

SMART SHOPPING SYSTEM

Ngoc Tuan Le

Master’s thesis
August 2018

Master's Degree in Information Technology

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Master’s Degree in Information Technology

Ngoc Tuan LE:
Smart Shopping System

Master's thesis 61 pages, appendices 7 pages
August 2018

Nowadays, the growing of the smart devices and peripherals brings more convenience
and wonderful experience into daily life activities. More importantly, these technologies
are changing the way we interact with the world and with each other.

Bluetooth Low Energy (BLE) beacon is one of these technologies. It is making daily
commute easier, paving the way for smart cities. BLE beacons are tiny transmitters which
are now being used widely to provide assistance to both staff and customers wherever
possible. In fact, beacons, with their micro-location capabilities can be used to offer great
help to a user based on his/her location with regard to an array of things like travel, shop-
ping, parking, choosing a restaurant, and more.

The main objective of this master’s thesis was to present one of the applications of BLE
beacons which is in retail. Since retail is one of the most experienced and fast-growing
industries using beacons today. In fact, Business Insider predicted that in 2016, beacons
would directly influence over $40 billion worth of US retail sales at top 100 retailers. In
order to do this, a web system with mobile iOS application were developed which will
improve in-store shopping experiences by sending personalized promotion offers to cus-
tomers while they pass by the store. The application is also capable of providing product
and store information to the customer related to the promotion.

This web system and mobile application are prototype which will provide a general idea
of how BLE beacons could be used in retail industry to bring better experience for cus-
tomer while shopping.

Key words: smart shopping, beacon, eddystone, mobile, application

3

CONTENTS

1 INTRODUCTION ... 5
1.1 Purpose ... 5
1.2 Objective .. 5
1.3 Aim .. 5

2 BEACON TECHNOLOGY ... 6
2.1 Bluetooth and Bluetooth Low Energy ... 6

2.2 Beacon Protocols .. 7
2.2.1 iBeacon .. 8
2.2.2 Eddystone .. 9
2.2.3 Eddystone vs iBeacon .. 14

3 SYSTEM ARCHITECTURE AND USE CASES .. 16
3.1 Overview of System ... 16
3.2 System Architecture ... 16
3.3 Use-case diagram.. 17
3.4 Use case specification ... 19

3.5 Class diagram ... 33
4 SYSTEM FEATURE IMPLEMENTATION ... 35

4.1 Selected technologies.. 35
4.2 Store management system implementation.. 36
4.3 APIs implementation .. 37
4.4 Mobile Application ... 38

5 SYSTEM DEPLOYMENT AND TESTING .. 40
5.1 System deployment... 40
5.2 System testing .. 43

5.2.1 System testing with super admin .. 44
5.2.2 System testing with store manager .. 45

5.3 Mobile application testing ... 48
6 NEXT STEP .. 52
7 DISCUSSION .. 53
REFERENCES.. 54

APPENDICES .. 55
Appendix 1. forms.py of store application .. 55
Appendix 2. admin.py of store application ... 57

Appendix 3. Podfile ... 60
Appendix 4. Source code repositories .. 61

4

ABBREVIATIONS AND TERMS

BR Basic Rate

EDR Enhanced Data Rate

LE Low Energy

BLE Bluetooth Low Energy

EDR Enhanced Data Rate

PDU Protocol Data Unit

CRC Cyclic Redundancy Check

TX power Transmission power

EID Ephemeral Identifier

5

1 INTRODUCTION

1.1 Purpose

Researching a solution to help people to find what they need in market / mall, see where

other sales for a similar product are, or find better deals or coupons as they walk through

the store.

1.2 Objective

• Building an Administration Web Application which allows to manage store along

with its beacon devices and provide service to create personalized promotion, sale

notifications and send to shoppers.

• Building an iOS application which navigates shoppers to find needed products and

receive messages from Store.

1.3 Aim

To bring a better experience to shoppers.

6

2 BEACON TECHNOLOGY

2.1 Bluetooth and Bluetooth Low Energy

Bluetooth is a short-range wireless communication for exchanging data that allows de-

vices to transmit data. The key features of the Bluetooth wireless technology are robust-

ness, low power consumption, and low cost. There are two forms Bluetooth technology:

Basic Rate/Enhanced Data Rate and Low Energy.

The Bluetooth BR/EDR offers synchronous and asynchronous connections enables con-

tinuous wireless connections and uses a point-to-point network topology to establish one-

to-one device communications. Bluetooth BR/EDR is ideal for providing robust wireless

connection between devices ranging from headsets and cars to industrial controllers and

streaming medical sensors.

The Bluetooth LE includes features designed to enable products that require lower current

consumption, lower complexity and lower cost than Bluetooth BR/EDR. Bluetooth LE

enables short-burst wireless connections and uses multiple network topologies. Including

point-to-point topology to create one-to-one device communications, broadcast topology

that establishes one-to-many device communications and mesh topology for many-to-

many communications.

TABLE 1. Comparison between Bluetooth BR/EDR and Bluetooth LE technologies

Factors Bluetooth BR/EDR Bluetooth LE

Transfer rate 2-3 Mpbs 1 Mpbs

Range Up to 100m Up to 150m

Large scale network Weak Good

Connection set-up speed Weak Strong

Power consumption Good Very strong

Cost Good Strong

Suited for Require continuous

data/voice streaming

such as headphones

Involves infrequent data

transfers and need to operate

on low power consumption

7

2.2 Beacon Protocols

A beacon is a small Bluetooth radio transmitter. It works like a lighthouse, repeatedly

transmits a single signal that other devices can see. Instead of emitting visible light, bea-

con broadcasts a radio signal that allows other Bluetooth devices like smartphone can see

this beacon once it’s in range.

BLE allows to transmit data in different modes: connected and advertising modes. Con-

nected mode offers exchanging data in one-to-one connection. With advertising mode,

device is able to broadcast data out to any device which is listening, this is one-to-many

transfer without guarantees about data coherence.

Taking this advantage of the advertising mode allows BLE Beacons to broadcast struc-

tured packets repeatedly. These packets contain information such as Preamble, Access

Address, Cyclic Redundancy Check, Protocol Data Unit, etc... Most of these fields are

automatically filled by Bluetooth stack, but the advertising payload is controlled by the

beacons. Each beacon protocol defines a different data structure for advertising payload

in 0-31 bytes long.

FIGURE 1. BLE packet in advertising mode

There are several beacon protocols that are released, such as: iBeacon, Eddystone, Alt-

Beacon, GeoBeacon. They have their own standards and advantages. The most popular

protocols are iBeacon and Eddystone that are developed and maintained by Apple and

Google. Since one of objectives is building iOS application, so in this thesis I only con-

sider between these two beacon protocols, iBeacon and Eddystone.

8

2.2.1 iBeacon

iBeacon is BLE advertising protocol designed by Apple. At the Apple Worldwide Devel-

opers Conference in 2013, iBeacon was introduced. And it is the first beacon protocol in

the market.

FIGURE 2. iBeacon protocol frame data spec

iBeacon advertising data contains a fixed advertising prefix which is the hex data:

0x0201061AFF004C0215. The detail of this broken-down hex data is shown as in Table

2 below.

TABLE 2. Apple's fixed iBeacon advertising prefix

Field Size Value Description

Adv Flags 3 bytes 0x020106 It specifies this is only for broadcasting, not

connecting.

Adv Header 2 bytes 0x1AFF The following data is 26 bytes long and is

Manufacturer Specific Data.

Company ID 2 bytes 0x004C Apple company identifier code.

iBeacon Type 1 byte 0x02 A secondary ID that denotes a proximity bea-

con, which is used by all iBeacons.

iBeacon

Length

1 byte 0x15 Defines the remaining length to be 21 bytes

(the identifying information, 16+2+2+1).

As shown in the figure 1, the most important data of iBeacon protocol are four pieces of

information: UUID, Major number, Minor number and TX power level.

9

The UUID, major number and minor number values provide the identifying information

for iBeacon. After receiving these information, mobile application refers them against a

database to obtain other information about the beacon. The beacon itself doesn’t contain

any descriptive data, it requires an external database to store its own data such as: store

location, floor level, promotion info.

The TX power field is the measured signal strength to determine how close the smart

devices to a beacon. This can be presented either as rough information (immediate/far/out

of range) or as a more precise measurement in meters.

TABLE 3. iBeacon profile frame

Field Size Description

UUID 16 bytes A unique ID to distinguish the iBeacons from one

another.

Major number 2 bytes A number from 1 to 65,535 that helps to identify a

subset of beacons within a large group.

Minor number 2 bytes Same as Major number, used to identify a specific

beacon.

TX power level 1 byte This number indicates the signal strength one meter

from the device

2.2.2 Eddystone

In July 2015, Google introduced Eddystone protocol and firmware. At first, it was called

UriBeacon, then it was announced that the tech had evolved the original specs. To differ-

entiate, they changed the name to Eddystone. The reason perhaps that beacon is often

compared to a lighthouse, so Google named their beacons format after the Eddystone

Lighthouse in United Kingdom.

Eddystone is an open protocol. Eddystone beacons are able to broadcast data with four

different frame types: Eddystone-UID, Eddystone-EID, Eddystone-URL and Eddystone-

TLM which work with both iOS and Android. Each frame was designed to carry different

set of information to fulfil the broadcasting need of most proximity beacon.

10

Figure 3 is the frame data spec of Eddystone. Similar to iBeacon, Eddystone protocol also

has the prefix that contains the avertising flags and header data.

FIGURE 3. Eddystone frame data spec

TABLE 4. Eddystone advertising prefix

Field Size Value Description

Adv Flags 3 bytes 0x020106 Same as iBeacon protocol it specifies this is

only for broadcasting, not connecting.

Services Ad-

vertised

4 bytes 0x0303AAFE Refers to the complete list of 16-bit Service

UUIDs, that must contain the Eddystone

Service UUID of 0xFEAA. This is included

to allow background scanning on iOS

devices.

Eddystone

Length

1 bytes 0x?? The length of the remaining packet, this can

vary from 6 bytes to 20. This value depends

on the length of frame data.

Eddystone

Type

1 byte 0x16 Service Data data type value.

Eddystone

UUID

2 bytes 0xAAFE Eddystone UUID

As mentioned earlier, Eddystone protocol has 4 different frame types for broadcasting

different needs, each frame type has its own frame data structure. The individual data

frames are listed below.

11

v Eddystone-UID

Eddystone-UID frame specification is very similar to the iBeacon’s. As iBeacon protocol,

Eddystone-UID allows mobile application to use its identifier to trigger the desired action

such as querying data from server. It uses 16 bytes of this frame to store its Beacon ID,

that is combination of a 10-byte namespace which is used to group a particular set of

beacons (an entity/organization for example), and a 6-byte instance which is used to iden-

tify individual beacons.

FIGURE 4. Eddystone-UID frame data spec

The Ranging Data is the transmission power in dBm which is emitted by the Eddystone

beacon at 0 meters. This is different from Apple iBeacon protocol the transmission power

is measured at 1 meter. However, Google recommended that the best way to determine

the precise value to put into this field is to measure the actual output of Eddystone beacon

from 1 meter away and then add 41 dBm to that. 41dBm is the signal loss that occurs over

1 meter.

TABLE 5. Eddystone-UID frame data spec with description

Field Size Description

Frame Type 1 byte Used to specify Eddystone frame type. The value for

this UID type is 0x00.

Ranging Data 1 byte This number indicates the signal strength at 0 meters.

Name Space ID 10 bytes A unique ID used to identify a group of beacons.

Instance ID 6 bytes An ID allows to identify an individual beacon.

RFU 2 bytes Reserved for future use, must be 0x0000

v Eddystone-EID

FIGURE 5. Eddystone-EID frame data spec

12

Eddystone-EID functions same as Eddystone-UID, however it is designed for use in se-

curity and privacy-enhanced purposes. It broadcasts an encrypted ephemeral identifier

(EID) that changes periodically. This broadcast EID can be resolved remotely by the ser-

vice which it was registered, but to other observers appears to be changing randomly.

TABLE 6. Eddystone-EID frame data spec with description

Field Size Description

Frame Type 1 byte Used to specify Eddystone frame type. The value for

this EID type is 0x30.

Ranging Data 1 byte This number indicates the signal strength at 0 meters.

Ephemeral ID 8 bytes A unique ID used to identify the beacon with better

privacy.

v Eddystone-URL

FIGURE 6. Eddystone-URL frame data spec

Eddystone-URL is designed to store and broadcast an URL in a compressed encoding

format, this way enables the beacon broadcasts more information in fewer characters.

With any device that has the access to internet will be able to decode the URL and to

choose to visit that web page.

TABLE 7. Eddystone-URL frame data spec with description

Field Size Description

Frame Type 1 byte Used to specify Eddystone frame type. The value for

this EID type is 0x10.

Ranging Data 1 byte This number indicates the signal strength at 0 meters.

URL Scheme 1 byte Encoded Scheme Prefix

Encoded URL 17 bytes Encoded URL

The URL scheme byte stores the value to defines the identifier scheme. These options are

shown in the table 8.

13

TABLE 8. URL scheme options

Decimal Hex Expansion

0 0x00 http://www.

1 0x01 https://www.

2 0x02 http://

3 0x03 https://

The URL address are encoded in ASCII except the URL suffix. The suffix identifier is

replaced by the expansion text according to the table 9 below.

TABLE 9. URL suffix options

Decimal Hex Expansion

0 0x00 .com/

1 0x01 .org/

2 0x02 .edu /

3 0x03 .net /

4 0x04 .info/

5 0x05 .biz/

6 0x06 .gov/

7 0x07 .com

8 0x08 .org

9 0x09 .edu

10 0xA .net

11 0xB .info

12 0xC .biz

13 0xD .gov

14..32 0x0E..0x20 Reserved

127..255 0x7F..0xFF Reserved

v Eddystone-TLM

14

Eddystone-TLM frame is known as the telemetry frame. It broadcasts telemetry infor-

mation about the beacon itself (encrypted or unencrypted) such as battery voltage, device

temperature, and counts of broadcast packets.

FIGURE 7. Eddystone-TLM frame data spec

Same as other frame types, the data frame starts with frame type which is “0x20” and

followed by the ranging data. The subsequent data are device specific information like

battery voltage, Beacon temperature, Advertising PDU count and Time since power-on

or reboot. It is not necessary to provide all of the data; the values of obscured data won’t

be updated.

TABLE 10. Eddystone-URL frame data spec with description

Field Size Description

Frame Type 1 byte Used to specify Eddystone frame type. The value for

this EID type is 0x10.

Ranging Data 1 byte This number indicates the signal strength at 0 meters.

Battery 2 bytes Beacon battery voltage is in 1mV per bit resolution.

Temperature 2 bytes Beacon temperature is in degrees Celsius expressed

in 8.8 fixed point representation.

Advertising

PDU Count

4 bytes The number of advertising frame that has been sent

since power-on or reboot.

Time 4 bytes The time since power-on or reboot.

Eddystone-TLM cannot be a standalone frame in the Eddystone protocol. It needs to be

used in conjunction with the UID or URL frame.

2.2.3 Eddystone vs iBeacon

Eddystone and iBeacon almost works in the same way. But Eddystone provides some

extended functionality. iBeacon broadcasts only one advertising packet that has a unique

ID number contains UUID, Minor, Major and TX power level. While Eddystone allows

15

to broadcast four different packets can be used individually or in combinations to create

beacons. More importantly, iBeacon requires for native apps, but building and maintain-

ing such apps are not always feasible for all kinds of businesses. While Eddystone directly

works with the Chrome browser on smartphones to deliver Physical Web notification or

URL in order to be redirected to the relevant web interface.

Both Eddystone and iBeacon are compatible with Android and iOS. However, iBeacon

is native only for iOS while Eddystone is open-source and cross-platform, so it is com-

patible with any platform that supports BLE beacons. Eddystone is flexible but requires

more complicated coding to integration since it sends more packets than iBeacon.

In iBeacon the signal transmitted is a public that can be detected by any device with

proper specifications. With Eddystone, it also provides a built-in feature call EIDs that

constantly change and allow beacons to broadcast a signal which can only be identified

by authorized clients. Besides that, Google has launched Google beacon platform which

is a cloud service that provides two APIs (Nearby API and Proximity Beacon API) that

makes Eddystone more powerful and beacon management much easier.

In conclusion, Eddystone is more powerful, flexible and secure than iBeacon. Using Ed-

dystone not only allows to manage your beacons and associated data on Google beacon

platform, but also to integrate fully with many other Google services such as Google An-

alytics for getting better understanding about your customer. These are the reasons why

Eddystone is better solution.

16

3 SYSTEM ARCHITECTURE AND USE CASES

3.1 Overview of System

Smart Shopping System is described in three different parts, they are:

1. Store Management System that allows store manager to manage store generally

and provides APIs for mobile application to retrieve information.

2. Mobile application will scan the nearby beacon and retrieve the information from

Store Management System and display to customer.

3. In-store beacons / Eddystones will be installed in the store and broadcast a UID

that link to the information which is stored in Store Management System.

FIGURE 6: Smart Shopping System setup

The core function of system is sending personalized promotions, offers to customer de-

vices in real time (when they are close to or in the shops). To detect when customers are

close or in the store, the beacons will be installed in-store which will broadcast a unique

identifier which is associated with its location and store information that are stored on

web server. Mobile application that is installed on customer’s devices will scan those

beacons, allows to detect nearby stores, and send request to server to retrieve store infor-

mation as well as promotions and then notifies customers.

3.2 System Architecture

17

Figure 7 illustrates a general view of the system. Server side includes Rest API Services

and Back Office components. Back Office is actually a web application tool which allows

store manager managing the store. In the other side, via Rest API Services, server can

provide client side (which is mobile application) API services to authenticate user and

fetch store information (such as: product info, notification), this component also takes the

responsibly to send the notifications to mobile application.

FIGURE 7: Initial design of system

3.3 Use-case diagram

In software and systems engineering, a use case is a list of actions or event steps typically

defining the interactions between a role (known as an actor) and a system to achieve a

goal. The actor can be a human or a system.

There are 3 main actors that will be using this system:

18

• Super admin who is responsible for system management. He/she will involve doing

all the administration tasks like: adding new store into system, editing/removing the

store, adding new manager to system to manage a store.

FIGURE 8: Super admin use cases

• Store manager who will be managing the stores. His responsibility is managing eve-

rything related to the store such as: catalogues, products, Eddystone beacons which

are installed in store and the notification that are linked to them.

FIGURE 9: Store manager use cases

19

• Shopper who uses the mobile application to view the catalogues, view the products

and receive/view the notifications from the store.

FIGURE 10: Shopper use cases

3.4 Use case specification

The use case specifications below will give a detailed explanation on how each use case

works and define the actor’s activities and how it interacts with the system.

v Use case: Login

- Primary actor(s): Super Admin, Store Manager, Shopper

- Scope: Whole system

- Brief description: This use case describes how the users of system login.

- Basic flow:

o The use case starts when user starts the application.

o The system will show the login form.

o The user input his/her username and password into login form.

o The system validates user’s username and password and log him/her into

the system.

o The system displays the dashboard page and the use case end.

20

- Alternative flow: If in the basic flow the system cannot find the account with the

username or the password is invalid, an error message is displayed. The user can

re-type a new username and password or choose to cancel the operation, at which

point the use case ends.

- Preconditions: There is no precondition associated with this use case.

- Postconditions: There is no postcondition associated with this use case.

v Use case: Edit account info

- Primary actor(s): Super Admin, Store Manager, Shopper

- Scope: Whole system

- Brief description: This use case describes how the user edit his/her account info.

- Basic flow:

o The use case starts when the user opens user info page.

o The system provides an editor area with user information fields.

o The user edits the information which she/he wants to.

o The system validates the inputs, store the data and displays the successful

message. The use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The user can re-type a new input or choose to cancel the operation, at

which point the use case ends.

- Preconditions: The user has logged in.

- Postconditions: The entered data is saved in user account.

v Use case: Logout

- Primary actor(s): Super Admin, Store Manager, Shopper

- Scope: Whole system

- Brief description: This use case happens when the user signs out.

- Basic flow:

o The use case starts when the user clicks on logout button.

o The user’s information will be removed from local storage.

o The system leads user to the home page.

- Alternative flow: None.

- Preconditions: The user has logged in.

- Postconditions: There is no postcondition associated with this use case.

21

v Use case: Add store

- Primary actor(s): Super Admin

- Scope: Back Office

- Brief description: This use case allows the super admin to add a new store into the

system.

- Basic flow:

o The use case starts when the super admin clicks add new store on store

management page.

o The system displays a store information form.

o The super admin needs to input all of required information.

o The system validates the inputs, store the data and displays the successful

message. The use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The super admin can re-type a new input or choose to cancel the oper-

ation, at which point the use case ends.

- Preconditions: The user has logged in and has super admin role.

- Postconditions: The entered data is saved in store account.

v Use case: Edit store

- Primary actor(s): Super Admin

- Scope: Back Office

- Brief description: This use case enables the super admin to update a store infor-

mation.

- Basic flow:

o The super admin opens store management page.

o The system displays a list of stores.

o The use case starts when the super admin selects the store that he/she wants

to modify information.

o The system displays a store information form.

o The super admin enters the information.

o The system validates the inputs, store the data and displays the successful

message. The use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The super admin can re-type a new input or choose to cancel the oper-

ation, at which point the use case ends.

22

- Preconditions: The user has logged in and has super admin role.

- Postconditions: The entered data is saved in store account.

v Use case: Remove store

- Primary actor(s): Super Admin

- Scope: Back Office

- Brief description: This use case enables the super admin to remove a store from

system.

- Basic flow:

o The super admin opens store management page.

o The system displays a list of stores.

o The use case starts when the super admin selects the store that he/she wants

to delete and click remove button.

o The system displays the confirmation alert box.

o If the super admin click Yes button and then the system displays the suc-

cessful message. The use case ends.

- Alternative flow: If in the basic flow the super admin chooses to cancel the oper-

ation, the system will do nothing and the use case ends.

- Preconditions: The user has logged in and has super admin role.

- Postconditions: The data of selected store will be deleted from system, includes

managers, catalogue and product data in that store.

v Use case: Add store manager

- Primary actor(s): Super Admin

- Scope: Back Office

- Brief description: This use case allows the super admin to add a new store man-

ager into the system to be able manage a store.

- Basic flow:

o The use case starts when the super admin clicks add new store manager on

manager management page.

o The system displays a manager information form.

o The super admin needs to input all of required information.

o The super admin selects the store which will be managed by this new man-

ager.

23

o The system validates the inputs and displays the successful message. The

use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The super admin can re-type a new input or choose to cancel the oper-

ation, at which point the use case ends.

- Preconditions: The user has logged in and has super admin role.

- Postconditions: The entered data is saved in manager account.

v Use case: Edit store manager

- Primary actor(s): Super Admin

- Scope: Back Office

- Brief description: This use case enables the super admin to modify a manager

information.

- Basic flow:

o The use case starts when the super admin selects the manager account that

he/she wants to modify information on the list of store manager in store

manager management page.

o The system displays a store information form.

o The super admin enters the information.

o The system validates the inputs and displays the successful message.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The super admin can re-type a new input or choose to cancel the oper-

ation, at which point the use case ends.

- Preconditions: The user has logged in and has super admin role.

- Postconditions: The entered data is saved in manager account.

v Use case: Remove store manager

- Primary actor(s): Super Admin

- Scope: Back Office

- Brief description: This use case enables the super admin to remove a store from

system.

- Basic flow:

o The super admin opens store management page.

o The system displays a list of stores.

24

o The use case starts when the super admin selects the store that he/she wants

to delete and click remove button.

o The system displays the confirmation alert box.

o If the super admin click Yes button, the system displays the successful

message.

- Alternative flow: If in the basic flow the super admin chooses to cancel the oper-

ation, the system will do nothing and the use case ends.

- Preconditions: The user has logged in and has super admin role.

- Postconditions: The data of selected store will be deleted from system.

v Use case: Add catalogue

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case describes how the manager add a new catalogue

into the store that he/she manages.

- Basic flow:

o The use case starts when the manager clicks on add new catalogue button

on catalogue management page.

o The system displays a form with catalogue information fields.

o The manager enters the required information.

o The system validates the inputs, displays the successful message and the

use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered catalogue data is saved in system.

v Use case: Edit catalogue

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case allows the manager to modify a catalogue infor-

mation.

- Basic flow:

25

o The use case starts when the manager selects the catalogue that he/she

wants to modify information on the catalogue list in store catalogue man-

agement page.

o The system displays a form with catalogue information fields.

o The manager enters the information.

o The system validates the inputs and displays the successful message.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered data is saved in catalogue.

v Use case: Remove catalogue

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case enables the store manager removes a catalogue

from a store which is managed by him/her in system.

- Basic flow:

o The manager opens catalogue management page of the store.

o The system displays a list of catalogues in that store.

o The use case starts when the manager selects the catalogue that he/she

wants to delete and click remove button.

o The system displays the confirmation alert box.

o If the manager decides to continue the process, the system displays the

successful message.

- Alternative flow: If in the basic flow the manager chooses to cancel the operation,

the system will do nothing and the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The selected catalogue data is removed in system.

v Use case: Add product

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case describes how the store manager edit add new

product into a store that is managed by him/her.

26

- Basic flow:

o The use case starts when the manager clicks on add new product button on

product management page.

o The system provides a form with product information fields.

o The manager enters the product information.

o The system validates the inputs and displays the successful message. The

use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered product data is saved in system.

v Use case: Edit product

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case enables the manager to modify a product infor-

mation.

- Basic flow:

o The use case starts when the manager selects the product that he/she wants

to modify information on the product list in product management page.

o The system displays a form with product information fields.

o The manager enters the information that he/she wants to modify.

o The system validates the inputs and displays the successful message.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered data is saved in the selected product.

v Use case: Remove product

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case allows the store manager to remove a product

from a store which is managed by him/her in system.

27

- Basic flow:

o The manager opens product management page of the store.

o The system displays a list of catalogues in that store.

o The use case starts when the manager selects the product that he/she wants

to delete and click remove button.

o The system displays the confirmation alert box.

o If the manager decides to continue the process, the system displays the

successful message.

- Alternative flow: If in the basic flow the manger chooses to cancel the operation,

the system will do nothing and the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered catalogue data is removed from system.

v Use case: Create notification

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case describes how the manager create a new notifica-

tion for a store and link to a beacon.

- Basic flow:

o The use case starts when the manager clicks on add new notification button

on notification management page.

o The system provides a form with notification information fields.

o The manager enters the notification information and selects the beacon

that this new notification will be referred to.

o The system validates the inputs and displays the successful message. The

use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered notification data is saved in system.

v Use case: Edit notification

- Primary actor(s): Store manager

- Scope: Back Office

28

- Brief description: This use case enables the manager to modify an exist notifica-

tion.

- Basic flow:

o The use case starts when the manager selects the notification that he/she

wants to modify information on the notification list in notification man-

agement page.

o The system displays a form with notification information fields.

o The manager enters the information that he/she wants to modify.

o The system validates the inputs and displays the successful message.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered notification is saved.

v Use case: Remove notification

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case describes how the manager remove an expired

notification.

- Basic flow:

o The manager opens notification management page of the store.

o The system displays a list of notification in that store.

o The use case starts when the manager selects the notification that he/she

wants to delete and click remove button.

o The system displays the confirmation alert box.

o If the manager decides to continue the process, the system displays the

successful message.

- Alternative flow: If in the basic flow the manger chooses to cancel the operation,

the system will do nothing and the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The selected notification data is removed from system.

v Use case: Add beacon

- Primary actor(s): Store manager

29

- Scope: Back Office

- Brief description: This use case describes how a beacon added to a store.

- Basic flow:

o The use case starts when the manager clicks add new beacon to store on

beacon management page of the store.

o The system provides an editor area with beacon information fields.

o The manager needs to enter correctly the information of the beacon.

o The system validates the inputs, store the data and displays the successful

message. The use case ends.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered beacon data is saved in system.

v Use case: Edit beacon

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case enables the manager to modify an exist beacon.

- Basic flow:

o The use case starts when the manager selects the beacon that he/she wants

to modify information on the beacon list in beacon management page.

o The system displays a form with beacon information fields.

o The manager enters the information that he/she wants to modify.

o The system validates the inputs and displays the successful message.

- Alternative flow: If in the basic flow the input data is invalid, an error message is

displayed. The manager can re-type a new input or choose to cancel the operation,

at which point the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The entered beacon data is saved.

v Use case: Remove beacon

- Primary actor(s): Store manager

- Scope: Back Office

- Brief description: This use case enables a store manager to remove a beacon.

30

- Basic flow:

o The manager opens beacon management page of the store.

o The system displays a list of beacons in that store.

o The use case starts when the manager selects the beacon that he/she wants

to remove and click remove button.

o The system displays the confirmation alert box.

o If the manager decides to continue the process, the system displays the

successful message.

- Alternative flow: If in the basic flow the manger chooses to cancel the operation,

the system will do nothing and the use case ends.

- Preconditions: The user has logged in and has manager role.

- Postconditions: The selected beacon data is removed from system.

v Use case: View store

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case allows shopper to see the list of stores in the sys-

tem.

- Basic flow:

o The use case starts when the shopper opens the mobile application.

o Mobile app displays all of stores in the system. The use case ends.

- Alternative flow: If the mobile can’t fetch data from the system, an error message

will be displayed.

- Preconditions: The user has logged in.

- Postconditions: There is no postcondition associated with this use case.

v Use case: View catalogue

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case allows shopper to see the list of catalogues in a

store.

- Basic flow:

o The use case starts when the shopper selects to view a store.

o Mobile app displays all catalogues in that store. The use case ends.

31

- Alternative flow: If the mobile can’t fetch data from the system, an error message

will be displayed.

- Preconditions: The user has logged in.

- Postconditions: There is no postcondition associated with this use case.

v Use case: View product

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case allows shopper to see the products in a store.

- Basic flow:

o The use case starts when the shopper selects to view a catalogue.

o Mobile app displays all of products in the selected catalogue. The use case

ends.

- Alternative flow: If the mobile can’t fetch data from the system, an error message

will be displayed.

- Preconditions: The user has logged in.

- Postconditions: There is no postcondition associated with this use case.

v Use case: View notification

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case allows shopper to receive and see the notifications

that he/she interests in.

- Basic flow:

o The use case starts when the shopper selects to view notifications button

on the app.

o Mobile app displays all of notifications that he/she interests in. The use

case ends.

- Alternative flow: If the mobile can’t fetch data from the system, an error message

will be displayed.

- Preconditions: The user has logged in.

- Postconditions: There is no postcondition associated with this use case.

v Use case: Like catalogue

- Primary actor(s): Shopper

32

- Scope: Mobile application

- Brief description: This use case describes how the users of system can follow a

catalogue of store.

- Basic flow:

o The mobile app provides a like button for each catalogue.

o The use case starts when user click on this like button.

o The app displays the successful message. The use case ends.

- Alternative flow: If in the basic flow there is any error happens, a message is

displayed. The use case ends.

- Preconditions: The user has logged in.

- Postconditions: The information of liked catalogue will be stored in system.

v Use case: Unlike catalogue

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case describes how the users of system unfollow a

catalogue of store.

- Basic flow:

o The mobile app provides an unlike button for each liked catalogue.

o The use case starts when user click on this unlike button.

o The app displays the successful message. The use case ends.

- Alternative flow: If in the basic flow there is any error happens, a message is

displayed. The use case ends.

- Preconditions: The user has logged in.

- Postconditions: The information of liked catalogue will be removed from system.

v Use case: Like product

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case describes how the users of system like a product

of store.

- Basic flow:

o The mobile app provides a like button for each product.

o The use case starts when user click on this like button.

o The app displays the successful message. The use case ends.

33

- Alternative flow: If in the basic flow there is any error happens, a message is

displayed. The use case ends.

- Preconditions: The user has logged in.

- Postconditions: The information of liked product will be stored in system.

v Use case: Unlike product

- Primary actor(s): Shopper

- Scope: Mobile application

- Brief description: This use case describes how the users of system unlike a product

of store.

- Basic flow:

o The mobile app provides an unlike button for each liked product.

o The use case starts when user click on this unlike button.

o The app displays the successful message. The use case ends.

- Alternative flow: If in the basic flow there is any error happens, a message is

displayed. The use case ends.

- Preconditions: The user has logged in.

- Postconditions: The information of liked product will be removed from system.

3.5 Class diagram

In software engineering, a class diagram in the Unified Modelling Language (UML) is a

type of static structure diagram that describes the structure of a system by illustrating the

system's classes, their attributes, methods, and the relationships among objects.

The figure 12 is class diagram of Smart Shopping System that allows to see the detail of

objects as well as the relationships between them in the system, such as:

- A store has none or many catalogues and products.

- A beacon needs to be installed into a store.

- A notification needs to be linked with a beacon in a store.

- All of user types contains some common information and actions which is inher-

ited from User class.

- Shopper can like/unlike catalogues and product and these data will be saved into

Interested Catalogues and Interested Products.

34

FIGURE 12: Class diagram

35

4 SYSTEM FEATURE IMPLEMENTATION

As the main purpose of this thesis is providing an implementation plan for a smart shop-

ping system, all of the source code will be uploaded and shared on Github. Therefore, to

avoid the repetition of the same information, the coding level won’t be explained in this

report. In contrary, the technical solution and setting up guideline will be provided.

4.1 Selected technologies

v Django Framework

In order to archieve the objectives of this thesis, the selected technology needs to be not

only a quick-implementation solution but also efficient and convenient that will help to

reduce the development time and cost. That’s the reason why Django framework was

chosen. Django is an open-source framework powered by Python that provides all stuff

needed “out of the box”. Furthermore, Django natively supports common database en-

gines such as MySQL, PostgreSQL, SQL Server, DB2 and uses Object Relation Mapper

to map project’s object with database tables. In this project, PostgreSQL is selected as

database solution because of personal preference. Last but not least, Django framework

also provides a nice admin panel where the admins and managers can manage the system

content.

v Django Rest Framework

As mentioned in the system architecture section, the store management system also needs

to provide API services for mobile application. However, Django Framework is not made

to deal with RESTful API. Therefore, Django REST framework which is a flexible ex-

tension of Django is chosen to build Web APIs.

v Cookiecutter

Cookiecutter is a utility which helps to create a project from a template. Cookiecutter

provides a lot of Python package project templates, includes Django Rest Framework

project template. It will help to save time for setting up the environment as well as de-

ployment and allow to focus on researching, implementing the application features and

the APIs for mobile application.

36

v Docker

Docker is a program that performs operating-system-level virtualization also known as

containerization that allows developers to build, ship and run distributed applications.

Docker Compose is a tool for defining and running complex application with Docker.

Using Compose allows to define a multi-container application in a single file (docker-

compose.yml). Then, all of the application services will be created and started with a

single command.

v Cookiecutter Django Rest

This is a project template allows creating Django web application which is integrated with

Django Rest Framework and PostgreSQL completely. The template also uses Docker

Compose to configure and run the application's services from a YAML file.

4.2 Store management system implementation

Although Django framework is not a CMS like Drupal, Symfony or Wordpress, but it

provides CMS-like functionality which is admin panel model. These functionalities are

actually implemented inside small applications in Django project. An application includes

some combination of models, views, templates, static files, URLs, etc. Each application

does something specifically such as user management, store management. They’re gen-

erally wired into projects with the INSTALLED_APPS setting and optionally with other

mechanisms such as URLconfs, the MIDDLEWARE setting, or template inheritance.

Based on the requirements, store management system can be divided into 2 applications

which are user management app and store management app.

FIGURE 13: Store management system application modules

37

User application provides login, logout and edit user information features while store ap-

plication allows the manager to manage the content of the store includes category, prod-

uct, beacon and notification. These management features can be generated by Django

framework easily by declaring all of system classes (same as the design in class diagram

section) inside the model.py file of each application. However, it will require some extra

coding works to customize the default settings to match the requirement of system. These

extra works can be seen in forms.py (Appendix 1) and admin.py (Appendix 2) files of

user app and store app in the project.

4.3 APIs implementation

Django framework uses the Model Template View (similar to Model View Controller)

pattern, the model represents the data, the template displays the user interface and the

view manages the logic and user’s interaction. The figure 14 illustrate the data flow of

this pattern.

FIGURE 14: Django MTV pattern’s data flow

In order to provide a straightforward way to build APIs, Django REST framework trans-

forms Django app into server side and does not display any content but will handle the

requests from the client to provide the data or update the data. It means the view no longer

renders the model into content view, instead the data is serialized and send it back to

38

client. With Django REST framework, now the data flow is changed for API implemen-

tation. This data flow is shown in figure 15.

FIGURE 14: Data flow in Django Rest Framework

4.4 Mobile Application

As the objective of this thesis is building an iOS application, the selected technology is

iOS SDK. Although there are many frameworks out there which also allow to build iOS

application, however, in order to bring a better native experience to shopper iOS SDK is

always the best choice.

Another utility is also being used in this iOS project for dependency management is Co-

coapods. Cocoapods helps to make installing, uninstalling and updating the third-party

libraries for iOS project much easier. All of the libraries just need to be declared inside

Podfile, then Cocoapods will automatically install and integrate them to iOS project.

CocoaPods is built with Ruby and is installable with the default Ruby available on OS X.

Using this default Ruby install will require to use sudo, which will excute the command

as root user. The picture 1 below shows how to install Cocoapods.

PICTURE 1: Cocoapods installation

After finished installation, the next step needs to be done is creating project from Xcode.

39

PICTURE 2: Create project with Xcode

To be able to use Cocoapods as a dependency manager in this Xcode project, Podfile is

required to be created in the root folder of project. It can be created by a text editor or

command pod init.

After created Podfile for project and declare all the libraries which will be used in project

in this file (Appendix 3), it requires to run install command to add all of these libraries

into project. This step is shown in picture 3 below.

PICTURE 3: Install libraries with Cocoapods

Now, the mobile application features can be started to implementation.

40

5 SYSTEM DEPLOYMENT AND TESTING

5.1 System deployment

This section will provide the environment setup instruction but will not go into detail

about the tools and the third-party libraries that will be used. However, before starting to

setup the environment, as Cookiecutter Django Rest requires Python 3.6+ and Docker

tool need to be installed. The installation binary files for Docker and Python can be found

on their website, so these steps will not be written down here.

First step is using brew to install Cookiecutter.

PICTURE 4: Cookiecutter installation

After finished installing Cookiecutter, next step is creating the Django Rest project from

the boilerplate (on Github). The command-line utility will need some input for project

specification such as project name, git repository name.

PICTURE 5: Creating the project from boilerplate

41

Cookiecutter will automatically generate a folder with the project name as entered and

copy all of the source code in the project template into this new project folder.

TABLE 11. Project directory structure description

File/Folder Description

Dockerfile Is a script, composed of various commands that is used for

organizing things and greatly help with deployments by

simplifying the process start-to-finish

README.md Contains instruction shows how to run the local develop-

ment and how to deploy the code.

SmartShoppingSystem Contains all of the source code of system.

docker-compose.yml Docker Compose YAML file, used to configure applica-

tion’s services.

docs Contains project’s document. In this research project, this

folder is not used.

manage.py Is Django’s command-line utility for administrative tasks.

mkdocs.yml Is YAML file contains project settings of MkDocs that is

used to build project documentation.

requirements.txt A text file contains a list of libraries to be installed and

used in the project.

setup.cfg Provides all of a Python distribution's metadata and build

configuration

wait_for_postgres.py Is python code file that is used to connect to Postgres da-

tabase.

To initialize and run the services, the docker image needs to be built. The picture 6 shows

how to do that.

PICTURE 6: Build the Dockerfile

42

After this step, the needed packages such as Django, Django Rest Framework, Post-

greSQL will be installed. However, PostgreSQL still needs to be migrated so all of data-

base table will be initialized. This migration command has to be run every time there is

any modification in application model code, then it can be synchronized with the data-

base.

PICTURE 7: Migrate database for application

In order to access to our web application (which will be Store Management System), a

super admin account will need to be created. This account data will be saved in the Post-

greSQL which is created in previous step.

PICTURE 8: Create super admin account for Store Management System

Now the web application can be run locally on the development environment with Docker

containers.

PICTURE 9: Run the system locally with development setting

As stated earlier, Django framework generates an admin panel which allows to manage

the content of the application. It can be accessed via address http://localhost:8000/admin/,

super user account needs to be input to be able to login.

43

PICTURE 10: Login page

After logged in successfully, the admin dashboard should be displayed as picture 12. This

page will be different depends on the user type, admin or store manager. User won’t be

able to login to this system.

PICTURE 11: Super Admin’s dashboard page

5.2 System testing

The goal of this testing is not only to point out and fix the bugs in the system but also to

see how the system works in the reality, because all of the system functionalities are de-

signed based on my researching and my working experience. The testing will be divided

44

into 2 sections for store management system application and mobile application. Since

there are 2 user roles will be using store management system, the testing for this web

application will be split into 2 small section for each user type, super admin and store

manager.

5.2.1 System testing with super admin

As a super admin of the system, he/she will be able to manage all of the content in the

system. After logged in successfully, admin panel for super admin will be opened (which

is shown in picture 11).

From this page, super admin can access and manage the stores, the managers of stores

and their categories, their products. And as described above, super admin will be the one

creates store and the manager for that store. So that manager can manage his/her store

later on.

PICTURE 12: Add new store page

The picture 12 above shows the form which allows super admin to create a new store.

Admin can select the exist manager or click add new manager button to open create man-

ager form and create a new manager for this store. The picture 13 shows create manager

form. Beside filling the information of the manager, the super admin also needs to add

the permission for the manager to allows he/she to manage the content in his/her store.

45

These permissions can be manually added in permission selection box which is shown in

picture 14.

PICTURE 13: Add new store manager page

PICTURE 14: User permission selection box

5.2.2 System testing with store manager

After having the login information from super admin, the store manager can login to the

system (and change his/her password). The admin panel (dashboard page) for store man-

ager has the same user interface as for super admin. However, it only displays manage-

ment features for the store that he/she is assigned to.

46

PICTURE 15: Store manager’s dashboard page

From this dashboard, admin can access to other subpages to manage his/her store such as:

beacon management, notification management, category management, product manage-

ment. He/she can’t access or modify the content of the other stores.

PICTURE 16: Category management page

PICTURE 17: Product management page

In order to trigger the notification service and push the new deals to shopper, the beacon

devices need to be installed at the store and their IDs have to be added into the system.

47

PICTURE 18: Beacon management page

After added the beacons to the systems, now it’s able to create the notifications for those

beacons. The beacon can be attached into the notification. Besides that, the notification

also can be specified for only a product or a category. This allows the shoppers can view

the product detail or the whole products in the category after receiving this notification.

PICTURE 19: Notification creation page

After created the notification successfully, the notification will be shown in the notifica-

tion management page as shown in picture 20.

48

PICTURE 20: Notification management page

With these notification settings, every time the shopper’s device is in range of beacon,

the mobile application will send a request with the beacon ID to Smart Shopping System

to inform that there is a user is close to that beacon. The system will query from database

to get the information of the beacon and the notifications which are attached to that bea-

con and then send back all of those notifications to user’s device. Finally, user’s mobile

device will notify user.

5.3 Mobile application testing

PICTURE 21 & 22: Store list and store detail screens

49

As a shopper, user can use mobile application to check the products on the stores as well

as new deal notifications. Without logging in, the shoppers can view the stores and their

products only. In the store tab, the shopper can view all of the stores in the system, and

they can click on the store to open the store detail screen. From the store screen, the

shopper can filter the products list based on the categories and like / unlike the products

to add them to their interest collection.

In order to receive the notifications from the stores ever time there is new deal or offer

for the products that they are interested in, they will need to register account and login.

PICTURE 23 & 24: Registration and login screens on app

After logged in, the shoppers can like / unlike the products and categories in the system.

Their liked (interested) products and categories will be shown in the profile screen. From

here, the shopper also can unlike the product / category to remove the interest.

50

PICTURE 25 & 26: Shopper profile and notifications screens.

Based on these interests, the server will send the notifications to the shopper every time

there is new promotion, offer or notification. These notifications will be shown in the

notification tab on mobile application. Each notification will be linked to the product or

the category and the store, the shopper can click to the notification to see the product or

category information in the store detail screen.

As stated above, one of the most important features of this mobile application is receiving

the notification in real time, when the shopper is close to the store. Either the shopper is

opening the app or not, the application will notify them. The picture 27 and 28 show the

notification on the lock screen and the notification which is presented in the app. And at

the same time, the app will show the nearby stores in the nearby tab. From here, user can

open and check these stores deals by selecting them to open the store notification screen.

51

PICTURE 27 & 28: Nearby store notification and nearby store list screen.

PICTURE 29: Nearby store notifications screen

52

6 NEXT STEP

Bluetooth beacon technology is quickly gaining momentum and paving the way for effi-

cient and seamless solutions across multiple domains nowadays. It is being used in many

sectors to improve user experience. Sending personalized promotion / deal notifications

to shoppers who are nearby the store is just one of many applications which helps to grow

retail business. This is the first step that will bring more shopper come to the store.

However, navigating in a big store and shopping mall would be a big problem to shopper.

Although many places provide information screens which allow shopper to search the

store and see how they can go there, it’s still difficult. Leading shopper by mobile appli-

cation that supports indoor navigation for sure will resolve this problem. That’s how bea-

con technology becomes the best solution in this case, since it can be integrated and inside

these store and shopping mall, the signals from these beacon devices will allow shopper’s

mobile phone knows where they are and navigates them to the place they need with indoor

map. And shoppers will easily be navigated right to the store or the shelf to find their

needs.

PICTURE 30: Indoor navigation in shopping mall, source: leantegra.com

53

7 DISCUSSION

Smart Shopping System will be good solution for not only store but also for super market

and shopping mall. It provides a solution to deliver a personalized user experience to

shopper. It collects user preferences and shopping habits, and then with the assistance

from beacon devices, the system will engage shopper via sale, promotions notifications

and then make shopping more interactive.

One of challenges of this system is not only about the beacon devices price but also the

cost of on-going maintenance for both hardware and software part. However, with the

amazing growth of IoT device, especially is Arduino, it makes building these kinds of

beacon devices so simple, that’s reason why these devices are very cheap today. And it

will be even cheaper in the future. Some of popular brands who offers reasonable and

affordable beacon devices are Estimote, Kontakt, Gimbal. These brands not only provide

the beacon devices but also, they will come with a cloud service which allows to manage

these beacons. However, these cloud services are not developed for any specific use,

that’s reason why another extra system for store management is still needed.

54

REFERENCES

1. What is Bluetooth, Bluetooth. https://www.bluetooth.com/what-is-bluetooth-tech-
nology/how-it-works

2. Base knowledge about Bluetooth. https://iotbreaks.com/base-knowledge-about-blue-
tooth/

3. Understanding the different types of BLE Beacons.
https://os.mbed.com/blog/entry/BLE-Beacons-URIBeacon-AltBeacons-iBeacon/

4. BLE Eddystone Beacon Service, https://os.mbed.com/teams/Bluetooth-Low-En-
ergy/code/BLE_EddystoneBeacon_Service/

5. Eddystone protocol specification https://github.com/google/eddystone/blob/mas-
ter/protocol-specification.md

6. INTRO TO EDDYSTONE – GOOGLE LATEST PROXIMITY BEACON PROTO-
COL, OneThesis. https://www.onethesis.com/2016/01/10/intro-to-eddystonetm-
google-latest-proximity-beacon-protocol/

7. Beacons: all you need to know about them, Appfutura, https://www.ap-
pfutura.com/blog/beacons-all-you-need-to-know-about-them/

8. Use case, Wikipedia. https://en.wikipedia.org/wiki/Use_case
9. Class diagram, Wikipedia. https://en.wikipedia.org/wiki/Class_diagram
10. Indoor Navigation: Why would Shopping Malls Deploy it? https://leante-

gra.com/blog/indoor-navigation-why-would-shopping-malls-deploy-it

55

APPENDICES

Appendix 1. forms.py of store application

from django import forms
from .models import Manager, Shopper, Product

from django.contrib.auth.forms import ReadOnlyPasswordHashField

class ProductAdminForm(forms.ModelForm):
 """ ModelForm class to validate product instance data before saving from
admin interface """

 class Meta:
 model = Product
 fields = '__all__'

 def clean_price(self):
 if self.cleaned_data['price'] <= 0:
 raise forms.ValidationError('Price supplied must be greater than
zero.')
 return self.cleaned_data['price']

class ShopperForm(forms.ModelForm):
 password = forms.CharField(widget=forms.PasswordInput)

 class Meta:
 model = Shopper
 fields = ('first_name',
 'last_name',
 'email',
 'password',
 'address_line',
 'telephone',
 'zip_code',
 'state',
 'country')

class ManagerAdminCreationForm(forms.ModelForm):
 """A form for creating new users. Includes all the required
 fields, plus a repeated password."""
 password1 = forms.CharField(label='Password', widget=forms.PasswordInput)
 password2 = forms.CharField(label='Password confirmation',
widget=forms.PasswordInput)

 class Meta:
 model = Manager
 fields = ('username', 'email', 'password', 'first_name', 'last_name',
'gender', 'avatar')

 def clean_password2(self):
 # Check that the two password entries match
 password1 = self.cleaned_data.get("password1")
 password2 = self.cleaned_data.get("password2")
 if password1 and password2 and password1 != password2:
 raise forms.ValidationError("Passwords don't match")
 return password2

 def save(self, commit=True):
 # Save the provided password in hashed format
 user = super(ManagerAdminCreationForm, self).save(commit=False)
 user.set_password(self.cleaned_data["password1"])
 if commit:

56

 user.save()
 return user

class ManagerAdminChangeForm(forms.ModelForm):
 """A form for updating users. Includes all the fields on
 the user, but replaces the password field with admin's
 password hash display field.
 """
 password = ReadOnlyPasswordHashField(label="Password",
 help_text="Raw passwords are not
stored, so there is no way to see "
 "this user's password, but
you can change the password "
 "using <a href=\"../pass-
word/\">this form.")

 class Meta:
 model = Manager
 fields = ('username', 'email', 'password', 'first_name', 'last_name',
'gender', 'avatar')

 def clean_password(self):
 # Regardless of what the user provides, return the initial value.
 # This is done here, rather than on the field, because the
 # field does not have access to the initial value
 return self.initial["password"]

57

Appendix 2. admin.py of store application

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from copy import deepcopy

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin as BaseUserAdmin

from .models import Manager, Shopper, Store, Product, Category
from .forms import ProductAdminForm, ManagerAdminCreationForm, ManagerAdmin-
ChangeForm

Register your models here.

class ShopperAdmin(admin.ModelAdmin):

 form = ManagerAdminChangeForm
 add_form = ManagerAdminCreationForm

 list_display_links = ('username', 'first_name', 'last_name', 'email')
 list_display = ('username', 'first_name', 'last_name', 'email')
 list_per_page = 50
 search_fields = ['first_name', 'last_name', 'username', 'email']
 ordering = ['username']

admin.site.register(Shopper, ShopperAdmin)

class ManagerAdmin(BaseUserAdmin):

 form = ManagerAdminChangeForm
 add_form = ManagerAdminCreationForm

 list_display_links = ('username', 'first_name', 'last_name', 'email')
 list_display = ('username', 'first_name', 'last_name', 'email')
 list_per_page = 50
 search_fields = ['first_name', 'last_name', 'username', 'email']
 ordering = ['username']

admin.site.register(Manager, ManagerAdmin)

class StoreAdmin(admin.ModelAdmin):
 list_display = ('name', 'address', 'phone', 'joined_at',)
 list_display_links = ('name',)
 list_per_page = 50
 search_fields = ['name', 'address']
 ordering = ['name']

 def get_fieldsets(self, request, obj=None):
 """Custom override to exclude fields"""
 fieldsets = deepcopy(super(StoreAdmin, self).get_fieldsets(request,
obj))

 # Append excludes here instead of using self.exclude.
 # When fieldsets are defined for the user admin, so self.exclude is
ignored.
 exclude = ()

 if not request.user.is_superuser:
 exclude += ('manager', 'is_active')

 # Iterate fieldsets

58

 for fieldset in fieldsets:
 fieldset_fields = fieldset[1]['fields']

 # Remove excluded fields from the fieldset
 for exclude_field in exclude:
 if exclude_field in fieldset_fields:
 fieldset_fields = tuple(field for field in fieldset_fields
if field != exclude_field) # Filter
 fieldset[1]['fields'] = fieldset_fields # Store new tuple

 return fieldsets

 def get_queryset(self, request):
 qs = super(StoreAdmin, self).get_queryset(request)
 if request.user.is_superuser:
 return qs

 return qs.filter(manager=request.user)

admin.site.register(Store, StoreAdmin)

class ProductAdmin(admin.ModelAdmin):
 form = ProductAdminForm
 # sets values for how the admin site lists your products
 list_display = ('name', 'price', 'old_price', 'created_at', 'updated_at',)
 # which of the fields in 'list_display' tuple link to admin product page
 list_display_links = ('name',)
 list_per_page = 50
 ordering = ['-created_at']
 search_fields = ['name', 'description', 'meta_keywords', 'meta_descrip-
tion']
 exclude = ('created_at', 'updated_at',)
 # sets up slug to be generated from product name
 prepopulated_fields = {'slug': ('name',)}

 def formfield_for_manytomany(self, db_field, request, **kwargs):
 if not request.user.is_superuser and db_field.name == "categories":
 kwargs['queryset'] = Category.objects.filter(
 store__in=Store.objects.filter(manager=request.user)
)

 return super().formfield_for_manytomany(db_field, request, **kwargs)

 def get_queryset(self, request):
 qs = super(ProductAdmin, self).get_queryset(request)
 if request.user.is_superuser:
 return qs

 # get products in store that manager is manage
 return qs.filter(categories__store__in=Store.objects.filter(man-
ager=request.user))

admin.site.register(Product, ProductAdmin)

class CategoryAdmin(admin.ModelAdmin):
 # sets up values for how admin site lists categories
 list_display = ('name', 'created_at', 'updated_at',)
 list_display_links = ('name',)
 list_per_page = 20
 ordering = ['name']
 search_fields = ['name', 'description', 'meta_keywords', 'meta_descrip-
tion']
 exclude = ('created_at', 'updated_at',)

 # sets up slug to be generated from category name

59

 prepopulated_fields = {'slug': ('name',)}

 def formfield_for_foreignkey(self, db_field, request, **kwargs):
 if not request.user.is_superuser and db_field.name == "store":
 kwargs['queryset'] = Store.objects.filter(manager=request.user)

 return super().formfield_for_foreignkey(db_field, request, **kwargs)

 def get_queryset(self, request):
 qs = super(CategoryAdmin, self).get_queryset(request)
 if request.user.is_superuser:
 return qs

 # get products in store that manager is manage
 return qs.filter(store__in=Store.objects.filter(manager=request.user))

admin.site.register(Category, CategoryAdmin)

60

Appendix 3. Podfile

Uncomment the next line to define a global platform for your project
platform :ios, '9.0'

target 'SmartShopping' do
 # Comment the next line if you're not using Swift and don't want to
use dynamic frameworks
 use_frameworks!

 # Pods for SmartShopping
 pod 'Alamofire', '~> 4.5'
 pod 'Material', '~> 2.12'
 pod 'EstimoteSDK'

 target 'SmartShoppingTests' do
 inherit! :search_paths
 # Pods for testing
 end

 target 'SmartShoppingUITests' do
 inherit! :search_paths
 # Pods for testing
 end

end

61

Appendix 4. Source code repositories

Mobile Application source code: https://github.com/ngoclt/smartshoppingios

Smart Shopping System source code: https://github.com/ngoclt/smartshoppingsystem

