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The thesis presents the research on the demand forecasting solution within the context of 
the production planning system. Since any production planning depends primarily on suc-
cessful demand predictions, developing an accurate forecasting model is crucial for the suc-
cess of the final solution. In turn, the production planning system will resolve multiple prob-
lems of the client company including the unjustified overproduction, the inefficiency of the 
production process and enable the personnel currently performing the planning manually to 
concentrate on other activities. 
 
The theoretical background related to the forecasting solutions studied over the course of 
the research is described. Besides, the theory related to model ensembling is presented. 
Furthermore, six forecasting models were developed and described in the thesis. Among 
the models, the one-dimensional convolutional neural network is presented as an alternative 
to more traditional forecasting solutions. Finally, the benchmark, which uses the actual his-
torical data obtained from the client, is described, and the techniques for model evaluation 
are discussed. 
 
The benchmark findings demonstrate promising results for the majority of the products ex-
amined. Besides, it is pointed out that averaging the forecasts of multiple models resulted in 
more accurate predictions in the 4 cases out of the 9 analyzed. At the end of the thesis, the 
possible improvements are discussed, which will further increase the models' accuracies, 
thus enabling even more efficient operation of the production planning system. 

Keywords time series forecasting, production planning, Prophet, ARIMA, 
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1 Introduction 

Production planning has long been one of the key aspects of any manufacturing industry. 

This is especially true nowadays since widespread digitalization and macroeconomic 

conditions cause businesses to rethink their processes reaching new heights in effi-

ciency. However, any production planning technique - be it manual or automated - heav-

ily depends on successful demand forecasting. Indeed, in order to plan production, it is 

required that future demand is predicted with high enough accuracy. 

Due to the recent popularity of machine learning methods, an increasing number of busi-

nesses is searching for possibilities to incorporate it, thus improving their internal prac-

tices, replacing human work, where possible, and eventually, increasing profits. Demand 

forecasting is a long-studied field with significant research history in academia and nu-

merous successful application cases. Still, as machine learning techniques progress rap-

idly, there is room for improvement over existing solutions. 

The project has been carried out for Jubic Oy, a relatively small company located in 

Vaasa, Finland, which provides system and software development, consulting and cloud 

hosting services. In the case of the project, a client company, which operates in the 

manufacturing industry, ordered end-to-end development of the production planning sys-

tem that would suit their custom needs. 

The objective of the thesis is to research what solution or algorithm should be used for 

demand forecasting required by the mentioned system. More specifically, it will be re-

searched whether a combination of forecasting solutions can produce similar or better 

results compared to any single model. 

Finally, while the main focus of the thesis is on demand forecasting methodology, it is 

important that the context, namely the production planning software, is considered since 

it might influence certain decisions. Thus, the high-level architecture of the system and 

the interactions between its components are described in Section 5.3 
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2  Theoretical background 

In this section, some key concepts of production planning and time series forecasting 

that are particularly relevant to the case of the client company are outlined. First, a typical 

production planning process is outlined, and the concept of a genetic algorithm is ex-

plained. Then, some of the most relevant forecasting models are introduced and shortly 

explained. Besides, time series decomposition is reviewed before the model descriptions 

to provide further theoretical background. 

2.1     Production planning 

 Production planning can be defined as a procedure of determining what manufacturing 

units should perform what tasks at what times in the future with the purpose of maximiz-

ing or minimizing an objective, such as the number of production batches, total expendi-

ture or amount of produced goods.[1] A production planning process typically consists of 

multiple stages that form a hierarchy, with higher-level ones acting as guidelines for more 

detailed lower-level stages. The stages include a business plan, an aggregate production 

plan, master production scheduling (MPS) and sequencing among others. [2 pp. 114 – 

117] The previously mentioned stages were listed starting from the more general ones 

(see Figure 1).  

 

The listed stages will be briefly described in the following paragraphs. The information in 

the paragraphs is primarily based on Starr [2 pp. 114 – 117]. A business plan is the first 

Figure 1.  Production planning stages. Based on the information from Starr (2008) [2 pp. 114 –
117] 



3 

 

  

stage of a production planning process. It outlines general activity of a company for the 

following half to one and a half years. A business plan typically takes into consideration 

financial, marketing, production and R&D sections of a company, thus providing an 

agreement between all the parties as to what the company’s focus is going to be for the 

next long-term period.  

Aggregate production planning is concerned with how much of the goods specified in the 

business plan can and should be supplied over the next long-term period. An aggregate 

production plan usually specifies output levels on a weekly or monthly basis making sure 

the planned amounts are feasible given facilities of the organization. However, to provide 

further detail to the production plan, master production scheduling is used receiving me-

dium-term and/or short-term demand forecasts and the aggregate production plan as its 

inputs. MPS is usually based on such factors as demand, production capacity, storage 

levels and storage capacities, costs of production and materials, etc. Results of an MPS 

stage are often presented as a set of tables each corresponding to a separate product 

the organization in question produces, where each column corresponds to a time unit in 

the future, e.g. weeks or days, while rows indicate required production amounts, de-

mand, stock balances and other important factors. Table 1 presents a simple MPS result 

table for a single product. 

Finally, the sequencing and scheduling stage is mainly concerned with what machinery 

should be run at what times to meet the plan provided by MPS. This stage specifies start 

and end running times for each machinery unit as well as what products are manufac-

tured in these time intervals and, in some cases, what materials are to be used for it. 

Besides, this stage often manages workforce allocation as well. 
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Table 1. A sample MPS table. Based on Beasley [3]. 

Item N 17.04 18.04 19.04 20.04 

Demand (forecast) 2098 2245 3056 1129 

Number of employees 15 15 15 10 

Storage cost (per unit) 0.5 0.5 0.5 1 

Production capacity (per hour) 8900 8900 8900 8900 

Initial inventory 11345    

Salary per employee 15 15 15 25 

Firm planned order 2000    

Planned order ? ? ? ? 

Projected available balance ? ? ? ? 

Available to promise ? ? ? ? 

Different techniques could be used to solve each of the beforementioned planning 

stages. For instance, MPS could be solved using a general linear programming model 

or a so-called transportation model [3]. However, the sequencing stage is often ex-

pressed as a mixed integer linear programming (MILP) problem [4-6]. And while explain-

ing MILP is beyond the scope of this thesis, it should be noted that it is NP-hard, which 

means it often cannot be solved using “exact” optimization methods [4]. Due to this limi-

tation, one of metaheuristic methods should be used. A commonly used option is an 

approach using a genetic algorithm (GA) [7], which is described in detail in the remaining 

part of the subsection. 

Genetic algorithms 

A genetic algorithm is a metaheuristic and a branch of a larger field of study called evo-

lutionary algorithms. Genetic algorithms are inspired by natural evolution process, where 

a chance of survival of a given individual is determined by its fitness. Since GA can be 

useful for solving very complex otherwise non-feasible optimization problems, it has been 

successfully applied across various domains and industries. The information provided in 

this subsection is based on Mitchell [8 pp. 2 - 10]. 

Before proceeding further with the explanation, it is necessary to define several terms 

commonly used when dealing with GA. Firstly, an individual is a single proposed solution 
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which might or might not be sufficiently suitable. Secondly, a fitness function or an ob-

jective function is a function used to evaluate “fitness” of an individual. Very often, the 

purpose of a GA is to minimize or maximize an objective function. Furthermore, each 

individual contains one or multiple chromosomes, each of which, in turn, contains a num-

ber of genes. Each gene can be thought about as a particular trait of an individual. It has 

to be noted that sometimes an individual can only have a single chromosome by defini-

tion, whereas in other cases it is defined with multiple chromosomes. For simplicity, the 

case with a single chromosome is considered in this section. The genes generally rep-

resent parts of a particular solution to a problem. For instance, taking an example from 

production planning context, each gene may represent a time unit, during which a given 

machinery should or should not operate depending on the value of the gene. The previ-

ous sentence demonstrates how a real-life problem can be translated to suit GA context. 

Such a translation from an actual problem to its gene representation is defined by an 

algorithm’s author and in many cases can be challenging. 

Besides the previously explained concepts, selection, crossover and mutation should be 

introduced as well. Firstly, selection is a process of selecting a subset of individuals that 

would be able to produce offspring i.e. the next generation. Generally, a certain number 

of the best individuals are selected. Secondly, crossover is a process of mixing two chro-

mosomes of two individuals with the purpose of producing a new chromosome, which is 

used to form a new individual. There are multiple types of crossover, among which some 

of the most popular ones are single-point, multi-point and uniform. Finally, mutation is a 

process of randomly changing certain genes in a chromosome of a newly created indi-

vidual. Mutation is important and allows next-generation individuals to have qualities that 

are not present in their parents’ generation. 

A simple genetic algorithm is usually executed according to the following steps. First, a 

population of n individuals is initialized. The initialization is generally performed using 

randomly generated individuals, but it can also be specified manually if needed. Then, 

each individual is evaluated by applying a fitness function to it. After this, a so-called 

survivor selection is performed selecting a subset of individuals based on their fitness 

values. This is followed by a crossover process producing offspring which is going to 

become the next generation. The described selection and crossover processes are re-

peated multiple times until a total number of offspring individuals reaches n. The new 

individuals then become a new generation, and the algorithm described in this paragraph 
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is repeated. The execution is terminated after several generations based on one or mul-

tiple conditions. The conditions commonly used for genetic algorithm termination are 

reaching a certain specified number of generations, having a certain number of genera-

tions in a row during which a fitness value of the best individual does not change, achiev-

ing a specified fitness value by at least one individual, etc. 

2.1. Time series forecasting 

The rest of the section will describe the most important aspects of time series forecasting, 

its decomposition and list some of the most popular forecasting models that are used 

nowadays. If not stated otherwise, the information presented in this section is based on 

chapters 6-8, 11.1, 11.3 and 12.4 of Hyndman and Athanasopoulos [9].  

2.1.1. Overview 

According to Mahalakshmi et al., time series forecasting is a type of temporal data mining 

[10]. Time series data is defined as a number of certain values each associated with a 

timestamp distributed over a time interval [10]. Frequency of the timestamps can range 

from milliseconds to months to decades depending on a specific situation and needs. 

Time series analysis in general and forecasting specifically are used across a wide range 

of industries and fields. Some of the areas of application include medical domains, stock 

markets, astronomy, demand prediction, energy demand forecasting and management, 

predictive maintenance in multiple industries, etc. [11] Moreover, certain fields, such as 

already mentioned meteorology, almost exclusively rely on time series forecasting in 

their operations. Finally, an increasing number of businesses that are new to the tech-

nique are readily adopting it nowadays as a way to stay competitive in today’s world 

where digitalization and process automation makes a significant impact on the market. 

The length of the period for which a forecast is executed is often called forecasting hori-

zon. Depending on the length of a horizon, time series forecasting can be classified into 

three categories, namely short-term forecasting, medium-term forecasting and long-term 

forecasting. Although the boundaries for the terms are not strictly defined, it is generally 

considered that forecasts with a horizon of up to two to three months are short-term, 
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while those with a horizon longer than a year are long-term. [10] This thesis focuses 

primarily on short-term forecasting, which is justified by needs to provide predictions with 

daily resolution. 

In addition to this, the notions of a prediction interval and a point forecast should be 

explained briefly. Since any forecast is never a guarantee of the way some future events 

will unfold, it is important to understand how much uncertainty exists when a variable is 

forecasted. For example, when forecasting a daily demand that for the previous five 

years has never exceeded the value of 80 units, it is extremely improbable that in the 

following seven days the daily demand happens to be equal to 9000 units. On the other 

hand, values between 30 and 60 are considerably more feasible in this example. This 

loosely represents the notion of probability interval. Specifically, when it is said that a 

95% probability interval at time T for a variable y is between values a and b, it is meant 

that the variable y will occupy a value within this range with the probability of 95%. Fur-

thermore, a tighter interval can be specified, for which the percentage probability value 

would typically be smaller e.g. 80%. Thus, a forecasting probability interval represents a 

range of values that a variable of interest is expected to occupy with relatively high prob-

ability. 

In contrast to this, a point forecast is a single value, which can be thought about as a 

middle point of corresponding prediction intervals. To clarify it further, one can think 

about a prediction interval, which, by becoming increasingly tighter, eventually con-

verges to a single point. It can be argued that a single point forecast does not carry 

significant meaning without uncertainty intervals associated with it since it is impossible 

to understand how accurate the forecasting model of interest is. Nevertheless, when 

evaluating a model, it is common to execute a benchmark to produce multiple point fore-

casts and calculate related errors based solely on them. Thus, while prediction intervals 

will be featured in the final implementation of the system, the scope of the thesis is limited 

to point forecasts only. 

2.1.2. Decomposition of time series 

Time series data can be represented as three separate components, namely a trend, a 

seasonality and a so-called remainder component. This is usually helpful for analyzing 
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data. For example, having a trend extracted might provide a better insight into how suc-

cessful the last year of sales was. Or, on the other hand, having the data stripped of its 

seasonal and trend components helps to understand whether the time series is volatile. 

While there are multiple methods available for performing time series decomposition, 

Seasonal and Trend decomposition using Loess (STL) [12] is among the most popular 

ones and has a number of advantages compared to other methods. 

Figure 2 demonstrates an example of such decomposition. The first frame depicts the 

partial demand data for one of the products of the client company. Natural to sales data, 

the demand contains both yearly and weekly seasonal components, which can also be 

seen in Figure 2. Finally, although not obvious form the original data, the demand time 

series contains a positive trend. The values of the y axes were removed from the figure 

due to the confidentiality policy of the client company.  
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Figure 2. Decomposition of time series. The demand with yearly and weekly seasonal compo-
nents 
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Any time series can be represented as a combination of its components in two ways – 

as a sum of the trend, seasonality and the remainder, or as a product of the components. 

The most relevant way of decomposition in a given situation depends on the trend vari-

ation and the seasonal component’s volatility. 

Apart from being used for understanding data deeper and manually analyzing its pat-

terns, time series decomposition can also be applied when forecasting future values. For 

example, in a simple case, when a seasonal component is cyclic and does not change 

over time, and a trend component increases linearly, forecasting the data at future 

timestamps can be relatively simple by first applying one of non-seasonal forecasting 

methods to the remainder component, and then adding the trend and the seasonal com-

ponents to the predicted results. Further information on using decomposition in forecast-

ing is provided in the Section 2.2.3. 

2.2.3 Forecasting models 

This section will shortly describe several major existing forecasting models. In many 

cases, a detailed and highly technical explanation is required to fully understand the 

forecasting models. While this section provides certain level of technical detail, a reader 

is encouraged to seek further information by following the provided references.  

Exponential smoothing 

Exponential smoothing is one of the most popular forecasting techniques and considered 

to be a catalyst for numerous other widely used forecasting methods. Since the time it 

was proposed in the middle of the 20th century, it was successfully applied across a wide 

range of industries. 

The simplest version of the technique, called simple exponential smoothing (SES), is 

based on the modified naïve forecasting methods. One of the naïve forecasting methods 

is to assume that the value of a variable at time T depends only on the value at time T – 

1 e.g. simply is equal to it. Another naïve approach is to sum all the available data points 

prior to T and divide the result by their number. These approaches either assign a weight 

of 1 to the previous value, as in the former case, or assign equal weights to all the history 
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data, as in the latter case. In the case of SES, however, weights assigned to the history 

data are exponentially decaying, thus making more recent data points have a larger im-

pact on the predicted values compared to more distant data points. 

However, the described technique works well only for time series data without clear sea-

sonality and trend components. A modified version of the algorithm described uses three 

sets of decaying weights, which define a trend, a seasonality and level components of a 

currently predicted value. The values are then combined to produce the forecasted value. 

Multiple versions of exponential smoothing exist including additive and multiplicative in 

respect to a seasonality, and the ones using a dumped version of a trend component. 

However, it is outside the scope of the thesis to describe the methods in detail. 

ARIMA 

Autoregressive integrated moving average (ARIMA) is another model for time series pre-

diction commonly used across various fields. The method can be described as a combi-

nation of three other techniques, namely differencing, autoregressive models (AR) and 

moving average models (MA). The techniques are briefly outlined below. 

Differencing can be defined as transforming a sequence of time series values into a 

sequence of values representing differences between consecutive data points of the in-

itial sequence. Essentially, the operation extracts information about how a variable 

changes its value over time, as opposed to what exact values the variable is equal to. 

This is often useful to make time series data stationary, that is to remove or reduce its 

trend and seasonality components. Differencing can be applied multiple times to the 

same data sequence, which is usually referred to as second-, third- or, more generally, 

nth-order differencing. 

An autoregressive model represents a currently forecasted variable y𝑡  as a linear com-

bination of its 𝑝 previous values. 
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    y𝑡  = 𝑐 +  𝜑1y𝑡−1 +  𝜑2y𝑡−2  +  … +  𝜑𝑝y𝑡−𝑝  + 𝜀𝑡      (1) 

In Formula 1, y𝑡  is a currently forecasted variable, c is a constant, 𝜀𝑡 is white noise and 

𝜑1 −   𝜑𝑝 are regression parameters that define the model. A particular autoregressive 

model is defined by its parameter 𝑝, which indicated how many previous values of the 

predicted variable should be used for forecasting its current value. 

A moving average model, on the other hand, represents a current value of a variable y 

as a linear combination of 𝑞 previous forecast errors (Formula 2). 

y𝑡  = 𝑐 +  𝜀𝑡 +  𝜃1𝜀𝑡−1  +  𝜃2𝜀𝑡−2 +  … +  𝜃𝑞𝜀𝑡−𝑞 (2) 

Similar to an autoregressive model, a moving average model has a parameter 𝑞, which 

defines how many forecast errors in the past should be considered when forecasting the 

current value of a variable. 

Thus, having differencing, AM and MA introduced, ARIMA model can be described fur-

ther. With ARIMA, the current value of a variable y𝑡 differenced 𝑑 times is equal to the 

sum of AM(𝑝) and MA(𝑞) applied to the 𝑝 and 𝑞 past values of the differenced sequence. 

Formula 3 demonstrates the previous sentence. 

y′𝑡  = 𝑐 +  𝜑1y′𝑡−1  +  … +  𝜑𝑝y′
𝑡−𝑝

+  𝜃1𝜀𝑡−1  +  … +  𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡              (3) 

Therefore, an ARIMA model is defined by 3 parameters 𝑝, 𝑑 and 𝑞. The meaning of the 

parameters in the model was described before. 
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However, the outlined model is only capable of handling non-seasonal data. For sea-

sonal data, a seasonal ARIMA model should be used, which is defined as 

ARIMA(𝑝, 𝑑, 𝑞)( 𝑃, 𝐷, 𝑄) 𝑚 (Formula 4) 

ARIMA (𝑝, 𝑑, 𝑞)  ( 𝑃, 𝐷, 𝑄) 𝑚⏟    
     (4) 

 ↑ ↑    
 Non-seasonal part Seasonal part of    
 of the model of the model    

      

The parameters 𝑃, 𝐷 and 𝑄 carry the same meaning as 𝑝, 𝑑 and 𝑞 but are applied to a 

seasonal component of data. Besides, another variable m is introduced indicating a num-

ber of data points per year. It is required for processing the seasonal component. 

ARIMA models can provide time series forecasting with relatively high precision if the 

described parameters are assigned to optimal values. For this, software packages could 

be used such as the popular auto.arima() function in R programming language. 

STL forecasting 

Although the previously described forecasting models can be used to predict time series 

data of significant complexity, in all of the cases it is assumed that data contains only a 

single seasonality. However, in practice, data often contains more than one seasonal 

component. For example, daily time series, if recorded over a prolonged period of time, 

may include weekly, monthly and yearly seasonal components. Moreover, even weekly 

time series may present a challenge for traditional forecasting approaches since yearly 

seasonality is non-integer in this case (Formula 5). 

365.25/7≈52.179 (5) 
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Finally, a dual-calendar seasonality can be poorly handled by trivial models. A dual-cal-

endar seasonality is common for time series that originate from countries that follow mul-

tiple calendars, e.g. Gregorian and Hijri. In such cases, time series data exhibits more 

than one yearly seasonality. Moreover, unlike other cases of complex seasonality, the 

yearly patterns in a dual-calendar case overlap but are not necessarily nested, which 

introduces an additional challenge for a forecasting model of choice. Finally, in cases 

when a company operates in international market, even greater number of calendars 

may affect the data. 

One of the simplest ways to tackle the described issue is by using the STL decomposi-

tion, previously described in Section 2.1.2, but with multiple seasonal components. The 

decomposed data is then can be used for forecasting by applying any of the previously 

described methods to the remainder component of the time series with adjustments 

made taking all the seasonal components into account. 

TBATS 

TBATS is another model that is capable of dealing with complex seasonalities. The ac-

ronym represents a set of techniques used in the model, namely a trigonometric sea-

sonal component, Box-Cox transformation, ARMA errors, a trend and a seasonality. The 

TBATS model is outlined in this subsection with the information based on De Livera at 

al. [13] if not stated otherwise. 

Firstly, TBATS is a modification built on a simpler BATS model, therefore, BATS will be 

introduced first. BATS is a model that consists of multiple simpler approaches combined, 

which makes it useful for forecasting complex time series data. The model includes Box-

Cox transformation, ARMA errors as well as trend and seasonal components. The men-

tioned components form the acronym for the model i.e. BATS. The mentioned Box-Cox 

transformation is a type of power transformation, which is often useful when dealing with, 

for instance, skewed data or data with unstable variance. A one-parameter version of 

the transformation, which is used in the TBATS model, is defined as given in Formula 6. 
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𝑦𝑖
(𝜆)

 = {
𝑦𝑖

𝜆 − 1

𝜆
 , 𝜆 ≠ 0

ln 𝑦𝑖 , 𝜆 = 0

 

 

(6) 

One of the restrictions of having Box-Cox transformation applied to data is the fact that 

the input values should be strictly greater than zero. However, since time series data 

often has positive or non-negative values, the restriction usually does not present a prob-

lem. 

In addition, a trigonometric seasonal component is included, which is represented by the 

first T in the model acronym. Thus, the model can be defined as in Formula 7. 

TBATS(ω, φ, p, q, {m1, k1},{m2, k2},...,{mT , kT }) (7) 

Here, ω stands for a Box-Cox parameter, φ stands for a dumping parameter in the trend 

component, p and q stand for ARMA(p, q) parameters and m1, m2, m3, etc. are used to 

specify seasonal periods. Finally, since the trigonometric representation of seasonal 

components is based on Fourier series, k1, k2, k3, etc. parameters are introduced to 

specify the number of harmonics required for the (i)th seasonality. 

To conclude the subsection, it should be mentioned that TBATS model can be particu-

larly useful in situations when one or several seasonal components do not stay the same 

as time progresses. On the other hand, a well-known disadvantage of the model is that 

it takes significant time to compute an output. [9, chapter 11.1] 

Neural networks 

The information presented in this subsection is based on Ian Goodfellow et al. [14] if not 

stated otherwise. 

Artificial neural networks (ANN) are mathematical models loosely based on human 

brains. They are useful for representing complex non-linear functions. Recently, ANNs 
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gained significant popularity due to a series of successes in multiple fields, such as im-

age classification, natural language processing, voice interpretation, machine transla-

tion, audio generation, etc. Although ANNs haven’t found such widespread usage in time 

series forecasting solutions, it is an active area of research and certain recent publica-

tions made a significant progress. Some of the published research papers are discussed 

further in this subsection. 

An artificial neural network usually consists of multiple layers of “neurons”. A neuron here 

represents a mathematical function that accepts an output of a previous layer as its input 

and outputs a result, which, in turn, acts as an input for the following layer. 

Each neuron usually consists of two parts, namely a linear part and a non-linear one. 

The linear part applies a certain weight w to the input, adds a bias b and returns the 

result. The non-linear part accepts the result of the linear part as its input, applies a 

function s(z) to it and returns the result. The function s(z) can theoretically be any math-

ematical function, but in practice, the choice is usually limited to several popular options 

e.g. sigmoid, tanh, etc. See Formula 8 for the sigmoid function. 

𝑆(𝑥) =
1

1 +  𝑒−𝑥
=

𝑒𝑥

𝑒𝑥  +  1
 (8) 

The first layer of an ANN is often called an input layer. On the input layer, no function is 

applied to the data, instead it acts as an entry point for the data. The final layer is usually 

called an output layer and returns a final value (or a range of values) i.e. the result of the 

network computation. All the layers in-between the input and output layers are called 

hidden layers. A neural network without hidden layers conceptually behaves in a similar 

way to a linear regressor. On the other hand, if an ANN has one or multiple hidden layer, 

it is capable of representing a non-linear function. In cases when there are hidden layers 

present in an ANN, it is commonly referred to as a deep neural network (DNN). 
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Figure 3. Feed-forward neural network. Based on Goodfellow et al. (2016) [14, chapter 6] 

Weights of an ANN are not defined a priori, but instead learned during a process called 

training. On the high level, the training process can be described as follows. First, 

weights of a given neural network are randomly initialized. Then, training data i.e. data 

that consists of both inputs and corresponding outputs, is fed to the network. After a 

forward pass, a network calculates an output based on its current weight values. The 

produced output is then compared to the correct one, and the weights are updated in a 

way to “adjust” the network, so that it would produce an output closer to the correct one 

if given the same input. While several methods for updating weights exist, stochastic 

gradient descent (SGD) is by far the most commonly used one. The described procedure 

is performed multiple times until desirable performance is achieved, or no performance 

improvement is possible any further. The trained model is then evaluated on a test set. 

One major issue often encountered when training a model is overfitting. Overfitting can 

be defined as a situation when a model adjusts its weights to predict an output for inputs 

specifically in a training data set at the expense of worse performance when exposed to 

similar data not found in the training set. Overfitting can happen for multiple reasons but 

training a model for an excessive number of epochs is a common one. On the other 

hand, underfitting is a situation when a model requires further training since its perfor-

mance is not satisfactory even when exposed to the training and/or validation set. There-

fore, a training process can be viewed as finding a suitable tradeoff between underfitting 

and overfitting. 
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The notions of training, testing and validation sets should also be clarified. A training set 

consists of pairs of input and output data. It is used to train a model adjusting its weights 

following the process outlined above. However, since a model can potentially adjust its 

weights to suit the data contained in a testing set exclusively, a validation set of data is 

used to evaluate the performance of the model on a data not seen during its training 

process. The evaluation on a validation set is often performed multiple times during a 

training process to keep track of “actual” performance of a model and to prevent potential 

overfitting. Furthermore, although validation data is not seen by a model during its train-

ing, it is still taken into consideration when adjusting the model’s hyperparameters e.g. 

the number of layers, the number of neurons in each layer, a non-linearity function used 

in the neurons, etc. Therefore, since the adjustments are made while considering results 

produced by evaluating on the validation set, the model can potentially demonstrate 

promising results with the validation set, but not necessarily with other data. Thus, to 

finally evaluate a model’s performance, a test set is used. A model should be evaluated 

on a test set only when all necessary adjustments have already been made, which 

demonstrates results on data never seen before. 

Figure 2 depicts the simplest type of DNNs often called a feed-forward neural network. 

Besides this one, other types of artificial neural networks (ANN) exist as well. For exam-

ple, a convolutional neural network (CNN) is an ANN consisting of multiple layers of 

filters. Each layer typically contains multiple filters, also known as kernels in this context. 

Filters of each layer are applied to an output of a previous layer by performing a dot-

product operation and typically a non-linear function of choice. Due to the fact that the 

dimensions of the filters are usually smaller than incoming data, CNN is capable of ex-

tracting local patterns within the data. This enables the data to have a notion of location 

as it flows downstream through layers. Although the performed operation (a sliding win-

dow of filters being repeatedly applied to an input) is not a convolution in strictly technical 

terms, the described ANN is still referred to as a convolutional neural network. 

Convolution in the aforementioned cases is generally said to be n-dimensional, where n 

is the number of dimensions over which the "sliding" operation is performed. For exam-

ple, when applied to an image, convolution is usually thought to be two-dimensional, 

whereas when applied to a time series data, one-dimensional convolution is often used. 

Although CNNs are mostly used for classification problems e.g. image recognition, they 
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can and have been successfully applied to regression problems in general and time se-

ries forecasting in particular. [15] 

 

Before some of the successful publications on using CNNs for time series forecasting 

can be introduced, a notion of dilated convolution should be explained. In a non-dilated 

convolution, a kernel is repeatedly applied to the whole input data with a striding step S. 

The part that has to be emphasized is that although the stride can be greater than one, 

thus potentially skipping some parts of the input data, a kernel of size K is always applied 

to K adjacent data points. Contrary to this, with dilated convolution, a kernel is applied to 

data points that are each L positions away from one another. [16] It is helpful to note that 

L-dilated convolution is, in fact, a more general definition of “traditional” convolution, any 

non-dilated convolution can be thought about as 1-dilated convolution. Figure 3 depicts 

the explained concept.  

One of the advantages of dilated convolution is the fact that the receptive field of a kernel 

applied increases considerably while the number of trainable parameters is kept the 

same. Besides, unlike the similar concepts of pooling and strided convolution, resolution 

of data is not reduced as a result of the operation. [16] These aspects make dilated 

convolution useful in multiple cases. 

Recently, several attempts to use one-dimensional convolution for time series forecast-

ing have emerged. The most notable of such examples is Borovykh at al. [15]. The pro-

posed model is largely inspired by the previously published paper about the WaveNet 

model [17]. Specifically, the paper proposes to use multiple dilated convolutional layers 

to extract information from time series data. The authors claim that by utilizing layers of 

Figure 4.  a) 1-dilated convolution, b) 2-dilated convolution, c) 4-dilated convolution. Based on Yu 
and Koltun (2016) [16] 
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dilated convolution, it is possible to extract data over a significantly wide time frame, thus 

incorporating more data when doing the forecast. The publication shows promising re-

sults when applying the proposed model to financial time series data. [15] 

Besides, another type of ANN, namely recurrent neural networks (RNN), has been most 

often used when dealing with time series data. Due to the recurrent nature of RNNs, they 

are useful when dealing with sequential data e.g. a sequence of words, measurements 

over time, etc. Figure 4 demonstrates a typical RNN schematically. 

  

In cases when input data is presented as a sequence, only the first element is fed to the 

network initially. When the second element is fed, the result of the previous computation 

acts as an input as well. The same process is repeated for each element in the sequence, 

thus incorporating information about previous sequence elements. However, when sim-

ple neurons are used, RNNs tend to perform rather poorly due to several reasons, such 

as the vanishing gradient. To resolve this problem, several more sophisticated compu-

tational blocks are used, among which the long short-term memory (LSTM) and the gated 

recurrent unit (GRU) are the most popular ones. While describing LSTM and GRU in 

technical detail is beyond the scope of the thesis, it is sufficient to say that they often 

perform better at carrying information from previous sequence elements.  

Several recent publications demonstrate promising results when applying RNN models 

for time series forecasting. For example, Siami-Namini et al. [18] claim that the proposed 

Figure 5.  Recurrent neural network. Based on Goodfellow et al. (2016) [14, chapter 
10] 
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LSTM-based model significantly outperforms the ARIMA model. Nevertheless, traditional 

approaches still demonstrate dominance over the described deep learning methods [19]. 

2.2.4 Combining forecasting models 

While it might appear as obvious that selecting the strongest model out of multiple op-

tions would provide the highest precision of forecasting, multiple studies suggest that a 

combination of models, which is often referred to as an ensemble, should be used in-

stead. [20, 21, 23, 24] For example, Clemen [20] concludes that a combination of fore-

casts almost always gives better results compared to individual models. Besides, Arm-

strong [21] in his review claims that a forecast combination should be used in a majority 

of cases, especially when a high degree of uncertainty about what model is more correct 

is present, since it typically results in a solution that is at least as accurate as the worst 

individual model in the combination. This claim was also supported by a number of other 

publications [22]. 

Furthermore, a significant amount of research has been dedicated to finding the most 

efficient way of combining forecasting models. According to the review by Clemen [20], 

a simple averaging performs well in a majority of contexts. Rob J. Hyndman and George 

Athanasopoulos [9, chapter 12.4] in their book support this claim as well. Similarly, Arm-

strong [21] suggests that when no knowledge about the field in which forecasting is per-

formed is available, using simple averaging is a reasonable option. He also claims that 

using trimmed mean is beneficial when at least five forecasting models are available [21]. 

The trimmed mean is obtained by averaging all available models except for the ones 

showing the highest and the lowest results i.e. the two extreme models. Besides, an 

effort is noticed in the academia for developing various frameworks for combining time 

series forecasts. For instance, Hui Zoua and Yuhong Yang [24] propose to use the AF-

TER algorithm that convexly combines results of several prediction models. 

Finally, multiple studies suggest that although individual forecasting solutions might pro-

vide better results than model averaging, the latter usually results in a more stable solu-

tion, which has a lower chance of producing critical mistakes. Thus, many practitioners 

might benefit from forecast model combinations, since it is often more crucial in real-life 
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situations to have stable results rather than unstable ones, even at the expense of po-

tentially better benchmark outcomes. [21, 22] 

3 Current state analysis 

This section describes the production planning and demand forecasting methods and 

practices currently used by the client company. A number of disadvantages and ineffi-

ciencies in the current process are identified, and problems to be resolved are high-

lighted. 

Sales campaigns 

Before the current practices for demand forecasting and production planning are out-

lined, the notion of a sales campaign should be explained. During a campaign, certain 

customers are able to buy certain products for discounted prices. Since the campaigns 

are usually limited in terms of the time period during which orders can be placed, it pro-

vides an additional incentive for customers to order larger amounts of goods than is nor-

mally done. The campaigns play an important role in the demand forecasting since sales 

volumes of products that are being campaigned usually increase by a significant amount. 

Current demand forecasting practices 

At present, demand forecasts are produced manually by a group of experts with deep 

domain knowledge and multiple years of experience in the industry. The forecasts are 

made regularly, up to several times a week, and incorporate the information about al-

ready existing sales orders, sales campaigns, previous year sales data that corresponds 

with the same time of the year e.g. the same month, week number, day of the week, etc., 

and about general economic situation on the market. Moreover, national holidays con-

siderably affect the sales volumes as well. For example, sales amounts increase signifi-

cantly several days before Christmas each year. Such holiday effects are currently taken 

into consideration as well, although only qualitatively since no formal methodology is 

used to incorporate the information. 
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Besides, the tools used for the forecasting by the experts are currently limited to Mi-

crosoft Excel, which is used simply for storing the information. Hence, the whole fore-

casting process is performed by people, who are prone to be influenced by a variety of 

factors. This, eventually, can result in significant imprecisions of the produced forecasts.  

Current production planning practices 

Similar to the demand forecasting practices, production planning is currently performed 

manually by a group of experts. The production planning process is mainly affected by 

demand forecasts, available workforce as well as by the existing customs. For an exam-

ple of the existing custom, manufacturing of product N can be considered. The actual 

product’s name is not disclosed due to the company’s non-disclosure policies. The prod-

uct N is currently manufactured twice a week on certain weekdays. While there are mul-

tiple factors that contribute to the schedule, a habit of the management personnel is 

among them. Moreover, no other technologies are used in the production planning pro-

cess other than the Microsoft Excel software. 

Problems similar to those of the forecasting practices can, thus, be identified.  The men-

tioned issue of subjectivity equally applies to the production planning process as well. 

This and several other issues that are caused by the current methodology are further 

discussed in the last part of the section. 

Problems to solve 

In this subsection, the issues that result from the described practices are listed. As al-

ready mentioned, the subjectivity of the people currently producing the demand forecasts 

and production plans is only a single problem that needs to be resolved. Another signif-

icant issue is unjustified overproduction. Since underdelivering a product to a customer 

might have serious consequences for the manufacturing client company, including sev-

ering all business ties with the customer, it is crucial to always meet the demand. This, 

in turn, often results in producing more items than is subsequently sold. Since the shelf-

life of the manufactured goods is limited, the overproduction causes the manufacturer to 

either sell the excessive goods for significantly lower price or, in the worst cases, to dis-

card the products completely, which results in diminished profits. Thus, overproduction 
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is another major problem that catalyzed the decision to order the forecasting and plan-

ning software solution. 

Moreover, the inefficiency of the production process is another issue to tackle. In addition 

to paying for the workforce when the production lines are in operation, preparing a line 

for production as well as halting a production process involves extra costs. In addition to 

this, the changeover process, i.e. the necessary maintenance required when switching 

production of one product to another on the same production line, requires time and, 

therefore, additional spending. Since, at present moment, planning is performed manu-

ally, the production process is suboptimal in terms of the costs. Therefore, the production 

planning system should optimize the process by reducing the described costs whenever 

possible. 

Finally, the production planning system will save hundreds of work hours for the domain 

experts, enabling them to perform other activities. Due to the fact that the experts usually 

occupy managerial positions and possess rich domain knowledge, automating the fore-

casting and production planning processes will save considerable amounts of money for 

the client company. Thus, the importance of the production planning system to the com-

pany has been shown. 

4 Technologies and methods 

4.1. Data 

The data used in the solution was obtained from the client company. The data contains 

sales quantities for all of the products produced by the client company for the time period 

from 30th October 2016 to 15th June 2018. Besides the sales amounts, the data also 

contains the information about the campaigns. Finally, each data point contains the in-

formation about a customer who made the purchase. This also allows for additional data 

analysis. 



25 

 

  

The described data was collected from the client’s ERP system via SQuirreL SQL Client 

software, which is introduced at the end of the Section 4.2. The database underlying the 

ERP system was accessed and the necessary data was downloaded to local CSV files. 

4.2. Technology stack 

Prophet 

Prophet is a forecasting tool, which provides APIs for Python [25] and R [26] program-

ming languages. The project was open-sourced by Facebook in early 2017 and quickly 

gained popularity among analysts and practitioners. The forecasting tool is especially 

useful for business forecast problems. In particular, Prophet shows promising results 

when data has several distinct properties such as strong seasonal components e.g. 

weekly, yearly, etc., presence of multiple “holidays”, which influence behaviour of time 

series values around them, and a trend being a non-linear curve that can change due to 

important business events [27]. More importantly, Prophet is also capable of handling a 

limited number of outliers and missing data points [27]. All the described properties make 

the tool suitable for the case of the client company. 

Another feature that distinguishes Prophet from other forecasting tools is its ease of use. 

In fact, with data of reasonable quality, even people without previous training for time 

series forecasting are able to produce quality results since Prophet’s API is intuitive and 

can be understood by non-experts. On the other hand, there are plenty of parameters 

that can be configured, which provides possibilities for practitioners with domain 

knowledge to adjust the default forecasting model to one’s needs. [27] 

Finally, methods that are used internally by Prophet are described briefly. Without diving 

into technical details, it can be mentioned that Prophet is an additive regression model 

that incorporates a data trend, a seasonality and holidays as its components. The trend 

is defined as a linear or logistic growth curve, where a user is able to specify which of 

the two types should be used in a given case [28]. The forecasting tool automatically 

detects trend change points in historical data and assumes that a similar trend and its 

rate of change is preserved in the future [28]. The yearly seasonal component is defined 

in terms of Fourier series with Fourier Order being a configurable parameter [29]. 
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Keras 

Keras is a deep learning Python library, which provides an easy-to-use API and is capa-

ble of using either Tensorflow, Theano or CNTK as its engine [30]. Keras is distinct from 

other deep learning libraries mainly due to the following factors. First of all, it is user-

friendly, allowing for fast-prototyping and enabling practitioners with little experience to 

experiment with their ideas and create fast implementations. Secondly, it is extensive 

enough to provide experienced practitioners with the capabilities to implement complex 

ANNs. Finally, it can be executed on both a CPU and a GPU taking advantage of either 

without a need for complex configuration or manual optimization [30]. All of the described 

properties make the library suitable for the task at hand. 

Pandas 

Pandas is a data analysis and data structures library for Python with special emphasis 

on performance and ease of use. The high performance is achieved by the fact that some 

of the most important parts of the library are written in Cython or C programming lan-

guage [31]. The library provides a rich and powerful API for handling in-memory data 

structures, called “Data Frames”. Besides, the library has rich functionality oriented spe-

cifically for time series processing and analysis [31]. For example, Pandas provides func-

tions for automatic interpolation of time series data, calculating moving window regres-

sions as well as for aggregating data with functions such as “group by”. Finally, the library 

is used by both commercial and governmental organizations in a variety of industries 

including finance, neuroscience, advertising, etc. [31] 

Pipenv 

Pipenv is a packaging tool and a dependency manager for Python projects. It makes 

one’s workflow significantly simpler by providing automatic management of Python virtu-

alenv. Besides, it automatically creates and updates Pipfile and Pipfile.lock, ensuring 

truly deterministic builds and clear dependency management. While Pipfile contains all 

the dependencies of a given project together with their version numbers, Pipfile.lock con-

tains the whole dependency tree with hashes and other necessary information to make 

sure the dependency graph can be deterministically recreated whenever needed.[32] 
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Statsmodels 

Statsmodels is a Python module that provides classes and functions for multiple statisti-

cal models. The models include regression, generalized linear models (GLM), robust 

linear models (RLM), discrete choice models and contrast analysis utilities [33]. Besides, 

the module contains classes and functions for time series analysis, which include vector 

autoregressive models (VAR), univariate autoregressive moving average models 

(ARIMA) as well as exponential smoothing models of various complexity e.g. simple and 

Holt Winter’s version of it [34]. The mentioned Holt Winter’s exponential smoothing model 

is used in the proposed solution described in the Section 5.2. 

The ExponentialSmoothing function accepts the training data as a parameter and allows 

specifying the trend and seasonality types e.g. additive or multiplicative. The object re-

turned by the function allows calling its fit function, which accepts multiple optional pa-

rameters allowing further customization of the exponential smoothing model. One of the 

parameters is optimized, which – when set to True – enables an automatic search for 

the optimal model parameters aiming to maximize the log-likelihood. [35] 

Forecast 

Forecast [36] is a widely used package for R programming language that contains func-

tionality for analyzing and forecasting time series data. Among tens of other functions, it 

contains a fully automatic implementation of ARIMA, which enables searching for ARIMA 

parameters that are optimal for the given data [36]. Moreover, it includes the implemen-

tation for the TBATS forecasting method [36], which was described in Section 2.2.3 of 

the thesis. Finally, the stlf function allows a user to perform STL decomposition and fore-

casting based on one of the simpler methods with a single function call.  The mentioned 

functions make the package especially relevant in the context of the task, despite the 

fact that, unlike the other technologies described, the package is implemented in R pro-

gramming language [26] and not in Python [25]. In addition to the already provided infor-

mation, further description of the tbats and stlf functions is presented in the following two 

paragraphs. 

The tbats function implements the described earlier TBATS forecasting method. It allows 

passing all the described TBATS parameters as the function parameters, thus satisfying 



28 

 

  

a wide range of needs. More importantly, the function allows leaving one or several pa-

rameters undefined, which will result in searching for their optimal values [36]. The func-

tion utilizes parallel processing by default, thus considerably improving its performance 

[36]. 

Meanwhile, the stlf function performs the STL time series decomposition, applies one of 

its forecast methods to the data with removed seasonalities, and finally, applies the sea-

sonality back to the forecasted non-seasonal data. While the method used for forecasting 

seasonally-adjusted data can be specified, the corresponding parameter can be left un-

defined allowing the function to make the choice for the forecasting method used [36]. 

RPy2 

Due to the fact that majority of the logic related to time series forecasting for the client's 

company is implemented in Python, a tool is required that allows utilizing useful aspects 

of R programming language, such as the widely used forecast package, while keeping 

Python as the main programming language. RPy2 is a utility that resolves the described 

issue. It provides an interface between the two programming languages enabling users 

of Python to utilize the full capabilities of R programming language and its numerous 

libraries. In the context of the implementation described in the next section, the tool is 

used to access the stlf and tbats functions of the forecast package. [37] 

Pyramid 

Pyramid is an open-source project developed to bring the functionality of the popular 

auto.arima function of the forecast package to Python. The implementation provides an 

interface similar to that of the forecast package. Internally, Pyramid utilizes other Python 

libraries, such as statsmodels and scikit-learn. [38] 

The function searches for the optimal ARIMA parameters based on AIC or BIC values of 

potential candidate models. Since searching among all the possible values of the ARIMA 

parameters would be infeasible in terms of time, the actual search resembles a grid 

search in that it does not try all the potential parameter sets, but only a limited number 

of them. Moreover, the upper and lower boundaries for each of the parameter values can 

be specified, thus further reducing the search space. 
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In addition to this, the auto_arima function allows passing an additional time series as an 

extra regressor. The feature is used for passing the described campaigns data as a re-

gressor due to its significant effect on the forecast. 

SQuirreL SQL Client 

SQuirreL SQL Client provides functionality for inspecting the structure of JDBC compliant 

databases, retrieving data from database tables as well as for issuing SQL commands 

[39]. The software, which utilizes pluggable drivers, can be used for accessing a variety 

of different databases due to its extensible nature. A user is able to add her own driver 

to gain access to a database that is not supported by default. 

4.3. Evaluation methods 

Choosing a method for discriminating one model in favour of another is an important 

decision that might dramatically influence one’s results. This section describes the eval-

uation methods used in the final year project and provides reasons for why they were 

selected. Besides, the time horizon of choice and cross-validation techniques are dis-

cussed as well. The information provided in this subsection is based on chapter 3.4 of 

Hyndman and Athanasopoulos. [9 chapter 3.4] 

Evaluating a forecasting model usually consists of estimating errors of potential candi-

date models and subsequently selecting a model that demonstrates the smallest aver-

age error when applied to the data of interest. Forecast errors can be divided into multiple 

groups, such as scale-dependent errors, percentage errors and scaled errors. The scale-

dependent errors include such popular options as the mean absolute error (MAE) and 

the root mean squared error (RMSE). 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑟𝑟𝑜𝑟(𝑡)|) (9) 
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𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛(𝑒𝑟𝑟𝑜𝑟(𝑡)2) (10) 

In Formulas 9 and 10, 𝑒𝑟𝑟𝑜𝑟(𝑡) is equal to an absolute difference between the actual and 

the forecasted values of a variable at time 𝑡. The percentage error group includes such 

choices as the mean absolute percentage error (MAPE) and the symmetric mean abso-

lute percentage error (sMAPE) (Formula 11). This group of errors has been used in mul-

tiple forecasting competitions including M3-competition [40] and several Kaggle chal-

lenges [41, 42]. Nevertheless, several issues associated with the errors make them un-

desirable when selecting an evaluation method of choice. Firstly, in cases when 𝑦(𝑡) is 

close or equal to zero and 𝑦′(𝑡) is reasonably correct, meaning it is close or equal to zero 

as well, the formula produces either an undefined value, due to the division of zero by 

zero, or a potentially very big value. In Formula 11, 𝑦′(𝑡) is a forecasted value of the 

variable 𝑦 at time 𝑡. Secondly, the result of sMAPE can be negative, which is an unex-

pected outcome when an “absolute” error is desired.  

𝑠𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(200|𝑦(𝑡) − 𝑦′(𝑡)| / (𝑦(𝑡) + 𝑦′(𝑡))) (11) 

Instead of using the described model evaluation methods, Hydman and Koehler [40] 

proposed to use the mean absolute scaled error (MASE), which avoids the previously 

discussed issues. MASE is defined as given in Formula 12, where 𝑒(𝑡) is a difference 

between forecasted and actual values at time 𝑡, T is the number of data points in the 

training data set, m defines seasonality of the data i.e. number of data points in a sea-

sonal period, and 𝑌𝑖 −  𝑌𝑖−𝑚 represents a difference between 2 data points in the 

time series being positioned 𝑚 points apart from each other. Effectively, this error 

shows how much better or worse a given forecasting model is compared to a 

naïve seasonal forecast applied to the training data, providing the data of interest, 

in fact, has a seasonal component. 
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𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|
𝑒(𝑡)

1

𝑇−𝑚
∑ |𝑌𝑖 −  𝑌𝑖−𝑚|𝑇

𝑖=𝑚+1

|) (12) 

Thus, for the purpose of the task at hand, both MASE and RMSE are chosen to 

be used. The former is used due to its claimed superiority and correctness, while 

the latter still is a popular choice in a variety of forecasting competitions [43-45] 

and, therefore, should be considered as well. Nevertheless, the model selection 

and evaluation are performed based primarily on MASE. 

A time horizon of seven days is selected when doing the evaluation. The reason 

for the choice is primarily based on the need of the client company and the spec-

ification for the production planning system. The forecast which is conducted 

manually by the experts at present is made with a horizon of seven days. Besides, 

the specification for the planning system requires it to produce a detailed produc-

tion plan for at least the next seven days. Therefore, taking both the existing habit 

of the client company's personnel and the specification into consideration, a 

model should be selected on the basis of evaluating its performance with a seven-

day horizon. 

Finally, the way cross-validation is performed in the evaluation process should be 

explained. When evaluating a model, the data is repeatedly split into training and 

test sets, where the size of the test set is repeatedly incremented by one. The 

procedure is often referred to as “evaluation on a rolling forecasting origin” [9 

chapter 3.4]. The initial split point is set to 2nd April 2018 and the “rolling” contin-

ues until the split point reaches 15th May 2018. On each training/test split, the 

training set is fit to each of candidate models, and the produced forecasts are 

evaluated based on the seven-day horizon past the split point. After the cross-

validation is performed, average MASE values are compared to identify the best 

model. It is also worth mentioning that the evaluation is conducted separately for 
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each product. Refer to Figure 5 for a visual representation of the described cross-

validation process. 

 

Figure 6. Cross-validation. Based on Hyndman and Athanasopoulos (2018) [9, chapter 3.4]. 

Here, the green dots represent data points included in the training set, while the red dots 

represent the test data points i.e. data points which are used when calculating one of the 

previously described errors. 

5 Implementation 

5.1. Preprocessing the data 

The current subsection describes transformations applied to the raw sales data before it 

is provided to the forecasting models. The preprocessing transformations do not differ 

for various products, but some differences exist in the transformations depending on 

what model the data is provided to.  

After the raw data is collected and transformed to the required format, it is passed to the 

function that removes outliers, which naturally introduces missing values to the data. 

Since most of the outlined models expect the data not to have any missing values i.e. to 

have a strict daily frequency in the given case, it is necessary to perform substitution of 

the outliers, rather than simple removal. However, as mentioned earlier, the Prophet 

documentation claims that the model is capable of dealing with missing values efficiently, 
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thus not requiring one to handle it manually. Furthermore, after performing several 

benchmarks for the Prophet model providing it with the data with manually substituted 

outliers and with outliers simply removed i.e. without and with missing values, the results 

showed that leaving empty spots in the data was a preferable way of dealing with the 

issue, but only when dealing with the Prophet model. 

For substituting the values, a rather simple approach was chosen. It is important to note, 

however, that the method will change in the future. In the current implementation, the 

outliers are replaced by medians of the same day of the week. For example, if an outlier 

that should be replaced occurred on Wednesday, then it is replaced by the median com-

puted across all the Wednesdays within the data. The median is used instead of the 

mean due to it being more robust to shifts caused by the outliers. In other words, mean 

is affected by the outliers to a larger extent compared to the median. 

 

For a similar reason, a median is used when deciding whether a particular data point is 

an outlier. The Python implementation of the algorithm described in this paragraph can 

be viewed in Listing 1. First, the data is shifted by the value of its median, thus making it 

roughly zero-centred. Then, a new median mdev of the shifted data is calculated. In the 

perfect cases, the new median is equal to zero, but in most of the practical examples, it 

is not. After this, the S array having the same number of elements as the original data 

set is computed. Specifically, an element of the S array is equal to the value of the cor-

responding data element previously shifted by the initial median and divided by the value 

of the newly calculated median mdev. Finally, all the values of the initial dataset for which 

the corresponding values of the S are smaller than a chosen threshold m, which is pro-

vided as a parameter, are identified as outliers and removed from the dataset (see Listing 

1). 

def remove_outliers(data, m=2.): 

    d = np.abs(data - np.median(data)) 

    mdev = np.median(d) 

    s = d / mdev if mdev else 0. 

 

    return data[s < m] 

         

Listing 1. The function that removes outliers from the numpy array using the data’s median value. 
Copied from Bannier (2014) [46] 
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However, since the outlier removal is performed with data replacement for most of the 

models, Listing 2 is provided to demonstrate the version of the algorithm in which the 

replacement is performed instead of mere removal of the outliers. As already explained, 

the method serves as a necessary minimum required to proceed with the task at hand 

and will be substituted with a more relevant algorithm in the future. 

Besides the outlier handling, the input data is also normalized. Before normalization can 

be performed, the data is split into training and test subsets. Since the split is performed 

multiple times during the cross-validation process, the normalization of the data is per-

formed repeatedly as well. The reason for this is that when normalizing training and test 

datasets, the mean and/or the standard deviation that are used in normalization formulas 

must be calculated based on the training set only. Listing 3 demonstrates the function 

used in the implementation. 

 

Listing 3. Data normalization function. Both training and test sets are divided by the standard 
deviation calculated from the values of the training set only.  

As can be seen in Listing 3, only the standard deviation is used in the function i.e. only 

the amplitude is adjusted. It was decided that shifting the data by the value of the mean 

def remove_outliers(data, m=2., replace=True): 

    d = np.abs(data - np.median(data)) 

    mdev = np.median(d) 

    s = d / mdev if mdev else 0. 

 

    if replace: 

        medians = np.arange(7) 

 

        for i in range(0, 7): 

            medians[i] = np.median(data[i::7]) 

            data[i::7][s[i::7] >= m] = medians[i] 

 

        return data 

    else: 

        return data[s < m] 

         

def normalize(train_set, test_set): 

    std = train_set.std(axis=0) 

    train_set /= std 

 

    test_set /= std 

 

    return train_set, test_set         

Listing 2. The function that replaces outliers with data’s median values taking weekly seasonality 
into consideration. Adapted from Bannier (2014) [46] 
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is unnecessary since all of the data points occupy approximately the same range of val-

ues throughout the observation period. 

 

After this, the normalized data with the outliers removed is fed into the forecasting mod-

els. Section 5.2 describes the parameters of the forecasting models that were introduced 

in Section 2.2.3. 

5.2. Forecasting model descriptions 

This section describes in detail the models used in the implementation. Besides, the way 

the model combination is implemented is described as well. The models to be discussed 

are the Prophet model, the 1D-convolutional neural network model, the ARIMA model, 

the exponential smoothing model, the TBATS model and the STLF model. 

Prophet model 

The Prophet model uses the Prophet forecasting tool described in Section 4.2. Most of 

the parameters of the model are set to their default values. Among the exceptions are 

the yearly seasonality boolean parameter, which is explicitly set to true, and sales cam-

paigns time series, which is specified as an additional regressor. Specifying the cam-

paigns as an additional regressor is important because of their significant impact on the 

sales volumes, which makes it a crucial piece of information that should be considered 

when forecasting the demand. The explicitly specified yearly seasonal component is im-

portant to force the Prophet model to consider the yearly seasonality, which can be 

clearly observed in the data. It is necessary to explicitly specify the parameter due to the 

fact that the data contains only a single full year cycle, because of which Prophet might 

decide to ignore its yearly seasonal component by default. After some experimentation, 

it was concluded that taking even this single yearly seasonality into consideration im-

proves the accuracy of the model. 

Convolutional neural network model 
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The one-dimensional convolutional neural network model was initially inspired by Wave-

Net model [17]. After further research was done, Borovykh et al. [15] was the main ref-

erence publication when experimenting with hyperparameters and architecture of the 

CNN. In its final implementation, the model consists of four layers: a one-dimensional 

convolutional layer with dilation rate of 2, other two one-dimensional convolutional layers 

with dilation rates of 4 and 8 and a “dense” layer, which also acts as an output layer. The 

activation function used in all of the convolutional layers is the rectified linear unit (ReLU), 

with the exception of the last dense layer, which uses the linear activation. Each of the 

convolutional layers contains 55 filters, where each filter is of length 5. The size of the 

window that is used for input data when a forecast is required to be produced, or when 

training the data, is 50. This means that to forecast a value at time T, prior values be-

tween the times of T – 50 and T – 1 inclusive are used as input to the network. When it 

comes to training parameters, the mean squared error (MSE) is used as the loss func-

tion, the Adam algorithm is used as an optimizer, and the training is performed for 40 

epochs. Lastly, a batch size of 128 is used. Most of the listed hyperparameter values 

were obtained experimentally after running multiple training cycles and comparing the 

model’s performances on the validation dataset. It also should be mentioned that some 

of the hyperparameters, such as the number of training epochs, for example, should 

ideally change depending on a product whose data the network is operating on. This and 

other improvements are discussed in Section 6.2. 

ARIMA model 

 The ARIMA model uses the auto_arima function provided by the Pyramid library that 

was described in Section 4.2. In the given case, start values of the ARIMA parameters p 

and q are set to 1, while maximum allowed values for the parameters are both set to 5. 

The ARIMA seasonality parameter m is set to 7, and the parameter d is strictly set to be 

1, which means it will not be searched.  Furthermore, since a seasonal variant of the 

ARIMA is used, the restrictions are also specified for the seasonal parameters P and D. 

Specifically, the start value of P is set to 0, whereas D is hardcoded to the value of 1. 

Finally, the xreg parameter of the auto_arima function is used to provide the campaign 

data as an external regressor. See Figure 6 for the full list of the parameters passed to 

the function.  
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The values of the parameters d and D, as well as the start- and max- parameters pre-

sented in Listing 3, were selected based on experimentation results. The parameter m, 

however, was set to 7 since the weekly seasonal component is the major one among the 

seasonalities present in the data. Since each week contains exactly 7 data samples, 

each associated with a day, the value of the parameter is, thus, justified. 

Exponential smoothing model 

The Statsmodels module is used for the exponential smoothing forecasting model. Both 

the trend and the seasonality parameters are set to be additive since the data does not 

display any of the characteristics common for multiplicative components e.g. the season-

ality component’s amplitude increasing together with the trend. Moreover, the dumped 

trend parameter is set to true. If, on the other hand, the trend is not considered to be 

dumped, the model tends to produce forecasts with exaggerated demand levels for some 

of the products. Finally, when the fit function of the returned object is called, the param-

eter optimized is set to true to search for the optimal parameter values of the fit function 

TBATS model 

def get_arima_model(timeseries, xreg=None): 

    return auto_arima( 

        timeseries, 

        exogenous=xreg, 

        start_p=1, 

        start_q=1, 

        max_p=5, 

        max_q=5, 

        m=7, 

        start_P=0, 

        seasonal=True, 

        d=1, 

        D=1, 

        trace=True, 

        error_action='ignore', 

        suppress_warnings=True, 

        stepwise=True 

    ) 

Listing 3. auto_arima function call with all the passed parameter values listed 
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The tbats function of the forecast package is used for the TBATS forecasting model. In 

the current implementation, no parameters are provided to the function allowing it to per-

form a complete exploration of the whole search space. Since the search is executed in 

a reasonable amount of time, this can be tolerated. 

STLF model 

Similar to the TBATS model, the forecast package is used for the STL forecasting model. 

Again, no optional parameters are provided, which enables the function to select the 

optimal forecasting method applied to the data after it is decomposed. Also, as in the 

case of the TBATS model, rpy2 library is used for accessing the functionality of the R 

package using Python programming language. 

Model combination  

Finally, the model combination should be discussed briefly. Multiple forecast combination 

approaches were tried for the data. Specifically, simple averaging and weighted averag-

ing based on various model criteria, such as AIC, BIC, MASE, RMSE, etc., were consid-

ered. While some products’ data benefited from averaging using weights, forecasts for 

many products exhibited worse results when averaging by the before mentioned criteria. 

Therefore, it was decided to use the simple averaging instead. The results of the aver-

aging as compared to the performance of the individual models, as well as the sugges-

tions for potential improvements in the model combination processes are outlined in Sec-

tion 6.1 and Section 6.2 respectively. 

5.3. System architecture 

This subsection describes the high-level architecture of the production planning system 

and explains the relationships between its components. Besides, typical use case sce-

narios are outlined in the subsection. There are four major components in the system 

that will be described further, namely the Java back-end, the database, the ERP system 

hosted by the client company, and the Flask microservice, which provides the REST API 
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for the demand forecasting functionality. Figure 7 demonstrates the described architec-

ture. It is important to note that the system is not implemented at the time of writing, 

which makes the proposed design susceptible to changes and improvements. 

  

Figure 7. The production planning and demand forecasting system architecture 

As can be seen from Figure 7, the back-end consists of several major components. First 

of all, it provides the REST API, which is used by clients to utilize the production planner's 

functionality. For example, the API can be used to request a demand forecast or a pro-

duction plan for a specified time period. Secondly, the back-end contains the ERP sys-

tem connector, which is responsible for communication with the client’s ERP system re-

trieving such information as sales orders and sales amounts as well as sales campaigns. 

The connector is driven by the ERP scheduler, which fetches the data from the ERP 

system at regular time intervals utilizing the described connector. After the data is 

fetched, the local database is synchronized with the new data. The described actions are 

necessary since it is considerably faster to fetch the data, once it is required, from the 

local database rather than from the one that is associated with the ERP system. 
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Besides, the service contains the demand forecast scheduler, which, by using the de-

mand forecast client, sends requests to the forecasting API to generate demand fore-

casts for specified products for specified time periods as needed. The microservice re-

ceives the sent data, which usually consists of past sales and campaign time series, and 

inputs it to the forecasting model. The forecasts are returned by the REST API in JSON 

format, transformed to Plain Old Java Objects (POJOs) and persisted to the local data-

base for future use. In addition to this, the demand forecast client periodically sends 

newly emerged data to the microservice to retrain the existing models. Similar to the 

example of the ERP scheduler, having the operations executed in the background, al-

lows the forecasts to be retrieved directly from the local database, once they are re-

quired. 

More importantly, the production plan optimizer is another component of the system. It 

is responsible for generating a detailed production plan for a specified time horizon when 

provided with the demand for the time period as well as with information on the products 

of interest and initial storage levels. Furthermore, the plan optimizer is capable of recal-

culating an already existing plan given a set of so-called production targets i.e. user-

specified production volumes for certain days for certain products that are not allowed to 

be changed by the planner. This forces the planner to recalculate the detailed production 

plan taking the user’s requirements into consideration. The described use case is an 

important one since the client company insisted on having the functionality to manually 

customize the production plans as required. 

Finally, the service contains the component responsible for interacting with the database. 

All of the components listed previously interact with the database via the interface to both 

retrieve the data required for their operations as well as to store data, which is typically 

a result of their operations. 
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Figure 8.  A typical use case scenario of the production planning system. A user requests a de-
tailed production plan for a specified time period in the future. 
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Having the system described, typical workflows should be presented as well. Usually, an 

interaction with the system starts with a user making a request from the client side of the 

application. For the given example, it is assumed the user requests a production plan for 

a particular week to be displayed. First, the client sends the request to the REST API. 

Then, the controller queries the database and checks whether the plan has already been 

generated previously and stored. If this is the case, the plan is retrieved from the data-

base, the necessary data conversions are performed, and the plan is returned to the 

client. Otherwise, the database is queried for the other data necessary to produce the 

plans. The data includes parameters of products of interest, information about production 

lines that are used to produce the products and the forecasted demand for the following 

several weeks. This data is then provided to the plan optimizer component, which calcu-

lates the production plan for the requested period. When the optimizer is ready, the pro-

duction plan is saved to the database for future use and returned to the client. Figure 8 

demonstrates the described logic. 
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Figure 9. A typical use case scenario of the production planning system. A user manually specifies 
the desired production levels for certain products for certain days and requests recalculation of 
the production plan. 
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Another use case is related to the already mentioned feature of the plan optimizer to 

recalculate the existing plan based on custom specifications of production volumes for 

specific products. Such a scenario usually starts with a user observing a previously gen-

erated production plan and wishing to change i.e. “lock” certain production amounts. 

When the user is ready with specifying the production targets, the request with the rele-

vant data is sent to the back-end. Then, the database is queried to retrieve the plan that 

should be reprocessed. After this, the plan optimizer is executed accepting as an input 

the existing plan and the new production targets. After the recalculation, the newly gen-

erated plan is persisted to the database together with the production targets associated 

with it, and then returned to the client represented in JSON format. Figure 9 depicts the 

flowchart describing the outlined scenario. 

6 Results and discussion 

This section contains the results of the benchmark performed for each of the previously 

discussed models. The numerical results presented are followed by related discussions. 

Besides, the second subsection contains suggestions and ideas for potential future im-

provements. 

6.1. Benchmark results 

As mentioned previously, the benchmark consists of a number of forecasts, each with a 

horizon of 7 days. The forecasts were executed for 9 products that had large enough 

sales amounts in the previous 2 years. For each of the products, the forecasts were 

produced using the “rolling” training/test split of the historical data. The cut-off point was 

given 44 different values between 02.04.2018 and 15.05.2018 inclusive, thus producing 

44 forecasts for each of the benchmarked products for each of the models. Moreover, 

for each of the 2772 forecasts produced, the previously described errors, namely RMSE, 

MASE and SMAPE were calculated. 

However, before presenting the average values for the errors, it is useful to discuss some 

of the individual forecasts that, hopefully, represent the majority of the predictions pro-

duced. Since the actual product names cannot be revealed due to the non-disclosure 
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agreement with the client company, the products discussed are labelled as Product A, 

Product B, etc. Moreover, the client company objected to revealing the actual sales fig-

ures, because of which the normalized scale is used in the current section i.e. the actual 

sales values are replaced by them being divided by their means. 

Appendix 1 demonstrates the forecasts for all the six models listed in Section 5.2, exe-

cuted for the dates between 03.04.2018 and 09.04.2018 inclusive. In addition to the fore-

casts of the models, the forecast that was produced as an average of the models for 

each of the data points is depicted as well. As can be seen, all of the calculated errors 

demonstrate relatively high precision. Besides, it can be observed that, although the 

STLF model does demonstrate the best performance, which results in MASE of 0.36202, 

the averaged solution is not significantly worse with MASE of only 0.3977, which is the 

second best result for Product A for the given week. Finally, it should be noticed that all 

of the models tend to over-forecast the sales i.e. the produced predictions have larger 

values than the test data, at least when considering the given week. The reasons for 

which all of the models made the over-forecasting mistakes should be analyzed as it can 

bring light to an important aspect that can potentially improve the solutions. 

Similarly, Appendix 2 shows the forecasts for the same models and with the same cut-

off date. Product C, whose data was used in the forecasts, proved to be somewhat more 

challenging to forecast for most of the models, as it can be seen in the graphs. As in the 

case of Product A, the forecast produced by averaging the models was the second best 

with MASE being equal to 0.486 – nearly 0.1 increase compared to the previously dis-

cussed product. The exponential smoothing model happened to be the best in the given 

case with MASE of 0.4547 and RMSE of 0.4072. When observing the graphs produced, 

it can be noticed that the first two days of the forecasted period contributed the most to 

the error values. This should also be analyzed further. 

Finally, Appendix 3 demonstrates another set of forecasts produced by the models. Com-

pared to the previous two forecast sets, this is the least precise one. Another difference 

in the forecast is that its cut-off date was chosen to be 06.04.2018. This was done to 

adequately demonstrate a case when produced forecasts have lower precision but are 

still useful for future demand estimations. Unlike the previous two examples, the aver-

aged model did not show promising results in this case with MASE being as high as 

0.5939, which makes the averaged solution the third worst. The best result was produced 
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by the exponential smoothing model with MASE being equal to 0.4978 and RMSE to 

0.3899. While this is comparable to the best result of the Product C forecasts, the other 

models produced less accurate predictions, which can be seen in Appendix 2. Besides, 

similar to the case of Product A, all of the forecasts tend to produce values larger than 

the required ones for the given time period. 

Nevertheless, the results discussed in the previous three paragraphs cannot be reliable 

for decision-making since the models can demonstrate a significant difference in their 

performance when applied to the data of a different time period. For this reason, the 

benchmark that was already introduced at the beginning of the section was executed. 

The results of the benchmark are provided in Appendix 4. The best performing model 

based on MASE is bolded for each of the products, and the smallest errors of each type 

are highlighted as well. In addition, it should be mentioned that SMAPE is missing for 

some of the models. Such cases indicate that one or more SMAPE calculations produced 

an undefined value. The reasons for SMAPE resulting in an undefined value were ex-

plained in Section 4.3. 

As can be seen from Appendix 4, in the cases of Product B, Product C, Product D and 

Product G, the averaging solution outperformed all of the individual models involved, 

when using MASE as a criterion. Moreover, the results for Product A and Product F show 

that the averaged solutions are ranked as second best with only the Prophet model per-

forming better in the case of Product A and the TBATS model being more accurate in 

the case of Product F. Finally, in all the rest of the tables, namely those of Product R, 

Product H and Product I, the averaged solution resulted in MASE that is at least smaller 

than that of the worst performing model. Thus, the results described in the paragraph 

support the previously outlined theory that averaging forecasting models perform at least 

as good as the least precise model in the ensemble. Moreover, the theory that, in some 

cases, simple averaging may outperform each of the models involved was supported by 

the results as well. 

Another aspect that should be considered is the fact that two of the results, namely that 

of Product E and Product I, didn’t show sufficiently accurate results with MASE being 

greater than one for the forecasts of all the models. In addition to this, the benchmark 

results of Product F show significant errors as well with MASE being greater than 0.9 for 

all of the forecasting solutions. These cases should be analyzed more carefully since 
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they can obstruct the successful operation of the planning system. On the other hand, 

the results of product D demonstrate exceptionally low error values with MASE and 

RMSE being equal to 0.3151 and 0.2688 respectively for the averaged solution. How-

ever, it is interesting to note that the SMAPE values are extremely high in this case. 

Although such contradictory results require further investigation, one possible explana-

tion is the disadvantageous characteristics of SMAPE that were described in Section 4.3.  

Furthermore, three of the products were best forecasted by the ARIMA model, while 

TBATS was the best forecasting solution for other 2 products. The fact that 1D-convolu-

tional neural network did not occur to be the best model for any of the products might be 

due to two reasons. Firstly, it might show that the more traditional forecasting methods 

tend to outperform deep learning solutions, in particular, 1D-convolution in the given 

case. However, a more probable reason for the results is that the neural network model 

was not sufficiently researched and experimented with, which therefore resulted in the 

implementation with suboptimal hyperparameters. Suggestions for improvements re-

lated to this and other issues are discussed further in Section 6.2. 

6.2. Future improvements 

This subsection describes some of the improvements that can be implemented in order 

to increase the accuracy of the forecasting solutions. The following five paragraphs pro-

pose five different groups of improvements. 

First of all, the amount of training data should be increased. As mentioned previously, at 

the time the described benchmark was executed, the available historical data spanned 

1 year and 7 months (October 2016 - June 2018). While this allows for relatively suc-

cessful forecasting for most of the products, increasing the amount of historical data 

would certainly be beneficial. Since the access to the data previous to October 2016 is 

required to significantly increase the amount of historical data, the client company was 

questioned about possibilities of obtaining the earlier sales and campaign data. As spec-

ified earlier, the data used in the benchmark was retrieved from the ERP system that is 

currently in use by the client company. Since the ERP system was in use only since 

2016, receiving the earlier historical data requires accessing the legacy system. How-

ever, according to the client company's managing personnel, the sales patterns have 
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changed significantly compared to the ones used before the year 2016. Therefore, it is 

argued that the data will not improve the forecasting precision of the models. Neverthe-

less, it is a viable option to try since some products’ forecasts might benefit from having 

the additional training data. 

Secondly, as already was suggested previously, handling of outliers should be improved. 

During the literature review done as a part of the final year project, little time was devoted 

to outlier handling. Therefore, more knowledge should be acquired in this direction, and 

decisions should be made related to the following questions.  

• What algorithm is the most appropriate in the given case to be used for 
identifying what data points are considered as outliers? 

• What technique should be used to replace the data points identified as out-
liers? 

• Should the outliers be replaced at all, or instead remain in the data intact? 

Besides, the reasons that caused the outliers should be analyzed since they can poten-

tially provide useful insights and help in the future development of the models. 

Thirdly, the parameters of the models should differ depending on a product. Although 

the products do demonstrate similar behaviours in terms of demand, there are significant 

differences in demand patterns of some of the products. Therefore, the forecasting mod-

els’ precision can be increased by adjusting their hyperparameters to suit each of the 

products individually. For example, the reason that the 1D-convolutional neural network 

model showed somewhat mediocre results can be due to the fact that some of its im-

portant parameters, such as the number of training epochs, the filter length, the number 

of filters per layer, etc., should depend on what product’s data is used in the training/val-

idation cycles. Similarly, other models might benefit from the per-product customization. 

In addition to this, improvements can be made to the process of combining the models. 

As discussed in Section 2.2.4, the trimmed mean, when two models that over-forecast 

and under-forecast the most are excluded from the averaged solution, can be beneficial 

since more than 5 models are involved in the current solution. Moreover, the topic of 

forecast model combination should be studied further, and other more sophisticated 

techniques researched. 
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Finally, further research can be done to find other model types that could suit the given 

case. Having additional forecasting models of different types could bring improvements 

in performance when used on their own as well as when they are added to the averaging 

solution. Furthermore, forecasting models of the same type but with significantly different 

parameters could be added to the averaging solution as well. 

7 Conclusion 

The objective of the thesis was to investigate possible solutions that could be used for 

demand forecasting in the context of the production planning system. Besides, it was 

required to research whether a combination of multiple forecasting solutions was a viable 

alternative to using a single prediction model. The forecasting techniques that could be 

applied in the given case were studied and outlined in Section 2. Based on the theory, 

the forecasting models were implemented and benchmarked to test how efficient each 

of the proposed solutions was. Besides, the ensemble of the models was implemented 

and benchmarked. The results demonstrate that the averaged solution exhibits at least 

as high performance as the worst model in the ensemble. Moreover, in the four cases 

out of the nine examined, the averaged solution outperformed every model used in the 

ensemble. Finally, the TBATS and ARIMA models showed high-grade results relative to 

other forecasting methods. Therefore, the objectives of the thesis were successfully ac-

complished. 

Following the research described in the thesis, the proposed solution will be integrated 

into the alpha-version of the production planning software and tested in the real context 

with a subset of the manufactured products. In parallel to the test deployment, the sug-

gested improvements will be researched and possibly added to the solution. Since the 

customization of the system to the client’s needs was one of the most crucial aspects of 

the initial specification, it is important to deploy the alpha-version of the solution as soon 

as possible to enable the client company to provide feedback already on the early stages 

of the software development. 

All in all, the demand forecasting solution is expected to be an essential part of the pro-

duction planning system. In turn, the system will save hundreds of human hours, reduce 

amounts of discarded products and make the production process more efficient. This will 
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provide a competitive advantage to the client company enabling it to increase its profita-

bility and market share, which is argued to be beneficial to both the employees of the 

company as well as to its customers. 
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Benchmark results 

Product A MASE RMSE SMAPE 

Prophet 0.6542218273 0.4260477568 0.2733417523 

1D convolution 0.7004403477 0.4653857568 0.2788098159 

ARIMA 0.67631965 0.4704169591 0.2826369682 

TBATS 0.7104953114 0.4655035159 0.2848271 

STLF 0.6963246795 0.4788156886 0.2833850114 

Exponential smoothing 0.6702669227 0.4742371182 0.2754486886 

Average 0.6635883909 0.4500770682 0.2722653364 

 

Product B MASE RMSE SMAPE 

Prophet 0.6036514705 0.4821738818 0.1910299045 

1D convolution 0.5836166432 0.4792911 0.1833612114 

ARIMA 0.6200273545 0.4840787841 0.1906533136 

TBATS 0.6004788295 0.486314425 0.1844558545 

STLF 0.6371208727 0.4945507114 0.1969914705 

Exponential smoothing 0.6470071068 0.5043705955 0.1988225545 

Average 0.5597954614 0.4503159773 0.1751829136 

 

Product C MASE RMSE SMAPE 

Prophet 0.6622596955 0.4616685591 0.191085875 

1D convolution 0.7003889114 0.4852601091 0.1922473591 

ARIMA 0.667633875 0.4635831386 0.1862433045 

TBATS 0.6632180614 0.4585986841 0.1867430523 

STLF 0.6375331614 0.451560025 0.1749866409 

Exponential smoothing 0.6663720182 0.4573174659 0.1818089068 

Average 0.6326286682 0.4492324909 0.1756769591 
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Product D MASE RMSE SMAPE 

Prophet 0.3634174068 0.29163435 0.8425854676 

1D convolution 0.3549949386 0.2835225318 0.6421064946 

ARIMA 0.3597991205 0.3016072705 0.8562578541 

TBATS 0.3988602068 0.3260807909 0.8594660703 

STLF 0.3423043864 0.2964972318 0.503035925 

Exponential smoothing 0.3407955341 0.2929003273 0.6142696364 

Average 0.31513855 0.2687538114 0.5052656977 

 

Product E MASE RMSE SMAPE 

Prophet 1.445235284 0.6483075955  

1D convolution 1.352521273 0.6632207159  

ARIMA 1.33525972 0.6840316909  

TBATS 1.471706818 0.6532086841  

STLF 1.348076048 0.6932001091  

Exponential smoothing 1.342383814 0.6920497091  

Average 1.361788395 0.6524288205  
 

Product F MASE RMSE SMAPE 

Prophet 0.9712771568 0.6896002795 0.662743916 

1D convolution 1.039631284 0.7139918455 0.757952875 

ARIMA 0.9401765045 0.6833682045 0.6556537364 

TBATS 0.9148826545 0.6723071364 0.5760731465 

STLF 0.979229225 0.7109044705 0.5979842386 

Exponential smoothing 0.9332848932 0.6831480659 0.505010675 

Average 0.9330956159 0.6791622341 0.5839680091 
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Product G MASE RMSE SMAPE 

Prophet 0.8967182136 0.6882920227 0.3813184386 

1D convolution 0.9085901318 0.6872097795 0.4342572318 

ARIMA 0.8941516545 0.6830228591 0.3958995205 

TBATS 0.8948834295 0.6804583886 0.3913324114 

STLF 0.9542992068 0.7349185523 0.3965698409 

Exponential smoothing 0.9011430136 0.6985685568 0.3888545386 

Average 0.8884328591 0.6871133841 0.3832674227 

 

Product H MASE RMSE SMAPE 

Prophet 0.630555541 0.737407016  

1D convolution 0.708693659 0.802099520  

ARIMA 0.613717475 0.713896395  

TBATS 0.649200807 0.720968155  

STLF 0.661618689 0.744325761  

Exponential smoothing 0.621917934 0.725924339  

Average 0.635580693 0.716317602  
 

Product I MASE RMSE SMAPE 

Prophet 1.234075523 0.977577943  

1D convolution 1.631033000 1.280780018  

ARIMA 1.215858393 0.959142107  

TBATS 1.193653245 0.948836843  

STLF 1.255058248 1.002478041  

Exponential smoothing 1.199753220 0.953790775  

Average 1.260928480 0.978447959  

 


