
Bachelor’s Thesis
Embedded Systems
2018

Félix Laguna Teno

REAL TIME DSP FOR IMMERSIVE
SPEECH COMMUNICATION

BACHELOR’S THESIS — ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Embedded Systems

2018 | 23 pages , 5 Appendix pages

Félix Laguna Teno

REAL TIME DSP FOR IMMERSIVE SPEECH
COMMUNICATION

The field of real time digital signal processing using software has attracted attention but there is
not actually a solution to apply acoustic effects to a stream of audio in real time.

The purpose of the thesis was to build a prototype of immersive communication system and set
foundations for the readers to build their own ones.

The different parts of the prototype were researched, implemented and united into the final sys-
tem. Several audio back end technologies, encoders and network implementations were analyzed
and the best ones (PortAudio, Opus and raw sockets) were chosen for building the prototype.

The prototype developed in this thesis is working on a local environment, while working unreliably
in networked conditions. The design decisions, diagrams, and research are included in this thesis,
setting the required foundations. The prototype could be further improved with reliable networking
and a graphical user interface.

The prototype serves as a milestone in the development of similar products and this thesis can
be used by computer scientists to develop immersive systems.

KEYWORDS

Digital signal processing, real time, immersion, communication.

CONTENTS

1 INTRODUCTION 7

2 THEORETICAL BACKGROUND 8

2.1 DSP . 8

2.2 Mathematical background . 10

2.3 Immersive Technology . 13

2.4 Real Time systems . 14

2.5 Network communication . 15

3 METHODOLOGY 16

3.1 Functional requirements . 16

3.2 System concept . 16

3.3 Audio back end . 18

3.4 Codec and Networking choices . 19

3.5 Intermediate structures . 20

3.6 DSP effects . 21

3.7 Networking constraints and possible problems . 21

3.8 Testing . 22

4 RESULTS 24

4.1 Audio back end . 24

4.2 Codec tweaks . 24

4.3 Intermediate structures . 25

4.4 Network problems . 25

4.5 Requirements . 26

5 DISCUSSION 27

6 CONCLUSION 29

REFERENCES 30

APPENDICES

Appendix 1. Audio Table . 31

Appendix 2. MatLab filter . 32

Appendix 3. Filter implementation . 33

Appendix 4. PortAudio . 35

FIGURES

Figure 1. DSP applications (Smith, 1997). 9

Figure 2. Quantization visualized. (Franz, 2008, p.38-9). 10

Figure 3. Addition block (Kuo et al., 2013, Chapter 2). 11

Figure 4. Multiplication block (Kuo et al., 2013, Chapter 2). 11

Figure 5. Delay block (Kuo et al., 2013, Chapter 2). 11

Figure 6. FIR filter (Kuo et al., 2013, Chapter 2). 12

Figure 7. IIR filter (Kuo et al., 2013, Chapter 2). 13

Figure 8. Approaches to concurrency. (Williams, 2012, p. 26). 14

Figure 9. Dataflow diagram of the system while sending audio. 17

Figure 10.Dataflow diagram of the system while receiving audio. 17

Figure 11.Sequence diagram of the communication process. 17

Figure 12.Network concept diagram. 22

Figure 13.Audacity screen-shot of raw audio before and after DSP with filter of 500-
3000Hz. 24

Figure 14.Audacity screen-shot of raw audio (top) and the same audio after being en-
coded and decoded (bottom). 25

List of Tables

Table 1. Analysis of audio back ends (part 1). 18

Table 1. Analysis of audio back ends (part 2). 19

LIST OF ABBREVIATIONS (OR) SYMBOLS

API Application Programming Interface

DSP Digital Signal Processing

FIR Finite Impulse Response

FPGA Field-programmable gate array

HRTF Head-related transfer function

IIR Infinite Impulse Response

LTI Linear Time Invariant

POSIX Portable Operating System Interface (Unix)

RAM Random-Access Memory

SIMD Single Instruction Multiple Data

TCP Transmission Control Protocol

UDP User Datagram Protocol

GLOSSARY

Application Programming Interface Set of operations and procedures that a library offers to
other software for the library to be used properly.

Back end layer of a program which handles the logic of the sys-
tem. For example, audio back end would be the part of
the system which directly interacts with the audio hard-
ware and provides data to other modules.

Binaural Category of sound which feels three-dimensional for
the listener, even if the sound comes from a non three-
dimensional space, such as a pair of headphones.

Codec Hardware or software piece in charge to execute the
encoding and decoding process of a stream of data.
This process converts the data from one format or code
to other, usually to save space or to improve perfor-
mance.

Digital Signal Processing Mathematical manipulation of a signal to improve it or
change it in any way.

Field-programmable gate array Device whose logic and connections can be cus-
tomized after being manufactured.

Head-related transfer function Mathematical function which models the way the sound
is received through the ears, including the bone reso-
nance and the delay between ears, for example.

Immersion The property of a system which aims to trick the user
into perceiving a virtual environment as real using stim-
uli. In this project’s context, the concept will be used to
refer to ”sound immersion”.

Portable Operating System Interface Standards and practices created by R. Stallman and
later adopted by IEEE for interoperability between op-
erating systems. The X comes from the Unix operative
system, which was used as the foundation of the stan-
dard.

Real Time system System which performs its operations with time con-
straints, so every operation must finish in a certain time
in order for the system to be successful.

Single Instruction Multiple data Computer architecture in which the same instruction is
parallelized to multiple streams of data, allowing for ex-
ample to apply the same level of saturation to all pixels
in an image.

7

1 INTRODUCTION

There is no software solution for a communication system that can achieve true effects of im-
mersion. The purpose of immersion is to trick the brain of the user into perceiving a virtual
environment as real using stimuli. This thesis will give enough background to a computer scientist
or software developer to have a starting point in developing such systems, as well as providing
a prototype of a working one. Diagrams and design choices will be discussed as well, providing
informed opinions about the choices done, as well as the research data.

Immersion tricks the brain of the user into believing they are in different environment instead of
the one they are. The system aimed to be created in this thesis should be able to apply room
acoustics and other effects (such as binaural using the HRTF function) to the sound produced in
real time by the user, in other to trick the other interlocutor into perceiving them as they are in the
same space.

There are software programs which can apply arbitrary effects to any sound file, but few achieve
this task for real time audio. The theoretical background about the different parts of the prototype
(real time programming, general purpose DSP and network communication) is abundant, but
there is no documentation about trying to merge those parts together, hence the purpose of this
thesis.

The goal of the thesis is to build a system which allows real time communication between inter-
locutors in real time, making them believe that they are in the same space as well as applying
other effects such as room acoustics or binaural sound to create the feeling of immersion. This
thesis aims to create functional requisites, research and choose the best back ends for every part
of the system, create the intermediate structures to unite the different components of the system
and create a working prototype of the described program. For that purpose, diagrams describing
the system will be designed additionally.

The scope of the thesis has to be narrowed in order to create the above described system. The
requisites will impose tighter constraints than the ones described here, but the system should
enable two users to communicate in real time giving the impression of immersion. The thesis is
intended to guide any software designer in the correct direction in case they want to build their
own system.

The structure of the thesis is as follows: firstly, in the theoretical background, the necessary con-
cepts in DSP, mathematical, real time and networking are discussed, subsequently the methodol-
ogy used and the results achieved will be detailed, and the results are critically discussed.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

8

2 THEORETICAL BACKGROUND

This section explains the theoretical background needed to fully understand later the Methodology
is explained. The topics include Digital Signal Processing (DSP), mathematical theory of signals,
immersive technology, real time signals, and network communications. The previous research is
discussed, and the questions this thesis tries to answer will rise from it.

2.1 DSP

Digital Signal Processing (DSP) is the manipulation of a signal carrying information, in order to
modify its properties. The nature of these modifications can range from amplification to the re-
moval of certain frequencies. The field itself is vast enough that during the history of computer
science, the area of DSP was created along with the first computers, and the technology, be-
cause of the expensive calculations that were needed to be performed, was only used in very
critical areas, such as radar, space exploration (Smith, 1997) and others (Figure 1). Only later,
as computers exponentially became faster and more complex, DSP was used in commercial ap-
plications, with two different approaches, using the general-purpose chips or using specialized
ones.

DSP processors were for some time the most common method for processing audio. They are
implemented in the SIMD (Single Instruction Multiple Data) architecture which is the same ap-
proach that gives the Graphics Processing Unit (GPU) the power needed to process graphics.
This architecture allows the chip to optimize the common operations of the mathematical func-
tions needed in the algorithms. The other implementation is using FPGA, which allows customiz-
able high-performance chips to be created. These are faster to prototype and to produce, but
their range of operations is vastly inferior than the DSP processor. The FPGA is usually faster in
certain algorithms commonly used in DSP, such as FIR filters. Examples of these devices can be
seen anywhere, from the pure-electronics guitar pedal, to the complex processing machine of a
synthesizer.

On the other hand, thanks to the exponential increment in processing speeds of general-purpose
CPUs, the algorithms used could be implemented by software, and thus they could run in these
CPUs. This approach was relatively new compared to the previous one, so more optimizations
can be done in this field. Programs like Audacity (Audacity, 2018) or Adobe Audition (Audition,
2018) evolved from simple DSP programs to full pledged audio edit programs. Another low-level
approach to DSP software would be MatLab (MatLab, 2018) and the Simulink module. Both prod-
ucts perform efficient DSP, but they need to be programmed by experts with enough theoretical
background. These products still need a considerable amount of processing power to work, so
they usually do noy deal properly with real time streams of audio.

The two approaches (hardware and software based) are very different, neither one is better in
every aspect, but each has its own advantages and disadvantages. The former has the advantage
of being orders of magnitude faster than its software counterparts, both the DSP processor and
the FPGA implementations. However, creating specialized hardware is much more expensive
than using general purpose chips, and the software that will use the hardware has to be coded in
order to use the full capabilities of it. In addition to that, they are very optimized for some specific
algorithms, so if the program uses different ones, the performance hit will be considerable. Also,
although hardware can be open source, most of developers lack the facilities to build their own
hardware, having to rely in proprietary, already-made chips.

Conversely, software DSP implementations are usually slower than their hardware counterparts,
but they have other advantages. First of all, they are highly customizable because they have a
range of audio modifications vastly superior than the hardware approach. They can also be open
source, like Audacity (Audacity, 2018), so any company can build their own version of it, and

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

9

Figure 1. DSP applications (Smith, 1997).

even modify the code to fit their purposes. Lastly, the cycle of development of DSP software is
orders of magnitude faster than its hardware correspondent. The former can usually follow fast
development cycles like Scrum, whereas the later will usually follow system similar to the V-Model
(Christie, 2008), which follows a slower and more robust process in order to minimize the chances
to create faulty hardware.

The author did not have yet the technical background required to create a DSP software, so there
was the need for theoretical foundation to proceed with the research. The book by (Kuo et al.,
2013) introduces the basic knowledge needed for creating DSP software, specially the mathe-
matical theory needed for it. After the foundation has been set, further research could be started.
On contrast, Kuo assumes a very high mathematical background which most computer scientists
do not have, so further research was needed usually. All in all, Kuo’s book manages to teach
the basics of DSP to any computer scientist, providing they have the appropriate mathematical
background.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

10

2.2 Mathematical background

In this section, the mathematical background needed for understanding and using the thesis con-
tents will be discussed. A significant portion of these contents were new for the thesis author, so
that is the reason of this section, as the thesis aims to be as self-contained as possible.

To begin with, the following definitions are needed in order to understand later concepts which will
be built on top of them.

” A digital signal is a sequence of numbers x(n), −∞ < n <∞ where the integer n is
the time index.”

((Kuo et al., 2013) Chapter 2)

A digital signal is created by a computer using a process called quantization, which consists in
sampling an analog or continuous signal at a fixed rate, as can be seen in Figure 2.

Figure 2. Quantization visualized. (Franz, 2008, p.38-9).

After defining digital signal, the unit-impulse response signal can be defined as the following
formula:

δ(n) =


1, n = 0

0, n 6= 0

(1)

The unit-impulse signal is particularly important because all the systems that will be discussed
later are defined using it. A good analogy to help the reader understand it is that the unit-impulse
signal is the mathematical equivalent of shooting a gun in an free field, a very sharp sound and
later silence.

DSP systems can be abstracted into the composition of 3 main ”blocks”, addition of signals (Fig-
ure 3), multiplications by an scalar (Figure 4), and delay or time shift (Figure 5). With these 3
operations every system can be defined.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

11

Figure 3. Addition block (Kuo et al., 2013, Chapter 2).

Figure 4. Multiplication block (Kuo et al., 2013, Chapter 2).

Figure 5. Delay block (Kuo et al., 2013, Chapter 2).

The focus will be on systems that follow the Linear Time Invariant (LTI). A system is linear if the
input and the output are mapped linearly, or in other words, if the input is scaled and/or summed,
the output is also scaled and/or summed.

a1x1(n) + a2x2(n)→ a1y1(n) + a2y2(n)

A time invariant system is one whose characteristics does not change with time, so a time shift in
the input just changes a time shift in the output.

if x(n)→ y(n) then x(n− k)→ y(n− k)

An important operation is the convolution of two functions, which is defined by the multiplication
of the values of the first function in the usual order with the values of the second one in inverted
order.

i.e x0zn+x1zn-1+.... The general formula which will be used is the following, assuming the system
is causal, which means that z(n) = 0, n < 0. Every real-time system is casual.

x(n) ∗ z(n) =
n∑

k=0

x(k)z(n− k)

Any system is also defined by its impulse response signal h(n) , which is the series of values
generated after applying the unit-impulse signal to a system. In general h(n) = y(n) if x(x) =

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

12

δ(n). The impulse response allows to characterize a system whose behavior could not be easily,
or not at all translated into mathematical formulas. In the real world, it is the series of reflections
back and forth from the walls after generating a transient (sharp) sound. Following the analogy
of the gun previously presented, the impluse response would be the series of echoes heard after
shooting the gun in an empty room.

The impulse response has a determined number of values or ”magnitude”, which is correlated
with the amount of computer power required to process it. To apply the impulse response to a
signal the following formula has to be applied:

y(n) = x(n) ∗ h(n) or y(n) = h(n) ∗ x(n)

Using the definition of impulse response the filtering process can be discussed. The process
consists on applying an effect or filter to an audio signal. The system used depends on the effect
desired, but it can be generalized by the previous idea that every system can be described by its
impulse response h(n). However, there are signals which output depends also on the past output
signal, not only on the input. Therefore, the definition can be expanded to the following:

y(n) =

L−1∑
l=0

blx(n− l)−
M∑

m=1

amy(n−m)→ y(n) = h(n) ∗ x(n)− g(n− 1) ∗ y(n− 1)

The bn coefficients are the h(n) part of the impulse response and the an coefficients are the g(n)
part of the impulse response. The a coefficients are subtracted from the final result of the h(n)
convolution. The sub-indexes n and m usually are the same in most systems, but that is not
compulsory.

This is the foundation of the filtering operation which includes finding the coefficients am and bn
and applying the convolution operation. If the am coefficients are 0, that means the system is a
Finite Impulse Response (FIR) filter. These filters only are modified by the previous inputs, and
the outputs have no effect in them. That allows the system to be implemented using usually half
of the memory and one third of the operations of a full filter, which receives the name of Infinite
Impulse Response (IIR) filter. These two systems have different properties which escape the
scope of this thesis, but generally, the IIR filters are more versatile and powerful, at the cost of
more computational power and memory. The following diagrams extracted from (Kuo et al., 2013)
represent the systems with the three blocks discussed previously:

Figure 6. FIR filter (Kuo et al., 2013, Chapter 2).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

13

Figure 7. IIR filter (Kuo et al., 2013, Chapter 2).

After discussing how to obtain an impulse response from a real environment, the question of how
to obtain it from a mathematical calculation arises. This topic is outside of the scope of the thesis,
but if the reader is interested, deep knowledge about Fourier’s, Laplace’s and Z’s transform is
required. MathLab provides functions such as fir1 to simplify this task.

2.3 Immersive Technology

The aim of immersive technology is to allow the user to perceive a digital environment as real. In
order to succeed, the senses must be tricked so they believe that the stimuli perceived correspond
to ones coming from the real world. This thesis focuses on audio processing, so only the ideas
regarding audio immersion will be discussed. Three main ideas need to be applied to convert
audio coming from the computer to stimuli immersive enough it can deceive the brain to hear the
sound as a real-world one.

• The first concept is the Head-Related Transfer Function (HRTF), which is a transfer function
that describes the impulse response of both ears of a human being. HRTF is the Fourier
transform of the impulse response of each ear, hL(t) and hR(t). Simple convolution opera-
tion can be applied with the input signal, as human ears behave like FIR systems. Obtaining
or calculating the binaural functions are outside of the scope of this thesis. Correct use of
HRTF is required to produce binaural audio. Extra information at (Bilinski et al., 2014) and
(Tashev, 2014) for example.

• The second concept is the room acoustics, which is the impulse response of a particular
room. The topic was already discussed in the section 2.1. It is particularly important that the
recording of the impulse response is done with a unit-impulse signal of different frequencies,
so a more accurate impulse response function can be constructed. This part gives the
reverberation or ”echo” effect.

• The third concept is sound diffraction. The main idea explains how the change of medium
affects the sound, for example a small opening in a wall allows the sound to travel across
it. It is a very complicated topic which includes material analysis, which is far away from
this thesis topic. This last part is rarely implemented into consumer software due to the
complexity.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

14

Nowadays, there research in immersive technologies focuses in creating HRTF functions for gen-
eral use, and to generate mathematically the impulse response of a virtual room. The framework
of Google Resonance (Google, 2018) tries to accomplish these tasks, but it is lacking proper
sound reflection in real time, among others, but with an static environment it can give a sense of
immersion.

2.4 Real Time systems

The concepts of real time and concurrency are introduced next. A real time system is one which
time of operation is constrained by ”deadlines”. Missing the deadlines is not allowed, in the
best scenario the experience will be degraded (audio stream) and in the worst people could die
(nuclear reactor control program or plane control system). The former is called soft real time
systems and the latter, hard real time systems. As the thesis topic focuses in audio processing
and transmission, losses are allowed and even expected to occur at some point in the execution of
the program. Concurrency in a system happens when two or more activities are happening at the
same time, for example a human executes concurrently the actions of talking and walking usually.
In computers, that can happen in parallel, so each task has its own processor, or sequentially
switching tasks very fast in order for the deadlines of each one to be met.

Figure 8. Approaches to concurrency. (Williams, 2012, p. 26).

Because of this fast change of tasks, all the variables and related data has to be stored and
moved as each task changes. When two programs want to communicate with each other, or
access common data, the information has to be stored on a common place as well, usually
Random-Access Memory (RAM). Here the problems related to real time start to emerge, in the
form of data races. This idea includes any action which concludes in unwanted modifications
or inconsistent states of the data. Other problems included in concurrency are, for example,
synchronization between programs, or protection of data from other programs.

Until C++11 (revision of the C++ programming language in 2011), there was not platform agnostic
way of creating concurrent programs in C++. Each operating system had its own low-level Appli-
cation Programming Interface (API) for creating concurrent programs. Each program could create
threads (different series of instructions which share the same execution context) using those APIs,
and had to create specific code for each system. In C++11, a general way of using concurrency
in C++ was introduced by exposing classes representing threads, shared data structures or pro-
tected areas of memory, for example. This implementation is generic, so there is no need for
vendor-specific code, however this creates some overhead and requires a bit more processing
power and memory than the platform-specific APIs. The overhead is small enough to be ignored
in most of the cases, even in the ones the performance is an issue. The Methodology section will
examine the techniques used in order to create the real-time system of the thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

15

The author already knew the abstract concepts about concurrency and real time systems. How-
ever, there was a lack of knowledge in the implementation part using C++, so the following book
was used as a foundation for C++ implementation of concurrent systems: (Williams, 2012).

2.5 Network communication

The last part of the background discussed is network transfer options for real-time systems. As
the users who communicate can be on different parts of the world, the abstraction level should not
go lower than the transport layer of OSI (Open System Interconnection) model. This allows that
the information can be routed out the local network. Following the de facto standard of TCP/IP
(because it is the most used by a wide margin), the two main options without developing a new
network protocol are TCP and UDP. The Transmission Control Protocol (TCP) is an ordered
(the packets arrive in order) and reliable (the packets do not get lost, they are resent if needed
and the sender receives acknowledgment of reception) protocol for applications that cannot allow
their packets to be lost in detriment of speed. It uses a session system to facilitate the sender to
send multiple packages to the same recipient. On contrast, User Datagram Protocol (UDP) is a
non-reliable, unordered and connectionless protocol. Without all the overhead that these features
bring, UDP is able to achieve greater speeds than TCP, with the disadvantage of receiving the
packages in different order they were sent, and the possibility of losing packages without the
sender knowledge.

In C++, there are multiple options for networking, but this thesis will focus on the low-level API
of sockets (both POSIX and WinSockets have almost the same API). The socket is a point on
the networking stack which can receive and send packages. By accessing directly these sockets,
the program can send and receive serialized (converted to a format suitable for transmission
or storage) data. The book (Donahoo and Calvert, 2009) provides a reference to this API and
addresses with more insight the concepts discussed in this subsection.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

16

3 METHODOLOGY

The methodology of the thesis is discussed in this section. It includes a description of what was
planned to be done and how, and a discussion of why certain plans were made and not others.
An abstract system (system for the thesis scope) is a concept which hides the implementation
details of a piece of software, leaving the logic as the main focus. The ”system” is the prototype
being designed and any external piece of software will be named ”external system”.

3.1 Functional requirements

As in every system, the work started with the design and definition of the functional requirements,
which outlines the goals of the system. The following requirements were initially set and the
intention was that they should not be changed unless strictly necessary:

1. The design of an immersive communication system is desired.

2. The system could implement Peer to Peer (P2P) or client-server architectures.

3. The system will implement a binaural sound system with spatial location.

4. The HRTF and impulse response functions will be received from an external system, the
system should only apply them.

5. The system should have a latency small enough so the communication is bearable between
people using different devices in different spaces.

6. The system can compromise the audio frequency range in exchange of better performance.

7. The system should optimize the bandwidth use.

8. The system should support immersive communication between two people. Possibility to
expand to more would be analyzed.

During the research and implementation parts, some concessions had to be made, in order to
mitigate some implementation problems, and in order to meet the deadlines and other obligations
of the author . These topics will be discussed in the Results and Discussion part. The design
choices must be motivated by the requirements.

3.2 System concept

A general dataflow diagram which could be used as a reference for the system was created.
This diagram was selected because it is based on the idea that in a very abstract level, the only
concern is to move and transform the audio signal, so the best representation for that is a diagram
which can represent the flow of data. For the 3rd,4th and 6th requirements one subsystem will be
used in order to record the audio and process it applying the necessary FIR or IIR filters. For the
5th and 7th a subsystem for encoding and decoding the process audio should be used. Finally, for
the 2nd, 5th and 8th a subsystem for network communication will be used. Those three subsystems
will communicate with each other by the use of buffers, because some systems can work faster
or in different paces than others. For format reasons, the diagram was split in two, the former
(Figure 9) represents the flow of the data while recording and sending, whereas the latter (Figure
10) represents the opposite process of receiving the data.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

17

Figure 9. Dataflow diagram of the system while sending audio.

Figure 10. Dataflow diagram of the system while receiving audio.

These diagrams (Figure 9 and Figure 10) were very useful to represent the concept of the system,
and they were used to model everything after it. The following diagram (Figure 11) was also
used to model the system, in the form of sequence of actions and constraints, representing the
asynchronous messages between the parts of the system.

Figure 11. Sequence diagram of the communication process.

All these diagrams (Figure 9, Figure 10 and Figure 11) only represent part of the process. The
system should be able to work in full duplex, receiving and sending at the same time. In the
thesis, both systems will be seen as the same in reverted order unless specified. The first choice
for developing this system is based on the programming language used. C++11 implements an
easy way to manage real time systems, as well as low-level properties inherited from C, which
makes it a suitable language for the implementation of the system. The author was familiar with
the language, which was a major factor in the choice in order to speed up the development.

After the general design choices the implementation details are discussed. It was needed to
consider the way of implementing the three subsystems (recorder/player, encoder/decoder and
sender/receiver) into the system. The number of threads should be considered carefully, as it
can introduce overhead. The initial diagrams imply that there should be six threads, one for each
subsystem, but after performance testing will would be discussed later the number was reduced

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

18

to five, one for the audio recording, one for the audio player, one for both decoding and encoding,
one for sending and one for receiving.

3.3 Audio back end

The second important choice which had to be made was to choose an audio back end. Back end
is the layer of a program which handles the logic of the system. The audio back end ise the part of
the system which directly interacts with the audio hardware and provides data to other modules.
In modern operative systems, the access to hardware is restricted by them, making the need of
specialized driver and libraries to handle the use of certain devices. Microphones in particular are
low-latency devices in which the real time constraints are important. A delay of half a second in
the audio recording would be inadmissible. The author gathered information about very different
libraries to try to find the most suitable for the purpose of the thesis. The following libraries were
analyzed and researched in Table 1.

Table 1. Analysis of audio back ends (part 1).

Library Performance DSP capabilities Documentation

RTC −Mix High All Medium

Common − Lisp −Music Low Moderate Good

snd − rt High All Good

cSound High All Medium

FAUST Medium All Medium

jSyn Low All Good

Nyquist Low All Bad

Puredata High All Moderate

SuperColider High All Good

VVVV High All Medium

PortAudio High All Good

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

19

Table 1. Analysis of audio back ends (part 2).

Library Ease to Code License Platform

RTC −Mix Hard Apache 2 *Nix

Common − Lisp −Music Moderate Unknown Desktop OS

snd − rt Moderate Unknown Desktop OS

cSound Moderate LGPL *Nix

FAUST Easy GPL All

jSyn Moderate Apache 2 All (Java support)

Nyquist Hard Unknown All (Can run Lisp)

Puredata Hard BSD All

SuperColider Moderate GPL Desktop OS

VVVV Hard Free non comercial Windows

PortAudio Moderate MIT All

In the Appendix a longer description on the results on those tables is provided. The libraries
were tested by trying to implement a simple FIR filter in each of them to process an audio file.
The results are subjective to the author opinion in certain fields, for example Ease to Code or
Documentation. The reason is that there is no good metric to measure the difficulty of coding
using a specific library or to measure the quality of the documentation. The performance column
is based on the real-time capabilities, being High able to process real time audio without hiccups
and Low not being able to.

The audio back end selected was PortAudio according to two relevant criteria, the data presented
in Table 1 and the author’s experience in programming. The license, performance and docu-
mentation were the most determinant factors in the choice. An audio back end with GPL (GNU
General Public License) license should not be chosen because GPL forces to disclose the source
code in case the application has commercial uses, which makes more difficult to write proprietary
code. The license of PortAudio is very flexible in terms of code disclosure and commercial uses.
Documentation of PortAudio is complete and answers most questions any coder would normally
have. Performance-wise PortAudio allows access to low-level methods giving the developer the
tools for creating fast and secure code.

3.4 Codec and Networking choices

The next choice needed is the encoding and decoding algorithm (codec) and its implementation
into the system. There are different options available like MP3 codec with LAME implementation
(Lame, 2018) or Opus codec with the C++ implementation (Opus, 2018). There are other codecs
and implementations, but MP3/LAME and Opus were selected because of the refinement they

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

20

have had during recent years. Regarding licenses, Opus uses a 3-clause BSD, which can be
compared to MIT for the purposes of the thesis, and LAME uses GPL. Opus was chosen over
MP3/LAME according to the same criteria used in the audio back end selection. Opus codec
takes different parameters in order to improve its efficiency and quality.

• Complexity: This parameter sets the amount of CPU that the algorithm should use. Higher
values increase the CPU usage, but that also might reduce the output size of the encoded
audio.

• Signal type: There are different values which improve the functioning of the codec if the
audio provided is the one the codec expects.

• LSB depth: This parameter sets the depth of the signal being encoded, useful for silence
identification.

• Band used: This parameter creates a passband of different sizes, being the rest of the band
ignored for the encoding.

One last important choice which had to be done was the networking system used. C implements
a socket API which is thoughtfully discussed by (Donahoo and Calvert, 2009). This API accesses
the low-level sockets, which make networking harder to program, but creates more efficient code
when the programmer has enough time to spend in optimizing the code. Other option which was
considered was using the network API of the Boost suite, which is called ASIO (Boost, 2018).
This API provides an easier approach, with the cost of some overhead and some performance
hits. The socket API of C was used for the prototype because of the need of performance.

3.5 Intermediate structures

In real time and concurrent systems, a great concern is how to allow processes to communicate
with each other. The problem is even bigger if they want to transfer big amounts of data or if there
is the need to have a steady stream of data. The data structure or buffer needs to allow read and
write simultaneously. The recording thread records raw audio samples into a buffer. The encoding
thread reads the samples from the structure, encodes them and writes the result to the next buffer.
This last buffer is read by the sender thread. The process is analogous in the receiving part. The
data structure needs to solve the concurrency problems that can appear, as well as discarding
non-relevant data. For this purpose, a structure similar to a ringbuffer was needed.

A ringbuffer is a circular list (array or linked list) which cannot overflow because after the last
position of the list comes the first again (Chandrasekaran, 2018). There can be two concurrent
processes, one reading and one writing at the same time without data races, using one index for
the reader and one for the writer. When the reader index is at the same point than the one of the
writer, the reader can block until more data is available or can read a default value set by the pro-
grammer (i.e. if the data stored are floating values, a default value could be ”0.0f”). In this thesis,
the latter approach was used because it is better to read silence than to block. Another concern
was the data relevancy (the old data might be not relevant anymore). For that matter, in the imple-
mentation, when the data in the buffer exceeds a threshold value, the buffer will skip to the most
recent audio, which will lead to delay correction. The buffer does two main operations, read and
write to keep the implementation close to the general idea. Previous implementations like the one
by (Thrasher, 2018) were available, but the author ended up creating his own implementation in
order to meet specific features as the skipping to new data.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

21

3.6 DSP effects

The FIR and IIR filters implementations were implemented in C++ aiming to optimal performance.
For IIR filter, the direct form I and II (Kuo et al., 2013, pg. 158-159) were chosen. To test the
filtering structures, actual parameters were needed. In order to identify if the filters were working
correctly, simpler parameters were used, for example, to filter frequencies below or above some
threshold. For this purpose, the program MatLab was used. MatLab allows an easy generation
of the parameters for FIR and IIR filters. In the Appendix sample code to generate example
parameters is provided.

3.7 Networking constraints and possible problems

The network design was considered next. TCP protocol is reliable and ordered, which is very
convenient when dealing with streams of data. However, reliability and ordering provide perfor-
mance issues in real time systems. UDP is neither reliable nor ordered, but it does not incur in
the efficiency issues as TCP. Because of that, the concept of the network would be to use TCP
for exchanging data apart from audio, like position or protocols, and use UDP for all of the real
time communications. Figure 12 illustrates the general concept of the system. The labels ”client”
and ”server” are only useful to explain the order of connection. The client connects to the server
using TCP. The client sends the desired UDP port to the server, which answers with its own UDP
port. Now the two users can create an UDP connection as peers, which will be used to send the
encoded audio in real time back and forth.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

22

Figure 12. Network concept diagram.

The problem with UDP, as introduced before, is that packets can get lost or the received and sent
order can be mismatched. The first problem is easily fixed by the encoder itself. Opus provides
tolerance to missing packets, so silence is inserted and the decoder tries to recover the best
audio as possible. The order of packets, on the other hand, is a more complicated question.
This problem can be solved creating a data protocol to encode the packets before sending them,
similar to the ordering by TCP, so they are reordered by the receiver.

3.8 Testing

As a last note, the testing process will be discussed. There are multiple parts of the system which
could malfunction, so after every step the audio will be recorded into a file in binary format to
be analyzed with Audacity. The raw audio will be stored, then the DSP audio, and after that the
decoded audio. Also, the system will be subjectively tested by the author in real time, to calculate
delays and quality problems. To automate the process in some way, sample sounds will be used
as well as real time streams of audio to, for example, test only the DSP part.

On the other hand, the networking part of the system is not easily automated. The Opus codec is
greatly capable of dealing with missing packets and error tolerance makes the sound degrade or
even shutter, which is metric hardly quantifiable. The way this part was tested was by the author

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

23

listening to the received audio and subjectively analyzing the quality of the sound. Other meth-
ods like network analysis with programs like (Wireshark-Foundation, 2018) were considered, but
discarded as analyzing unordered packets is requires expertise or it can be very time consuming.

This is an example of a testing session. First, the author generates an arbitrary filter with MatLab
to ensure the DSP work, for example a low-pass filter of 1000 Hz. This allows the voice to be
greatly distorted with a characteristic effect. Then the filter is imported in the program, an the
program is run in local mode, so the sound recorded in real time is played back as soon as it has
been processed. The author then studies if the delay and the applied effects are acceptable and
if there is any problem in this part.

Another example of session is the following. The program is run receiving an audio file instead of
a recording of the microphone. The author then runs the program in another device and studies
the delays and problems in the transmission of audio. The program in the first computer records
as well any received audio by the network, which is analyzed later by the author in order to find
silences or problems.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

24

4 RESULTS

The results achieved with the methods listed in the Section 3 are detailed. The prototype of the
system was built, but some problems rose in the process. Results are grouped together in the
same subsections than in the Methodology, but with a chronological order instead.

4.1 Audio back end

The selected audio back end is PortAudio, for the reasons stated in the Methodology. PortAudio’s
performance is good enough to perform real time DSP with FIR and IIR filters. These filters
were implemented with only one function, dsp(float value), which receives the new input, and
returns the processed output using the convolution algorithm. The canonical design was slightly
modified by the author to improve performance in some cases. In order to fulfill the confidentiality
agreement with myTrueSound the code will not be disclosed.

In Figure 13 a Butterworth filter (simple example of IIR filter) was applied to a voice recording of
the audio, with a passband of 500Hz (3dB ripple) and a stop-band of 3000Hz (60dB ripple), so
the frequencies started to get attenuated after 500Hz and at 3000Hz the attenuation is extreme.
As human hearing ranges from 20Hz to 20000Hz (Rosen and Howell, 2010), a reduction of such
degree results on a significant reduction of the understandability of the sound. The sample used
was the author’s voice pronouncing the five vowels.

Figure 13. Audacity screen-shot of raw audio before and after DSP with filter of 500-3000Hz.

The processed audio shows the desired effect with the example effect. The filter was designed
with MatLab, and examples are provided in the Appendix. This result shows proper DSP was
implemented.

4.2 Codec tweaks

The codec chosen was Opus as it was written in the Methodology Section. This codec was tested
with 6 seconds of voice of the author, as well as with real-time audio. Both the real-time audio and
the static audio sizes were reduced drastically, from 392 KB/s to 12 KB/s, on average. Multiple
audio samples were taken, like the one in Figure 14.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

25

Figure 14. Audacity screen-shot of raw audio (top) and the same audio after being encoded and
decoded (bottom).

It can be seen that the audio maintains a very similar structure, however the size of the encoded
one is very reduced. Opus receives a series of parameters which could be further adjusted for
different objectives:

• Complexity: This parameter sets the amount of CPU that the algorithm should use. Higher
values increase the CPU usage, but that also might reduce the output size of the encoded
audio. The author found that a value of 5 delivered a proper compression without an exces-
sive CPU usage.

• Signal type: There are different values which improve the functioning of the codec if the
audio provided is the one the codec expects. The proper value is OPUS SIGNAL VOICE.

• LSB depth: This parameter sets the depth of the signal being encoded, useful for silence
identification. The author found a value of 16 performed optimally on his hardware condi-
tions, but it can be tweaked if there are silences where not supposed.

• Band used: This parameter creates a passband of different sizes, being the rest of the band
ignored for the encoding. The author found that a medium band (6 KHz max) performed
good on his voice.

4.3 Intermediate structures

The ringbuffer data structure was implemented successfully, with the needed performance for
transmitting audio samples between the parts of the system. The implementation details are not
shown in order to fulfill the confidentiality agreement with myTrueSound, but a design similar to
the one provided by (Thrasher, 2018) could be modified to behave similarly. The ringbuffer will
skip to the most recent audio samples if the 15% percent of the buffer has been written and not
read. This value was found reliably able to reduce any delay in communication. If the buffer is
empty, the reader will read a default value of silence 0.0f.

4.4 Network problems

Conclusive results in networking were not achieved. The network capabilities were partially im-
plemented, with working serialization methods for the Opus packets to be sent. However, the lack
of order and reliability of UDP could not be solved by the author in the time of the thesis. The
prototype is able to send and receive data via TCP, but UDP transmission of data is unreliable.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

26

This results in audio not being decoded correctly and silences appearing where they should not.
In the Section 3.8 the testing methods were listed, however the audio received was in a quality
not good enough to be able to be analyzed with Audacity, which crashes at opening the samples.

4.5 Requirements

At the Methodology part eight requirements were presented, which had to be fulfilled by the thesis
program. Not all the requirements were met. The following symbols will be used, 3 for completed
requisites, 7 for failed requisites and ! for partially completed requisites

1. The design of an immersive communication system is desired.

! The system was designed and it can provide arbitrary impulse response DSP to any stream
of audio. However it does not communicate properly with other systems over the network.

2. The system could implement Peer to Peer (P2P) or client-server architectures.

! The system implemented P2P communication, but it was not robust enough to handle the
transfer of real time audio by UDP.

3. The system will implement a binaural sound system with spatial location.

3 The system applied arbitrary impulse response. It was extended to apply different impulse to
different audio channels, only needing the HRTF function and location data from a external
system.

4. The HRTF and impulse response functions will be received from an external system, the
system should only apply them.

3 The system could apply HRTF and impulse response functions.

5. The system should have a latency small enough the communication is bearable between
people.

7 The system could not maintain the latency small enough.

6. The system can compromise the audio frequency range in exchange of better performance.

3 The codec used provided this requirement to the system, as Opus can adjust the frequency
range depending on the data.

7. The system should optimize the bandwidth use.

3 The system optimized the data used to an average of a 3% of the raw audio data.

8. The system should support two people in the beginning, with possibility to expand to more.

7 The network capabilities failed to be properly implemented.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

27

5 DISCUSSION

In this section the results are discussed. To begin with, not all the requirements were fulfilled in the
thesis prototype. The DSP capabilities were implemented whereas the network communication
part failed to be properly developed. The major cause of that was underestimation of the com-
plexity of the requirements. The author was neither an expert in networking, nor in DSP, so he had
to research most of those fields. Because of that, the project grew bigger than initially thought,
meaning some requirements could not been implemented. The requirements which could not
be implemented were the ones related to the networking parts. The ones related to the rest of
capabilities were properly implemented.

The audio back end was the first part of the system which was chosen. The author’s choice was
PortAudio, and for this thesis purposes worked flawlessly. This library accesses the hardware via
different means which are not discussed, and it provides specific buffer from which bytes can be
directly written or read, allowing a low-level approach to DSP implementations. The processed
audio shows the desired effect with the example effect. The filter was designed with MatLab.
Different filters were tried during the testing process, but the results would be redundant. There
were either calculated with MatLab or extracted from real impulse responses from rooms. As
shown in Figure 13 the DSP capabilities work with any given set of coefficients. Coding the DSP
implementation for PortAudio was very straightforward when a general filter was implemented, as
the thread just needed to pass the new float values to said filter and then retrieve the values from
the filter.

The codec chosen was Opus and the performance was excellent as expected and shown in
Figure 14. The audio did not lose enough quality to be noticeable. If the device were not powerful
enough to run the codec on the parameters specified, the complexity could be decreased, making
the bandwidth increase as an effect. On the other hand, if the bandwidth was a problem then both
the band could be reduced, impacting the audio quality, and the complexity could be increased,
impacting the CPU usage. Careful tweaking of all the parameters would be necessary for optimal
performance in any system.

Two implementations of ring buffers were implemented. One with only performance in mind, for
transmission between the recorder and the encoder, and from the decoder and the player. The
other one with a compromise between performance and other capabilities, in particular the ability
to have sequential reads with random writes. This second buffer was created with the unordered
UDP packets in mind. The packets are inserted where they belong and there they wait until the
previous packets arrive or when the previous audio was processed.

Mistakes in the network implementation and complexity analysis were made. The author under-
estimated the time and complexity of trying to synchronize an unordered stream of packets. He
also tried to implement all the parts instead on relying on already built libraries like Boost. The
packets of Opus were encapsulated, given an identifier, serialized and then sent. The idea was
that the packets were ordered on the receiver, sent to the second kind of ring buffer and then it
will continue its path towards the headphones of the user. The author spent the most of the time
of the thesis developing and testing the DSP parts of the system, not reserving enough time for
networking.

The first mistake was that the code was not able to properly reorder the packets, leading to
problematic mistakes in the decoder, as well as being a problem very time-consuming to debug.
The code overwrote packets at certain positions, which lead to corruption of audio and cryptic
errors of the decoder. If there was a stream of packets that managed to arrive and be reordered
properly against the odds, then the decoder managed to decode it and properly do the playback
of the sound.

Another problem, was to manage the low-level sockets to perform full duplex transmission of
data. This problem was solved eventually unlike the previous one. The last part was to properly

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

28

serialize and deserialize the packets from the encoder. A simple protocol was created by the
author, with one unsigned integer for the index (so when the maximum number was reached, it
will automatically go back to zero according to the C language implementation), one integer for
storing the size of the packet and then the packet itself, an array of signed chars, which is the
output of the Opus encoder. This was converted to signed chars and stored in a new memory
address so the sender thread could access it without any problem. The deserialization was just
the same steps in the opposite direction. This part was properly implemented as well, leaving
only the problem of ordering the packets in real time unresolved.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

29

6 CONCLUSION

This thesis aimed to create a new system capable of creating an immersive channel of communi-
cation between two people. For that purpose, the system should be able to apply any DSP effect
(i.e room acoustics or HRTF) to the real time stream of audio that comes through the microphone.
It shoudl also reduce the size to an acceptable level and then send it through the Internet to the
other interlocutor, where it will have to be decoded and replayed. This process should work both
ways simultaneously (full duplex).

The system was able to apply the required effects to the real time stream from the microphone.
Different audio back ends were then studied and PortAudio was chosen because of its DSP ca-
pabilities, performance and license. Different DSP structures were implemented, mainly different
algorithms for FIR and IIR filters, which form the foundation of digital signal processing. The sys-
tem was able to import arbitrary FIR and IIR filters on will of the author, which means HRTF and
acoustics could be effectively applied.

The system was able to reduce the data throughput created by the system from the raw data of
the microphone. The rate of reduction was, on average, a 3% of the input size. The codec respon-
sible for most of this reduction was Opus, which was configured to create the best audio quality
for conversation, reducing the size to the maximum without affecting the intelligibility. For com-
municating both systems, Opus and PortAudio, a circular buffer or ring buffer was implementing,
capable of transferring the data as fast as necessary.

The system was able to convert the resulting data created by Opus to a network-safe format,
being capable of effectively serializing and deserializing data into and from a simple protocol
created for this purpose. However, the difficulties of correct networking were underestimated and
the system was not able to reliably send and receive audio in real time. This was not fully solved
by the author as UDP packets arrived unordered, corrupting the audio. Thus, the system was only
able to work reliably in a local environment, and not in a network.

Further development is required, and it is grouped in two main areas. The first and most obvious
one would be to properly implement the networking system so the system works reliably even with
many unordered packets and some tolerance to lost packets. For that the authors recommenda-
tion is to use one of the already established libraries for network communication such as Boost
instead of implementing their own one from scratch, hence repeating the mistake of the author.
The only proper reason to implement networking from scratch is the will to learn and the lack of
performance of an already built solution using libraries.

The other area for further development is the improvement of usability. Currently the program
lacks proper interface and the way of introducing new effects is not totally polished, so a graphical
user interface (GUI) could be built around the system, allowing easier management. An API for
the system could be created so external programs could introduce their own FIR or IIR coefficients
in real time.

Summing up, the thesis achieved the most difficult parts of the objectives and the created system
serves as a prototype which can be used to build an efficient system. Computer scientists with no
background in digital signal processing can use this document to develop immersive systems that
work in real time, which can increase the number of software with immersive software available.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

30

References

Audacity (2018). Audacity Online Manual. https://manual.audacityteam.org/man/faq.html Re-
trieved 28-05-2018.

Audition, A. (2018). Abobe audition web page. https://www.adobe.com/la/products/audition.html
Retrieved 28-05-2018.

Bilinski, P., Ahrens, J., Thomas, M. R. P., Tashev, I. J., and Platt, J. C. (2014). HRTF magnitude
synthesis via sparse representation of anthropometric features. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.

Boost (2018). Boost web page. https://www.boost.org Retrieved 28-05-2018.

Chandrasekaran, S. (2018). Implementing circular/ring buffer in embedded c. Embed Journal.
https://embedjournal.com/implementing-circular-buffer-embedded-c/ Retrieved 28-05-2018.

Christie, J. (2008). The seductive and dangerous v model. Testing Experience.
http://www.clarotesting.com/page11.htm.

Donahoo, M. J. and Calvert, K. L. (2009). TCP/IP Sockets in C. Elsevier Science & Technology.

Franz, D. (2008). Recording and Producing in the Home Studio. Berklee Press Publications.

Google (2018). Google resonance. https://developers.google.com/resonance-audio/ Retrieved
28-05-2018.

Kuo, S. M., Lee, B. H., and Tian, W. (2013). Real-Time Digital Signal Processing. John Wiley &
Sons Inc.

Lame (2018). Lame web page. http://lame.sourceforge.net/ Retrieved 28-05-2018.

MatLab (2018). Matlab web page. https://mathworks.com/ Retrieved 28-05-2018.

Opus (2018). Opus web page. http://opus-codec.org/ Retrieved 28-05-2018.

Rosen, S. and Howell, P. (2010). Signals and Systems for Speech and Hearing 2nd edition.
Emerald Group Publishing Limited.

Smith, S. W. (1997). The Scientist & Engineer’s Guide to Digital Signal Processing. California
Technical Pub.

Tashev, I. (2014). HRTF phase synthesis via sparse representation of anthropometric features.
In 2014 Information Theory and Applications Workshop (ITA). IEEE.

Thrasher, P. (2018). Philip thrasher’s crazy awesome ring buffer macros!
https://github.com/pthrasher/c-generic-ring-buffer Retrieved 28-05-2018.

Williams, A. (2012). C++ Concurrency. Manning.

Wireshark-Foundation (2018). Wireshark. https://www.wireshark.org/ Retrieved 28-05-2018.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

Appendix 1 (1) - 31

Appendix 1. Audio Table

Table 1 and Table 2 gather the results of a highly subjective research conducted by the author.
The objective was to provide an easy summary of most audio back end available for the thesis
scope. The columns will now be listed and the methodology will be explained:

• Product: the different audio back ends researched.

• Performance if the library was able to perform real time operations with audio, more specif-
ically, if it was able to apply any DSP effect to the input from the microphone. High means
that the system is totally able to apply effects in real time, Medium means that the system
can perform in real time under specific conditions (FAUST creates an object which could be
modified to work in real time) and Low means that the system cannot perform real time DSP
without important modifications.

• DSP capabilities: in this column the author considered that implementing a FIR structure
and/or a IIR structure proves that any DSP operations can be performed, as both systems
are composed by the 3 basic parts of any DSP system. All means that they could be
implemented, Moderate means that some DSP can be applied, but it is limited in some way
(Common-Lisp-Music is designed for composer, so it allows high customization, but total).

• Documentation: this column is totally subjective and its values come from how difficult the
author found the necessary documentation for building the FIR and IIR filters. The different
values do not relate to different amounts of time, just the impression of the author.

• Ease to code: this column is similar to the Documentation one, as it measures how hard
the author found the coding of the former mentioned structures.

• License: this column displays the license of every back end library. The ones marked with
Unknown were license which the author was uncapable to find in their own web pages and
documentation.

• Platform: this column gathers the platform in which the library works, according to the
library web page and documentation. The author did not test every library with every oper-
ating system, as it would go outside of the thesis topic.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

Appendix 2 (1) - 32

Appendix 2. MatLab filter

In this subsection some example code for generating FIR and IIR filters. In the following code, an
example IIR filter is created using the butterworth method.

function [b,a]=createButter(nyquist,passband,stopband,ripple,attenuation)

Wp=passband/nyquist;

Ws=stopband/nyquist;

Rp=ripple;

Rs=attenuation;

[N,Wn]=buttord(Wp,Ws,Rp,Rs);

[b,a]=butter(N,Wn);

And in this one, a highpass FIR filter is created. The kind parameter can only take ’high’ and ’low’,
according to the documentation for fir1

function b=createFIR(taps,frequency,nyquist,ripple,kind)

Wn=frequency/nyquist;

b=fir1(taps,Wn,kind,chebwin(taps+1,ripple));

With both example functions, the coefficients used in the filters can be generated for testing
purposes.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

Appendix 3 (1) - 33

Appendix 3. Filter implementation

In this subsection, the way FIR filters and IIR filters will be shown. Some details of the implemen-
tation, like how to efficiently store the data will not be shown in order to fulfill the confidentiality
agreement with myTrueSound.

FIR filter

#ifndef SPFIRFILTER_H

#define SPFIRFILTER_H

#include "SPGenericFilter.h"

template<class T>

class SPFirFilter : public SPGenericFilter<T>{

public:

SPFirFilter(int samples,T* coef){

this->size=samples;

this->coef=coef;

this->buffer=new firbuffer<T>(this->size);

}

SPFirFilter(){

this->buffer=NULL;

}

~SPFirFilter(){

std::cout<<"Destructor of FirFilter S\n"<<std::flush;

printf("%p\n",buffer);

if (buffer){

delete buffer;

}

std::cout<<"Destructor of FirFilter F\n"<<std::flush;

}

T getTap(T input){

this->buffer->add(input);

this->buffer->reset();

T acc=0;

for (int i=0;i<this->size;++i){

acc+=buffer->read()*coef[i];

}

return acc;

}

protected:

T* coef;

private:

firbuffer<T> *buffer;

};

#endif /* SPFIRFILTER_H */

IIR filter

#ifndef SPIIRFILTER_H

#define SPIIRFILTER_H

#include "SPGenericFilter.h"

//FORM I

template<class T>

class SPIirFilter: public SPGenericFilter<T>{

public:

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

Appendix 3 (2) - 34

SPIirFilter(){};

~SPIirFilter(){

delete bufferB;

delete bufferA;

}

SPIirFilter(int size,T* coefA,T* coefB){

this->coefA=coefA;

this->coefB=coefB;

this->size=size;

this->bufferB=new firbuffer<T>(size);

this->bufferA=new firbuffer<T>(size);

}

T getTap(T input){

bufferB->add(input);

bufferB->reset();

double acc=0.0;

for (int i=0;i<this->size;++i){

double temp=bufferB->read();

temp*=(double)coefB[i];

acc+=temp;

}

for (int i=1;i<this->size;++i){

acc-=bufferA->read()*coefA[i];

}

bufferA->add(acc);

bufferA->reset();

return acc;

}

protected:

T* coefA;

T* coefB;

private:

firbuffer<T> *bufferB=NULL;

firbuffer<T> *bufferA=NULL;

};

#endif /* SPIIRFILTER_H */

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

Appendix 4 (1) - 35

Appendix 4. PortAudio

In this subsection, reference code will be provided for PortAudio. The following snippet records
and apply an effect provided by an external structure. There are two main parts, the callback,
which is the low-level function PortAudio executes, and the initial call, which sets the parameters
for the callback.

//Callback function

static int recordCallback(const void *inputBuffer, void *outputBuffer,

unsigned long framesPerBuffer,

const PaStreamCallbackTimeInfo* timeInfo,

PaStreamCallbackFlags statusFlags,

void *userData)

{

const SAMPLE *rptr = (const SAMPLE*)inputBuffer;

(void) outputBuffer; /* Prevent unused variable warnings. */

(void) timeInfo;

(void) statusFlags;

unsigned int i;

int finished;

//Input data to the thread

SPSoundThread* thread=(SPSoundThread*)userData;

SPRingBuffer<RAW_TYPE> *bufferRaw=thread->getBuffer();

SAMPLE sample;

if(inputBuffer != NULL){

for(i=0; i<framesPerBuffer; i++){

sample=thread->dsp(*rptr++);//First channel

bufferRaw->write(sample);//Writes to a ringbuffer

sample=thread->dsp(*rptr++);//Second channel

bufferRaw->write(sample);

}

}

//This part controlls if the thread continues or stops, from an external

variable.↪→

if (thread->getState()==THREAD_START) finished=paContinue;

else finished=paComplete;

return finished;

}

//Init function

void SPSoundThread::init(){

PaStreamParameters inputParameters;

inputParameters.device = Pa_GetDefaultInputDevice(); /* default input device

*/↪→

if (inputParameters.device == paNoDevice) {

throw SPGenericException("Error: No default input device");

}

inputParameters.channelCount = 2; /* stereo input */

inputParameters.sampleFormat = PA_SAMPLE_TYPE;

inputParameters.suggestedLatency = Pa_GetDeviceInfo(inputParameters.device

)->defaultLowInputLatency;↪→

inputParameters.hostApiSpecificStreamInfo = NULL;

err = Pa_OpenStream(

&stream,

&inputParameters,

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

Appendix 4 (2) - 36

NULL, /* &outputParameters, */

SAMPLE_RATE, //Defined elsewhere

FRAME_SIZE, //Defined elsewhere

paClipOff,

recordCallback,

this); //Input parameter

if(err != paNoError){

throw SPGenericException(Pa_GetErrorText(err));

}

err = Pa_StartStream(stream);

if(err != paNoError){

throw SPGenericException(Pa_GetErrorText(err));

}

while((err = Pa_IsStreamActive(stream)) == 1 &&

this->threadState==THREAD_START)↪→

{

Pa_Sleep(100);

}

if(err < 0){

throw SPGenericException(Pa_GetErrorText(err));

}

err = Pa_CloseStream(stream);

if(err != paNoError){

throw SPGenericException(Pa_GetErrorText(err));

}

}

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Laguna Teno Félix

