

Preventing DDOS Attacks From IOT

Rashid Ali Mirza

Master’s thesis

October 2018

Degree Programme in

Information Technology

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Master’s Degree Programme in Information Technology

ALI MIRZA, RASHID:

Preventing DDOS Attacks From IOT

Master’s thesis 38 pages, appendices 11 pages

October 2018

The IT world has witnessed and been a recipient of Distributed Denial of Service at-

tacks. The attacks have grown over the past years, and it is expected that the carnage

caused will get worse.

The purpose of this project was to demonstrate early DDoS attack detection. Though

recent attacks have been instigated through IOT devices, the thesis will focus on DDoS

detection, as IOT devices have only been a medium of the attack. It is important to

counter act the vulnerability and this is the prime objective in this document.

A detection technique has been explored, using a test setup. Detection alone is not the

objective, but necessary mitigation process that needs to be triggered has also been

looked at.

Key words: ddos, entropy, iot, sdn

3

CONTENTS

1 INTRODUCTION ... 6

1.1. Understanding DDOS attacks .. 7

1.2. Types of DDOS attacks ... 8

1.3. Malware ... 8

1.4. Botnets ... 8

1.5. Purpose of this thesis ... 9

2 UNDERSTANDING THE ENEMY ... 10

2.1. The Technique ... 10

2.2. The Code synopsis ... 11

2.2.1 The Code structure .. 12

2.2.2 The Loader directory ... 12

2.2.3 The Mirai directory ... 12

3 SOFTWARE DEFINED NETWORKING ... 14

3.1. Traditional infrastructures .. 14

3.2. SDN basics ... 14

3.3. SDN security .. 15

4 TEST ENVIRONMENT ... 16

4.1. Intrusion detection ... 16

4.1.1 Entropy .. 17

4.1.2 Base entropy .. 18

4.1.3 Intrusion detection algorithm .. 18

4.1.4 Choosing the intrusion threshold .. 19

5 TEST SETUP .. 20

5.1. Virtual Box .. 20

5.2. Mininet network emulator ... 20

5.3. Environment ... 20

5.3.1 Topology ... 20

5.3.2 Layer 3 switch ... 21

5.3.3 POX controller .. 22

5.3.4 Layer 3 class .. 22

5.3.5 Switch class object .. 23

5.3.6 Layer 3 functions... 23

5.3.7 ARPTableEntry class object ... 26

5.3.8 Entropy class object .. 26

5.3.9 Normal traffic .. 27

5.3.10 Class details ... 27

4

5.3.11 Entropy values ... 29

5.3.12 Attack behaviour ... 30

5.3.13 Class details ... 30

6 TEST RESULTS ... 34

7 CONCLUSION AND RECOMMENDATIONS .. 37

REFERENCES .. 38

APPENDICES .. 39

Appendix 1. Source Code Listing – traffic_simulator.py ... 39

Appendix 2. Source Code Listing – attack_simulator.py .. 40

Appendix 3. Source Code Listing – virtual_switch.py ... 41

Appendix 4. Source Code Listing – detection.py .. 48

Appendix 5. Source Code Listing – config.json ... 49

5

ABBREVIATIONS AND TERMS

ARP

CNC

DOS

DDOS

Address Resolution Protocol

Command and Control Server

Denial of Service

Distributed Denial of Service

IP

IT

IOT

ISP

LDAP

MAC

POX

SDN

TCP

Tbps

TFTP

VM

Wireshark

Internet Protocol

Information Technology

Internet of Things

Internet Service Provider

Lightweight Directory Access Protocol

Media Access Control

open source development platform for Python-based SDN

Software Defined Network

Transmission Control Protocol

Terra bits per second

Trivial File Transfer Protocol

Virtual Machine

Most popular network protocol analyzer tool

6

1 INTRODUCTION

This project attempts to highlight the possible ways hackers can use DDOS and use IOT

devices as a medium to paralyze the network and cripple critical services. In addition,

various methods of preventing such attacks have been stated, but only one will be in

focus.

The recent spate of attacks on major and minor infrastructures has prompted the re-

search into the root cause of the issue, and an attempt will be made to identify in detail

the recent attacks. Once a common pattern is established in the way the attacks have

been transgressing, all possible methods used till date, for mitigating DDOS attempts

will be discussed. A solution will be proposed. The feasibility of the solution, the meth-

odology applied, and the result of the solution will be discussed. If a common pattern

cannot be established, then that would mean there are other vulnerabilities in the IOT

framework, which hackers are exploiting, and therefore a high level of security feature

will need to be looked at.

A detailed synopsis of the proposed solution will be presented, with full information on

the setup, how the test was conducted, and the results of the tests. Any flaws in the test

setup will be highlighted and discussed.

7

What is of concern is not only how to mitigate present attacks, but also how to mitigate

and withstand future attacks. The DDOS attack landscape is growing exponentially and

could reach tens of terra bits per second. Questions arise on how an infrastructure deal

with that scenario can. What changes need to take place in the infrastructure to combat

present and future impeding threats.

According to the security firm Correro, this new attack vector uses the LDAP, which if

combined with an IoT botnet, could break records in DDoS power, and at the same

time, break the backbone of any IT infrastructure.

1.1. Understanding DDOS attacks

It is vital that there is understanding in the difference between DDOS and DOS attacks.

Please note that DDOS attacks are a concentrated effort of multiple devices to one des-

tination attack, while on the contrary, DOS attacks are based on one source, which is

generating the attack, and the endpoint of the attack is one destination.

A single IP attack falls into the category of a DoS attack, and a Multiple IP attack falls

into the category of a DDoS attack (1).

FIGURE 1. Typical DDOS attack

http://thehackernews.com/2016/10/iot-camera-mirai-ddos.html

8

1.2. Types of DDOS attacks

Primarily, there are 3 types of DOS attacks.

• Application layer DDOS attacks: also known as layer 7 DDOS attacks.

These types of attacks are generally difficult to detect. These types of at-

tack target Windows, Apache, and openBSD systems, and attempt to

crash the server

• Protocol DDOS attacks: attacks at a protocol level. Great examples

would be Ping of Death, Synflood etc.

• Volume based DDOS attacks: attacks that include ICMP floods, UDP

floods. The detection techniques can be statistical or machine learning.

Some of the popular SDN based DDoS attack detection techniques are

(2):

o Entropy

o Machine learning

o Traffic pattern analysis

o Connection rate

1.3. Malware

The word malware, as per definition is intrusive software that gains authorized access to

a computer system.

1.4. Botnets

The word botnet has its origins in the words, robot and networks, where the ‘bots’ part

comes from the word robot, and the ‘nets’ part comes from network. Many infected

systems, that are inter connected over the network, are effectively botnets, where the

network is the medium through which the malware can spread.

9

1.5. Purpose of this thesis

As one goes through the thesis, it will become evident the nature of the thesis, the topic,

and its complexity.

I would like to inform that it is important to establish the direction of the attack, and the

reader should not confuse this with cyber-attacks against IOT devices. Here we are talk-

ing about the combined effort of IOT devices, to establish a botnet attack on an infra-

structure. The emphasis of the thesis is on DDOS attack detection, and the 2016 events

of the Mirai attack triggered the author to highlight the contribution of IOT devices to

the attack.

10

2 UNDERSTANDING THE ENEMY

21st October 2016 was a dark day for mankind in terms of cyber-attacks. Never was a

malware attack of this magnitude experienced by the industry, and its affect was devas-

tating in terms of the downtime for services for major sites, such as Guardian, Netflix,

CNN and many more.

The Mirai botnet was deployed to “slaves” who group together and bombard a server

with traffic, until the server dies out due to the heavy network load. In this case it was

the servers at Dyn that were the target, and as some of you would know, Dyn provides a

significant portion of the internet’s DNS feature, as it is an Internet Service Provider

(ISP). Going back to the “slaves” these were none other than “Internet of Things” de-

vices. These are devices that we on a day to day basis, interact with, but, put together a

group of such devices, they can cause havoc (2).

The havoc must translate into a number, and in the case of the Mirai attack, it was of the

magnitude of 1.2 Tbps, and this in layman terms means that there was 1.2 Terra bits

EVERY second.

To understand the strength of the DDOS attack is not as simple as it seems. When the

links get saturated it is difficult to tell if the limits of the network bandwidth are reached

or the magnitude of the attack is the cause. For the victim, it is immaterial, since the

network connection is saturated, and the IT infrastructure is already compromised.

2.1. The Technique

IOT devices sitting on the internet are like sitting ducks in the wild. The reason for this

is that most of us do not change the default password, the one that comes with the de-

vice, when the product is released from the factory. Hackers exploit this loop hole, and

gain access to the device. Once the device is compromised, it can be told or instructed to

do anything, and hence my earlier use of the word “slave”.

As per (3), credentials for 15 percent of the worlds IOT devices are not changed, during

the lifespan of the product. The problems don’t end here, because of sites such as sho-

dan, and Zoomeye, as these sites are search engines for IOT devices, and can provide

default credential data, that can be used by hackers, and port numbers, services running

11

etc. Therefore, these sites act as dictionaries for hackers who are on the prowl for de-

fault credentials for IOT devices.

2.2. The Code synopsis

The source code for the Mirai botnet was made available for the public on GitHub soon

after the 21st October 2016 attack. Now the reason for the public release remains un-

known, but we can benefit from it by going through it, and possibly understanding of

any variants of the Mirai botnet, that could come.

In general, the code is written in c/c++. It works by connecting to IOT devices using

default credentials via the telnet protocol. The botnet would remain dormant, until the

trigger command would come to it via a CNC application. The CNC code was also put

onto GitHub, along with the Mirai source code. The CNC is written in Go programming

language.

In brief the code is trying to:

• Scan vulnerable for devices, by using the factory credentials for devices

• For each device, the attacker will attempt to login and start a session to

install a malware from a server, onto the device

• The malware is made active, and once that is successfully done, the

device is compromised

12

2.2.1 The Code structure

Github has a copy of the Mirai source code. It is debatable if the code has been upload-

ed for research purposes or for academic purposes. There are different Github projects

who have hosted the source code. Source code on its own can be harmless, but the way

it is used, or the intentions of the person who uses it, are to be watched out for.

FIGURE 2. Mirai Code on Github

On Github, along with other folders, there is the loader and the Mirai folder.

2.2.2 The Loader directory

The loader folder contains code written in c programming language that allows the

servers to be created and monitors the connections between the servers and the clients,

that are the IOT devices. It uses TFTP and WGET to retrieve the malware, residing on a

server, and push it across to the devices. Primarily, TFTP, also known as trivial FTP,

comes as default for windows vista, and below operating systems. WGET on the other

hand is a Windows and Linux tool, used for non-interactive downloads.

2.2.3 The Mirai directory

The main.c program is the starting point for the executable. The program disables the

watchdog timer and prevents it from restarting. After that it makes calls to the fork()

command, which creates processes for each module.

Here the crucial connection to the CNC application is established. There are 3 processes

running besides the main process, the attack, killer, and scanner (4).

• The attack module parses the data received and launches the DDDOS attack. A

defined number of attacks can be implemented.

• The Killer module terminates any processes that use ports meant for ssh, telnet

and http, and tries to reserve for itself

13

• The Scanner module uses port 23 and randomly generated public IP’s to check

for other IoT devices. The telnet credentials are obtained from a table containing

default username and password pairs.

The CNC application is written in Go programming langauge. It connects to a database

and creates two sockets on port 23 and 101.

14

3 SOFTWARE DEFINED NETWORKING

A network layer is divided into three different planes:

• Data plane: the data plane is where all the data packets are sent by the

endpoints. For example, any forwarding packets, fragmentation and reas-

sembly, and any replication for multicasting

• Control plane: this is where all activities that are necessary to perform

data plane activities but do not involve the endpoint data packets. For ex-

ample, routing table preparation, and from a security perspective the data

packet handling policies

• Management plane: this is the plane where all activities related to provi-

sioning and monitoring of the network takes place

• Service plane: this is the layer 7 application flow built on the foundation

of the other layers (5)

In the simplest form, Software Defined Networking (SDN) is the separation of the net-

work control plane from the forwarding plane and where the control plane controls sev-

eral devices.

3.1. Traditional infrastructures

For any infrastructure, a firewall is used to secure incoming and outgoing network

packets. They can monitor and control the flow of data and work based on predefined

rules, also referred to as firewall policies, which can be inbound or outbound.

3.2. SDN basics

Network control is decoupled from forwarding and is directly programmable. Therefore,

instead of each networking device forwarding packets to the next hop, the controls are

centralized on SDN controllers. In the SDN architecture the control logic is decoupled

from the switches and centralized to the network controller. Therefore, the switches are

free from routing calculations and can be focused on packet forwarding (4).The defining

characteristics of SDN are as follows:

15

• Central management

• Can be configured programmatically

• Easier and fast upgrades

3.3. SDN security

SDN Security should deliver network security by segregating the security control plan

from the security processing and forwarding planes. The security aspect needs to be

built into the architecture so that it can provide a service to protect the availability, in-

tegrity and privacy of all connected resources and information (5).

16

4 TEST ENVIRONMENT

To demonstrate the setup, the following have been configured:

• Mininet: in Mininet we can create various topologies of nodes and switches and

can test out a virtual network by sending packets to each other. Switches in

Mininet are software-based switches like Open vSwitch or the OpenFlow refer-

ence switch. Links are virtual Ethernet pairs, which live in the Linux kernel and

connect the emulated switches together

• All flowing data can be analysed using a packet capture tool such as Wireshark

• Scapy is a powerful interactive packet manipulation program. It can forge or de-

code packets of a wide number of protocols, send them on the wire, capture

them, match requests and replies, and much more

4.1. Intrusion detection

As per (6), detection mechanisms are as follows:

• Entropy

• Machine learning

• Traffic Pattern Analysis

• Connection rate

• SNORT and OpenFlow integrated

As per (4) there are 6 traffic flow features that can be used:

• Average of packets per flow

• Average bytes per flow

• Average of duration per flow

• Percentage of pair-flows

• Growth of single flows

• Growth of different ports

17

Using combination of Entropy with average packet flow should provide a mechanism to

detect thresholds.

4.1.1 Entropy

Entropy (9) can be defined as a number that gives you an idea of how random an out-

come will be based on the probability values of each of the possible outcomes in a situa-

tion.

Can also be defined as the uncertainty in a random variable.

𝐻(𝑋) = − ∑ 𝑝𝑖 log2×𝑝𝑖

𝑛−1

𝑖=0

Or

𝐻(𝑋) = ∑ 𝑝𝑖 log2×

1

𝑝𝑖

𝑛−1

𝑖=0

Entropy will be maximum when all outcomes are equally likely. Any time we move

away from equally likely outcomes then then the entropy must go down. Therefore, the

entropy of variable X is the sum over all possible outcomes of i of X, of the product of

the probability of outcome i times the log of the inverse of the probability of i. The vari-

able n is the number of symbols that the information source can give us. The units of

information entropy are bits.

If the values of X where Bernoulli or binary random variable, then H(X) will be a con-

cave output as shown in figure 3.

18

FIGURE 3. Bernoulli Process

4.1.2 Base entropy

Base Entropy is defined as the average entropy for the target IP address when there is no

DDOS attack in place. The purpose of this is to define a normal scenario. Establishing

the base entropy will define a point of reference.

4.1.3 Intrusion detection algorithm

Detecting DDoS attacks on a server in an SDN network can be done by running a light

weight application on the SDN controller. The application counts the number of packet

flooding into the SDN controller and obtains the packet rate and the occurrences of data

packets according the destination IP address, TCP port and source IP addresses and cal-

culates the entropy of the destination IP address, TCP port and source IP address (6).

19

4.1.4 Choosing the intrusion threshold

The threshold is dependent on the rate of normal traffic, or traffic that is not classified

as being as attack traffic. To answer questions on how strong the attack is, a simple ratio

of attack Packets 𝑃𝑎 to the number of normal traffic packets 𝑃𝑛 is equal to the rate R:

𝑅 =
𝑃𝑎

𝑃𝑛
 × 100%

20

5 TEST SETUP

The below are the pre-requisites for the environment setup

5.1. Virtual Box

The latest version of the Virtual Box was downloaded for the windows environment.

5.2. Mininet network emulator

After a suitable version of Virtual box was installed, an appropriate Mininet VM image

was downloaded. Using Mininet it is possible to create realistic virtual networks.

Mininet allows experimenting with OpenFlow and Software Defined Networks.

5.3. Environment

A virtual network topology has been implemented through Mininet with the purpose of

simulating a real environment.

5.3.1 Topology

Mininet allows custom topologies to be created. Due to the power of virtualization, a

single system can be made to look like a network. It is required to setup a network for

the test, and below id the command used to create the network, from inside the Mininet

environment.

sudo mn --switch ovsk --topo tree,depth=2,fanout=8 --

controller=remote,IP=127.0.0.1,port=6633

This command creates a network and adds controllers, hosts, switches and links be-

tween them. 127.0.0.1 is the loopback address.

21

A remote POX controller will be connected to the open flow switch. The command will

create a topology of 64 hosts connected to 9 switches. Each of the 9 switches are created

on port 6633 and have an IP address that matches the loopback IP address specified in

the statement just entered.

FIGURE 4. Experiment Network with 9 switches and 64 hosts

5.3.2 Layer 3 switch

In an SDN architecture, a switch performs the following functions:

• The switch encapsulates and forwards the first packet of a flow to an SDN controller,

enabling the controller to decide whether the flow should be added to the switch flow

table.

• The switch forwards incoming packets out the appropriate port based on the flow

table. The flow table may include priority information dictated by the controller.

• The switch can drop packets on a flow, temporarily or permanently, as dictated by the

controller. Packet dropping can be used for security purposes, curbing DDoS attacks

The switch can examine each packet and learn the source port mapping. Thereafter the

source MAC address will be associated with the port. If the destination of the packet is

already associated with some port, the packet will be sent to the given port else it will

be flooded on all ports of the switch. Each open flow switch is identified by data path

id. The Datapath is a 64-bit field that can be thought of as being analogous to an Ether-

net Switch bridge MAC. It is a unique identifier for the specific packet processing pipe

22

line being managed. Once a packet arrives to switch it, switch can send packets to single

or multiple ports, drop the packet or modify the packet header.

5.3.3 POX controller

POX provides a framework to communicate with SDN switches. Here the OpenFlow

protocol has been used. POX needs to be started from the command line, and a layer 3

switch was implemented in an SDN network.

5.3.4 Layer 3 class

The layer 3 switch application was created which uses two classes:

• ARPTableEntry class

• Switch class

Certain declarations have been done, and they are as follows:

• MAX_BUFFER_TIME, this flag has been set to 5, and indicates for how long

each packet will be retained for in the lost buffer. Lost buffer is a container

which contains packets for which the switch does not know where to send this

packet. In simple words the ARP table does not have mapping of destination IP

with MAC address and port, so in that case the switch will store the packet in the

buffer. In addition, the MAX_BUFFER_TIME will ensure that every packet in

buffer should retain in the buffer memory for 5 minutes only. After the buffer

time has elapsed for any packet, it should be deleted from buffer

• MAX_BUFFERED_PER_IP, this flag has been set to 5, and indicate how many

packets per IP will be saved in the buffer. Let us suppose one packet arrives for

which we don’t know its destination since it’s ARP Entry is empty. Then that

packet will be saved to the buffer with its IP information. Let us then suppose 4

more packets comes for this IP address, 4 more packets will be saved for this IP

in buffer memory. As soon as another packet come for this IP, switch will not

store it, because the switch already added 5 packets for this IP address. So, the

value of MAX_BUFFERED_PER_IP indicates number of packets to be stored

for this IP.

23

5.3.5 Switch class object

The layer 3 switch class has the following main class variables:

• arp_for_unknowns

• outstanding_arps

• lost_buffers

• arpTable

o It is used as lookup table of MAC Address of host’s and ports of the

switch to which each host is connected. It is a dictionary which records

in [DpID][SourceIPAddress] = (Port, Host MAC Address)

• expire_timer:

The layer 3 switch maintains look up table for MAC address and port. Once the switch

receives packets it checks its lookup table for the MAC address and obtains the port

number so that it can send packets to the destination.

5.3.6 Layer 3 functions

_handle_expiration:

• This is function is a delegate, which is called by the timer every 5 minutes. This

function keeps a check on the lost_buffers member variable. If any item expires,

it removes item from lost_buffers.

_send_lost_buffers:

• This function receives ‘dpid’, ‘ipaddr’, ‘macaddr’, ‘port’ as parameters

• It searches each item in lost buffer with key (dpid, ipaddr)

• If it found the packet in the buffer it re-sends it to the port and MAC address of

the incoming packet

• let us suppose the switch receives packets and it does not know the destination

port, because it searches for destination MAC and port in arpTable using dpid.

Then in that case it stores the packet in lost buffer for some time. When the des-

tination host sends packet to the switch to send to another host and while send-

ing that packet, the switch looks up the lost buffer, which holds the old packet

for which the destination was unknown. Now in this second cycle it is possible

24

we already learnt the address of that earlier unknown destination. In this case the

switch will pick that packet from the buffer, delete that buffer, and send it to the

source again, so the source will receive the earlier buffered packet which was

not delivered to it earlier, due to unknown address.

_handle_incoming_packets:

• This function is the most important function which performs all the switching

functionality. It processes in coming packets

• Whenever this function fires up, it receives dpid, in port, and packet

• It searches dpid in lookup arpTable. If it is not able to find dpid it creates a new

empty dictionary for that data path id. It initializes dpid entry with dummy val-

ues

• It checks packet type. If the packet type is IPv4, it proceeds with the following.

It uses the Entropy class object to know if source is sending packets for the des-

tination repeatedly. It will calculate entropy value and if the value is below cer-

tain threshold then this indicates that the source is attacking host / device on the

network. In that case switch port will be blocked

• It then calls send lost buffer to send packets from the buffer

• It will learn and update entry in lookup table arpTable, in case the source MAC

address is not found it will add new entry of source. The entry will be for the

port from where packets comes from with the source MAC Address. Now the

switch learns new entry and knows that in case again the packet comes for this

source as destination then it can look up destination MAC address from packet

header and will search that MAC address in arpTable and send the packet to cor-

responding port

• After receiving and adding source IP address, source MAC address, port infor-

mation to arpTable, the switch will try to obtain the destination address. It will

get the destination IP Address and do a lookup operation on arpTable to get

MAC address and port. In case it finds the destination address it simply sends

the packet to that destination port

• In case switch is unable to find destination, MAC address and port based on IP

Address from packet header then it will check class member arp_for_unknowns

if it is true. Then it will proceed as following

o In case switch unable to determine packet destination then it will first

save the packet to its lost buffer, then broadcast packet to all of its ports.

25

The host which matches IP with destination IP will pick that packet and

remaining hosts will discard the packet. The receiver again re-sends the

packet back to switch, in this way the switch will learn the new entry of

the source host

blockPort:

• It is used to block port, due to excess send packets requests to this port

• When the entropy value is below threshold (in our case 0.5) , then this function

is called by _handle_incoming_packets

• It sets set_Timer class variable to true

• Once set_Timer is true _port_blocker_callback handler will be able to block that

port

This function only gets invoked once switch detects some unusual activity (it keeps cal-

culating entropy of network for every packet that arrives). Once switch detects there is a

malicious user attacking, then it calls block_port function, which start to count number

of packets coming in from switch ports. Let us say malicious user is targeting specific

device from other random ports/devices then block_port function keep counts of every

in-network packet, and it makes timer function start flag true so that now switch will

start timer and start to observe ports counts. As soon as port count reaches 50 then it

determines that this incoming port is suspicious, and it will do appropriate action on the

port.

_port_blocker_callback function:

• It is timer handler call back function.

• Once it is detected that destination have entropy less than 0.5 then it is sub-

scribed to fire up after every 2 minutes

• For every port which received 50 packets will be block in this function

A conditional check has been setup to indicate if the network entropy drops below a

certain threshold. If it is below then then packet handler will trigger a monitor to start

counting packets going to the out port. As soon as the port count hits 50 or more, it will

send packet to inform the port to drop all incoming packets.

26

5.3.7 ARPTableEntry class object

This class holds three properties:

• Port number, for sending incoming packet. Port number can be any one of the

ports in the switch

• MAC Address, is a MAC address of the source host

• Time out

The switch class keeps the mapping table ARP, which contains collection of these 3

objects

5.3.8 Entropy class object

This class is used to keep the list of all destination IP addresses for which the switch

sends packets. Each destination IP will be added to this IP address list.

The class is used to monitor every packet and extract destination IP addresses.

It tracks the destination IP for which packets are being sent out. For each packet it cal-

culates an entropy value for requested destination IP addresses.

We set the threshold for the entropy value, in case the calculated entropy value is below

the threshold, it will block the port which corresponds to the destination IP address.

In the entropy class the total number of packets travel through switch is equal to 50,

then this entropy class will search the current packet destination IP in list of destination

IP addresses maintain in Entropy, after calculating the count of IP in the from the list, it

then calculates entropy for that destination IP address. In case that entropy value is low-

er than 0.5 threshold value, then it indicates that sender keeps on sending packets to this

IP and due to security risk, it blocks that port.

As traffic increases and more packet flows through network (ideally once number of

travelled packets through this switch reach up to 50 and more) this class tries to calcu-

late entropy for each incoming packet.

A conditional check has been done to determine if 80 distinct IP’s exist for the packets

outbound from the switch. In case we have a network of 10 hosts, then we have a max-

imum of 10 destinations, in that case entropy class will never calculates entropy of in-

27

coming packets. If one host is victim of malicious user sending large packets, then en-

tropy value is always = 1 which will never trigger blocking of port.

To summarize, this class is used to block some specific port if large number of packets

are intended for. This observation of destination IP is activated as soon as 50 packets

have flown through this switch.

5.3.9 Normal traffic

The traffic simulator module simulates traffic flow over the network. It is executed in

the following syntax:

python ./traffic_simulator.py

The destination IP addresses must be defined in the config.json file. The destinationLas-

tOctetRange parameter in the config.json file define the start and end for the last octet.

The ‘2’ and ‘65’ are the arguments passed to the generate_destination_ip function that

generates the destination IP addresses.

For the destination IP the user will have to specify the range of the IP addresses. For

example, if the user were to send the range from 1 to 256, then IP addresses will be

generated in the format 10.0.0.D, where D would lie in between the start and end speci-

fied as parameters. The source IP address will be generated randomly by a function.

Once the source and destination IP are defined, the packets will be sent over the net-

work using the Scapy python library.

5.3.10 Class details

The class contains the following functions:

• generate_source_ip:

It generates source IP addresses. The IP address first segment range from 1 to

256 where first segment should be a number except:

o 10

o 127

o 254

o 255

o 1

o 2

28

o 169

o 172

o 192

The remaining 3 octets will be from 1 to 256.

• generate_destination_ip:

This function generates destination IP address using range values passed through

the config.json file

• simulate_network_traffic:

It creates 1000 random packets so that they can be sent to the destination IP ad-

dress. It calls above methods to generate source IP address and destination IP

address where destination IP address will be created using a range

Once the script is executed, we should be able to see the pox controller generating a list

of values for entropy as shown below. The least value obtained is the threshold entropy

for normal traffic. To avoid false positives and negatives due to loss of a switch we

choose an entropy value of 1.00 instead of 1.14. This implies 10% fault tolerance. The

threshold entropy can also be referred as the base entropy, as discussed in section

4.1.1.1. A threshold for entropy was chosen and lower values will be considered as at-

tacks.

29

FIGURE 5. Normal traffic entropy

5.3.11 Entropy values

Entropy is calculated based on a list of IP addresses that packets are being sent to. All

the destination IP addresses have the same first three octets of 10.0.0. The fourth octet is

randomized in the traffic_simulator.py file. These IP addresses correspond to the 64

hosts in our Mininet topology. For every 50 packets sent, a dictionary is maintained.

The dictionary comprises the destination IP addresses and the number of times a packet

has been sent to that address. Finally, entropy is calculated as follows:

Entropy = - (count/50) * log10(count/50)

30

Where 50 represents the number of packets counted in the dictionary.

5.3.12 Attack behaviour

The Network Attack Simulator sends bulk packets to devices on the network. It is exe-

cuted using the following syntax:

python ./attack_simulator.py 10.0.0.64

Typically, we can configure the destination IP through command line arguments. The

main purpose of this module is to simulate how a malicious user tries to attack a re-

source over the network.

The class creates packet using Scapy. It creates 2500 packets with random source IP’s

and single destination to which it can send packets.

5.3.13 Class details

It contains the following functions

• generate_random_ip:

It generates IP address of source. The IP address first segment range from 1

to 256 where first segment should be number except

o 10

o 127

o 254

o 255

o 1

o 2

o 169

o 172

o 192

The 4th octet will be from 1 to 256

• send_packets:

31

It creates 500 packets and sent to specified IP address. It again uses the

Scapy library

• main:

This method gets called on class start-up. It loads the configurations from the

json file. It simply loops five time and calls the send_packets function

The parameter targetIP being passed through the json configuration file to at-

tack_simulator.py matches the IP address of the 64th host. Attack_simulator.py sends

network packets from random source IP addresses to a single host. This host is deter-

mined by the argument passed. Thus, attack packets are sent specifically to host 64.

FIGURE 6. Attack packets sent to the 64th host

When attack_simulator.py is run, we see that the IP list dictionary generated has dra-

matic changes in its count values. Host 10.0.0.64 now has extremely high values of

count as attack packets are being sent to it. Thus, every 50 packets, host 64 has received

several packets whereas the other hosts have received far fewer.

32

FIGURE 7. Count for Host 10.0.0.64

Host 10.0.0.64 has a count of 40 whereas the other hosts have far fewer.

When one host receives many more packets than the other host, the value of entropy tends to decrease.

Thus, we see the entropy fall below the earlier threshold of 1.

The decrease in entropy value serves as a signal that network traffic is irregular.

In Figure 7 above another dictionary is being displayed. This dictionary is only created when the

entropy values decreases below 0.5.

This is a dictionary that contains dictionary values within it.

The key values correspond to the switches in our Mininet topology.

The value dictionaries have keys that correspond to the port in the relevant switch. The final value

shows us the number of times those ports have been activated.

This serves as another good measure for irregular network traffic and helps us detect a DDOS attack.

When the count for any port of any switch exceeds 50, a warning is displayed in the pox controller.

33

FIGURE 8. DDOS attack detected

Look at figure 8. We see that port number 1 of switch 1 has been blocked to prevent the attack from

causing more damage. If you look at the dictionary you will notice that port 1 of switch 1 has been

activated 79 times.

Similar port 3 of switch 2 has been activated 67 times while port 9 of switch 9 has been activated 71

times.

These are direct indicators of an attack taking place and the program blocks these ports once it realizes

that the network is under attack.

34

6 TEST RESULTS

To visualize the packets, it was decided to use Wireshark.

Prior to any traffic on the loopback, using Wireshark, the loop back interface was moni-

tored to obtain the as-is status.

FIGURE 10. No network traffic scenario

Then, from one of the host windows, the traffic was generated, and again the data was

captured using Wireshark.

35

FIGURE 10. Normal traffic scenario

The attack traffic was generated, and in a similar manner to before the traffic was cap-

tured.

36

FIGURE 11. Attack traffic scenario

Putting all of it together, below is a how the network traffic looked over a period. Over

here only one host was used to generate the attack traffic. Had more than one host been

used the amplitude on the Y-axis would have been higher:

FIGURE 12. Traffic pattern combined

Where the x axis is the tick interval in seconds, and the Y-axis are the packets/Tick.

37

7 CONCLUSION AND RECOMMENDATIONS

Ensuring the network architecture is secure from DDoS attack is essential. We do not

want experiences such as the Mirai attack to make us learn the lessons the hard way.

Using SDN it has been demonstrated that it is possible to create an early detection

mechanism. It was demonstrated that within the first 50 packets of traffic, a malicious

attack can be detected. By using entropy as a detection method, it is possible to detect

attacks regardless of the landscape of the hosts.

The drawback of this method is that it could not separate malicious from legitimate

packets.

The centralized control in SDN provides a single point of failure in a network and if this

is overlooked, it can be detrimental to the setup. One solution would be to have distrib-

uted SDN architectures.

Having visualization tools to monitor the flow rate at the switch layer will be helpful.

It is suggested to for future work to explore DDOS detection using machine learning

algorithms. A neural network can learn patterns from sequences of network traffic, ac-

cordingly ‘react’ to malicious traffic and take necessary action.

It is also recommended to use GNS tool. Using this tool, complex network topologies

can be constructed. Simulation of various platforms can be done with ease. The simulat-

ed network can be connected to the real world.

38

REFERENCES

1. [Online] https://www.packtpub.com/books/content/pentesting-using-python.

2. [Online] https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-

mirai-botnet.

3. [Online] https://www.bleepingcomputer.com/news/security/15-percent-of-all-iot-

device-owners-dont-change-default-passwords/.

4. Hamdija Sianovic, Sasa Mrdovic. Analysis of Mirai Malicious Software.

5. Defending Against New-Flow Attack in SDN-Based Internet of Things. s.l. :

TONG XU, DEYUN GAO, PING DONG, HONGKE ZHANG, CHUAN HENG

FOH, HAN-CHIEH CHAO.

6. [Online] https://opensourceforu.com/2016/07/implementing-a-software-defined-

network-sdn-based-firewall/.

7. Narmeen Zakaria Bawany, Jawwad A. Shamsi, Khaled Salah. DDoS Attack

Detection and Mitigation Using SDN: Methods, Practices, and Solutions.

8. Detection of DDoS Attacks Against Wireless SDN Controllers Based on the Fuzzy

Synthetic Evaluation Decision-making Model. QIAO YAN, QINGXIANG GONG

and FANG-AN DENG.

9. [Online] https://www.sdxcentral.com/security/definitions/security-challenges-

sdn-software-defined-networks/.

39

APPENDICES

Appendix 1. Source Code Listing – traffic_simulator.py

1. import sys
2. import getopt
3. import time
4. from os import popen
5. import logging
6. logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
7. from scapy.all import sendp, IP, UDP, Ether, TCP
8. from random import randrange
9. import json
10.
11. config = None
12.
13. def generate_source_ip():
14. not_valid = config["trafficConfig"]["notValidFirstOctet"]
15. first = randrange(1,256)
16. while first in not_valid:
17. first = randrange(1,256)
18. ip = ".".join([str(first),str(randrange(1,256)),str(randrange(1,256)),str(

randrange(1,256))])
19. return ip
20.
21. def generate_destination_ip():
22. first = 10
23. second =0; third =0;
24.
25. range_str = config["trafficConfig"]["destinationLastOctetRange"]
26. range_str = str(range_str)
27. start , end = range_str.split(':')
28. start = int(start)
29. end = int(end)
30.
31. ip = ".".join([str(first),str(second),str(third),str(randrange(start, end)

)])
32. return ip
33.
34. def simulate_network_traffic():
35. iterations = config["trafficConfig"]["networkTrafficSize"]
36. interface = popen('ifconfig | awk \'/eth0/ {print $1}\'').read()
37. for i in range(iterations):
38. pack-

ets = Ether()/IP(dst=generate_destination_ip(),src=generate_source_ip())/UDP(d
port=80,sport=2)

39. print(repr(packets))
40.
41. if interface != '':
42. sendp(packets,iface=interface.rstrip(),inter=0.1)
43. else:
44. sendp(packets,inter=0.1)
45.
46. def load_configurations():
47. with open('config.json') as j_file:
48. config = json.load(j_file)
49. return config
50.
51.
52. if __name__ == '__main__':
53. config = load_configurations()
54. simulate_network_traffic()

40

Appendix 2. Source Code Listing – attack_simulator.py

1. import sys
2. import time
3. from os import popen
4. import logging
5. logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
6. from scapy.all import sendp, IP, UDP, Ether, TCP
7. from random import randrange
8. import time
9. import json
10.
11. config = None
12.
13. def generate_random_ip():
14. not_valid =config["attackConfig"]["notValidFirstOctet"]
15. first = randrange(1,256)
16. while first in not_valid:
17. first = randrange(1,256)
18. print(first)
19. ip = ".".join([str(randrange(1,256)),str(randrange(1,256)), str(randrange(1,

256)),str(randrange(1,256))])
20. print(ip)
21. return ip
22.
23. def trigger_ddos():
24. iterations = config["attackConfig"]["ddosIteration"]
25. for i in range (1,iterations):
26. send_packets()
27. time.sleep (10)
28.
29. def send_packets():
30. dstIP = config["attackConfig"]["targetIP"]
31. print(dstIP)
32. src_port = config["attackConfig"]["srcPort"]
33. dst_port = config["attackConfig"]["targetPort"]
34. interface = popen('ifconfig | awk \'/eth0/ {print $1}\'').read()
35.
36. attack_size = config["attackConfig"]["ddosAttackMagnitude"]
37.
38. for i in range(0,attack_size):
39. pack-

ets = Ether()/IP(dst=dstIP,src=generate_random_ip())/UDP(dport=dst_port,sport=
src_port)

40. print(repr(packets))
41.
42. if interface != '':
43. sendp(packets,iface=interface.rstrip(),inter=0.025)
44. else:
45. sendp(packets,inter=0.025)
46.
47. def load_configurations():
48. with open('config.json') as json_file:
49. json_config = json.load(json_file)
50. return json_config
51.
52.
53. if __name__=="__main__":
54. config = load_configurations()
55. trigger_ddos()

41

Appendix 3. Source Code Listing – virtual_switch.py

1. # Copyright 2017-2018 Rashid Ali Mirza
2. #
3. # Licensed under the Apache License, Version 2.0 (the "License");
4. # you may not use this file except in compliance with the License.
5. # You may obtain a copy of the License at:
6. #
7. # http://www.apache.org/licenses/LICENSE-2.0
8. #
9. # Unless required by applicable law or agreed to in writing, software
10. # distributed under the License is distributed on an "AS IS" BASIS,
11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12. # See the License for the specific language governing permissions and
13. # limitations under the License.
14.
15.
16. import datetime
17. from pox.core import core
18. import pox
19.
20. from pox.lib.packet.ethernet import ethernet, ETHER_BROADCAST
21. from pox.lib.packet.ipv4 import ipv4
22. from pox.lib.packet.arp import arp
23. from pox.lib.addresses import IPAddr, EthAddr
24. from pox.lib.util import str_to_bool, dpid_to_str
25. from pox.lib.recoco import Timer
26.
27. import pox.openflow.libopenflow_01 as of
28.
29. from pox.lib.revent import *
30. import itertools
31. import time
32. #editing
33.
34. from detection import Entropy
35. diction = {}
36. ent_obj = Entropy()
37. set_Timer = False
38. defendDDOS=False
39. #blockPort=""
40. #end of editing
41. log = core.getLogger()
42. # Timeout for flows
43. FLOW_IDLE_TIMEOUT = 10
44.
45. # Timeout for ARP entries
46. ARP_TIMEOUT = 60 * 2
47.
48. # Maximum number of packet to buffer on a switch for an unknown IP
49. MAX_BUFFERED_PER_IP = 5
50.
51. # Maximum time to hang on to a buffer for an unknown IP in seconds
52. MAX_BUFFER_TIME = 5
53.
54.
55. class ArpTableEntry (object):
56. """
57. Not strictly an ARP entry.
58. We use the port to determine which port to forward traffic out of.
59. We use the MAC to answer ARP replies.
60. We use the timeout so that if an entry is older than ARP_TIMEOUT, we
61. flood the ARP request rather than try to answer it ourselves.
62. """

42

63. def __init__ (self, port, mac):
64. self.timeout = time.time() + ARP_TIMEOUT
65. self.port = port
66. self.mac = mac
67.
68. def __eq__ (self, other):
69. if type(other) == tuple:
70. return (self.port,self.mac)==other
71. else:
72. return (self.port,self.mac)==(other.port,other.mac)
73. def __ne__ (self, other):
74. return not self.__eq__(other)
75.
76. def isExpired (self):
77. if self.port == of.OFPP_NONE: return False
78. return time.time() > self.timeout
79.
80.
81. def dpid_to_mac (dpid):
82. return EthAddr("%012x" % (dpid & 0xffFFffFFffFF,))
83.
84.
85. class Switch (EventMixin):
86. def __init__ (self, fakeways = [], arp_for_unknowns = False, wide = False):

87. # These are "fake gateways" -- we'll answer ARPs for them with MAC
88. # of the switch they're connected to.
89. self.fakeways = set(fakeways)
90.
91. # If True, we create "wide" matches. Otherwise, we create "narrow"
92. # (exact) matches.
93. self.wide = wide
94.
95. # If this is true and we see a packet for an unknown
96. # host, we'll ARP for it.
97. self.arp_for_unknowns = arp_for_unknowns
98.
99. # (dpid,IP) -> expire_time
100. # We use this to keep from spamming ARPs
101. self.outstanding_arps = {}
102.
103. # we can't deliver because we don't know where they go.
104. self.lost_buffers = {}
105.
106. # For each switch, we map IP addresses to Entries
107. self.arpTable = {}
108.
109. # This timer handles expiring stuff
110. self._expire_timer = Timer(5, self._handle_expiration, recurring=Tru

e)
111.
112. core.listen_to_dependencies(self)
113.
114. def _handle_expiration (self):
115. # Called by a timer so that we can remove old items.
116. empty = []
117. for k,v in self.lost_buffers.iteritems():
118. dpid,ip = k
119.
120. for item in list(v):
121. expires_at,buffer_id,in_port = item
122. if expires_at < time.time():
123. # This packet is old. Tell this switch to drop it.
124. v.remove(item)
125. po = of.ofp_packet_out(buffer_id = buffer_id, in_port = in_por

t)
126. core.openflow.sendToDPID(dpid, po)
127. if len(v) == 0: empty.append(k)
128.

43

129. # Remove empty buffer bins
130. for k in empty:
131. del self.lost_buffers[k]
132.
133. def _send_lost_buffers (self, dpid, ipaddr, macaddr, port):
134. """
135. We may have "lost" buffers -- packets we got but didn't know
136. where to send at the time. We may know now. Try and see.
137. """
138. if (dpid,ipaddr) in self.lost_buffers:
139.
140. bucket = self.lost_buffers[(dpid,ipaddr)]
141. del self.lost_buffers[(dpid,ipaddr)]
142. log.debug("Sending %i buffered packets to %s from %s"
143. % (len(bucket),ipaddr,dpid_to_str(dpid)))
144. for _,buffer_id,in_port in bucket:
145. po = of.ofp_packet_out(buffer_id=buffer_id,in_port=in_port)
146. po.actions.append(of.ofp_action_dl_addr.set_dst(macaddr))
147. po.actions.append(of.ofp_action_output(port = port))
148. core.openflow.sendToDPID(dpid, po)
149.
150. def _handle_incoming_packets (self, event):
151. dpid = event.connection.dpid
152. inport = event.port
153. packet = event.parsed
154. global set_Timer
155. global defendDDOS
156. global blockPort
157. timerSet =False
158. global diction
159.
160. def block_port():
161. global diction
162. global set_Timer
163. if not set_Timer:
164. set_Timer =True
165.
166. if len(diction) == 0:
167. print("Empty diction ",str(event.connection.dpid), str(event.por

t))
168. diction[event.connection.dpid] = {}
169. diction[event.connection.dpid][event.port] = 1
170. elif event.connection.dpid not in diction:
171. diction[event.connection.dpid] = {}
172. diction[event.connection.dpid][event.port] = 1
173. else:
174. if event.connection.dpid in diction:
175.
176. if event.port in diction[event.connection.dpid]:
177. temp_count=0
178. temp_count =diction[event.connection.dpid][event.port]
179. temp_count = temp_count+1
180. diction[event.connection.dpid][event.port]=temp_count
181. else:
182. diction[event.connection.dpid][event.port] = 1
183.
184. print("\n",datetime.datetime.now(), ": printing diction ",str(dict

ion),"\n")
185.
186.
187. def _port_blocker_callback ():
188. global diction
189. global set_Timer
190. if set_Timer==True:
191.
192. for k,v in diction.iteritems():
193. for i,j in v.iteritems():
194. if j >=50:

44

195. print("__
___")

196. print("\n",datetime.datetime.now(),"******* DDOS DETECT
ED ********")

197. print("\n",str(diction))
198. print("\n",datetime.datetime.now(),": BLOCKED PORT NUMBER

 : ", str(i), " OF SWITCH ID: ", str(k))
199. print("\n___

__")
200.
201. dpid = k
202. msg = of.ofp_packet_out(in_port=i)
203. core.openflow.sendToDPID(dpid,msg)
204.
205. diction={}
206.
207. if not packet.parsed:
208. log.warning("%i %i ignoring unparsed packet", dpid, inport)
209. return
210.
211. if dpid not in self.arpTable:
212. # New switch -- create an empty table
213. self.arpTable[dpid] = {}
214. for fake in self.fakeways:
215. self.arpTable[dpid][IPAddr(fake)] = ArpTableEntry(of.OFPP_NONE,

216. dpid_to_mac(dpid))
217.
218. if packet.type == ethernet.LLDP_TYPE:
219. # Ignore LLDP packets
220. return
221.
222. if isinstance(packet.next, ipv4):
223. log.debug("%i %i IP %s => %s", dpid,inport,
224. packet.next.srcip,packet.next.dstip)
225. ent_obj.destination_ip_observer(event.parsed.next.dstip)#editing
226. print("\n***** Entropy Value = ",str(ent_obj.value),"*****\n")
227. if ent_obj.value <0.5:
228. block_port()
229. if timerSet is not True:
230. Timer(2, _port_blocker_callback, recurring=True)
231. timerSet=False
232. else:
233. timerSet=False
234.
235.
236. # Send any waiting packets...
237. self._send_lost_buffers(dpid, packet.next.srcip, packet.src, inpor

t)
238.
239. # Learn or update port/MAC info
240. if packet.next.srcip in self.arpTable[dpid]:
241. if self.arpTable[dpid][packet.next.srcip] != (inport, packet.src

):
242. log.info("%i %i RE-

learned %s", dpid,inport,packet.next.srcip)
243. if self.wide:
244. # Make sure we don't have any entries with the old info...
245. msg = of.ofp_flow_mod(command=of.OFPFC_DELETE)
246. msg.match.nw_dst = packet.next.srcip
247. msg.match.dl_type = ethernet.IP_TYPE
248. event.connection.send(msg)
249. else:
250. log.debug("%i %i learned %s", dpid,inport,packet.next.srcip)
251. self.arpTable[dpid][packet.next.srcip] = ArpTableEntry(inport, pac

ket.src)
252.
253. # Try to forward
254. dstaddr = packet.next.dstip

45

255. if dstaddr in self.arpTable[dpid]:
256. # We have info about what port to send it out on...
257.
258. prt = self.arpTable[dpid][dstaddr].port
259. mac = self.arpTable[dpid][dstaddr].mac
260. if prt == inport:
261. log.warning("%i %i not sending packet for %s back out of the "

262. "input port" % (dpid, inport, dstaddr))
263. else:
264. log.debug("%i %i installing flow for %s => %s out port %i"
265. % (dpid, inport, packet.next.srcip, dstaddr, prt))
266.
267. actions = []
268. actions.append(of.ofp_action_dl_addr.set_dst(mac))
269. actions.append(of.ofp_action_output(port = prt))
270. if self.wide:
271. match = of.ofp_match(dl_type = packet.type, nw_dst = dstaddr

)
272. else:
273. match = of.ofp_match.from_packet(packet, inport)
274.
275. msg = of.ofp_flow_mod(command=of.OFPFC_ADD,
276. idle_timeout=FLOW_IDLE_TIMEOUT,
277. hard_timeout=of.OFP_FLOW_PERMANENT,
278. buffer_id=event.ofp.buffer_id,
279. actions=actions,
280. match=match)
281. event.connection.send(msg.pack())
282. elif self.arp_for_unknowns:
283. # We don't know this destination.
284. # First, we track this buffer so that we can try to resend it la

ter
285. # if we learn the destination, second we ARP for the destination

,
286. # which should ultimately result in it responding and us learnin

g
287. # where it is
288.
289. # Add to tracked buffers
290. if (dpid,dstaddr) not in self.lost_buffers:
291. self.lost_buffers[(dpid,dstaddr)] = []
292. bucket = self.lost_buffers[(dpid,dstaddr)]
293. en-

try = (time.time() + MAX_BUFFER_TIME,event.ofp.buffer_id,inport)
294. bucket.append(entry)
295. while len(bucket) > MAX_BUFFERED_PER_IP: del bucket[0]
296.
297. # Expire things from our outstanding ARP list...
298. self.outstanding_arps = {k:v for k,v in
299. self.outstanding_arps.iteritems() if v > time.time()}
300.
301. # Check if we've already ARPed recently
302. if (dpid,dstaddr) in self.outstanding_arps:
303. # Oop, we've already done this one recently.
304. return
305.
306. # And ARP...
307. self.outstanding_arps[(dpid,dstaddr)] = time.time() + 4
308.
309. r = arp()
310. r.hwtype = r.HW_TYPE_ETHERNET
311. r.prototype = r.PROTO_TYPE_IP
312. r.hwlen = 6
313. r.protolen = r.protolen
314. r.opcode = r.REQUEST
315. r.hwdst = ETHER_BROADCAST
316. r.protodst = dstaddr
317. r.hwsrc = packet.src

46

318. r.protosrc = packet.next.srcip
319. e = ethernet(type=ethernet.ARP_TYPE, src=packet.src,
320. dst=ETHER_BROADCAST)
321. e.set_payload(r)
322. log.debug("%i %i ARPing for %s on behalf of %s" % (dpid, inport,

323. r.protodst, r.protosrc))
324. msg = of.ofp_packet_out()
325. msg.data = e.pack()
326. msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))
327. msg.in_port = inport
328. event.connection.send(msg)
329.
330. elif isinstance(packet.next, arp):
331. a = packet.next
332. log.debug("%i %i ARP %s %s => %s", dpid, inport,
333. {arp.REQUEST:"request",arp.REPLY:"reply"}.get(a.opcode,
334. 'op:%i' % (a.opcode,)), a.protosrc, a.protodst)
335.
336. if a.prototype == arp.PROTO_TYPE_IP:
337. if a.hwtype == arp.HW_TYPE_ETHERNET:
338. if a.protosrc != 0:
339.
340. # Learn or update port/MAC info
341. if a.protosrc in self.arpTable[dpid]:
342. if self.arpTable[dpid][a.protosrc] != (inport, packet.src)

:
343. log.info("%i %i RE-

learned %s", dpid,inport,a.protosrc)
344. if self.wide:
345. # Make sure we don't have any entries with the old inf

o...
346. msg = of.ofp_flow_mod(command=of.OFPFC_DELETE)
347. msg.match.dl_type = ethernet.IP_TYPE
348. msg.match.nw_dst = a.protosrc
349. event.connection.send(msg)
350. else:
351. log.debug("%i %i learned %s", dpid,inport,a.protosrc)
352. self.arpTable[dpid][a.protosrc] = ArpTableEntry(inport, pack

et.src)
353.
354. # Send any waiting packets...
355. self._send_lost_buffers(dpid, a.protosrc, packet.src, inport

)
356.
357. if a.opcode == arp.REQUEST:
358. # Maybe we can answer
359.
360. if a.protodst in self.arpTable[dpid]:
361. # We have an answer...
362.
363. if not self.arpTable[dpid][a.protodst].isExpired():
364. # .. and it's relatively current, so we'll reply ourse

lves
365.
366. r = arp()
367. r.hwtype = a.hwtype
368. r.prototype = a.prototype
369. r.hwlen = a.hwlen
370. r.protolen = a.protolen
371. r.opcode = arp.REPLY
372. r.hwdst = a.hwsrc
373. r.protodst = a.protosrc
374. r.protosrc = a.protodst
375. r.hwsrc = self.arpTable[dpid][a.protodst].mac
376. e = ethernet(type=packet.type, src=dpid_to_mac(dpid),

377. dst=a.hwsrc)
378. e.set_payload(r)

47

379. log.debug("%i %i answering ARP for %s" % (dpid, inport
,

380. r.protosrc))
381. msg = of.ofp_packet_out()
382. msg.data = e.pack()
383. msg.actions.append(of.ofp_action_output(port =
384. of.OFPP_IN_POR

T))
385. msg.in_port = inport
386. event.connection.send(msg)
387. return
388.
389. log.debug("%i %i flooding ARP %s %s => %s" % (dpid, inport,
390. {arp.REQUEST:"request",arp.REPLY:"reply"}.get(a.opcode,
391. 'op:%i' % (a.opcode,)), a.protosrc, a.protodst))
392.
393. msg = of.ofp_packet_out(in_port = inport, data = event.ofp,
394. action = of.ofp_action_output(port = of.OFPP_FLOOD))
395. event.connection.send(msg)
396.
397.
398.
399.
400.
401. def launch (fakeways="", arp_for_unknowns=None, wide=False):
402. fakeways = fakeways.replace(","," ").split()
403. fakeways = [IPAddr(x) for x in fakeways]
404. if arp_for_unknowns is None:
405. arp_for_unknowns = len(fakeways) > 0
406. else:
407. arp_for_unknowns = str_to_bool(arp_for_unknowns)
408. core.registerNew(Switch, fakeways, arp_for_unknowns, wide)
409.

48

Appendix 4. Source Code Listing – detection.py

1. import math
2. from pox.core import core
3. log = core.getLogger()
4.
5. class Entropy(object):
6. count = 0
7. entDic = {}
8. ipList = []
9. dstEnt = []
10. value = 1
11.
12. def destination_ip_observer(self, element):
13. l = 0
14. self.count +=1
15. self.ipList.append(element)
16. if self.count == 50:
17. for i in self.ipList:
18. l +=1
19. if i not in self.entDic:
20. self.entDic[i] =0
21. self.entDic[i] +=1
22. self.calculate_entropy(self.entDic)
23. log.info(self.entDic)
24. self.entDic = {}
25. self.ipList = []
26. l = 0
27. self.count = 0
28.
29. def calculate_entropy (self, lists):
30. l = 50
31. elist = []
32. for k,p in lists.items():
33. c = p/float(l)
34. c = abs(c)
35. elist.append(-c * math.log(c, 10))
36. log.info('Entropy = ')
37. log.info(sum(elist))
38. self.dstEnt.append(sum(elist))
39. if(len(self.dstEnt)) == 80:
40. print(self.dstEnt)
41. self.dstEnt = []
42. self.value = sum(elist)
43.
44. def __init__(self):
45. pass

49

Appendix 5. Source Code Listing – config.json

1. {
2. "attackConfig":
3. {
4. "notValidFirstOctet":[10,127,254,255,1,2,169,172,192],
5. "srcPort":80,
6. "targetPort":1,
7. "targetIP":"10.0.0.64",
8. "ddosIteration":5,
9. "ddosAttackMagnitude":500
10. },
11.
12. "trafficConfig":
13. {
14. "notValidFirstOctet":[10,127,254,1,2,169,172,192],
15. "srcPort":2,
16. "destinationPort":80,
17. "destinationLastOctetRange":"2:65",
18. "networkTrafficSize":1000
19.
20. }
21.
22.
23. }

