

Implementing test automation

with Selenium WebDriver

Case study: MeetingPackage.com

LAHTI UNIVERSITY OF APPLIED
SCIENCES
Degree programme in Business
Information Technology
Bachelor’s Thesis
Autumn 2018
Quan Dao Minh

Lahti University of Applied Sciences
Degree Programme in Business Information Technology

Dao, Quan: Title: Implementing test automation
with Selenium WebDriver

 Case study: MeetingPackage.com

Bachelor’s Thesis in Business 61 pages, 3 pages of appendices
Information Technology

Autumn 2018

ABSTRACT

The objective of this research is to identify the impact of automation testing
in terms of time efficiency in software development, particularly, Agile
software development with Scrum methodology. To achieve that, the
thesis employs the Research Design methodology with an abductive
approach. In addition, data collection in this thesis is conducted by
observing the artefact’s behavior and results. Lastly, the thesis introduces
comparison scenarios with descriptive data analysis method to assess the
impact of the artefact to the case company.

In detail, the thesis discusses the current issue of the case company, then,
presents the relevant theoretical framework to back up the reasonings of
the selected solution. Later, the thesis introduces the implementation of
the artefact Selenium Framework using Java programming language. The
implementation includes planning, gathering system requirements,
developing and collecting results, followed by observing data and
analyzing the test results. After data evaluation, the thesis concludes
about the artefact’s performance in reducing time consumption for the
testing effort. Finally, the finding confirms the artefact’s effectiveness to the
case company with statistical evidence.

Additionally, the research provides an implementation guideline for future
reference with the topic of Selenium Framework. However, any usage
must take into consideration the research’s limitations and validity prior to
any adaptation.

Keywords: Agile Software Development Methodology, Scrum, Selenium,

Java, Maven, Git, POM.

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1AAAAAResearch Background 1

1.2AAAAAResearch Objectives and Questions 2

2 RESEARCH DESIGN 4

2.1AAAAAResearch Approach 4

2.2AAAAAResearch Method 5

2.3AAAAAData Collection and Data Analysis 6

2.4AAAAAThesis Structure 7

3 THEORETICAL FRAMEWORK 9

3.1AAAAATesting in Agile Software Development 9

3.1.1aaa Agile Software Development Overview 10

3.1.2AAA Scrum Methodology Overview 11

3.2AAAAASoftware Testing Fundamentals 12

3.3AAAAAAutomated Testing 15

3.3.1AAA Definition of Automation Testing 15

3.3.2AAA When to perform Automation Testing 16

3.4AAAAASelenium WebDriver 17

3.4.1AAA Selenium Overview 17

3.4.2AAA Selenium WebDriver Behavior 18

3.4.3AAA UI Locator Overview 19

3.4.4AAA Common Methods in Selenium 21

3.4.5AAA Selenium Installation System Requirements 22

3.4.6AAA POM (Page Object Model) Overview 24

3.5AAAAAGit and GitHub 25

3.5.1AAA Git Overview 25

3.5.2AAA GitHub 26

3.6AAAAAJava 26

3.6.1AAA Java as a Programming Language 26

3.6.2AAA Maven Overview 26

4 ARTEFACT IMPLEMENTATION – CASE: MEETINGPACKAGE.COM

 28

4.1AAAAAIntroduction 28

4.1.1AAA Company Information 28

4.1.2AAA Analysis of Preceding Test Process 29

4.1.3AAA SWOT Analysis 31

4.1.4AAA Artefact and Tool Selection Reasoning 33

4.2AAAAAArtefact Development 35

4.2.1AAA Plan and Tools 35

4.2.2AAA Test Suite Architecture 36

4.2.3AAA Implementation of Test Suite 38

4.3AAAAATest Suite Execution 43

4.4AAAAAResults and Test Reports 47

5 ANALYSIS OF THE RESULTS 50

5.1AAAAATime Consumption before the Artefact 50

5.2AAAAATime Consumption after the Artefact 51

5.3AAAAAComparison and Conclusion 51

6 CONCLUSION 53

6.1AAAAAAnswering the Research Question 53

6.2AAAAALimitations 53

6.3AAAAAReliability and Validity 54

6.4AAAAA Suggestions for Further Study 54

7 SUMMARY 55

LIST OF REFERENCES 56

APPENDICES 62

LIST OF ABBREVIATIONS

API – Application Programming Interface

CSS – Cascading Style Sheets

DOM – Document Object Model

GUI – Graphical User Interface

HTML – Hyper Text Markup Language

HTTP – Hypertext Transfer Protocol

IDE – Integrated Development Environment

IE – Internet Explorer

POM – Page Object Model

QA – Quality Assurance

VCS – Version Control System

SaaS – Software as a Service

SWOT – Strengths, Weaknesses, Opportunities, Threats

UAT – User Acceptance Test

UI – User Interface

XML – Extensive Markup Language

XPATH – XML Path Language

LIST OF FIGURES

FIGURE 1 NUMBER OF INTERNET USERS WORLDWIDE FROM 2005

TO 2017 (IN MILLIONS) (STATISTA 2018) 1

FIGURE 2 THREE RESEARCH APPROACHES (ASSIGNMENTPOINT

2018) 4

FIGURE 3 REASONING IN THE DESIGN CYCLE (VAISHNAVI &

KUECHLER 2012) 5

FIGURE 4 THESIS STRUCTURE 7

FIGURE 5 WATERFALL VS AGILE (LOTZ 2013) 9

FIGURE 6 THE SCRUM LIFECYCLE (BOER 2017) 11

FIGURE 7 TEST AUTOMATION PYRAMID (SMARTBEAR 2018) 15

FIGURE 8 INTERACTION OF WEBDRIVER (AVASARALA 2014, 13) 18

FIGURE 9 DEMONSTRATION OF SELENIUM WEBDRIVER

OPERATION (QUORA 2018) 19

FIGURE 10 LIST OF SUPPORTED JDK (ORACLE 2018) 22

FIGURE 11 ECLIPSE DOWNLOAD PAGE (ECLIPSE 2018) 23

FIGURE 12 BROWSERS AND THE CORRESPONDING DRIVERS

(GURU99 2018) 23

FIGURE 13 POM VS NON-POM COMPARISON (GURU99 2018) 24

FIGURE 14 PROJECT STRUCTURE WITH MAVEN (MAVEN 2018) 27

FIGURE 15 MEETINGPACKAGE.COM HOME PAGE

(MEETINGPACKAGE.COM 2018) 29

FIGURE 16 WORKING IN THE SPRINT (GURENDO 2015) 30

FIGURE 17 DEVELOPMENT PIPELINE 31

FIGURE 18 SWOT ANALYSIS 32

FIGURE 19 ARCHITECTURE OF THE TEST SUITE 37

FIGURE 20 ARCHITECTURE OF THE PAGES 37

FIGURE 21 ARCHITECTURE OF THE TESTS 38

FIGURE 22 MEETINGPACKAGE.COM LOGIN PAGE

(MEETINGPACKAGE.COM 2018) 39

FIGURE 23 MEETINGPACKAGE.COM LOGIN PAGE

(MEETINGPACKAGE.COM 2018) 39

FIGURE 24 MEETINGPACKAGE.COM DASHBOARD PAGE

(MEETINGPACKAGE.COM 2018) 40

FIGURE 25 REQUIRED PACKAGES 40

FIGURE 26 SELENIUM LOGIN PAGE 41

FIGURE 27 MEETINGPACKAGE.COM LOGIN PAGE

(MEETINGPACKAGE.COM 2018) 41

FIGURE 28 SELENIUM LOGIN PAGE 42

FIGURE 29 SELENIUM LOGIN TEST 42

FIGURE 30 SELENIUM LOGIN TEST 43

FIGURE 31 SELENIUM LOGIN TEST 43

FIGURE 32 SELENIUM LOGIN TEST 43

FIGURE 33 SELENIUM BROWSER INSTANCE 44

FIGURE 34 SELENIUM TEST SUITE 45

FIGURE 35 TERMINAL INTERFACE 46

FIGURE 36 SELENIUM TEST SUITE 47

FIGURE 37 TEST REPORT 48

FIGURE 38 TEST REPORT 48

FIGURE 39 JUNIT 49

FIGURE 40 TEST REPORT 51

LIST OF TABLES

TABLE 1 DATA EVALUATION METHODS (HERVER 2004) 7

TABLE 2 COMMON METHODS AND COMMANDS IN SELENIUM

(SELENIUM 2018) 21

TABLE 3 COMPARISONS BETWEEN SHORTLISTED FRAMEWORKS 34

TABLE 4 SYSTEM REQUIREMENTS TO RUN THE TEST SUITE 36

TABLE 5 FORMULA AND CALCULATIONS 52

1

1 INTRODUCTION

1.1 Research Background

Web development has been exploding for the past couple of years. As

technology becomes more and more approachable, there is a growing

vast number of users who are surfing on the Internet daily. In fact, the

number tripled between 2007 and 2017 as shown in Figure 1 below:

Figure 1 Number of internet users worldwide from 2005 to 2017 (in millions) (Statista 2018)

However, researches have shown that users’ interest in a website drops

drastically after 3-4 seconds for various reasons, for instance: bad design,

too complicated or lack of information (Spilka 2016). Apparently, it is

already a challenge to set up a website to represent the business.

However, a slow non-responsive website is not of any favor for the

business itself. In fact, sometimes, having a problematic website makes

the business or the brand appear to be sketchy and not trustworthy from

its potential customers (Spilka 2016).

2

Furthermore, for the purpose of fast constant growth, changes are

required to be made daily or weekly. Therefore, it is imperative to ensure

there is no development regression or down-time in the live product. As a

result, the development team faces an obstacle: how to maintain a well-

functioning web application with constant changes and releases in a short

period of time?

To achieve this, quality assurance plays a huge role in the development

cycle. By ensuring a fast, reliable and efficient QA process, the

development team can speed up the feature shipment time. Traditionally,

manual testing is accounted for a great part of the QA process. However, it

is noticeable that automation testing is slowly replacing manual testing,

due to its ability of cross-browser testing with deep penetration based on

the predefined test suite. Compared to manual testing where the cost of

time, money and effort remain a tremendous burden, automation testing

appears to be a better solution for regression and time efficiency. (Nguyen,

Hackett & Whitlock 2006, 28.)

1.2 Research Objectives and Questions

Automation testing involves manipulating the machine to perform certain

tasks written by developers in a programming language. However, it is

time efficient for developers to utilize certain testing framework without the

need of developing all the modules, classes and methods from scratch.

For example, Selenium Framework is a powerful tool to automate different

browsers using web drivers in order to test web functionalities or mimic

users’ behaviors (Selenium 2018). This thesis demonstrates why and how

Selenium Framework is applied in web development QA by finding the

answer to the following question:

• Research Question: How does Selenium Framework reduce time
consumption in Quality Assurance at MeetingPackage.com?

The objective of this research is to measure the time efficiency Selenium

Framework provides when being implemented in the test suite. Later on, the

3

data is compared to the QA time consumption before the test suite in the

case company. Finally, the research concludes about the benefit of using

Selenium Framework for test automation based on the statistical result.

Furthermore, the thesis aims to provide a complete guideline about

Selenium Framework implementation with the selected programming

language (Java) for automation testing of web application.

4

2 RESEARCH DESIGN

2.1 Research Approach

The second chapter explains the reason behind the research approach

and method selection for this thesis. According to Saunders (2012, 144-

145), there are three approaches in research design:

• Deductive approach: researcher based on an existing theory to test

some hypotheses and come up with a conclusion.

• Inductive approach: as opposed to deductive, research starts with

gathering data or legitimate benchmarks, study the patterns and

similarities or dissimilarities, then develop theories and concepts.

• Abductive approach: the purpose of abductive approach is to

generate or correct an existing idea with partial information so that

further data can be evaluated in further research.

Figure 2 illustrates the difference between each approach:

Figure 2 Three research approaches (AssignmentPoint 2018)

This thesis suggests an explanation for the aforementioned problem (the

need for test automation), however, it is not certain that it is the only factor

contributing to the problem. From there, the author conducts research to

5

identify the true reason behind the problem with an open-minded to new

hypotheses or ideas (Shuttleworth 2008). With all that factors taken into

consideration, the thesis employs an abductive research approach.

2.2 Research Method

The thesis author chooses Design Science to be the thesis research

method due to the following reasons. First of all, it is a research method

that involves a problem-solving approach, posing the need for change

toward a better future (Barab & Squire 2014.). Secondly, Design Science

consists of a research practice to create an artefact to resolve the declared

issue, analyzing the result and demonstrate the finding to the audience

(Peffers, Tuunanen, Rothenberger & Chatterjee 2008, 6). As Figure 3

below shows, the process starts with an awareness of the problem, then

the researcher comes up with a suggestion to develop the artefact. After

that, a thorough evaluation is conducted to bring up a conclusion of the

results.

Figure 3 Reasoning in the Design Cycle (Vaishnavi & Kuechler 2012)

6

Practically, this thesis follows closely these six steps in Design Science

method (Geerts 2011):

• Problem identification and motivation: the main question is to

recognize and identify the problem, its relevance, and the current

situation (Geerts 2011).

• Define the solution goal: finding the answer for “How to solve the

problem” by suggesting a specific objective to achieve. This

requires the knowledge of the feasibility and the possibility of the

solution as well as the theories and method behind that (Geerts

2011).

• Design and development: build the artefact that resolves the

aforementioned issue. The researcher needs to combine the

required knowledge to create the artefact (Geerts 2011).

• Demonstration: a proof of how the artefact works and solve the

problem needs to be generated in this phase (Geerts 2011).

• Evaluation: based on the demonstration, the researcher observes

and measures its performance by comparing the actual results with

the set objectives (Geerts 2011).

• Communication: researcher must present a detailed conclusion of

the effectiveness of the artefact, its scope, and limitation (Geerts

2011).

2.3 Data Collection and Data Analysis

Data collection plays an important role in any research. As imperative as

selecting the research design and approach, the choice of particular data

collection methods determines the result of the research. In fact, in order

to have a convincing data collection, the researcher needs to identify the

proper objective. Once it is defined, the format of the data collection and

the way the data is handled is determined.

According to Hevner (2004), there are five different methods to evaluate

the data in Design Science (Table 1). For the purpose of this thesis, an

observational method to collect data and descriptive method with

7

scenarios to analyze its performance are utilized. Throughout the

development progress, the author keeps track of field notes, memos,

behavior records or activates during the observations. Later, the data is

analyzed under a descriptive scenario and compared to the previous

behavior before the artefact is developed to measure the artefact’s

effectiveness and limitation.

Table 1 Data Evaluation Methods (Herver 2004)

2.4 Thesis structure

This thesis contains five sections which then divided into seven chapters.

Figure 4 illustrates the overview structure of the thesis:

Figure 4 Thesis structure

8

The five main sections are the following: introduction, theoretical

framework, artefact implementation, analysis, and conclusion. The

following summarizes the content of each of the five sections:

Introduction: This section aims to deliver a brief understanding of the

thesis, its objective and research methods used in research. The research

question and data collection methods are also introduced in this section.

Theory: This section provides all the necessary theoretical framework for

the thesis. The key concepts which are defined include Agile software

development methods, testing principles, automation testing with Selenium

WebDriver, Git and GitHub, Java and Maven.

Artefact implementation: the third part of the thesis is the development of

the artefact. In this section, the thesis author demonstrates with examples

how he developed and maintained the artefact.

Analysis of the test results: in this part, the author gathers the data and

calculates the cost and benefit of the artefact to find out whether or not the

artefact provides any benefits to the case company.

Conclusion: The last section presents the comparison of data before and

after the artefact together with the author’s conclusion of the artefact’s

performance. Lastly, the disadvantages and limitations of the artefact are

also pinpointed.

9

3 THEORETICAL FRAMEWORK

3.1 Testing in Agile software development

3.1.1 Agile Software Development Overview

The most well-known and traditional method when developing a software

is the waterfall methodology – a collection of separate phases, each phase

follows each other from the planning to the deployment. (Ransome &

Misra 2014, 50). However, it becomes clear that this method faces an

issue – there is no room for errors whether they are big or small.

Figure 5 Waterfall VS Agile (Lotz 2013)

Figure 5 above shows the reality of waterfall methodology. With a

circumstance that every stage starts after the previous one finished, the

development effort becomes tremendous with hidden failures and even

poses a failed status (Lotz 2013). For example, even when the product

10

concept is agreed by both parties (development team and client), there is

no guarantee that the final product which will be presented only at the end

of the development is what the clients want. As the testing only happens at

the late stage of the development, developers and testers are struggling

with errors and bugs, not to mention if the client suddenly wants to change

any requirements of the product. In other words, most of the development

efforts could be in vain, and the loss of time, money and resources is

unmeasurable (Lotz 2013).

Agile methodology comes forth as an ideal solution for the aforementioned

issue. Developed in the 1970s and 1980s, the Agile methodology was

widely welcomed and highly adopted by development teams in the effort of

minimizing project errors, faster development time and reducing resources

(Ekas & Will 2013). Agile method prides itself on its ability to raise

communication between the team and clients, a collaboration between

team members and improvement on code quality (Ekas & Will 2013). Each

sprint (a time-boxed duration) lasts from one to four weeks with a specific

plan and objective. Were there any unfinished tasks, the project manager

would re-prioritize and design a new plan for the next sprint. In 2001,

several software professionals came up with The Agile Manifesto with four

core values (Ashmore & Runyan 2014, 2-9):

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

This manifesto set the four concrete principles of software development

nowadays. In Agile, testing is involved at any point of the development

process, even at the very start. Therefore, the testing quality of the product

remains managed and cost-effective (Schwaber & Beedle 2002).

11

3.1.2 Scrum Methodology Overview

Scrum is a guideline or a development framework to which development

team follows in Agile projects. With Scrum, time-to-market is shortened

with high customer satisfaction due to the fact that bugs or errors are

continuously identified before the big deployment, which means the quality

of the product increases. In short, Scrum serves as an Agile framework to

raise the team collaboration, enhance the control of the project and

constant product deliver every two or four weeks. (Ashmore & Runyan

2014, 53.). In reality, there are three factors required in a Scrum

methodology (Resnick & Bjork 2011):

• Product Owner or IT Business Analyst: they are the bridge between

the development team and the customers. Their role in the team is

to understand the business requirements and convey that into

development requirements. They ensure the developers fully

acknowledge and follow the right path of product development. To

the customers, they are required to inform any changes happened.

• Scrum master: Taking charge of the team communication, planning

and actions. For a small team, the project manager is the Scrum

master, but in a big corporation, lead developers or a separate

Scrum master are assigned to be.

• Development team: a cross-functional team in which every member

can be responsible for different tasks (developing, testing,

deploying, etc.). They work on the product backlog and deliver the

potentially shippable increment at the end of the sprint.

Figure 6 The Scrum Lifecycle (Boer 2017)

12

As can be seen from Figure 6, a sprint includes five actions:

• Sprint planning: scrum master and the team discuss and move the

product backlog items into the sprint backlog based on each item

priority and team’s capabilities. For each item in sprint backlog, the

team divides into smaller tasks and assign to each team members

(Boer 2017).

• Sprint Execution and Daily Scrum: the sprint execution starts right

after the backlog is defined. Daily scrum is a practice of which team

members and scrum master report their progress, their plan, and

blockers daily to each other (Boer 2017).

• Sprint Review and Sprint Retrospective: after each sprint, the team

demos the increment (the product of the sprint) as well as assess

on remaining tasks, room for improvement (Boer 2017).

Quality Assurance in Scrum or in Agile, in general, is not a particular

phase (Larman 2004, 113). The testing effort starts from the very

beginning of the development, in fact, in each sprint there is always a

testing task. Thanks to this, as the project expands and gets complicated,

the team can confidently develop knowing that bugs and errors of the

product are under control (Larman 2004, 113). With automation testing,

the testing effort may seem to be quite large at first (building the test suite)

but it benefits later on against regression.

3.2 Software Testing Fundamentals

The aim of testing is to find defects or errors in the product under certain

condition and environment (Myers 1979). In software testing, there is an

array of fundamental principles to follow. These principles account for the

make-or-break of any development, especially in Agile software

development practice. However, prior to the planning, the company needs

to identify the test policy (regulations for testing) and the test strategy

(overall testing approach). These rules and regulations are the backbones

of the project testing. (Graham, Veenendaal, Evans & Black 2014.)

13

First and foremost, it is unquestionable that developers or testers need to

do the research and design a test plan. The plan includes the test

objective and the scope of the test. In reality, every project has its own

scope to which the test plan needs to follow strictly in order to save time

and resources. At this point, the project manager or test lead of the team

determine the necessary hardware and software as well as human

resource. In addition to that, risk assessment needs to be taken into

consideration to avoid any unexpecting factors or unwanted difficulties. In

the next step, the team decides on which testing approach is suitable for

the project, what is the exit condition of the testing effort and the testing

policy. (Grahrai 2017.) However, there is a need for quality control in case

the plan follows an unexpected route. For example, if the testing effort

requires more time than expected, testers need to report it to the project

manager in time to modify the initial test plan. The project manager or test

lead assesses the importance of the issue and makes the necessary

changes and reports it to the client. These activities require a constant

update after each sprint so that the team and the client keep track of the

progress. Needless to say, to have a successful test plan, the test

coverage is required to be followed at any time of the project. (Graham,

Veenendaal, Evans & Black 2014.)

Secondly, followed the test plan is test analysis and design phase. With

thorough observation of the project’s requirements and conditions, testers

determine their test conditions and scenarios. For example, if users input

string value to an integer field, there should be a warning from the

software to indicate the problem. These problems seem to be small and

harmless but in fact, they can do some serious severity to the software.

Most of the time, they require a deeper knowledge and experience from

the testers, as they don’t usually appear in the project’s requirements.

Every requirement needs to be as specific as possible so that there is no

uncertainty or confusion between the team and the clients. After a

thorough analysis, testers move onto the design phase where they deliver

the testing environment, database, licenses, hardware, and software, etc.

14

The third phase of the testing development is execution. In this phase,

testers conduct detailed test scenarios and test cases. Test scenarios

include all the test cases that are related to a function or a requirement of

the project. Test cases define the expected behavior after a certain input

or changes (Bath & McKay 2008). For example:

Test condition: Users input the wrong password five times or more, a

warning should appear.

• Test Scenario #1: Users input the wrong password five times or

more, a warning should appear.

o Test case #1: Users input the wrong password five times, a

warning should appear.

o Test case #2: Users input the wrong password six times, a

warning should appear

• Test Scenario #2: Users input wrong password up to four times, a

warning should not appear.

o Test case #1: Users input the wrong password three times, a

warning should not appear.

o Test case #2: Users input the wrong password four times, a

warning should not appear.

All the test cases are collected and organized into a test suite. Then, the

test suite is executed in a testing environment in the execution phase. The

testing environment needs to strictly imitate the production environment so

that it can mimic the actual behaviors once the software is deployed. The

results by then are verified and collected by testers to identify the bugs or

errors. A test with bugs makes the test case failed, but were there any

system failure or shortage, the test case would return an error due to its

inability to perform the test. Therefore, testers are required to have a

proper explanation of all the bugs and errors so that developers can

understand and modify their codes. (Graham, Veenendaal, Evans & Black

2014.) However, it is imperative to ensure the reliability of the test suite.

The testing effort becomes redundant if the test suite misbehaves and

returns false results.

15

The last principles or software testing is to gather and evaluate the test

report. In this phase, the project manager or test lead defines whether or

not the testing effort is enough, which means the exit condition is met.

Generally, they base their decision on the test report and the testers’

documents (what has been tested, what hasn’t been tested, what is the

known issues, etc.). The test report shows the percentage of successful

test cases, failed test cases, and errors. These statistics are recorded after

every test effort has been made so that the team can keep track of their

performance and the status of the project. (Graham, Veenendaal, Evans &

Black 2014.)

3.3 Automated Testing

3.3.1 Definition of Automation Testing

Manual testing refers to the concept of performing test cases using human

interaction (Itkonen, Mäntylä & Lassenius 2009). In contrast, by utilizing

machine or software, developers can execute a certain amount of test

cases and compare the results with the expected outcome (Dustin, Garrett

& Gauf 2009). In other words, test automation includes a collection of the

test script to be executed without human obstruction (Henry 2008). There

are 3 levels of automated testing according to Figure 7:

Figure 7 Test Automation Pyramid (Smartbear 2018)

16

• Level 1 – Unit test: A unit test is considered as a module test due to

the fact that it tests a singular component in the application (Bentley

2004). xUnit (JUnit or NUnit) supports testers by making sure there

is no error in one section of the source code, which means with a

certain input, the function should return the expected outcome. In

agile software development, developers can build unit tests for the

functionality before the actual codes are written (Henry 2008).

• Level 2 – API test: API (Application Programming Interface – a set

of functions that returns a collection of values after being called or

interacted with) testing refers to the concept of directly testing APIs

to determine its reliability, performance, security and the most

important of all – functionality (Crispin & Gregory 2008). Nowadays,

in agile software development, API testing helps developers and

testers in keeping up with short sprint and fast pace of development

(Henry 2008).

• Level 3 – GUI test: GUI (Graphical User Interface) testing is the

lowest level of automation testing. As long as the application has a

GUI, testers can control the machine to mimic any repetitive tasks

which can be performed by end-user (manual testing). GUI test

stresses more on the end-user side, as it can detect not just failed

functionality but also false layout or missing/hidden components.

Such problems cannot be detected with Unit or API test. However,

as small changes in GUI can make the test case fail, it is imperative

to record and have a fallback when developing GUI test cases

(Henry 2008).

3.3.2 When to perform Automation Testing

It is a good practice to evaluate and plan the testing method before any

sprint or development. Test automation is a promising candidate when it

comes to regression testing (re-test the preexisted product and functions

that are being changed or developed with new ones). Regression testing

17

helps tremendously to ensure the newly introduced version or changes

don’t affect the old ones. In addition, any repetitive tests which are not

likely to change throughout the development sprint or cycle should be

optimized to be automated. Generally, these tests are high data-driven,

which means the same function can be entered with large different data or

input. Those data can be imported from a database to the test case to run

in the different environment. (Fernandes & Fonzo 2018.)

3.4 Selenium WebDriver

3.4.1 Selenium Overview

Selenium is an open source software testing framework developed in 2004

by Jason Huggins under Apache 2.0 (Selenium 2018). It serves for the

purpose of mimicking the end-users’ interaction on a web application by

controlling the browser web driver. Selenium supports all most all of the

popular web browser nowadays and the test suite can be written with

many languages (Selenium 2018). Up to this point, there are four

components of Selenium:

• Selenium IDE: a Firefox add-on allows testers to record and

playback interaction steps on a web page with the integration of

Selenium Core. It contains a context menu with a list of verification

points and assertions (Selenium 2018).

• Selenium Core: a Javascript-based tool to run the test script written

in Selenese (a collection of commands). It required installation on

the testing server to where testers have no access (Selenium

2018).

• Selenium WebDriver:

18

Figure 8 Interaction of WebDriver (Avasarala 2014, 13)

Is the most popular tool in test automation for web application. Figure 8

indicates that Selenium WebDrivers enables developers to compile and

run an end-to-end test suite with its API. Based on different test cases, the

tool passes the Selenese test script to the Selenium Core and controls the

browser without the need to connect to a remote server unless it is not the

native machine. As a result, this reduces the connection time, thus,

fastens the test run-time (Avasarala 2014, 13).

• Selenium Grid: provides a possibility to run tests concurrently on

multiple machines with various browsers and operating systems

built by WebDriver (Selenium 2018).

3.4.2 Selenium WebDriver Behavior

A complete break-down of the WebDriver behavior can be found below in

Figure 9:

19

Figure 9 Demonstration of Selenium WebDriver operation (Quora 2018)

Selenium WebDriver supports a wide range of client library, for example,

PHP, C# (NUnit), Java (TestNG, JUnit), Perl, Ruby (RSpec) and Python

(Robot, PyUnit, Unittest) (Selenium 2018). Furthermore, it also supports

current web browsers: IE, Chrome, FireFox, Safari, PhantomJS (headless

browser) (Selenium 2018).

3.4.3 UI Locator Overview

A webpage contains a number of HTML elements (body, input, iframe,

etc.) and in Selenium WebDriver, they are named WebElements. By

locating these elements, WebDriver can easily perform task and interact

with (Selenium 2018). Therefore, it is imperative that the testers need to

20

identify correctly the element involving in each test case, if not, the test

case will fail due to its inability to locate (Selenium 2018). Thanks to

resourceful WebDriver API, there are various techniques to locate the UI

locators based on the different attributes of the web page (tagname,

classname, cssSelector, Xpath, ID, Name, LinkText) – the DOM

(Document Object Model) elements (Selenium 2018). After being queried

in the DOM, if more than one element is matched and found, the system

throws an error unless it is stored in an array (Selenium 2018). For

example (Selenium 2018):

• Tag Name: By.tagName(“iframe”);

<iframe src="..."></iframe>

• Class Name: By.className(“fruit”);

<div class="fruit">Tomato</div>

• ID: By.id(“bear”);

<div id="bear">...</div>

• Name: By.name(“apple”);

<input name="apple" type="text"/>

• LinkText and partial LinkText: By.linkText(“bear and fruit”); or

By.partialLinkText(“fruit”);

<a href="http://www.google.com/search?q=bear+and+fruit&ie=utf-
8&oe=utf-8&aq=t">bear and fruit

• CSS: By.cssSelector("#fruit span.red.yellow");

<div id="fruit">tomato<span class="r
ed yellow">bell peppers</div>

• XPath (describe information on an XML document, not the fastest

but the most accurate locator). XPath provides the ability to search

21

forward and backward to identify child or parent element on the

DOM.

For example: By.xpath("//input");

<input type="text" name="example" />

3.4.4 Common Methods in Selenium

The most common method in Selenium WebDriver can be found in the

Table 2 below:

Table 2 Common methods and commands in Selenium (Selenium 2018)

Method Command

init webdriver WebDriver driver = new ChromeDriver();

open url driver.get(“google.com”);

init webElement WebElement button1 =

driver.findElement(By.id(“button”);

click an element driver.findElement(By.id(“button”)).click();

enter text driver.findElement(By.id(“textbox”)).sendkey(“Hello”);

refresh the page driver.navigate().refresh():

navigate driver.navigate().forward(); or driver.navigate().back();

drag and drop WebElement element =

driver.findElement(By.name("origin"));

WebElement target =

driver.findElement(By.name("new"));

(new Actions(driver)).dragAndDrop(element,

new).perform();

22

get text driver.findElement(By.id(“textbox”)).getText();

3.4.5 Selenium Installation System Requirements

To have a running Java environment ready to develop a Selenium test

suite, there are some required system requirements (Selenium 2018):

• Java Runtime Environment (JRE) on the native computer: Java

Software Development Kit (JDK) comes with JRE integration.

Download and install JDK at Oracle official website for Java (

Oracle 2018), users can select which operating system they are

using in Figure 10:

 Figure 10 List of supported JDK (Oracle 2018)

• Install Eclipse IDE (Integrated Development Environment) at

Eclipse official website (Eclipse 2018) with Figure 11:

23

Figure 11 Eclipse Download Page (Eclipse 2018)

• Browser Driver: in order to run test scripts on a specific browser,

developers need to install the corresponding browser driver and set

up the path linked to the drivers’ location. The following Figure 11

lists all the common browser and its corresponding drivers:

Figure 12 Browsers and the corresponding drivers (guru99 2018)

24

After all the required components are installed, a complete guide to set up

a Maven project can be found in Appendix 1.

3.4.6 POM (Page Object Model) Overview

According to Selenium (Selenium 2018), POM has been developed as a

Design Pattern for the purpose of better maintenance and code recycling.

In POM, each page is implemented as an Object-oriented class so that the

tests can utilize the methods of this class as a technique to communicate

with the page (Figure 13). Obviously, when there are any changes in the

page, the test itself remains unchanged, only the class content needs to

be updated. As all the content of the page is in one file, it is convenient to

find and update new attributes at any time of the development. Moreover,

the page class is independent of the tests, which mean there can be

multiple types of test sharing the same page class (acceptance test,

behavior-driven test, data-driven test). Lastly, methods are named

realistically make them easier to read and maintain. (Selenium 2018.)

Figure 13 POM vs Non-POM comparison (Guru99 2018)

25

3.5 Git and GitHub

3.5.1 Git Overview

Developed in 2005 by Linus Torvalds, Git has become one of the most

popular open source version control systems (VCS) up to now (Atlassian

2018). VCS is a tool that development team can track their source code

status at any time of development, together with the ability to return to any

particular stage of the product at a fingertip (Loeliger & McCullough 2012).

In fact, any changes or modification to the source code is stored in a log

as a stage so that in case something goes wrong, the team can easily

revert the changes. Git falls into Distributed VCS to differentiate with Local

VCS and Centralized VCS, which means each developer’s copy of the

code is a well-documented repository of the full version of the software

(Atlassian 2018).

Git is well-known for its various benefits including:

• Performance: it is admittedly that the power of Git surpasses any of

its alternatives. Git allows each team member to work on their own

versions of the source code without the fear of messing up the

whole system, online or offline. Later on, when changes to the files

are ready to merge, they can commit at once and push to publicly

be peer-reviewed (Atlassian 2018).

• Security: unlike other VCS, the content in Git is encrypted with a

hashing algorithm called SHA-1. Developers can confidently

exchange content of their repository knowing that it is secured and

non-malicious (Atlassian 2018).

• Flexibility: Git supports any project size from small to large and

compatible with various systems and protocols (Somasundaram

2013, 15).

26

3.5.2 GitHub

As of 2015, with nine million developers, GitHub remained the most

common VCS for open source projects (Westby 2015, 211). GitHub was

born to provide hosting service for Git projects, which tremendously helps

to raise network collaboration (McQuaid 2014, 224). For example, with

GitHub, developers can (Brown 2016):

• Fork a repository: contribute to developing a project based off on

other’s pre-existing project.

• Pull Request: submit your contribution to the project owner.

• Changelogs: keep track of all the changes to a repository.

For the purpose of the artefact development, the thesis author utilizes Git

and GitHub as a means of team communication and collaboration.

3.6 Java

3.6.1 Java as a Programming language

Served as a programming language and computing for multiple platforms,

Java was developed in 1995 by Sun Microsystems. As a result of being a

compiled language, Java enables developers to write code once and run

everywhere (Techopedia 2018). Up to 2016, Java was the most popular

programming language with 9 million developers (Wikipedia 2018), many

documentations available and community supports. Java program

development is in need of Java software development kit (SDK) which

contains a compiler, interpreter, documentation generator (Techopedia

2018). The language itself provides excellent tools with IDE. Together with

JUnit for unit testing, Java is a good candidate for test automation.

3.6.2 Maven Overview

Maven is a Java build management tool to define how the .java files are

compiled to .class and much more (Maven 2018). As a result, Maven was

27

developed to indicate a standard way to build the project by automatically

downloading all the required libraries declared in the pom.xml file (pom

stands for Project Object Model). Figure 14 below shows a standard

project structure run by Maven.

Figure 14 Project Structure with Maven (Maven 2018)

The pom.xml file is a collection of all the required dependencies that the

project needs in order to run such as Junit or selenium-java. It is written in

XML format. Furthermore, with Maven, the file is executed as expected,

meaning that the necessary for “compile”, “test”, “package” and ”clean”

steps are redundant (Maven 2018). Especially in automation testing, there

are a lot of plug-ins to be utilized in test reports (Surefire) and to run the

test suite with Maven poses no difficulties with Maven commands (to be

discussed in section 4.4)

28

4 ARTEFACT IMPLEMENTATION – CASE: MEETINGPACKAGE.COM

4.1 Introduction

4.1.1 Company Information

MeetingPackage.com (Figure 15) is the case company for this research.

Founded in 2014, MeetingPackage.com’s objective is to provide a SaaS

model for meetings and events. In fact, the main product of the company is

an online marketplace where venue owner and the customer can visit

when there is a need to hire meeting rooms or events. Unprecedentedly,

MeetingPackage.com is the pioneer in the industry who tries their best for

the sake of minimizing time and money as well as increase the probability

of successful meetings hire (MeetingPackage.com 2018).

For Meeting Venues (Conference centers, hotels, venues, etc.), the

platform provides all the necessary information and tools in order to make

the venues become available on the market as soon as possible. They

offer venue creation, seasonal pricing, multi-user functionality and

complete management of rooms and packages. For Customers, the

platform requires little-to-none user manual with its elegant UI and fast

search time. The user can easily find, book and pay for their booking

within three clicks without any hidden fee (MeetingPackage.com 2018).

29

Figure 15 MeetingPackage.com Home Page (MeetingPackage.com 2018)

4.1.2 Analysis of Preceding Test Process

With a huge number of functionalities, the platform provides, it is not an

easy task when it comes to testing of the product. First, the thesis briefly

discusses the development team and then demonstrates the testing effort

the team needs to make before the artefact is developed and its related

problems. Finally, a SWOT analysis is conducted to emphasize the need

of the artefact to the company.

Agile software development methodology or in particular, Scrum

methodology is practiced by the team with two-week increment. Before

each sprint, the product owner gathers business ideas that he conveys

from the stakeholders, along with any reported bugs or urgently needed

changes, adds to the product backlog items. In each sprint, the team

organizes a meeting to prioritize and allocate from the product backlog to

the sprint backlog. After that, each developer is assigned to each story

which they need to break down into smaller tasks and add to the Not

started to-do list like the Figure 16 below:

30

Figure 16 Working in the sprint (Gurendo 2015)

Test planning and exit condition are designed at the beginning of each

sprint so that the developer and the product owner agree upon the criteria

of the story complete. After the developer’s implementation, each task is

moved from Not Started to In Progress and then Done. Then, the assigned

developer ensures the newly developed functionality stay working and

bug-free in his/her environment. After that, the assigned developer or the

Product Owner perform UAT and identify any bugs or false requirements

by deploying the new story to a staging environment (a product-like

environment). At this point, testers are required to check on the new

required story as well as performing regression testing. Were no major

problems to be found, the story would be marked successful and wait to

be deployed to the live production environment. Lastly, another check from

the stakeholder is required to evaluate the success of the story. If there

are any problems found in the meantime, developers need to fix or refactor

their code and restart the process. A graph to visualize the process is

presented under the following Figure 17:

31

Figure 17 Development pipeline

In each sprint, the developers play the role of the testers after the

implementation is complete. Taking into consideration the time-box of the

sprint (two weeks), it is clear that the testing effort turns into a major

problem. Another reason may be that the lack of skillsets from the

development team, which leads to increasing development time and bug

fixing. In order to identify the problem with convincing reasoning, a

thorough SWOT analysis needs to be conducted in chapter 4.1.3

4.1.3 SWOT Analysis

Figure 18 below represents the Strengths, Weaknesses (internal factors)

and Opportunities, Threats (external factors). These four forces provide

great insight into the situation and identify the problematic issues:

32

Figure 18 SWOT Analysis

In details, the developers are not able to devote themselves fully to the

testing due to the fact that they are occupied with maybe more than one

story. In fact, sometimes, blockers (bugs/errors/downtime from the live

product) come suddenly and they are prioritized first, which leads to even

more lack of time for developers. Secondly, with no proper testing practice,

the UAT that lacks maintenance goes obsolete over, which leads to a

redundant testing effort. As the development goes on and the bugs list

increases exponentially, the whole team needs to pause, reassess and

reprioritize the backlog items. The development time exceeds the

allocated time-box which means a bad practice of Agile software

development method.

Based on the analysis, it is undeniable that improvement is required to

happen in the testing effort. With a better solution, the team can reduce

33

the testing time and increase the quality of the product. By taking

advantages of the strengths with Agile software development method and

strong team collaboration, the team can make use of Automation testing to

automate the UAT, fasten the finding-fixing bug time span. Undeniably,

this improvement reduces the apparent threats the team is and will be

having, at the same time, welcomes the opportunity for “lesser regression

– better development”.

4.1.4 Artefact and Tool Selection Reasoning

There are undoubtedly many available frameworks and testing tools when

it comes to Automation testing. It is imperative to select the tools that can

be beneficial in terms of implementation and cost-effectiveness. It needs to

be selected based on the company’s situation and resources. In this

section, the author explains his reasonings in the tool selection and

comparison to other tools on the market.

To choose which automation testing framework to implement, there are

some conditions to take into consideration based on the company’s

situation and requirements:

• The tool needs to be an excellent candidate in GUI testing: The

product of the company is a desktop web-based application. GUI

testing or end-to-end testing plays an important role since it affects

directly the user’s behaviors.

• The tool supports functional testing. Due to the company’s product,

a POM design should be easy to implement.

• The tool needs to support cross-browser testing.

• The tool needs to be easily adopted without taking too many

resources, which means the development of the tool should be an

independent work apart from the team source code.

• The tool needs to be cost-efficient. Ideally, the tool should be an

open source framework.

• The tool needs to have a clear test report with detailed statistics

and can be stored for future references.

34

From then, the thesis author shortlisted the potential automation testing

frameworks and present their comparisons in the following Table 3:

Table 3 Comparisons between shortlisted frameworks

 Selenium Robot Framework Appium AutoIT

Popularity Very1 Medium2 Medium Medium

POM design Yes No3 No No

Desktop web-

based GUI

testing

Yes Yes No No

Cross-browser

testing

Yes Yes No No

Resources Low Medium Medium High

Pricing Free Free Free Free

Clear test reports Yes Yes Yes No

Language

supported

Many Many Many Many

Color indication:

1) Green – good

2) Orange – normal

3) Red – not good

With careful assessment based on the company’s situation, apparently,

Selenium Framework comes forth as the bright selected tool for test

automation. For the programming language, Java is chosen due to its

ability to support POM design and its stability which is discussed more in

the next chapter.

35

4.2 Artefact Development

4.2.1 Plan and Tools

As the source code of the company is hosted in GitHub, the test suite is

designed to be in the same repository for a better management. The

objective of the test suite is to replace the current functional UAT being

used in the company. The test suite runs on a macOS machine.

The test suite follows the standard installation referring to section 3.4.5.

The components involved in the test suite includes:

• JDK and JRE

• Eclipse IDE

• Selenium WebDriver

• ChromeDriver and Chrome browser:

As Selenium supports many web browser, it is just a preference to choose

Chrome as the testing browser. The developer can easily download other

web drivers and its corresponding browser to execute the test in. However,

it is imperative to save the web drivers in the same folder as of the test

suite, or else, the path linked to the web driver needs to be declared.

• Maven and pom.xml

To install Maven, simply go to Terminal and insert “brew install mvn”.

Terminal fetches the data and downloads Maven to the machine.

It downloads all the necessary libraries to run the Java file when you add

them in the pom.xml file. Details of the pom.xml for the artefact can be

found in Appendix 2.

• Maven Surefire plugin for test reports.

The details of the requirements that the test suite needs can be found in

the following Table 4:

36

Table 4 System requirements to run the test suite

Name Version Description

Selenium-Java 3.6.0 Selenium version for Java

Java JDK 1.8.0 Java environment

Chrome Browser 61.0.3163.100 Chrome browser to generate an

instance

Chrome Driver 2.32.498537 Driver to automate and control the

browser

Junit 4.12 Java unit testing framework

Maven 1.8 Java build management tool

Surefire Plugin 2.20 Maven test reports plugin

4.2.2 Test Suite Architecture

The architecture of the test suite is demonstrated using the following

Figure 19:

37

Figure 19 Architecture of the test suite

Apparently, the POM design is well-integrated in the test suite. For each

page of the website, there is a corresponding .java page in the test suite

(Figure 20).

Figure 20 Architecture of the Pages

The test cases are divided into different test scenarios based on the

website’s functionality. In order for the test to run, each file must end with

the keyword Test(s) (Figure 21):

38

Figure 21 Architecture of the Tests

The pom.xml file and the Chrome Driver for Linux are placed within the

same folder (target), together with the test reports which can be later found

once the test suite is executed.

4.2.3 Implementation of Test Suite

Due to the company’s confidential policy, the content of the test suite is not

allowed to present in this thesis. However, for the purpose of this thesis, a

demonstration of a simple test case and its implementation is presented

below:

Test case: User logs in successfully with correct credentials on

MeetingPackge.com

Precondition: User using Chrome browser.

Steps:

• Step 1: Go to MeetingPackage.com

• Step 2: Go to the login page (Figure 22)

39

Figure 22 MeetingPackage.com Login Page (MeetingPackage.com 2018)

• Step 3: Enter the user’s credential (Figure 23)

Figure 23 MeetingPackage.com LogIn Page (MeetingPackage.com 2018)

• Step 4: Click the login button

Expected results: User’s homepage is open indicating the login is

successful (Figure 24):

40

Figure 24 MeetingPackage.com Dashboard Page (MeetingPackage.com 2018)

The test case implementation starts with building the Login java page. The

Login Page imports all the necessary libraries such as By,

JavascriptExecutor, WebDriver and WebElement from Selenium (Figure

25).

Figure 25 Required packages

After that, the developer locates the UI locator with its ID on the DOM and

pass it to the variables. In a good practice, it is recommended to check the

current page every time it loads by checking the URL matched (Figure 26).

41

Figure 26 Selenium Login Page

Lastly, a function is implemented. The Driver locates the username and

password textbox by the UI locator and sends the desired credentials by

the function sendKeys from Selenium. The developer can inspect the

element on Chrome browser to get the UI locator (Figure 27)

Figure 27 MeetingPackage.com Login Page (MeetingPackage.com 2018)

Then an action “Click” on the submit button is executed. The function will

return the Dashboard page of the logged-in user, if not, the system will

inform that “This is not the login page” as a test result (Figure 28)

42

Figure 28 Selenium Login Page

In the test case, the Before function indicates what the driver should do

before any tests are executed. Here, the driver must open the driver,

resize the dimension and get to the Homepage of MeetingPackage.com.

Failure to execute this leads to an error at runtime (Figure 29).

Figure 29 Selenium Login Test

Then the test script is created. In Java, it is imperative to have the hook

@Test to indicate it is a test script. The steps are well-defined as function

name (goToLoginPage, loginAs). Assertion is a way of result reporting.

After the login button is clicked, if the current URL that the driver gets

contains the word “/dashboard” in it, the assertionTrue is correct, meaning

the test passed. If there is no “/dashboard” in the current URL, the

assertTrue is false, which mean the test fails (Figure 30).

43

Figure 30 Selenium Login Test

4.3 Test Suite Execution

The test suite can be executed using Maven or by Junit depending on the

scope of the test:

• Single test case: Right-click on the test case, choose Run As and

select JUnit test (Figure 31).

Figure 31 Selenium Login Test

After the execution, the program fires off the test case with a notice from

the console (Figure 32).

Figure 32 Selenium Login Test

44

An instance of Chrome Browser is created, the test is executed based on

the test script. The programme indicates that the driver is up and running

by the prompt “Chrome is being controlled by automated test software.”

(Figure 33).

Figure 33 Selenium Browser Instance

• Multiple test cases (one test scenario): Right-click on the test

scenario and choose Run As, select JUnit to run the test scenario.

All the test cases are executed one by one (Figure 34).

45

Figure 34 Selenium Test Suite

• All the test scenarios (Test suite): to run the test suite, simply

navigate to the project folder in the Terminal and type in “mvn test”

(Figure 35):

46

Figure 35 Terminal interface

As the result, Maven performs the test suite by compiling and run from the

first test scenario. Later on, the test results can be collected in the Target

folder. Another way to trigger the test suite is to right-click on the pom.xml

file and select Run As and click on Maven test (Figure 36)

47

Figure 36 Selenium Test Suite

4.4 Results and Test Reports

Maven Surefire plugin is utilized to generate a nice HTML and CSS test

reports. After the test suite finished, navigate to the terminal and type in:

mvn surefire-report:report-only

to generate an HTML report, then to add CSS, simply run the following

command:

mvn site -DgenerateReports=false

After that, the test report is located at <your project

folder>/target/site/surefire-report.html>. In the Summary, the report

demonstrates the number of test cases has been run, the errors, failures

and time of execution (Figure 37):

48

Figure 37 Test report

Furthermore, in the package list, the developer can also observe the

performance of each test scenario (Figure 38):

Figure 38 Test Report

The test case section reveals the details behind the failures or errors.

Alternatively, when running a single test case or a scenario without using

Maven, the result can be observed from the Junit console (Figure 39):

49

Figure 39 Junit

The failure trace helps the developer to understand the problem and can

right-click to jump into the problematic code. The system throws an error

and prints out the message which followed by all the related files.

50

5 ANALYSIS OF THE RESULTS

In order to understand the benefit that the artefact yields, it is imperative to

gather data of both scenarios (before and after the artefact), then make a

comparison between the time consumptions under the same time

condition. The result of the analysis determines the effectiveness of the

artefact to the case company. This section introduces the thesis author’s

methods to gather data and calculate the performance.

5.1 Time Consumption before the Artefact

The company UAT has a total of 50 use cases. On average, each use

case contains 5 test cases and it takes 5 minutes for one developer to

execute 1 test case. However, there is approximately 20% of the use case

defined as complicated and it requires at least 10 test cases to cover.

Furthermore, the maintenance time for the UAT is 10% of the testing time

for each round and the development time is three working days (24 hours).

These data are recorded and collected during the development time by the

thesis author using field notes as the data collection method. This

maximizes the accuracy of the data collected as it directly records the

current behaviors. With a simple calculation, when solely performing the

UAT testing, one developer needs to spend (in hours):

Manual testing time = (50 * 0.2 * 10 * 5) + (50 * 0.8 * 5 * 5)

 = 500 + 1000

 = 1500 (minutes) /60 = 25 Hours

For one developer, 25 hours equal to more than a half of a full working

week. As the sprint is only two weeks, it means that the developer needs

to spend one entire week just for testing due to the fact that there are at

least two rounds of testing on different environments (refer to section

4.1.2). It is evident it is not possible to cover the testing of the whole

system within the desired time period.

51

5.2 Time Consumption after the Artefact

The thesis author observes and collects the data of time required to

execute the test suite. From 50 use cases, there are 44 automation test

cases due to the fact that in one test case, there can be more than one

assertion, which means there are test cases sharing the same initial

condition.

Figure 40 below presents the time to execute the test suite in seconds.

Figure 40 Test Report

After converting, it takes roughly 40 minutes (0,67 hours) for the test suite

to run and present the results. However, the time it takes to develop and

maintain the test suite also needs to be taken into consideration. The test

suite is implemented in two weeks (37,5 working hours/week), together

with its maintenance which could add up 30% of the testing time for each

round.

5.3 Comparison and Result

After the aforementioned time-consumption to perform the functional

testing, the thesis author decided to draw out one condition to compare

between the two scenarios: Given that in two months of development (four

sprints), one developer needs to perform the entire functional testing for

four times each sprint, the Equation 1 refers to a method of calculating the

time he/she needs to spend on:

Total time consumption (Hours) = Development time + (time for 1 round of

testing + maintenance time) * rounds of testing * number of sprints

Equation 1 Time consumption for testing

52

Table 5 is the result when parsing the data to the formula:

Table 5 Formula and Calculations

 Before the artefact After the artefact

Data parsing

to Equation 1

3 + (25 + 25*10%) * 4 * 4 37,5*2 + (0,67 + 0,67*30%) * 4

* 4

Total time

consumption

443 (Hours) 126,43 (Hours)

As a result, the time reduction that the artefact brings up is = (443 –

126,43) /443 * 100% = 71,46%

With a time reduction of 71,46 percentage, it is clear that the test suite has

made a great impact on the testing effort. Even though it takes a certain

amount of effort to implement at first, later on, the developer is completely

unoccupied while the test suite is running. Therefore, there is no doubt

that the further into development in both time and testing demand, the

higher the benefit rises. In the end, the artefact stands out as an effective

answer for the case company.

53

6 CONCLUSION

6.1 Answering the Research Question

The objective of this thesis is to demonstrate how Selenium Framework

benefits the case company with automation testing. In the theoretical part,

the thesis author mentioned all the necessary knowledge and

methodologies to support his reasonings and actions. With the design

science research method, the thesis author follows strictly the steps in the

research, from raising the problem, analyzing it to suggest a solution,

develop it and evaluate the results. Finally, based on the data collected

after the implementation of the artefact, the thesis author answers the

research question:

How does Selenium Framework reduce time consumption in Quality
Assurance at MeetingPackage.com?

Simply put, based on the finding after analyzing the data, a reduction of

71,46% in time consumption successfully proves that the artefact made a

significant impact to MeetingPackage.com in the development process.

The comparison has been made in a same fair condition in order to

maximize the validity of the results. With the adoption of the artefact, the

development team can save a tremendous amount of time and resources,

increase their productivity and fasten the delivery. In other words, the

artefact revolutionized the development process of the case company.

6.2 Limitations

The thesis compares the time consumption from designing to the

execution of the test suite. However, there can be more criteria to

compare, for example, the complexity of the development, the condition of

the resources and the ability to maintain the artefact. Therefore, it is

suggested to take into consideration more criteria to identify the

effectiveness of the artefact.

54

6.3 Reliability and Validity

In this thesis, the thesis author observes and analyzes the data during the

development process. For the estimation of time consumption when it

comes to UAT testing, the time for each test case is an average

approximation. In addition, the automation test results have some error

test cases, which means that the test case could not run for some internal

reason. As a result, the time consumption for the test suite may increase

when the problem is resolved. Therefore, the reliability may not be entirely

correct, however, the significant benefit of the artefact remains at least

more than 65% without any doubt. Lastly, there can be some other

components could affect the study, for example, the skill of the author, the

size of the company, the size of the development team, the selected

solution or programming language.

6.4 Suggestions for Further Study

As the main product of the case company is a web application, the study

main target is the website test automation. However, with Java, the

developer can run the test cases concurrently, which means that there can

be more than two test cases being executed at the same time. Needless to

say, the time to run the whole build reduces significantly. Further study can

focus on parallelism of the test cases and design structure for concurrent

builds.

Furthermore, implementation of the test suite with continuous integration

can be of further study for the company. Continuous integration helps the

development more efficiently because the team can commit code more

frequently, trigger the build to run the test suite, and receive results after

each commit. Therefore, it results in lesser integration problem, no broken

code is leaked to the live product and decrease the time of peer-review

code.

55

7 SUMMARY

Over the past few years, development teams on all over the world have

been striving for better performance by experimenting with different

development methodologies, and Agile practice comes forth as one

possible candidate. By employing the Scrum method, the development

team gains a great amount of benefit in terms of product transparency and

quality. However, struggles to reduce the testing time while maintaining

short sprints remain unsolved. The goal of this study is to identify how test

automation resolves that underlying problem through demonstrating the

implementation of the artefact (Java test suite with Selenium Framework)

and analyzing its results.

This research contains three main sections. Theoretical framework

including Agile software development methodology, Scrum, testing

principles, Git, Selenium WebDriver and Java is described in chapter 3.

Chapter 4 explains the case company’s situation, the reasoning, and

implementation of the artefact, followed by chapter 5 in which data

collection and analysis are discussed. Finally, chapter 6 concludes the

thesis, its limitations, validity and suggests further study.

To summarize, it can be concluded that test automation may require time

and resource at first, but in the long run, its benefits and advantages are

undeniable for any company, especially for regression and functional

testing.

56

LIST OF REFERENCES

Published Sources

Ashmore, S. & Runyan, K. 2015. Introduction to Agile Methods.

Crawfordsville, Indiana, United States: Pearson Education, Inc.

Avasarala, S. 2014. Selenium WebDriver Practical Guide. Birmingham B3

2PB, UK: Packt Publishing.

Barab, S. & Squire, K. 2004. Design-based Research: Putting a Stake in

the Ground. The Journal of the Learning Sciences, 13(1), 1 –14.

Bath, G. & McKay, J. 2008. The Software Test Engineer’s Handbook.

Santa Barbara, CA: Rocky Nook Inc.

Bentley, J.E. 2004. Software Testing Fundamentals - Concepts, Roles,

and Terminology, Wachovia Bank, Charlotte NC.

Crispin, L. & Gregory, J. 2008. Agile Testing: A Practical Guide for Testers

and Agile Teams. Crawfordsville, Indiana, United States: Pearson

Education Inc.

Dustin, E., Garrett, T. & Gauf, B. 2009. Books on Google Play

Implementing Automated Software Testing: How to Save Time and Lower

Costs While Raising Quality. New York City, New York, United States:

Pearson Education Inc.

Ekas, L & Will, S. 2013. Being Agile: Eleven Breakthrough Techniques to

Keep You from "Waterfalling Backward". Massachusetts, United States:

IBM Press

Graham, D. & Veenendaal, EV. & Evans, I. & Black, R. 2014. Foundations

of Software Testing: ISTQB Certification.

Henry, P. 2008. The Testing Network: An Integral Approach to Test

Activities in Large Software Projects. Springer, Heidelberg.

57

Hevner, A., 2004. Design Science in Information Systems Research.

Minneapolis: MIS Quarterly.

Itkonen, J., Mäntylä, M.V. & Lassenius, C. 2009. How do testers do it? An

exploratory study on manual testing practices, in Proceedings of 3rd

International Symposium on Empirical Software Engineering and

Measurement.

Larman, C. 2004. Agile and Iterative Development: A Manager's Guide.

Boston, MA, United States: Pearson Education, Inc.

Loeliger, J. & McCullough, M. 2012. Version Control with Git. Second

Edition. Sebastopol: O’Reilly Media, Inc.

McQuaid, M. 2015. Git in Practice. Greenwich: Manning Publications Co.

Myers, 1979.G Myers. The Art of Software Testing. John Wiley & Sonc,

Inc., New York.

Nguyen, H.Q., Hackett, M & Whitlock, B.K. 2006. Global Software Test

Automation: A Discussion of Software Testing for Executives. Cuperrtino,

CA, United States: Happy About

Peffers, K., Tuunanen, T.A., Rothenberger, M. & Chatterjee, S. 2008. A

Design Science Research Methodology for Information Systems

Research. Journal of Management Information Systems. Abingdon: M.E.

Sharpe, Inc.

Ransome, J & Misra, A. 2014. Core Software Security: Security at the

Source. Boca Raton, FL, United States: CRC Press

Resnick, S. De la Maza, M. & Bjork, A. 2011. Professional Scrum with

Team Foundation Server 2010. Canada: Wiley Publishing, Inc.

Somasundaram, R. 2013. Git: Version Control for Everyone. Birmingham:

Packt Publishing Ltd.

58

Saunders, M., Lewis, P. & Thornhill, A. 2012. Research Methods for

Business Students. 6th ed. Harlow, England: Pearson Education Limited.

Schwaber, K. & Beedle, M. 2002. Agile Software Development with

Scrum. Upper Saddle River, NJ: Prentice-Hall.

Westby, E.J.H. 2015. Git for Teams: A User-Centered Approach to

Creating Efficient Workflows in Git. Sebastopol: O’Reilly Media, Inc.

59

Electronic Sources

Atlassian 2018. What is Git? Atlassian [accessed 1 October 2018].

Available at: https://www.atlassian.com/git/tutorials/what-is-git#security

Assignmentpoint 2018. About Abductive Reasoning. Assignmentpoint

[accessed 2 October 2018]. Available at:

http://www.assignmentpoint.com/science/mathematic/about-abductive-

reasoning.html

Boer, G. 2017. What is Scrum? Microsoft [accessed 1 October 2018].

Available at: https://docs.microsoft.com/en-

us/azure/devops/learn/agile/what-is-scrum

Brown, K. 2016. What Is GitHub, and What Is It Used For? How-To Geek

[accessed 2 October 2018]. Available at:

https://www.howtogeek.com/180167/htg-explains-what-is-github-and-what-

do-geeks-use-it-for/

Eclipse. 2018. Download Eclipse Technology that is right for you. Eclipse

[accessed 1 October 2018]. Available at:

https://www.eclipse.org/downloads/

Fernandes, J & Fonzo, A.D. 2018. When to Automate your Testing (and

when not to). Oracle [accessed 1 October 2018]. Available at:

http://www.oracle.com/technetwork/cn/articles/when-to-automate-testing-

1-130330.pdf

Geerts, G.L. 2011. International Journal of Accounting Information

Systems. Elsevier [accessed 1 October 2018]. Available at:

https://www.sciencedirect.com/science/article/pii/S1467089511000200

Guru99. 2018. How to Download & Install Selenium WebDriver. Guru99

[accessed 2 October 2018]. Available at:

https://www.guru99.com/installing-selenium-webdriver.html

http://www.assignmentpoint.com/science/mathematic/about-abductive-reasoning.html
http://www.assignmentpoint.com/science/mathematic/about-abductive-reasoning.html
https://docs.microsoft.com/en-us/azure/devops/learn/agile/what-is-scrum
https://docs.microsoft.com/en-us/azure/devops/learn/agile/what-is-scrum
https://www.howtogeek.com/180167/htg-explains-what-is-github-and-what-do-geeks-use-it-for/
https://www.howtogeek.com/180167/htg-explains-what-is-github-and-what-do-geeks-use-it-for/
https://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/cn/articles/when-to-automate-testing-1-130330.pdf
http://www.oracle.com/technetwork/cn/articles/when-to-automate-testing-1-130330.pdf
https://www.sciencedirect.com/science/article/pii/S1467089511000200
https://www.guru99.com/installing-selenium-webdriver.html

60

Guru99, 2018. Page Object Model (POM) & Page Factory in Selenium:

Complete Tutorial. Guru99 [accessed 1 October 2018]. Available at:

https://www.guru99.com/page-object-model-pom-page-factory-in-

selenium-ultimate-guide.html

Grahai, A. 2017. What is the Fundamental Test Process?

testingexcellence.com [accessed 5 October 2018]. Available at:

https://www.testingexcellence.com/fundamental-test-process-software-

testing/

Gurendo, D. 2015. Software Development Life Cycle (SDLC). Scrum

Model Step by Step. XB Software [accessed 5 October 2018]. Available at:

https://xbsoftware.com/blog/software-development-life-cycle-sdlc-scrum-

step-step/

Lotz, M. 2013. Waterfall vs. Agile: Which is the Right Development

Methodology for Your Project? Segue Technologies [accessed 5 October

2018]. Available at: https://www.seguetech.com/waterfall-vs-agile-

methodology/

Maven 2018. Maven in 5 minutes. Maven [accessed 5 October 2018].

Available at: https://maven.apache.org/guides/getting-started/maven-in-

five-minutes.html

MeetingPackage.com 2018. MeetingPackage.com [accessed 10 October

2018]. Available at: https://meetingpackage.com/

Oracle 2018. Java SE Development Kit 11 Downloads. Oracle [accessed 2

October 2018]. Available at:

https://www.oracle.com/technetwork/java/javase/downloads/jdk11-

downloads-5066655.html

Quora 2018. How does the Selenium Webdriver work? Quora [accessed 3

October 2018]. Available at: https://www.quora.com/How-does-the-

Selenium-WebDriver-work

https://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
https://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
https://www.testingexcellence.com/fundamental-test-process-software-testing/
https://www.testingexcellence.com/fundamental-test-process-software-testing/
https://xbsoftware.com/blog/software-development-life-cycle-sdlc-scrum-step-step/
https://xbsoftware.com/blog/software-development-life-cycle-sdlc-scrum-step-step/
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://meetingpackage.com/
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
https://www.quora.com/How-does-the-Selenium-WebDriver-work
https://www.quora.com/How-does-the-Selenium-WebDriver-work

61

Selenium 2018. What is Selenium? Selenium [accessed 2 October 2018].

Available at: https://www.seleniumhq.org/

Smartbear 2018. What is Automated Testing? Smartbear [accessed 4

October 2018]. Available at: https://smartbear.com/learn/automated-

testing/what-is-automated-testing/

Statista 2018. Number of internet users worldwide from 2005 to 2017 (in

millions). Statista [accessed 1 October 2018]. Available at:

https://www.statista.com/statistics/273018/number-of-internet-users-

worldwide/

Spilka, D. 2016. 15 Common Website User Experience Issues (And

Solutions). Solvid.co.uk [accessed 5 October 2018]. Available at:

https://solvid.co.uk/15-common-website-ux-issues/

Shuttleword, M. 2008. Abductive Reasoning. Explorable.com [accessed 10

October 2018]. Available at: https://explorable.com/abductive-reasoning

Techopedia 2018. Java. Techopedia [accessed 4 October 2018]. Available

at: https://www.techopedia.com/definition/3927/java

Vaishnavi, V. & Kuechler, B. 2012. Design Science Research in

Information Systems. Desrist [accessed 5 October 2018]. Available at:

http://desrist.org/desrist/article.aspx

Wikipedia 2018. Java (programming language). Wikipedia [accessed 2

October 2018]. Available at:

https://en.wikipedia.org/wiki/Java_(programming_language)

https://www.seleniumhq.org/
https://smartbear.com/learn/automated-testing/what-is-automated-testing/
https://smartbear.com/learn/automated-testing/what-is-automated-testing/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://solvid.co.uk/15-common-website-ux-issues/
https://explorable.com/abductive-reasoning
https://www.techopedia.com/definition/3927/java
http://desrist.org/desrist/article.aspx
https://en.wikipedia.org/wiki/Java_(programming_language)

62

APPENDICES

Appendix 1: Guide to install and set up a Maven project.

From Eclipse:

Step 1: Go to File > New > Other… > Maven > Maven project > Next

Step 2: Select the workplace folder

Step 3: Select maven-archetype-quickstart type, click Next

Step 4: Enter GroupID (unique name of the project) and ArtifactID (name

of the jar file), click Finish.

Result: A Maven project is ready for further implementation,

63

From Terminal: Alternatively, you can easily create a new Maven project

from the terminal or command line on Window.

Step 1: Check if Maven is installed by typing “mvn --version”. If it is

installed, the result should be:

Step 2: Open the root folder that the Maven project should reside in, type

in the Terminal this command, you can change the GroupID and ArtifactID

as desired.

mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -

DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

The Terminal will download and set up the Maven project.

Step 3: Now that the project is created, import it to Eclipse by importing it.

(File > Import > Existing Maven project > Select the root folder). Eclipse

imports the pom.xml file and displays the new project.

a

a

a

64

Appendix 2: Pom.xml file for Test Suite configuration

1. <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance"

2. xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.a
pache.org/xsd/maven-4.0.0.xsd">

3. <modelVersion>4.0.0</modelVersion>
4.
5. <groupId>com.meetingpackage</groupId>
6. <artifactId>TestSuite</artifactId>
7. <version>0.8.1</version>
8. <packaging>jar</packaging>
9.
10. <name>TestSuite</name>
11. <url>http://maven.apache.org</url>
12.
13. <properties>
14. <project.build.sourceEncoding>UTF-

8</project.build.sourceEncoding>
15. <project.reporting.outputEncoding>UTF-

8</project.reporting.outputEncoding>
16. </properties>
17. <dependencies>
18. <dependency>
19. <groupId>junit</groupId>
20. <artifactId>junit</artifactId>
21. <version>4.12</version>
22. <scope>test</scope>
23. </dependency>
24. <dependency>
25. <groupId>org.seleniumhq.selenium</groupId>
26. <artifactId>selenium-java</artifactId>
27. <version>3.6.0</version>
28. </dependency>
29. <build>
30. <pluginManagement>
31. <plugins>
32. <plugin>
33. <groupId>org.apache.maven.plugins</groupId>
34. <version>3.3</version>
35. <artifactId>maven-compiler-plugin</artifactId>
36. <configuration>
37. <source>1.8</source>
38. <target>1.8</target>
39. </configuration>
40. </plugin>
41. <plugin>
42. <groupId>org.apache.maven.plugins</groupId>
43. <artifactId>maven-surefire-plugin</artifactId>
44. <version>2.20</version>
45. <configuration>
46. <trimStackTrace>true</trimStackTrace>
47. <redirectTestOutputToFile>true</redirectTestOutputToFile>

48. </configuration>
49. </plugin>
50. </pluginManagement>
51. </build>
52. <reporting>
53. <plugins>
54. <plugin>
55. <groupId>org.apache.maven.plugins</groupId>
56. <artifactId>maven-surefire-report-plugin</artifactId>
57. <version>2.20</version>
58. </plugin>
59. </plugins>
60. </reporting>
61. </project>

