sockets need to be created.

Both client process and server process must establish their own socket for both to send

and receive data. Only a client socket needs to know the address it is connecting to. On

creation, client socket is given a server host address and a port number as parameter.

Server socket does not need to know existence of client. Server socket only listens for

connections with listen system call. After finding a connection, it accepts a connection

request from client with accept system call. Accept call blocks until client relates to the

32

server. After connection is formed, client and server can start sending and receiving data.

However, both need the socket type to be the same.

Widely used socket types are stream socket and a datagram socket [19.]. Stream socket

uses Transmission Control Protocol (TCP) for sending packets through and checking if

they are received. Datagram socket uses Unix Datagram Protocol (UDP) which sends

packets faster than TCP. However, it lacks the benefit of handshaking. Lack of hand-

shaking means that it does not check if messages are received and therefore can drop

packets. In this project, client socket and server socket use TCP with ObjectInputStream

and ObjectOutputStream. ObjectInputStream can read data in form of serialized object

and ObjectOutputStream can write serialized object data. Therefore, self-made models

must be implemented as serializable. Also, strings and array lists are objects which can

be input and output in object streams.

As the application is started, GUIWindowController initialization method is called. Initial-

ization calls for methods requesting data to the SearchPanes. Each of these methods

fetches a list of data models: List of builds and test cases. Request for data from client

goes through internet into the server which fetches data from database. Then data goes

from server back to client. Route might seem long but data fetching only takes a few

milliseconds. High speed enables data to be instantly accessible upon starting the client.

33

4.3 Data visualization

After client software has received data from a server, it can be visualized with help of

models. Visualizing data into different charts and tables helps end-users to better under-

stand it. Pie chart visualizes build overall status and a TreeTableView visualizes all the

test cases and their details in one build. Also, testers can see test case history data,

which is visualized with a line graph.

Selecting an item from any of the three SearchPane’s ListView reads the content of an

FXML file into the middle StackPane. Each FXML file is different and has a controller

class dedicated to them. However, there is a problem that the SearchPane cannot tell

directly the new controller what search item was selected. Solution for this is to make all

communications between controllers go through the GUIWindowController (see Figure

22.). To make this possible, every controller must extend an abstract controller class that

stores reference to the main controller.

Figure 22. All controllers used for visualizing data.

34

When loading FXML file, the loadUI method will give the main controller to the newly

created controller object (see listing 6). LoadUI method takes the path of FXML file as

argument, sets the content and returns the controller object.

public void openBuildItem(DatabaseBuild element) {

 BuildAnalyzerController buildController = (BuildAnalyzerController)

loadUI("builds/BuildAnalyzer.fxml");

 buildController.initialize(element);

}

public Controller loadUI(String path) {

 Controller controller = null;

 closeSearchPane();

 Parent root;

 path = "com/nokia/ourproject/" + path;

 try {

 if (null == path) {

 root = FXMLLoader.load(getClass().getResource(path));

 } else {

 FXMLLoader loader = new FXMLLoader(getClass().getResource(path));

 root = (Parent) loader.load();

 controller = loader.getController();

 controller.setController(this);

 }

 }

 catch (IOException ex) {

Logger.getLogger(GUIWindowController.class.getName()).log

 (Level.SEVERE, null, ex);

 System.exit(0);

 return null;

 }

 setContent(root);

 return controller;

}

Listing 6. Loading BuildAnalyzer.fxml and its controller class

4.3.1 Visualization of build results

Main functionalities in BuildAnalyzer is to show overall status of test case results in one

build. End-users may observe pass rate summary of one build and pass rates in each

product domain. Also, they can view a list of executed test cases and details about them.

BuildAnalyzer.fxml contains TitledPane as a parent node and a TabPane as its child.

BuildAnalyzerController sets text to TitledPane for showing the selected version and se-

lected build. TabPane contains two tabs, statistics, and test cases. They have controllers,

BuildStatisticsController and TestCasesController. Both of controllers initialize method is

called in BuildAnalyzerController and they are given the build object. BuildStatisticsCon-

troller creates two pie charts from build data. Figure 23 shows how pie charts visualize

overall status of one software build test results. Pie charts are created in a new thread

which executes a new runnable class. This is because creating the pie charts with the

35

data from build object takes a few seconds and therefore it would freeze the GUI if it was

done in GUI thread.

Figure 23. Pie charts visualizing build overall status. Slices are highlighted, and percentage of
slice is shown when cursor is hover over it.

4.3.2 Visualization of test case results

Test cases tab shows all the test cases of one build in a TreeTableView. Like BuildStatis-

ticsController, data is updated to the TreeTableView in another thread since there is lots

of data. Also, new thread makes a request for all the Jira tickets. TreeTableView shows

Jira ticket, if there has been Jira ticket made for the test case. Jira tickets shows the

ticket ID in a hyperlink and status of the Jira. Hyperlink leads to opening the Jira website

in the application (Jira icon on left side) and showing the ticket which was clicked. This

enables testers to know whether there has been made a Jira ticket for the test case

failure before.

Test cases can be filtered by searching for items in the text field or clicking on columns.

Also, dropdown menu filters the list by domain. For example, figure 24 displays duration

column filtered which enables testers to see which test cases took the longest time to

execute. With this test case list, testers can easily see test results of one build. This is a

36

key feature of this tool since it gives a good overview of how the tests have gone. If

testers need to check more details of one test case, they can select a test case by se-

lecting a row and clicking TestAnalyzer. TestAnalyzer button leads to showing the test

case history of selected test case which is represented by testcases icon.

Figure 24. TreeTableView visualizing list of all the test cases in one build. Test cases are filtered
by duration showing the longest test cases.

4.3.3 Test case history

TestAnalyzer is a feature in this tool that shows how the test case has performed in last

hundred builds. Testers can see how one test case has performed, details of it and the

variance of its duration. Builds are sorted by date when they were executed. In figure 25,

newest build is on the right side of the chart.

TestAnalyzer is shown by TestCaseAnalyzer.fxml and it functions by TestAnalyzerCon-

troller.java. When TestAnalyzerController is initialized, a list of test case objects and Jira

tickets are requested from database. After response is received, line chart is filled with

the given data. Line chart needs data for x and y axes. It is given a string for x axis which

represents the build id. Y axis gets a number for duration. After filling line chart with data,

testers can select a build by clicking a dot on line chart or by using left and right key

arrows. Dots are red if test case is failed and green if test case is passed. Details of test

37

case execution in one build is shown under the line chart and they change every time a

new build is selected. Details have been sorted to a GridPane. Each detail is an uned-

itable text field except error message. If the test case is failed, error message is shown

in a dialog. Dialog appears in middle of the screen on top of everything else. This is

because the error message can be a long text and is unable to fit in a text field fully.

Figure 25. Line chart displaying test case history of one test case and details about it.

4.3.4 Support of other tools

Jenkins, Dashboard and Jira icons represent other tools used in testers’ daily work. Test-

ers do not necessarily need to open a browser since everything useful is implemented in

this tool. Each of the icons is implemented almost the same way into this new analysis

tool with WebView. WebView is one of JavaFX libraries and its main purpose is to be a

node for WebEngine and therefore show its content. WebEngine acts like a browser

inside an application. WebEngine loads web pages inside application window. It can

show one web page at a time and it can also run JavaScript on web pages. This way,

there is communication between application and JavaScript code of the page. Web page

features work similarly inside the application as they would in a browser as seen in figure

26.

38

Jenkins, Dashboard and Jira WebView objects are created in their respective classes.

Jenkins.java for Jenkins page WebView, Dashboard.java for Dashboard WebView and

JiraPage.java for Jira WebView. Each of these classes are like each other, except for

the URL path that the WebEngine takes as a parameter in class constructor. Each of

these classes are called in their respective methods in GUIWindowController.java, when

clicking on their icons. Upon calling these methods, new class object is made and set as

parameter to previously mentioned setContent method.

Figure 26. Showing a Jira page inside the application window with WebView.

39

5 Conclusion

The purpose of this thesis was to develop client software as part of new test analysis

tool. The idea of the test analysis tool is to reduce the time of analysis and thus improve

and facilitate the analysis work. The client software would have an easy-to-use graphical

user interface, would be able to retrieve data from the server, visualize the test result

data, and support other tools. In addition to these, other features described in user stories

were implemented as well.

Client software was implemented with Java and JavaFX. Java was chosen as program-

ming language for this project and JavaFX library for building graphical user interface.

JavaFX utilizes a declarative markup language called FXML for defining the user inter-

face components. Each FXML file has a controller.java file for containing the application

logic code. This means that FXML files only show the components in graphical user

interface, but controllers define how they work.

All the thesis objectives were successfully met and most of the features described in user

stories was implemented. Test case history filtered by domains and tracking the changes

in software repository was not implemented in the work of this thesis. Most of the end

users using this tool are testers from product continuous integration team. They benefit

greatly from this tool as all the information and functions required for test analysis work

are combined within the tool. Testers can check overall test case pass rate, details of

test cases in any software build or history performance of any test case. If the wanted

build or test case name is not in SearchPane, they can write build id or test case name

into search field and press enter for fetching the desired data.

There are still some challenges and development targets in the client software for future

development. To further quicken analysis time, the tool could help tester make a Jira

ticket by pre-filling data from failed test case into the ticket. Another improvement idea is

to allow the tool to communicate with Jenkins server for running the failed test cases

again. Running the failed test cases again helps to see if there was a connection timeout

during test case execution instead of a real bug. These features are somewhat already

implemented, but not finished.

40

References

1. Kraftic Inc. 2018. Web-page. Continuous integration and delivery solutions.
<https://www.kraftic.com/services/Continuous-Integration-and-Delivery-Solu-
tions>. Fetched 16.7.2018.

2. Prince, Suzie. 2016. The Product Managers’ Guide to Continuous Deliver and
DevOps. Web-article. Mind the product.
<https://www.mindtheproduct.com/2016/02/what-the-hell-are-ci-cd-and-devops-
a-cheatsheet-for-the-rest-of-us/>. Fetched 17.7.2018.

3. Pittet, Sten. 2018. Continuous integration vs. continuous delivery vs. continuous
deployment. Web-article. Atlassian. <https://www.atlassian.com/continuous-de-
livery/ci-vs-ci-vs-cd>. Fetched 24.7.2018.

4. Jenkins. 2018. Web-page. Jenkins. <https://jenkins.io/>. Fetched 25.7.2018.

5. Robot Framework. 2018. Web-page. <http://robotframework.org/>. Fetched
16.7.2018.

6. Piironen, Janne. 2011. Robot Framework Plugin. Web-page. Wiki.jenkins.
<https://wiki.jenkins.io/display/JENKINS/Robot+Framework+Plugin>. Fetched
17.7.2018.

7. Oracle. 2017. About the Java Technology. Web-page. <https://docs.ora-
cle.com/javase/tutorial/getStarted/intro/definition.html>. Fetched 21.8.2018.

8. Smith, Roger. 2016. Why Java is the most popular programming language.
Web-article. Theserverside. <https://www.theserverside.com/feature/Why-Java-
is-the-most-popular-programming-language>. Fetched 5.5.2018.

9. Net-informations. 2018. What is Java virtual machine. Web-page. Net-infor-
mations. <http://net-informations.com/java/intro/jvm.htm>. Fetched 6.6.2018.

10. Programiz. Java tutorial. Web-page. <https://www.programiz.com/java-program-
ming/jvm-jre-jdk>. Fetched 7.6.2018.

11. Wikipedia. 2018. Rich Internet application. Web-page. <https://en.wikipe-

dia.org/wiki/Rich_Internet_application>.Last edited 16.5.2018. Fetched

21.5.2018.

12. Wikipedia. 2018. JavaFX. Web-page. <https://en.wikipedia.org/wiki/JavaFX>.

Last edited 7.5.2018. Fetched 21.5.2018.

41

13. Leahy, Paul. 2017. What Is JavaFX. Web-article. ThoughtCo.

<https://www.thoughtco.com/what-is-javafx-2034192>. Fetched 23.5.2018.

14. Tutorialspoint. 2018. JavaFX – Architecture. Web-page. <https://www.tutori-

alspoint.com/javafx/javafx_architecture.htm>. Fetched 24.5.2018.

15. Baskirt, Onur. 2016. Getting Started with JavaFX. Web-page. Swtestacademy.

<https://www.swtestacademy.com/getting-started-with-javafx/>. Fetched

25.5.2018.

16. Hommel, Scott. 2013. Working with the JavaFX Scene Graph. Web-page. Ora-

cle. <https://docs.oracle.com/javafx/2/scenegraph/jfxpub-scenegraph.htm>.

Fetched 25.5.2018.

17. W3schools. 2015. Introduction to XML. Web-page.

<https://www.w3schools.com/xml/xml_whatis.asp>. Fetched 28.5.2018

18. Oracle. 2017. Enum Types. Web-page. Docs.oracle.<https://docs.ora-

cle.com/javase/tutorial/java/javaOO/enum.html> Fetched 7.8.2018.

19. Ingalls, Robert. Sockets Tutorial. Web-page. Cs.rpi.edu.

<http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html> Fetched

8.8.2018.

