

Aidar Mukhamadiev

Transitioning from server-side to client-side
rendering of the web-based user interface:
a performance perspective

Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

28 November 2018

Author

Title

Number of Pages

Date

Aidar Mukhamadiev

Transitioning from server-side to client-side rendering of the
web-based user interface: a performance perspective

41 pages + 14 appendices

28 November 2018

Degree Bachelor of Engineering

Degree Programme Media Engineering

Professional Major Web Development

Instructors

Marko Klemetti, Chief Technical Officer
Ilkka Kylmäniemi, Senior Lecturer

The goal of the thesis is to implement a single page application using React and Redux as
a replacement for the case company’s existing solution of server-side rendered Ruby on
Rails interface. Consequently, new implementation is compared to the old one from the per-
spective of performance only. Caused impact on both client and the server, although signif-
icantly restricted, is considered.

The investigation is limited to the desktop browsers only such as Google Chrome, Mozilla
Firefox and Apple Safari, among which the former is selected as a major reference for the
results and the following discussion.

Keywords web development, performance, benchmarking, react

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical framework 3

2.1 Performance value 3
2.2 The case company overview 4
2.3 Fundamental phases 4

2.3.1 Resource fetching 5
2.3.2 Resource processing 12

2.4 Rendering architectures 15
2.4.1 Server-side rendering 15
2.4.2 Client-side rendering 17
2.4.3 Isomorphic rendering 19

2.5 Summary 19

3 Methods and materials 20

3.1 Implementation 20
3.1.1 General overview 20
3.1.2 View internals 22
3.1.3 Resource packaging and integration 25

3.2 Benchmark design 26
3.2.1 Metrics 26
3.2.2 Data collection 28
3.2.3 Testing cases and environment 30

4 Results 32

4.1 User perspective 32
4.1.1 Browser comparison 32
4.1.2 Google Chrome 34

4.2 Server perspective 37

5 Discussion 39

6 Conclusion 41

References 42

Appendix 1. Complete list of installed packages (package.json)

Appendix 2. Entry point of the SPA (client.jsx)

Appendix 3. Main application component (App.jsx)

Appendix 4. Page displaying the list of consumable models (ConsumablesListPage.jsx)

Appendix 5. Consumables actions (actions/consumables.js)

Appendix 6. Consumables reducer and selectors (reducers/consumables.js)

Appendix 7. Server API middleware (api/Api.js)

Appendix 8. Table generating component (components/tables/ListTable.js)

Appendix 9. Webpack configuration files (config/webpack/base|production.js)

Appendix 10. Observational script

Appendix 11. Usable.jsx

Appendix 12. Useful.jsx

Appendix 13. Benchmark results (without resource cache)

Appendix 14. Benchmark results (with resource cache)

List of Abbreviations

API Application Programming Interface

HTML Hypertext Markup Language

CSS Cascading Style Sheets

SPA Single Page Application

REST Representational State Transfer

DNS Domain Name System

TCP Transmission Control Protocol

HTTP Hypertext Transfer Protocol

TLS Transport Layer Security

HTTPS Hypertext Transfer Protocol Secure

RTT Round-Trip Time

CDN Content Delivery Network

URI Uniform Resource Identifier

UI User Interface

DOM Document Object Model

CSSOM Cascading Style Sheets Object Model

XHR XMLHttpRequest

AJAX Asynchronous JavaScript and XML

JSON JavaScript Object Notation

SEO Search Engine Optimization

SSR Server-side rendering

CSR Client-side rendering

1

1 Introduction

As a response to the case company’s growth and new business requirements, Trail’s

web interface is currently under an ongoing step-by-step transition to single page appli-

cation (SPA), powered by React, a JavaScript view library developed by Facebook. In

this thesis, the terms SPA and client-side rendered interface are used interchangeably

to mean a web application HTML markup of which is constructed in the browser entirely.

Similarly, terms client and browser are to convey the same meaning across the study.

Given the above, this paper attempts to investigate implementation and the caused effect

of Trail being partially moved from server-rendered to client-rendered interface. Among

all the potential changes introduced by the shift, the scope of the research for Trail is

limited to the domain of performance, both from consumer and provider perspectives.

The main targets of this thesis are to construct production-level SPA components and

consequently provide quantitative answers to the following pair of questions:

• In the context of a user, how does client-side rendered interface perform in
comparison to server-side one?

• How does client-side rendering (CSR) impact the server load and capacity?

It is important to point out that the thesis does not engage with mobile web benchmark-

ing, but desktop only. In addition, to clarify, the variables such as an operating system,

network bandwidth and computing power are abstracted out and considered to be con-

stant. The primary focus of the study revolves around the amount of transmitted business

data (e.g. table list of items) and the effect of cache in the context of multiple browsers.

Based on the scope, this paper has been divided into six parts. It begins with an intro-

duction, the purpose of which is to provide a proper frame the further discussion belongs

to. Particularly, state the questions the case company is attempting to address in the

space of the technical changes it experiences.

The study goes on to theoretical framework, where the literature scope for the research

is identified. For the most part, it includes the topics of networking followed by view ren-

dering. The goal is to present how communication is performed, how browsers work and

what architectures exist to render view data to the user.

2

The third section focusing on methods and materials presents the reader sufficient infor-

mation on SPA implementation and benchmark design applied to the former. Frame-

works, libraries, browsers, standalone applications and other items used in the research

are listed.

Part four reports raw research results obtained using previously described methods.

Findings are listed in structural manner without any interpretation.

The fifth part is dedicated to the discussion of benchmark design validity, and the final

interpretation of results. Moreover, research limitations and further improvements are

stated.

Finally, the conclusion provides a summary of the previous sections and gives answers

to originally stated research questions.

3

2 Theoretical framework

2.1 Performance value

In the space of rising demand for a better experience, new browser features and resulting

complexity, the performance variable is fundamental. It is becoming a key topic requiring

particular attention, and the issues are common to the extent, that, as Grigorik (2014)

defines it, web performance turned into an application’s feature [1, p. 3]. Likewise, Wag-

ner lists multiple reasons why well performing pages are important [2].

First of all, performance optimization improves user retention and conversion. Obviously,

speed impacts the success of any online business, be it driven by sales or advertisement.

To provide an example, Pinterest engineers Meder S et al. (2017) ran an experiment and

found a 40% decrease in user wait time leading to 15% increase in search engine traffic

and similar boost in conversion rate to account registration [3]. By contrast, DoubleClick

(2016; Google Marketing Platform), in its study on the impact of mobile speed, reported

that 53% of the visits are dropped out when the site takes more than 3 seconds to load,

and that generally half of the users expect the load time to be less than 2 seconds [4].

Secondly, performance contributes to the quality of UX. For instance, Nielsen (2010)

considers responsiveness as an essential user interface design law, guided by human

limitations and goals. Indeed, waiting and feeling of fading of short-term memory infor-

mation do not lead to user’s productivity. On top of that, lack of quick service causes the

provider to be perceived incapable and presumptuous, not only during the actual moment

of experience, but also in the context of general brand values associations. [5.] In other

words, poor performance can cause long-term and contagious emotions.

Finally, poor performance can pose tangible costs for people. Schwarz (2017) points out

lack of general awareness of the ways and conditions under which people access the

Web worldwide. He notes general unavailability of fast and inexpensive network band-

width, and dominance of low-end, resource-limited mobile devices in the market. [6.]

GSM Association (2018) reports that in 2017 globally among total cellular connections

excluding Internet of Things devices 40% were done using 2G technology and expected

to be of 4% only by 2025 [7]. To illustrate, why this could be problematic, as for Septem-

ber 15, 2018 median size of all uncompressed resources fetched by a page is 1270.3KB

4

and 1544.7KB for mobile and desktop, respectively [8]. By approximating its compressed

size down to 300KB, 2G downloading of the page of that size could be expected to take

up a significant amount of time. In addition to that, there is a time spent to parse that

amount of data, which depends on computing power of the device, which, as noted by

Osmani (2018), often happen to be low in computing performance [9].

Given all above, it is good practice to provide extensive functionality while also trying to

fit the user’s constraint space, consisting of network and client capabilities. Quick service

access improves user satisfaction, which in turn is expected to have a positive impact on

both retention and conversion. Without a doubt, the practice would be beneficial to any

of online service providers, among which Trail Systems Oy is not an exception.

2.2 The case company overview

Trail Systems Oy is a Finnish software as a service provider. Established in 2010, its

main product is Trail [10], an interactive application for a fixed asset management, which

helps organization to keep track of the assets of various kinds. Trail consumers include

both local and international players such as The National Theatre of London, YLE, Kone

etc. Being originally developed for the domain of performing arts, Trail extended its func-

tionality to fit other businesses, for instance, fields of construction, media and logistics.

On a technical side Trail is represented as a server accessed by a browser and mobile

applications for Android and iOS operating systems. The server is built on a Ruby on

Rails framework, providing server-side rendered views along with the representational

state transfer (REST) endpoints.

2.3 Fundamental phases

Essentially, the procedure of displaying web content to the user can be organized into

two phases: resource fetching and resource processing. To clarify, it is helpful to refer to

the specification of Navigation Timing Level 2 interface, providing access to thorough,

high-resolution data on timing for document navigation [11]. Particularly, it is the pro-

cessing model, which sparks most of the interest as it provides a visual structure of the

web performance from the perspective of the client. The model is depicted in Figure 1.

5

Figure 1. Navigation Timing interface processing model. [11]

Figure 1 illustrates the events accompanying the loading process of the root document

and associated with it set of timing attributes. First, the previous document, if any, is

unloaded. DNS query is then made, and by using the retrieved IP address, the TCP

based HTTP request inquires the document data, which, as the response comes, is pro-

cessed, loaded and finally displayed to the end user. During the procedure, the page is

redirected if required, and the application cache is utilized, if available. [11.] To note,

there is a clear separation between the concerns.

In the setting of current investigation, it would be essential to explore how the web re-

sources are retrieved and rendered by a browser, and, based on that, what kind of ren-

dering architectures are prevalent in the industry.

2.3.1 Resource fetching

HTTP protocol is a core instrument for a resource retrieval. RFC7230 defines it based

on top of reliable transport/session channel, which is commonly represented as TCP or

as Transport Layer Security (TLS) layer on top of the former [12, p. 7; 13 p. 76]. Injecting

TLS in between extends the idea of HTTP to HTTP Secure (HTTPS) with additional

properties of connection privacy and data integrity [14, p. 4].

The topics of particular interest are the TCP, TLS and HTTP, the last two of which are

referred to in relation to specific versions across the thesis, namely 1.1 for HTTP and 1.2

for TLS, unless specified otherwise. First, however, it is essential to introduce two core

elements defining the performance of a network transmission.

6

2.3.1.1 Bandwidth and latency

Bandwidth refers to a maximum amount of data that can be transmitted across the com-

munication path at a unit of time [15, p. 35]. Latency is the time from the moment of the

source sending the packet to the moment of the destination receiving it [1, p. 3]. Given

the destination sends back an acknowledgment packet, the total time between sending

and getting acknowledgment is then defined as a round-trip time (RTT) [15, p. 803].

There are multiple factors contributing to latency such as speed of light, packet header

analysis etc. In contrast to bandwidth, there is limited space for an improvement [1, pp.

4-12.] Therefore, because of short-lived nature of HTTP requests, latency plays a more

significant role compared to bandwidth, as it was demonstrated by Belshe (2010) and

depicted in Figure 2 [16].

Figure 2. Comparison of the effects of bandwidth and round-trip time (RTT) on page load. [16]

Figure 2 on the left shows time required to load a page per bandwidth. As it increases,

the load time also decreases, but quickly approaches the state of diminishing returns.

RTT latency, in turn, indicates a continuous efficiency – decrease in RTT consistently

decreases the page load time. It can be concluded, therefore, that the lower RTT or

overall amount of round-trips, the better. In this context, the following review is to point

out the impact technologies have on the overall accumulation of RTT.

2.3.1.2 TCP

Any browser-initiated resource request starts in the space of TCP - a reliable, connec-

tion-oriented protocol, allowing a pair of endpoints to establish a virtual connection and

7

bidirectionally exchange the data [15, p. 691]. If there are two devices, intending to ex-

change data over TCP, first, the connection must be established, and that procedure is

referred to as the three-way handshake, illustrated in Figure 3.

Figure 3. TCP three-way handshake procedure. [15, p. 755]

As displayed in Figure 3, during the handshake, the TCP client sends a synchronization

control (SYN) message. After receiving it, the server sends back acknowledgment (ACK)

for the client’s SYN and own SYN, joined in a single message. Finally, the client responds

with ACK for the SYN of the server. [15, p. 753.] The procedure is of three steps in total

and represents a significant cost in terms of latency. Therefore, in the context of perfor-

mance optimization the concept of TCP connection reuse is significant [1, p. 15].

When the handshake is completed, the data is ready to be passed, bringing sliding win-

dow acknowledgment system into action. It is based on the idea of a receiver’s feedback,

recognizing the fact of a successful segment transmission. Fundamentally, there is a

finite number of pending unacknowledged segments are allowed. Such an amount is

defined as a window. [15, pp. 732-740.] The size of it is dictated by a minimum of receive

(rwnd) and congestion (cwnd) window values, which are determined by a receiver and

network buffer capabilities, respectively [1, p. 19-20].

During the transmission, the path could be under a heavy load due an extreme amount

of simultaneous connections, resulting into segment loss for each. Referred to as a con-

gestion, such an overload can be escalated to the degree of a congestion collapse, turn-

ing the network unusable. To avoid the problem, there is a specific mechanism con-

structed, consisting of slow start and congestion avoidance algorithms. [15, pp. 816-817.]

8

The key idea behind slow start is to examine the network and identify usable capacity in

an exponential way to avoid network congestion due to injection of an excessive amount

of data at the start. The window size, at the range of which the network examination

occurs, is defined as a slow start threshold (ssthresh). When the window exceeds the

threshold, a congestion avoidance algorithm is executed, task of which is also to probe

the network, but in a slower, linear manner. When the segment loss occurs, the value of

the threshold is redefined, meaning the responsibility space of the algorithms is also

altered. [17, pp. 4-6.] To clarify, Figure 4 presents the way the mechanism is conducted.

Figure 4. Slow start and congestion avoidance algorithms in action. [18]

As illustrated in Figure 4, that as soon the TCP connection is initiated, slow start is exe-

cuted with an explicit initial congestion window [17, p. 5], and arbitrary, but high threshold

value. At round-trip 4 the segment is lost due to a timeout, which results in a program-

matic reduction of the threshold [17, p. 7] and new slow start execution. It completes at

round-trip 8, where congestion window reaches the threshold value, passing the network

control to congestion avoidance algorithm. Later, another threshold reduction occurs at

round-trip 11 because of duplicate acknowledgments caused by out-of-order segment

delivery which, however, does not trigger the slow start algorithm [17, p. 7-8], unlike the

loss of the following segment at round-trip 12.

The congestion window behavior follows the entire communication process, until it is

closed. It provides network reliability, but does it at the expense of performance, regard-

less of an actual algorithm implementation [1, p. 27]. The effect, in turn, depends on the

nature of the communication: it is higher with respect to a short request compared to

9

large streaming download. The reason is that it is often possible to terminate the former

before reaching the maximum window size. [1, p. 22.] Considering the prevalence of

short-time requests, preceded with the three-way handshake phase, TCP alone intro-

duces a certain amount of performance inefficiency for modern web applications. On top

of that, considering the secure communication is the preference, there are additional

costs included, which is presented by TLS.

2.3.1.3 TLS

TLS is a cryptographic, application independent protocol providing a secure, private com-

munication between the two parties [14, p. 4-5]. If there are third-party observers of the

channel, they could only deduce the endpoints, an encryption type, amount of data sent,

but not read or mutate the substantial plaintext data [1, p. 47]. TLS allows the endpoints

to authenticate each other and negotiate on protocol versions, encryption algorithms and

the keys before actual data exchange happens. [14, p. 4.] Such a handshake procedure

is illustrated in Figure 5.

Figure 5. TCP with TLS Handshake Protocol in action. [1, p. 51]

As it is demonstrated in Figure 5, first, the TCP communication is established through

the procedure of three-way handshake. After that the sender transmits various meta in-

formation such as TLS version, supported set of cipher suites etc. The receiver responds

with the selected TLS version, a cipher suite, and the certificates. In addition, it could

10

request for more information if needed e.g. sender’s certificate. As the second TLS

round-trip starts, the sender generates a symmetric secret, encrypts it using the re-

ceiver’s public key and dispatches it. The receiver, in turn, decrypts the delivered key,

verifies MAC and responds with an encrypted message of “Finished” back to the sender.

Finally, the sender decrypts the message by the symmetric key it previously generated

and checks the MAC. If validation succeeds, a secure communication tunnel is set.

It can be seen that the TLS handshake does two round-trips, twice as much as required

for a TCP handshake, imposing a significant performance penalty. [1, pp. 51-52]. The

way to mitigate it is to reuse the results of the negotiation across multiple connections,

for instance, by utilizing session identifiers or session tickets. Interestingly, in the situa-

tion of the multiple request to the same TLS server, most modern browsers purposely

wait for the first one to complete to reuse the session. [1, pp. 55-57.]

As soon as TLS channel is ready, the client and the server are able to perform secure

HTTP communication, the mechanism of which is described in the following chapter.

2.3.1.4 HTTP

HTTP is a stateless protocol for distributed hypertext information systems. It is based on

the request-response transactional model, and operating on top of a reliable channel,

namely TCP along with TLS for a secure communication. [12, p. 7.] The communication

happens in the context of resources, targeted by HTTP using uniform resource identifiers

(URI) [12, p. 16]. When client makes request to URI, it defines the purpose, described

by method tokens. Along with the token, request is allowed to supply header fields, rep-

resenting various meta information. [19, p. 33]. The corresponding response, along with

headers and payload, if any, delivers the request status code. [19, pp. 47].

Request and responses operate with messages, which contain entities. Entities consist

of headers and body. The latter is the transferred content, if any, while the former is the

content’s metadata. Content could be of different types, and be encoded or compressed,

thereby improving performance [13, pp. 342-354] Unlike the content, the headers are not

compressible, thus introducing an overhead to the degree, that they often reserve more

space than substantial data [1, p. 200-201]. The manner in which the content transferred

is encodable as well, specifically it is deliverable in chunks, rather than in a single

11

transaction. That is helpful when the size of the response is not identifiable quickly due

to its size or dynamicity, or, for example, when the HTML is served in parts in the situation

with progressive rendering. [13, pp. 356-357; 20.]

HTTP uses a persistent kind of connections by default, allowing multiple requests to be

performed in the life-time of a single TCP connection. In addition, the requests could be

pipelined and sent over without waiting for the previous transaction response to arrive

[12, p. 51-54] However, the feature has not been widely adopted, and most of the

browser disabled it due to various network crashing bugs and complications. [1, p. 195;

21] Alternatively, to escape blocking, HTTP requests are sent in parallel over multiple

connections, but the amount of those is recommended to be restricted because of vari-

ous performance issues. [12, p. 55; 1, p. 197.] According to Browserscope, browsers

Chrome 50 and Firefox 46 limit the amount down to 6 connections per host [22].

From the performance viewpoint, a key property of HTTP is cacheability. An HTTP cache

is a local repository, designed to store the response messages for identical request to

improve performance. Cached response is regarded as fresh if it is retrievable without

validation, meaning communicating the server and examining the response for its rele-

vance. [23, p. 4.] The moment for the response between being fresh or not is defined by

an expiration time, set either by the server or the client [23, p. 11]. Servers specify the

time using the response headers of Expires or Cache-Control [13, p. 176]. If the headers

are not supplied, the client tries to heuristically estimate the expiration time e.g. by an

LM-Factor algorithm [13, p. 184]. After the expiration time is reached, next request con-

tains specific conditional headers, compared against the headers of the response. If the

condition matches, the new resource is sent. Otherwise, it is only the headers delivered,

possibly with the new freshness expiration date. [13, pp. 177-180.]

2.3.1.5 Optimizations to consider

In the context of costly TCP and TLS handshakes, followed by congestion control mech-

anism, the priority is to minimize the amount and the payload of HTTP requests. This

implies content compression, with minification in case of scripts, usage of CSS sprites,

establishing persistent connections and appropriate cache utilization [24, p. 11]. On top

of that, to reduce latency, it is beneficial to minimize the distance of communication,

which is achievable with the Content Delivery Network (CDN), efficiently serving static

12

assets across the globe [24, pp. 19-20]. Finally, communication should happen within

minimum number of domains to reduce the amount of potential DNS lookups [24 p. 68].

2.3.2 Resource processing

As soon as the required content is transported, browser loads it into the rendering pipe-

line and initiates the processing stage. Current chapter explores the details of that pro-

cedure and how it fits in the space of browser architecture.

2.3.2.1 Browser architecture

A browser is a multiplatform software application, key function of which is to retrieve the

web resource of various media and display it to the user [25]. Among numerous browser

developers, the majority of the market is hold by Google’s Chrome, resulting in an inor-

dinate 61.51% of the share in October 2018. It is followed by Apple’s Safari (15.16%),

Mozilla’s Firefox (5.02%). [26.]

Browser’s high-level architecture consists of several components such as UI, browser

engine, rendering engine, networking, UI backend, JavaScript interpreter and, finally,

data persistence unit [25]. The UI represent interactive elements such as address bar,

bookmarks etc. Data persistence layer is accountable for local information storage e.g.

cookies. The browser engine is a mediator between the previous two and the rendering

engine, which, given the requested resource is supplied by the networking component,

sequentially orchestrates generation of the view out of it. JavaScript interpreter parses

and runs JavaScript code, accompanying the view construction. The drawing of the

browser’s UI and the view, in turn, is performed by UI backend layer. [25.]

Browsers use different rendering engines. For instance, Firefox uses Gecko, but Chrome

uses Safari’s WebKit fork called Blink [25]. Similarly, JavaScript interpreters also vary:

Chrome runs V8, Firefox works on top of SpiderMonkey, and Safari uses JavaScriptCore

[27]. Despite the divergence, modern browsers tend to follow and consistently implement

the official HTML, CSS and ECMAScript specifications, thereby generally operating in

analogous way. In the past, for instance, browsers were following their own set of spec-

ifications along the way, causing compatibility related problems for web developers. [25.]

13

The scope of the topic of resource processing is limited mainly to the layer of the render-

ing, as it gives a sufficient outlook on the mechanism behind preparations for the page

to be displayed to the user. Given the context of the previous review on resource fetch-

ing, it is considered that the resources at this point are retrieved and prepared to be

served for rendering from the networking component.

2.3.2.2 Rendering pipeline

The rendering pipeline graph is illustrated in Figure 6.

Figure 6. Rendering pipeline. [1, p. 168]

Specifically, Figure 6 demonstrates the sequence of phases for HTML, CSS and JavaS-

cript assets to be handled. The steps include constructions of object models, render tree

assembling, followed by layout process and painting at the end. [28.]

To begin with, given there is an HTML byte code supplied, the parsing of it starts. Bytes

are converted to the stream of characters based on the encoding specified e.g. UTF-8.

Characters, in turn, are classified into specific tokens such as <div>, etc. The

tokens are then converted into the objects with additional specific properties. Finally, by

defining relationships between the derived objects, the DOM tree is constructed. This

tree defines features and connections of the document markup but does not provide any

information on the visual style, responsibility for which is encoded in CSSOM. [28.]

As soon as the stylesheets are reached during the HTML parsing process, they are pro-

cessed in an asynchronous manner. They could be retrieved directly or require an HTTP

request. Similar to HTML, CSS bytes are then converted into a tree structure referred to

as CSSOM. [28.]

14

Another type of asset embeddable to HTML document is JavaScript code in <script> tag.

Same as with CSS, the code could be inline or linked to an individual file, thereby requir-

ing an explicit retrieval. What makes it different, however, is its ability to block parsing

because the script could inject tag tokens into the stream through document.write() API

[29]. In addition, JavaScript cannot be executed until the CSSOM is constructed, be-

cause the script could contain CSS related logic and thereby introduce a race condition.

In the situation when the script includes DOM associated code, referencing unparsed or

non-existing node at the time, results in an error. Given the constraints, it is helpful to

apply <script> attributes of async and defer. They both command to asynchronously

fetch the script file, but the difference is that async implies immediate execution on file

availability, when defer on document parsing completion. [28.] In other words, the former

is unpredictable in timing, while the latter is not. Specifically, defer script execution al-

ways performed before DOMContentLoaded event is fired. In contrast, async kind of

scripts do not block DOMContentLoaded, but they are executed before the final window

load event is triggered. [29.]

As soon as both the DOM and CSSOM are assembled, they are combined into a single

union structure. DOM tree is traversed, and the invisible tags are omitted, such as

<meta>, <script>, or the ones with corresponding styles e.g. none for display. Visible

nodes are then mapped to associated styles in CSSOM. By joining these two set of

properties together, a new tree is produced, referred to as render tree. At this point it is

important to note, that linked CSS is by default a rendering blocker, meaning the render

tree cannot be constructed without complete CSSOM tree. CSS <link> tags, however,

can specifically set the media context using media attribute, and if it matches the current

state, the file is to be parsed entirely and potentially block the rendering, otherwise render

tree is available to be constructed without it. [28.]

When the render tree is prepared, the process moves to the next phase defined as layout

or reflow, where the nodes’ absolute positions and dimensions within the viewport are

computed. Layout recursively iterates elements, starting from the root, which is <html>

[25]. The output of the process is presented as a box model. At this point, spatial prop-

erties of the visible nodes are known along with the associated styling characteristics.

Such an information is sufficient to be passed as an in input to the painting or rasterizing

process, which converts the data provided to graphical artifacts on the user’s screen.

[28.] Supplied box model consists of layered stacks, painting order of which proceeds

from the back elements to the ones on the top [25].

15

As long as there are dynamic changes introduced to the painted page, browser attempts

to cope with them in an efficient manner. For instance, element color change results only

in painting of the element. Change in the position triggers both layouting and paintings

of the element and its children. Insertion of a new DOM node induces layout and paint

execution on the node. Global changes, however, such as changing the font size of the

<html> tag, affect the entire tree, thereby being computationally expensive. [25.]

2.3.2.3 Optimizations to consider

In the context of render tree construction, supplying HTML along with CSS in front is

critical for the first paint timing. CSS files a recommended to be situated at the top of the

markup file, because it ensures the stylesheet is quickly retrieved, and object model trees

are assembled in parallel. Besides, scripts should not block the pipeline wastefully – they

are to be placed at the bottom of the markup, and minified to reduce time required for

execution, which should proceed in asynchronous manner, if possible [24, pp. 45, 69].

2.4 Rendering architectures

Considering previously reviewed stages of resource fetching and resource processing,

existing rendering architectures represent an attempt to manipulate these variables to

achieve specific goals, for instance, richer user experience or better performance. To

avoid confusion, it is important to clarify that the term rendering, when referenced from

architectural perspective, is to mean responsibility for HTML markup assembling rather

than browser related rendering, consisting of HTML parsing and painting.

2.4.1 Server-side rendering

In contrast to contemporary web experience, pioneering web pages were uncomplicated,

containing HTML with the content of plain text and images, limited to functionality of

sharing of scientific research documentation. Pages were connected through links and

each transition required an entire page reload. Later, server-side programming lan-

guages such as PHP (1995) introduced the concept of dynamic HTML, rendered by the

server and responded with to client, subsequently making it possible for pages to react

to the requests of a more complex kind. Nevertheless, an entire page refresh was

16

required on every action. [30, p. 3; 31, pp. 6-8.] Defined as server-side rendering (SSR)

architecture, its mechanism is presented in Figure 7.

Figure 7. Server-side rendering. [32, p. 6]

As it can be seen in Figure 7, that the only responsibility of the browser is to render server

constructed markup, while the server handles the view, application logic and persistence

domains. The communication protocol is elementary and consists of a page request,

following delivery of various assets on initial load.

Later, the idea of interactivity was augmented by a new client-side scripting language of

JavaScript (1995), later accompanied with DOM (1998). Following the development and

adoption of XMLHttpRequest (XHR) browser API a paradigm shift for JavaScript was

highlighted by Garrett (2005), who used the term of Asynchronous JavaScript and XML

(AJAX) to refer to an industry-proven set of techniques for making client-to-server inter-

action asynchronous. Namely, Google was one of the first companies heavily using the

approach, what was reflected in its products such as Gmail and Google Maps. Those

kinds of applications were different from a classical request-refresh model in having an

additional JavaScript layer responsible for both asynchronous server data access and

successive client-side HTML rendering. As a result, continuous interaction requires less

page reloads for the same set of use cases, thus bringing a richer user experience. [31.]

17

The changes AJAX introduces to the scheme are shown in Figure 8.

Figure 8. AJAX-augmented SSR architecture. [32, p. 8]

Figure 8 demonstrates the client extending the space of its responsibility. By using AJAX,

the client is able to manage asynchronous data retrieval affecting the current presenta-

tional layer. Communication intricacy grows, as the overall request count increases. To

point out, most of the functionality is conducted on the side of server.

2.4.2 Client-side rendering

Major problem with AJAX approach is introduction of additional application complexity.

It causes duplication in views, models and assets required for the client, complicating

the process of maintaining and keeping track of the codebase as new features are im-

plemented. To avoid such a problem, the AJAX locality can be scaled to the entire do-

main, meaning management of the HTML markup construction becomes responsibility

of the client only. [31 p. 8-9.] The resulting application is referred to as SPA. It consists

of a single document communicating to the server for JSON data only, and brings no full

refreshes on interaction, resembling a cross-platform, native user experience [30 p. 11].

18

SPA architecture is depicted in Figure 9.

Figure 9. SPA architecture [32 p. 9]

Figure 9 shows the degree to which the responsibility of the server narrowed and trans-

ferred to the client, which governs both views and application logic to the whole extent.

Impact on the server is reduced significantly, and server’s purpose is to provide a data

access medium to underlying database and services. Ideally, there is a precise separa-

tion of concerns. However, as Airbnb engineering team points out, some logic ends up

being duplicated eventually, for example, date formatting and form validation [34].

SPA architecture suffers from several major drawbacks. First of all, the time required for

an initial load can be high, because an entire application needs to be fetched first before

it becomes interactive [32, p. 9]. Twitter, for instance, after implementing SPA in 2010,

moved rendering back to the server in 2012, achieving one fifth of the previous page

loading time [35]. Secondly, SPA is unreachable for web crawlers by default, thereby

unsearchable [32, p. 10]. On top of that, SPA has been subjected to considerable criti-

cism by Navis (2018), who points out an unjustified price of SPA and lack of business

reasons for such an architecture in comparison to SSR. Specifically, he calls attention to

frontend statefulness and the variety of issues it causes. [36.] However, Petrina (2018)

has challenged some of Navis’s conclusions, arguing that the major advantage SPA of-

fers is ability to construct a component-based system on the client, which is easier to

build, maintain, and therefore are less expensive. In contrast, he notes, writing proper

reusable code with server templating systems is a non-trivial task. [37.]

19

2.4.3 Isomorphic rendering

In recent years, there has been an increasing interest in a new type of applications re-

ferred to as isomorphic or universal. Fundamentally, it represents a conceptual merge of

both SSR and SPA, leveraging the finest features of theirs. Based on the ability to run

same piece of code on JavaScript environments of both client and server, isomorphic

application initially loads a server-rendered view containing the scripts, required to boot-

strap the SPA. There are multiple benefits this approach offers. To begin with, first mean-

ingful paint is rendered by browser quickly, thereby improving user’s perceived perfor-

mance despite the fact that eventual page load time is comparable to pure SPA. As a

consequence, page is indexable by web crawlers. Maintenance of the application is con-

sidered to be consistent because regardless of where the code is run, it needs to be

written once. Drawbacks, however, consist of handling browser and server differences,

resulting in challenging debugging, testing and global variable management. It is also

important to note, that although the first paint is quick, the interface is not interactive until

the scripts are finished executing [38, pp. 4-18.]

There are many companies in the industry, who implemented isomorphic principles on

production level successfully. To name a few, for instance, Netflix Website UI Engineer-

ing team achieved 70% reduction in page load time after replacing SPA stack with uni-

versal one [39]. Walmart had a positive experience as well and reported an increase in

users’ engagement thanks to early rendering on Electrode platform [40].

2.5 Summary

Web application performance is important and affects multiple dimensions of any online

business. For a user, the timing between the page being requested and the page being

displayed in the browser is contributed by numerous intermediary details in the domains

of networking and rendering, which need to be considered and coped with. While there

are several factors out of control, one can mitigate an impact if needed, and choose

suitable architecture based on available resources and business requirements.

20

3 Methods and materials

The goal of this chapter is to describe the systematic steps required for achieving the

objectives stated in introduction. The chapter is divided into two parts: implementation

and benchmark design. The former lays out the key features of constructed SPA, paying

particular attention to the component under the test. Design of the test is presented in

the latter part and defines the benchmark environment along with the metrics of choice

with the goal of answering the question of how the interface transformation affects the

performance from the perspective of the client and the server. In both sections, issues

regarding validity and reliability of the methods are pointed out.

3.1 Implementation

3.1.1 General overview

The proposed application’s architecture was based on Facebook’s JavaScript view li-

brary of React, accompanied with the functionality of Redux container for the client’s

state management, Semantic UI library for ready-made components along with the

styles, and Webpack bundler for transforming and packaging the resources. As a com-

plete reference, Appendix 1 contains the list of each of the installed packages along with

the versions scope.

Constructed by using the mentioned tools, the resulting SPA consisted of numerous

views meeting different business requirements, among which one was selected to be the

target of performance testing, and therefore is the one the implementation inspection

was focused on. Namely, the page of choice displays a dynamic list of table entries,

which in the domain of Trail are referred to as consumable models. There are multiple

reasons behind the decision of aiming attention at that particular view. First of all, it is

functionally and visually close to a previous server-side implementation. Secondly, the

dynamical nature of the list allows to represent the interface of various sizes and thereby

manipulate the load applied to both the client and the server. That is helpful for the pur-

pose of benchmarking as it increases the space for an experimentation. Finally, from the

architectural perspective the new view uses set of generic patterns, therefore providing

a sufficient high-level information on how the rest of the SPA operates. Given all that, to

provide a better context, Image 1 and Image 2 illustrate visual differences between the

21

new client-rendered and old server-rendered consumable models list interfaces, respec-

tively.

Image 1. New consumable list view generated by the client

Image 2. Preceding consumable list view generated by the server

22

As it is seen in Images 1 and 2, both views component-wise consist of the navigation

bar, search input and paginated table. The difference in the number of table columns is

dictated by the altered design requirements and considered to be insignificant on the

setting of the current investigation. Importantly, it can be seen in Image 1 that the con-

structed application was not replacing the server-side rendered views to the whole extent

but was integrated into it. In fact, the SPA was responsible for the core functionality only

and altering the body of the page but keeping the original navigation layout. Such an

approach allowed the interface transition to be experienced by users in a continuous

manner. That strategy is recommended to be followed until the SPA is capable of provid-

ing functionally identical set of views as the server and recreate the navigation segment.

It is essential to point out, that the new interface implementation is considered to corre-

spond to proper production level standards, thereby it should not introduce an error dur-

ing the process of benchmarking. In order to support the statement, the following sec-

tions provide answers the questions of how the core components of the view operate

and how the SPA is integrated into the base of Trail application.

3.1.2 View internals

To begin with, it is important to review the SPA’s entry point, presented in Appendix 2.

At the top of the hierarchy the application, encapsulated in the App component, was

augmented by other components, providing it the access to the content translations and

global Redux store, which holds the global state. The resulting structure was abstracted

out and rendered under the DOM element with the id of app. The App, the code for which

is listed in Appendix 3, is responsible for loading of critical data on the startup and wrap-

ping the Router along with MessageBucket, displaying error, success and warning mes-

sages to the end users. The Router represents a map between the current location path

and the corresponding component to be rendered at the placement of the Router. Among

all the entries, the one of particular interest is the following:

<Route exact path={'/models/consumables'} component={ConsumablesListPage} />

Listing 1. Route mapping between the location and component

In Listing 1 the path corresponds to component previously selected to be put under the

test. ConsumableListPage (Appendix 4) serves as the table segment, visualized in Im-

age 1. It can be seen in the code, that by using connect function ConsumableListPage

23

was attached to the state of a considerable size and several server API methods such

as loadConsumables, for instance, which loads table data immediately as soon as the

component is to mount or in the response to various user inputs:

componentWillMount() {
 this.fetchConsumablesByUrlHash();
}

Listing 2. Loading of table entries before the component mounts

The complete API method list with the corresponding actions for the domain of consum-

able models is located in a separate file (Appendix 5). The methods operate in a similar

way, namely they mutate the application’s state tree or reducer (Appendix 6) by dispatch-

ing actions with an optional payload on initialization, success or failure of the request

sent. These, for instance, would trigger the page’s loading indicator, load the list of the

requested models, or call for an error message to be displayed, as it, to give an example,

was done for actions of CONSUMABLES_LOAD_REQUEST shown in Listing 3, CON-

SUMABLES_LOAD_SUCCESS and CONSUMABLES_LOAD_FAILURE.

const loadConsumablesRequest = () => ({
 type: types.CONSUMABLES_LOAD_REQUEST,
});

case types.CONSUMABLES_LOAD_REQUEST: {
 return { ...state, loading: true, messages: [] };
}

Listing 3. Action with the corresponding state mutation

Server API methods rely on the API middleware (Appendix 7). It is the class of the meth-

ods of get, post, put and delete, encapsulating GET, POST, PUT and DELETE HTTP

request methods across the application. They, in turn, are based on the modern Fetch

API for making the AJAX requests. Reponses propagate back to actions, and custom

HttpError and ApiError implementations are utilized on error, if necessary. Important to

note, that because by default Fetch does not manage the cookies, it needs to be explicitly

set to send the user credentials:

credentials: 'include'

Listing 4. Fetch option to send the credentials

In addition, it is important to supply the X-CSRF-Token header along with the requests,

and in the context of the SPA being a standalone injection, the token is retrieved by

24

programmatically accessing the DOM of the Rails generated HTML tag, as it can be seen

in Listing 5.

const extractCSRFToken = () => {
 const el = document.getElementsByName('csrf-token')[0];
 const CSRFToken = el ? el.content : '';

 return CSRFToken;
};

Listing 5. CSRF token extraction

The code in Listing 5 implies existing of the HTML meta tag with the content of the CSRF

token in the current document. Consecutively, it is supplied within the header of each

request.

Given above, and assuming the loadConsumable’s GET request completed, the list of

the consumable models is stored in the reducer (Appendix 6) and are retrieved by the

selector of getConsumables in ConsumablesListPage (Appendix 4). The list page in-

cludes the custom-made component of ListTable (Appendix 8), the responsibility of

which is to generate the table given there are consumable models supplied. To explain

briefly, it is based on the Semantic UI library’s Table component, and dynamically builds

the columns and rows from the JSON configuration and business data provided. The

component is assumed to be a highly expensive part of the view in terms of HTML pars-

ing and painting. In fact, it is not only the text the table can display but the content of any

complexity.

While exploring the code, it becomes obvious there are other components involved in a

view construction. However, the current explanation is considered to be sufficient in the

setting of the performance testing scope, explained in the later section. Thereby the rest

of the elements are assumed to be insignificant. At this point, it is important to be aware

of the operational flow of how the page loads: first, the navigation request made, then

basic skeleton view is constructed, followed by an immediate request for a models list

and displayed loading indicator, and, finally, when the response arrives, its data is

mapped to the table and rendered on the screen.

25

3.1.3 Resource packaging and integration

In order to package the developed scripts and stylesheets into single files of the corre-

sponding format, for them to be used in production-level context, the tool of Webpack

was utilized. Appendix 9 lists the configurations applied. It can be seen that although the

implementation in written in modern JavaScript notation, at the end of the pipeline it is

compiled by Babel to a widely compatible code, which was, additionally, minified. Along

with regular language, Fetch API is recommended to be converted into a function con-

sumable by old web browsers. For these cases babel-polyfill and whatwg-fetch packages

were integrated.

The Webpack configuration results in generation of three JavaScript output files based

on the entry points defined and the shared bundle behind them. Similarly, the stylesheets

are also packaged into a single CSS file. On top of that, client related translation files are

copied to the scope of Rails application. The complete list of the SPA assets along with

their sizes in original and compressed states are shown in Table 1.

File Format Original size, KB Compressed size, KB
vendor.js JavaScript 1020 295
main.js JavaScript 946 227
navigation-search.js JavaScript 11 3
main.css CSS 824 301
common.json (en) JSON 28 -
common.json (fi) JSON 28 -

Table 1. SPA production files and their sizes

In Table 1 it is the compressed file size which is of high importance as it indicates the

load to be transferred through the network. The biggest asset in the list is main CSS file

of 301KB, mostly contributed by Semantic UI style definitions. The smallest, in turn, is

the navigation search JavaScript file of 3KB. In the context of consumables list page, it

does not play a role, because it represents a standalone functionality out of its scope.

common.json files store English and Finnish textual content and they are fetched auto-

matically by the i18next framework on the application mount. In contrast to the rest of

the assets, translation files are not compressed.

26

The way generated JavaScript and CSS files are integrated into the Ruby on Rails ap-

plication is shown in Listing 6.

- content_for :content do
 = include_stylesheets :react_main
 %div#app

 = include_javascripts :react_main

Listing 6. A Haml-based React template for a Ruby on Rails view

Listing 6 presents a Haml template including SPA related stylesheets at the top and the

scripts at the bottom. Naming of react_name defines grouping of the files in the Rails’s

asset configuration setting. Important to note that the application stores the assets in the

public folder of its own, meaning the resource request and the server share an identical

domain. Given the template, Rails can render it in the response to a specified URL path.

When its rendered and the assets are loaded, the SPA is bootstrapped and div element

with the id of app becomes a central point of React environment.

3.2 Benchmark design

3.2.1 Metrics

To restate the first research question, the understanding is needed of how introduction

of the SPA affects the performance of the application from the perspective of the user.

In order to capture the characteristics defining the performance in the context of the page

navigation, the following metrics were chosen: “DOM loading”, “DOM complete”, “usa-

ble”, “first useful” and “second useful”.

“DOM loading” indicates the moment the HTML is loaded and is ready to be passed to a

rendering engine for processing. When it finishes, the “DOM complete” event is marked.

Next timing point to be waited for are “usable” and “first useful”. The former defines the

moment, when the interface has a property of being interacted in any sensible kind, and

the latter represents the moment, when the integral data is presented, which is the list of

consumable models for the current case. In the context of SSR both “usable” and “first

useful” are mapped to loadEventEnd event. They are identical as the server-rendered

document does not have an intermediary state – when it is usable it is immediately use-

ful. The situation for the SPA is completely different, however, because it is of a stateful

27

nature. It is possible for it to be usable first and useful after a certain amount of time,

because it is able to render a usable interface while asynchronously doing complicated

requests, the arrival of which along with the following rendering indicate the moment of

it being useful. To provide an example, Image 3 shows the SPA at the state of being

usable:

Image 3. The usable state of the SPA

It can be seen in Image 3 that while the table is loading, which is indicated by an animated

spinner, the interface is usable and interactive. For instance, the search input could be

altered, or the button clicked. When the table is loaded, the view becomes useful be-

cause it fully satisfies the requirements it imposes as it is shown in Image 1.

The last and key metric to be considered is “second useful” because it leverages the

advantages of the client-rendered interface. It is to mark the timing required for a con-

secutive reloading of table data immediately after “first useful” was identified. That would,

for example, represent a use case when a user loads the page for first time and does

not locate the required model in the table loaded. Then they would modify the request

using the search functionality and reload the table. To point out, in such situation the

server-side rendered architecture would require a complete page refresh, while the SPA

to trigger a single AJAX request. While the “first useful” is assumed to be time consuming

for the SPA, the “second useful” is expected to be more performant because the appli-

cation is considered to be already loaded in the browser.

28

3.2.2 Data collection

3.2.2.1 Client data

The script in Appendix 10 was injected to the HTML page and shows how the metric

related data was collected. For the purpose PerformanceTiming API was used. It is seen

that when the event of completeObservation is triggered, the data is allocated to the

browser’s session storage and page is automatically reloaded thus denoting an obser-

vation to be completed. Number of observations is defined by observationsLeft variable,

which is defined in the stage benchmark setup through a console in the following way:

sessionStorage.setItem('data', JSON.stringify([]));
sessionStorage.setItem('observationsLeft', 10);
location.reload();

Listing 7. Benchmark setup

In Listing 7 the benchmark setup is shown. The data is defined to be an empty array,

and the number of observations is set to 10. When the code is executed in the browser

console, the page is automatically reloaded and the script (Appendix 10) is to have ap-

propriate conditions to start repeatedly doing the observations.

It is shown in Appendix 10 that while for both test cases “DOM loading” and “DOM com-

plete” are mapped to the domLoading and domComplete performance entries, the rest

of the metrics differ. In the context of server-rendered page, “usable” and “first useful”

are set to be equal to loadEventStart performance entry. “Second useful” is defined to

be double of loadEventStart for the sake of simplicity under the assumption that the sec-

ond load would require the same amount of time as the first one.

In the situation of SPA testing the performance entries need to be marked and accessed

manually by the API’s mark() and getEntriesByName() methods, respectively. To assess

the measurements correctly there are two React components (Appendices 11 and 12)

were added. Usable.jsx (Appendix 11) loads when the ConsumablesListPage.jsx (Ap-

pendix 4) mounts and sets the callback before the browser’s repaint using window.re-

questAnimationFrame() method. The repaint process is expected to happen when the

loading indicator (Image 3) starts to be painted. At that point, consequently, the “usable”

metric is assessed. Useful.jsx (Appendix 12) operates in a similar manner. Specifically,

it mounts when loadConsumables methods returns the response, and immediately sets

29

the callback on repaint, which is called when the table painting is initiated, thus marking

the timing of “first useful”. Immediately after that the table is explicitly loaded anew by

the passed this.props.loadListAnew() function. Then, similarly, it waits for the repaint to

start and marks the “second useful” timing when the table painting process starts again.

At this stage, all the required metrics are measured, and the observation is ready to be

completed by dispatching an event for execution of the data collecting script (Appendix

10) as it is shown in Listing 8.

performance.mark('secondUseful');

const completeObservation = new Event('completeObservation');
window.dispatchEvent(completeObservation);

Listing 8. Marking of “second useful” and completing the observation by event dispatching

In turn, the moment when the observation is to be completed for the server-side rendered

interface is defined by the window’s load event:

window.addEventListener('load', () => {
 const completeObservation = new Event('completeObservation');
 window.dispatchEvent(completeObservation);
})

Listing 9. Dispatching an observation triggering event on window load

Listing 9 represents dispatching of completeObservation event when the window is

loaded in the setting of server-side rendered view. The code is included to the HTML

page and sets up an event listener before the load is completed.

3.2.2.2 Server data

Due to the lack of resources server data collection in the current research is significantly

limited to the cloud monitoring tool generated graphs only. Namely, the ones describing

CPU utilization and system load. Imposed restrictions result in absence of details and

quality data, but, nevertheless, are considered to partly able to provide a high-level per-

spective on the differences between the impact caused by investigated rendering archi-

tectures, thus providing a basic answer to the question raised earlier. To clarify, the mon-

itoring tool used for the server under the test was IDERA by CopperEgg.

30

3.2.3 Testing cases and environment

To recall, size of the table is dynamic. User may choose the maximum number of entries

per page among the options of 20, 50 and 100. The goal is to measure performance of

the page with all available options to the user along with artificial settings of 0 and 300

items per page. Those are the independent variables, while the dependent one is timing

in milliseconds. With each number of page entries, the views were tested with the HTTP

cache turned on and off by using the browsers’ developer tools. Important to note that,

unlike the assets, the request for the list of consumable models was never cached in

order to simulate the uniqueness of the data with each page load. It was done with the

response header of Cache-Control set to no-store later augmented by a random number

parameter (Listing 10) with each request, because Safari did not operate properly with

the cache control header. Specifically, in the context of SPA, it always cached the first

request, but not the second one.

const resource = `/models/consumables.json?nocache=${Math.random()}`;

Listing 10. Avoiding cache by attaching a random parameter value with each request

To gather the perspective on the server performance, similar set of number of entries

per page was chosen with the corner case of 1000, however. Besides, it is only the

uncached environment which was tested on the server.

Number of observations for each case is 100, given which the means and standard de-

viations were calculated.

The designed benchmark was executed on the laptop of MacBook Pro 2016 running on

macOS Mojave 10.14.1 with the CPU of 2,9 GHz Intel Core i5, RAM of 16 GB 2133 MHz

LPDDR3 and graphics card of Intel Iris Graphics 550 1536 MB.

The browsers under the test were Google Chrome 70.0.3538.102, Mozilla Firefox Quan-

tum 63.0.3 and Apple Safari 12.0.1. Such a selection was dictated by their market share

and the fact that each of them operate on different rendering and JavaScript engines.

Additionally, it would be beneficial to examine the Microsoft’s Edge browser, because it

too runs on unique pair of rendering and scripting engines, EdgeHTML and Chakra, re-

spectively. However, due to the lack of resources, such a case was not concern of the

current research but could be considered as a part of the further one.

31

The browsers communicated to the Ruby on Rails 3.2 application on a remote Apache

HTTP server 2.2.22 with Phusion Passenger 4.0.53 integration, set up on Ubuntu

12.04.4 LTS Linux distribution. To point out, the data was specifically prepared to be of

production quality.

To manage the bandwidth in a consistent manner and simulate a more realistic testing

environment the throttling was introduced by using Charles 4.2.7, a web debugging proxy

tool. The 8 Mbps ADSL2 preset was selected with the following properties: download

bandwidth of 8192Kb/sec with minimal round-trip latency of 40ms. These settings fit the

underlying assumption of the average quality of the connection the customers of the case

company use. To note, the focus of the investigation is a desktop application, thereby it

is the corresponding kind of network is expected rather than a mobile one. It is important

to clarify that the primary reason for using a standalone throttling tool is the lack of such

functionality in Safari browser. In comparison, for instance, it is possible to set throttling

settings directly in the developer tools of both Chrome and Firefox browsers.

On top of that, importantly, the SPA integration was tailored for the purpose of yielding a

performance data without an overhead and imitating the product of complete and

standalone kind. Specifically, the original navigation bar along with corresponding

stylesheets and scripts were ignored. In that setting, it was assumed that the SPA gen-

erated assets are self-contained, and that absence of visually rendered navigation bar

was insignificant.

32

4 Results

4.1 User perspective

4.1.1 Browser comparison

Figures 10 and 11, based on data from Appendices 13 and 14, show the comparison of

benchmark results for all the browsers with and without resource cache, respectively.

Figure 10. Browsers load comparison without resource cache

33

Figure 11. Browsers load comparison with resource cache

By investigating Figures 10 and 11, without going into the details, it can be seen that all

the browsers manifest similar, close to linear, trends in the context of CSR and SSR

comparison. It is essential to point out, that the characteristics of results presentation are

interchangeable, thereby it is totally sufficient to focus on a single browser data to support

the upcoming discussion. Because it is difficult to reason which browser is more perfor-

mant that requires a deeper approach deserving to be the topic of further development.

In fact, there is significant amount of deviation introduced at different stages of measure-

ment, especially in the case of Mozilla Firefox. The differences are acceptable, however,

34

as the environment under the test is of high complexity and is expected to impose a

certain amount of error. There are multiple vectors of intricacy such as engine internals

differences, garbage collection pauses, multi-threading etc. What is more important for

current investigation is that the data provides a basis for a solid assumption, that in the

setting of a single browser CSR and SSR behave relatively similar as in the context of

other browsers.

Given the above, Google Chrome was chosen for further results exploration, because it

clearly demonstrated the most stable and consistent results across all levels of bench-

marking.

4.1.2 Google Chrome

Figures 12 and 13, display the benchmark results for Google Chrome with and without

resource cache, respectively. There are two graphs on each of the charts. The blue

graph shows the performance of CSR architecture, while the green one deals with the

performance of SSR.

“DOM loading” measurements for both SSR and CSR are similar in comparison to

cached and uncached environments. While SSR is more performant when there are 0

items on the page, the time required to receive the DOM increases significantly as the

number of items per page grows. Meanwhile, the CSR values remain relatively stable.

“DOM complete” results demonstrate similar to “DOM loading” trends. What is different

is the point of intersection at which CSR starts showing better results compared to SSR.

Without resource cache the point is at around 130 items per page with approximated

time of 1600ms. Introduction of cache alters the point down to 20 items with the timing

close to 500ms.

There is practically none of the differences between the measurements of “DOM com-

plete” and “usable” for SSR as the latter immediately follows the former one. CSR, in

turn, shows a slight and consistent gap between those, of around 150ms without cache

and 90ms with. Thereby the results of “usable” are close to the results of “DOM Com-

plete” and generally shows the same tendency.

“First useful” results show no sign of intersection. In fact, the gap between CSR and SSR

in uncached setting is around 1000ms at 0 items per page and it almost doubles at 300

35

items per page. By turning cache on the tendency stays the same, while the gap de-

creases approximately by 60%. The results are comparable to the data for “Second use-

ful”, presenting a smaller gap, which is, however, is not eliminated even with the resource

cache.

Figure 12. Google Chrome load without resource cache

36

Figure 13. Google Chrome load with resource cache

Useful delta is difference between second and first useful. It shifts the point of reference

and shows the results from the perspective of the SPA already being loaded in the

browser and being allocated in continuous “usable” state. It can be seen that in such a

setting the CSR and SSR graphs swap the places when there is no cache but show near

values in cached context with the CSR being slightly faster with lower page entries.

37

4.2 Server perspective

Figures 14 and 15 display CPU utilization and system load on the server under the nu-

merous successive requests initiated by SSR. Correspondingly, Figures 16 and 17 are

related to CSR. The numbers 0, 20, 50, 100 etc. written on top of the chart sections

indicate the number of items per page included in the page loaded.

Figure 14. CPU utilization by SSR

Figure 15. System load by SSR

Figure 16. CPU utilization by CSR

38

Figure 17. System load by CSR

By comparing the CPU utilization Figures 14 and 16 it is considered that the utilization is

1-2% lower in the case of CSR, which can be clearly seen for all the page entries with

an exception for 1000, where it is problematic to deduce the difference. System load data

represents an issue as well due its inconsistency towards the request pattern. What

could be stated, however, is that CSR did not cause load higher than 0.9, while SSR

spiked the load at maximum of 1.5.

39

5 Discussion

Given the results it could be seen that when the web page was loaded for the first time,

the CSR architecture was not able to perform better than the SSR in terms of being

useful e.g. displaying the table of consumable models. Also, it could not demonstrate

impressive results in its quickness of being usable or interactive. Specifically, if the as-

sets were cached, the CSR could surpass SSR at around 40 items per page. Considering

85% of Trail users prefer to list 50 items and less, and the fact that at 50 items the gap

between CSR and SSR “usable” reached only 50ms, CSR performance advantage is

practically unnoticeable. Given all that it can be stated that the CSR is comparatively not

capable of achieving a quick startup time, which is of high importance for user retention

and conversion in online retail business, for instance [3].

To recall, half of the users expect the page to be loaded in 2 seconds or less [4]. Both

SSR and CSR architectures demonstrated ability to fit such a constraint in a real use

case scenario if assets were cached. If not, CSR was able to serve the page in under 3

seconds, which is the edge when half of the users are ready to drop off the page [4].

Arguably, it could be considered that most of the time Trail users utilize browser’s cache

for the assets. It is due to comparatively low frequency of releases, which means users

do not need to reload newly generated packages frequently. At this point it is also im-

portant to be aware of the limitation of the current research, namely the SPA implemen-

tation was far from being complete and examined as an ideal benchmark candidate. In

other words, the size of the assets is expected to increase as long as the new features

are added, thus in the cached context the loading time would grow as well.

The CSR performance situation drastically changed when the perspective was shifted,

and it was assumed the SPA was already loaded in the browser and was interacted

through a frame of native desktop experience. At this stage the application was con-

stantly usable, and was expected to be quicker than SSR, because any data retrieval

became the question of an asynchronous request rather than a complete page reload.

With the 30-160ms performance advantage over 100 items per page range, the CSR

potentially manifested a faster user experience for 100% of the Trail users. What was

surprising during the investigation is CSR’s performance outrun, which happened to be

lower than expected. Thereby it was assumed that React, as a complex front-end frame-

work, brings a performance overhead, the detailed investigation of which could be a goal

of the further research. If it is true, important to point out that it can be considered as a

40

cost for advantages the framework provides such as code maintainability, project devel-

opment efficiency, advanced user experience etc. [41].

Caused server impact is considered to be smaller for CSR. Despite the lack of data pre-

cision, it is possible to point out approximately a 1% decrease in CPU load. Although the

change does not look significant alone, in the context of thousands of users initiating

simultaneous requests and calling for multiple CPU cores, it represents a huge value for

the business. Indeed, the process of page assembling was delegated to the client’s ma-

chine, and the major responsibility of the server becomes processing of API requests. It

could be even more efficient if the assets were delivered not by the server, but by CDN,

which additionally would map the client to the closest server available. The lower the

impact, the higher the server capacity which consequently, results in a safer and cheaper

application.

41

6 Conclusion

The SPA was implemented by using React and Redux libraries along with the best prac-

tices in the context of available resources. One SPA view was selected and compared

to the corresponding previous implementation from the perspective of performance.

Google Chrome was selected as a major reference for benchmark results. Consequently,

it was concluded that depending on the context of usage, new interface implementation

yields various timings but operates within the acceptable boundaries. In uncached and

cached settings for 100 items per page the view is useful under 3 and 2 seconds respec-

tively. Nevertheless, it is higher compared to SSR, for which the corresponding timing

values are 1.5 and 1 seconds. Given the SPA is loaded in the browser, it is able to

outperform the SSR, but with a small margin of 30ms. Considering the perspective of the

server impact it is approximated that CSR improves the CPU’s capacity by 1% and gen-

erally forces a lower system load.

42

References

1 Grigorik I. High-Performance Browser Networking. Sebastopol, CA: O’Reilly Me-
dia; 2013.

2 Wagner J. Why Performance Matters [online]. URL: https://develop-
ers.google.com/web/fundamentals/performance/why-performance-matters/. Ac-
cessed on 5 October 2018.

3 Meder S, Antonov V, Chang J. Driving user growth with performance improve-
ments [online]. URL: https://medium.com/@Pinterest_Engineering/driving-user-
growth-with-performance-improvements-cfc50dafadd7. Accessed 5 October
2018.

4 Google. The need for mobile speed: How mobile latency impacts publisher reve-
nue [online]. URL: https://www.thinkwithgoogle.com/intl/en-154/insights-inspira-
tion/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-rev-
enue/. Accessed 5 October 2018.

5 Nielsen J. Website Response Times [online]. URL: https://www.nngroup.com/arti-
cles/website-response-times/. Accessed 5 October 2018.

6 Ben Schwarz. Beyond the Bubble: Real world performance [online]. URL:
https://building.calibreapp.com/beyond-the-bubble-real-world-performance-
9c991dcd5342. Accessed 5 October 2018.

7 GSM Association. The Mobile Economy 2018. 2018

8 HTTP Archive. State of the Web. URL: https://beta.httparchive.org/reports/state-
of-the-web. Accessed on 5 October 2018.

9 Addy Osmani. The Cost of JavaScript in 2018 [online]. URL: https://me-
dium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4. Accessed
on 13 October 2018.

10 Fixed asset management software in cloud - Trail Systems [online]. URL:
https://www.trail.fi. Accessed on 5 October 2018.

11 W3C. Navigation Timing Level 2 [online]. URL: https://www.w3.org/TR/naviga-
tion-timing-2. Accessed on 18 October 2018.

12 Fielding R, Reschke J. RFC7230. Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing [online]. URL: https://tools.ietf.org/html/rfc7230. Ac-
cessed on 13 October 2018.

13 Gourley D, Totty B. HTTP: The Definitive Guide . Sebastopol, CA: O’Reilly Media;
2002.

14 Dierks T, Rescorla E. RFC5246. The Transport Layer Security (TLS) Protocol.
Version 1.2 [online]. URL: https://tools.ietf.org/html/rfc5246. Accessed on 13 Oc-
tober 2018.

43

15 Kozierok CM. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols
Reference. San Francisco, CA: No Starch Press, Inc.; 2005.

16 Belshe M. More Bandwidth Doesn’t Matter (much) [online]. URL:
https://docs.google.com/a/chro-
mium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcy-
OWI1N2I4YzI3NzE2. Accessed on 16 October 2018.

17 Allman M, Paxson V. RFC5681. TCP Congestion Control [online]. URL:
https://tools.ietf.org/html/rfc5681. Accessed on 20 October 2018.

18 Wikimedia Commons. File: TCP Slow-Start and Congestion Avoidance.svg
[online]. URL: https://commons.wikimedia.org/wiki/File:TCP_Slow-
Start_and_Congestion_Avoidance.svg. Accessed on 20 October 2018.

19 Fielding R, Reschke J. RFC7231. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content [online]. URL: https://tools.ietf.org/html/rfc7231. Accessed
on 20 October 2018.

20 Steele-Idem P. Async Fragments: Rediscovering Progressive HTML Rendering
with Marko [online]. URL: https://www.ebayinc.com/stories/blogs/tech/async-frag-
ments-rediscovering-progressive-html-rendering-with-marko. Accessed on 27 Oc-
tober 2018.

21 The Chromium Projects. HTTP Pipelining [online]. URL: https://www.chro-
mium.org/developers/design-documents/network-stack/http-pipelining. Accessed
on 27 October 2018.

22 Browserscope. Network [online]. URL: http://www.browserscope.org/?cate-
gory=network&v=1. Accessed on 27 October 2018.

23 Fielding R, Nottingham M, Reschke J. RFC7234. Hypertext Transfer Protocol
(HTTP/1.1): Caching [online]. URL: https://tools.ietf.org/html/rfc7234. Accessed
on 27 October 2018.

24 Souders S. High Performance Web Sites. Sebastopol, CA: O’Reilly Media; 2007.

25 Garsiel T. How browsers work [online]. URL: https://taligarsiel.com/Projects/how-
browserswork1.htm. Accessed on 27 October 2018.

26 StatCounter. Browser Market Share Worldwide – October 2018 [online]. URL:
http://gs.statcounter.com/. Accessed on 1 November 2018.

27 Bynens M, Meurer B. JavaScript engine fundamentals: Shapes and Inline
Caches [online]. URL: https://mathiasbynens.be/notes/shapes-ics. Accessed on 1
November 2018.

28 Grigorik I. Critical Rendering Path [online]. URL: https://develop-
ers.google.com/web/fundamentals/performance/critical-rendering-path/. Ac-
cessed on 27 October 2018.

29 W3. HTML5.2: The HTML Syntax [online]. URL:
https://www.w3.org/TR/html5/syntax.html#the-end. Accessed on 1 November
2018.

44

30 Fink G, Flatow I. Pro Single Page Application Development: Using Backbone.js
and ASP.NET. New York, NY: Apress Media; 2014.

31 Asleson R, Schutta NT. Foundations of Ajax. New York, NY: Apress Media; 2006.

32 Strimpel J, Najim M. Building Isomorphic JavaScript Apps. Sebastopol, CA:
O’Reilly Media; 2016.

33 Garrett JJ. Ajax: A New Approach to Web Applications [online]. URL: http://adap-
tivepath.org/ideas/ajax-new-approach-web-applications/. Accessed on 1 October
2018.

34 AirbnbEng. Isomorphic JavaScript: The Future of Web Apps [online]. URL:
https://medium.com/airbnb-engineering/isomorphic-javascript-the-future-of-web-
apps-10882b7a2ebc. Accessed on 4 November 2018.

35 Twitter. Improving performance on twitter.com [online]. URL: https://blog.twit-
ter.com/engineering/en_us/a/2012/improving-performance-on-twittercom.html.
Accessed on 4 November 2018.

36 Navis G. The Architecture No One Needs [online]. URL: https://www.greg-
navis.com/articles/the-architecture-no-one-needs.html. Accessed on 4 November
2018.

37 Petrina T. Architecture no one needs is server side templating [online]. URL:
https://itnext.io/architecture-no-one-needs-is-server-side-templating-
78331391274. Accessed on 4 November 2018.

38 Gordon EK. Isomorphic Web Applications. Shelter Island, NY: Manning Publica-
tions; 2018.

39 Baxter K. Making Netflix.com Faster [online]. URL: https://medium.com/netflix-
techblog/making-netflix-com-faster-f95d15f2e972. Accessed on 4 November
2018.

40 Grigoryan A. The Benefits of Server Side Rendering Over Client Side Rendering
[online]. URL: https://medium.com/walmartlabs/the-benefits-of-server-side-ren-
dering-over-client-side-rendering-5d07ff2cefe8. Accessed on 4 November 2018.

41 Sethi A. The Baseline Costs of JavaScript Frameworks [online]. URL:
https://blog.uncommon.is/the-baseline-costs-of-javascript-frameworks-
f768e2865d4a. Accessed on 28 November 2018.

Appendix 1

 1 (2)

Complete list of installed packages (package.json)

{
 "dependencies": {
 "animated": "^0.2.1",
 "babel-polyfill": "^6.26.0",
 "d3-array": "^1.2.1",
 "d3-axis": "^1.0.8",
 "d3-color": "^1.0.3",
 "d3-dsv": "^1.0.7",
 "d3-format": "^1.2.0",
 "d3-interpolate": "^1.1.6",
 "d3-scale": "^1.0.6",
 "d3-selection": "^1.1.0",
 "d3-tip": "^0.7.1",
 "history": "^4.5.1",
 "i18n-iso-countries": "^3.7.3",
 "i18next": "^10.0.1",
 "i18next-xhr-backend": "^1.4.3",
 "lodash": "^4.17.4",
 "moment": "^2.22.1",
 "numeral": "^2.0.6",
 "qs": "^6.5.1",
 "react": "^16.1.1",
 "react-addons-shallow-compare": "^15.6.0",
 "react-dates": "^15.1.0",
 "react-dom": "^16.1.1",
 "react-dropzone": "^4.2.7",
 "react-i18next": "^6.0.6",
 "react-redux": "^5.0.6",
 "react-router-dom": "^4.2.2",
 "react-transition-group": "^2.2.1",
 "redux": "^3.7.2",
 "redux-actions": "2.3.0",
 "redux-form": "^7.1.2",
 "redux-thunk": "^2.2.0",
 "semantic-ui-css": "2.2.12",
 "semantic-ui-react": "0.76.0",
 "shortid": "^2.2.8",
 "whatwg-fetch": "^2.0.4"
 },
 "devDependencies": {
 "babel-core": "^6.26.2",
 "babel-eslint": "^7.1.1",
 "babel-jest": "^23.4.2",
 "babel-loader": "^7.1.4",
 "babel-minify-webpack-plugin": "^0.3.1",
 "babel-plugin-transform-builtin-extend": "^1.1.2",
 "babel-preset-env": "^1.6.1",
 "babel-preset-react": "^6.24.1",
 "babel-preset-stage-2": "^6.24.1",
 "copy-webpack-plugin": "^4.1.1",
 "css-loader": "^0.28.4",
 "eslint": "^4.6.1",
 "eslint-config-airbnb": "^15.1.0",
 "eslint-plugin-import": "^2.7.0",
 "eslint-plugin-jest": "^21.21.0",
 "eslint-plugin-jsx-a11y": "^5.1.1",
 "eslint-plugin-react": "^7.3.0",
 "extract-text-webpack-plugin": "^3.0.2",
 "file-loader": "^0.11.1",
 "html-webpack-plugin": "^2.28.0",

Appendix 1

 2 (2)

 "jest": "^23.5.0",
 "less": "^2.7.2",
 "less-loader": "^4.0.3",
 "react-test-renderer": "^16.3.2",
 "style-loader": "^0.18.2",
 "transfer-webpack-plugin": "^0.1.4",
 "url-loader": "^0.5.8",
 "webpack": "^3.11.0",
 "webpack-dev-server": "^2.3.0",
 "webpack-merge": "^4.1.0"
 }
}

Appendix 2

 1 (1)

Entry point of the SPA (client.jsx)

import React from 'react';
import ReactDOM from 'react-dom';
import { Provider } from 'react-redux';
import { I18nextProvider } from 'react-i18next';
import 'react-dates/initialize';

import 'semantic-ui-css/semantic.min.css';

import configureStore from './store/configureStore';
import i18n from './i18n';

import App from './containers/App';

import './assets/stylesheets/main.less';

const store = configureStore();

const router = (
 <I18nextProvider i18n={i18n}>
 <Provider store={store}>
 <App />
 </Provider>
 </I18nextProvider>
);

const app = document.getElementById('app');
if (app !== null) {
 ReactDOM.render(router, app);
}

Appendix 3

 1 (2)

Main application component (App.jsx)

import React, { Component } from 'react';
import { connect } from 'react-redux';
import { BrowserRouter } from 'react-router-dom';
import isEmpty from 'lodash/isEmpty';
import moment from 'moment';
import { translate } from 'react-i18next';

import { loadCurrentUser } from 'actions/currentUser';
import { getCurrentUser } from 'reducers/currentUser';
import { loadOrganization } from 'actions/organization';
import { dismissMessage } from 'actions/globalMessages';
import MessageBucket from 'components/messages/MessageBucket';
import i18n from 'i18n';
import Router from './Router';

class App extends Component {
 componentWillMount() {
 const { user } = this.props;

 if (!isEmpty(user)) {
 i18n.changeLanguage(user.locale);
 moment.locale(user.locale);
 moment.weekdays(true);
 }

 this.props.loadCurrentUser();
 this.props.loadOrganization();
 }

 render() {
 const { messages, dismiss, t } = this.props;

 return (
 <div>
 <BrowserRouter>
 <div>
 <MessageBucket
 messages={messages}
 dismiss={dismiss}
 t={t}
 />
 <Router />
 </div>
 </BrowserRouter>
 </div>
);
 }
}

const mapStateToProps = state => ({
 user: getCurrentUser(state),
 messages: state.globalMessages.entries,
});

const mapDispatchToProps = {
 loadCurrentUser,
 loadOrganization,
 dismiss: dismissMessage,
};

Appendix 3

 2 (2)

export default translate('', { wait: true })(
 connect(mapStateToProps, mapDispatchToProps)(App)
);

Appendix 4

 1 (4)

Page displaying the list of consumable models (ConsumablesListPage.jsx)

import React, { Component } from 'react';
import { connect } from 'react-redux';
import { Segment, Grid, Button } from 'semantic-ui-react';
import isEmpty from 'lodash/isEmpty';
import { translate } from 'react-i18next';

import * as currentUserSelectors from 'reducers/currentUser';
import * as consumablesSelectors from 'reducers/consumables';
import * as consumablesActions from 'actions/consumables';

import { updateUrlHash, extractUrlHash } from 'utils/urlHelpers';

import * as modelsListsColumns from 'componentsConfigs/modelsListsColumns';
import DataTableHeader from 'components/tables/DataTableHeader';
import ListTable from 'components/tables/ListTable';
import PaginationButtons from 'components/tables/PaginationButtons';
import MessageBucket from 'components/messages/MessageBucket';
import SearchBox from 'components/utils/SearchBox';

import TableSettingsPopup from 'components/tables/TableSettingsPopup';

class ConsumablesListPage extends Component {
 componentWillMount() {
 this.fetchConsumablesByUrlHash();
 }

 getDisplayedConsumableColumns() {
 const { t, displayedColumnNames } = this.props;

 const columns = modelsListsColumns.getColumnsConfigs(t);
 const displayedColumns = [];

 displayedColumnNames.forEach((key) => {
 const column = columns[key];
 if (column) { displayedColumns.push(column); }
 });

 return displayedColumns;
 }

 fetchConsumablesByUrlHash() {
 const { location, updatePage, updateSearchInput, updateOrder } =
this.props;
 const { page, search, orderBy, orderDirection } = extractUrlHash(loca-
tion);

 updatePage(page);
 updateSearchInput(search);
 updateOrder(orderBy, orderDirection);

 this.fetchConsumables();
 }

 async fetchConsumables() {
 await this.props.loadConsumables();
 this.updateHash();
 }

 handleSearchDebounce = () => {
 const firstPage = 1;

Appendix 4

 2 (4)

 this.props.updatePage(firstPage);
 this.fetchConsumables();
 }

 handlePageNumberChange = (newPage) => {
 this.props.updatePage(newPage);
 this.fetchConsumables();
 }

 handleSort = (orderBy, orderDirection) => {
 this.props.updateOrder(orderBy, orderDirection);
 this.fetchConsumables();
 }

 updateHash() {
 const { history, location, page, search, orderBy, orderDirection } =
this.props;
 const newHash = { page, search, orderBy, orderDirection };

 updateUrlHash(history, location, newHash);
 }

 render() {
 const {
 search, loading, consumables, page, totalPages, perPage, dismissMessage,
 totalEntries, orderBy, orderDirection, t, messages, updateSearchInput,
columns,
 } = this.props;

 const SearchInput = (
 <SearchBox
 value={search}
 onDebounce={this.handleSearchDebounce}
 onChange={updateSearchInput}
 t={t}
 />
);

 const TableHeader = (
 (!(isEmpty(consumables) && loading)) &&
 <DataTableHeader
 page={page}
 totalPages={totalPages}
 totalEntries={totalEntries}
 perPage={perPage}
 entryLocale="consumable"
 t={t}
 />
);

 const PageButtons = (
 <PaginationButtons
 currentPage={page}
 totalPages={totalPages}
 onPageChange={this.handlePageNumberChange}
 />
);

 const Messages = (
 <MessageBucket
 t={t}
 messages={messages}
 dismiss={dismissMessage}
 />

Appendix 4

 3 (4)

);

 const consumableColumns = this.getDisplayedConsumableColumns();
 const ConsumablesListTable = (
 <ListTable
 columns={consumableColumns}
 entries={consumables}
 sortColumnName={orderBy}
 sortDirection={orderDirection}
 onSort={this.handleSort}
 tableProps={{
 sortable: true,
 selectable: true,
 striped: true,
 compact: 'very',
 size: 'small',
 }}
 />
);

 const ColumnsSelectPopup = (

 <TableSettingsPopup columns={columns} />

);

 const buttons = [
 {
 color: 'blue',
 href: `${window.location.origin}/models/new`,
 content: t('actions.create_new_model'),
 },
 {
 href: `${window.location.origin}/models/export`,
 content: t('actions.export.all_models'),
 },
];

 const Buttons = buttons && buttons.map((button, i) => (
 <Button {...button} key={i.toString()} style={{ marginLeft: i !== 0 ?
'10px' : 0 }} />
));

 return (
 <div>
 <Segment.Group className="segment-group">
 <Segment basic>
 <Grid stackable divided="vertically" verticalAlign="middle">
 <Grid.Row columns={2}>
 <Grid.Column>{SearchInput}</Grid.Column>
 <Grid.Column textAlign="right">
 {Buttons}
 {ColumnsSelectPopup}
 </Grid.Column>
 </Grid.Row>
 </Grid>
 </Segment>
 <Segment basic loading={loading} className="loading-segment">
 <Grid stackable divided="vertically">
 <Grid.Row columns={2}>
 <Grid.Column>{TableHeader}</Grid.Column>
 <Grid.Column>{PageButtons}</Grid.Column>
 </Grid.Row>
 </Grid>
 {Messages}

Appendix 4

 4 (4)

 {ConsumablesListTable}
 {PageButtons}
 </Segment>
 </Segment.Group>
 </div>
);
 }
}

const mapStateToProps = state => ({
 currentUser: currentUserSelectors.getCurrentUser(state),
 consumables: consumablesSelectors.getConsumables(state),
 page: consumablesSelectors.getConsumablesMetadataPage(state),
 totalPages: consumablesSelectors.getConsumablesMetadataTotalPages(state),
 perPage: consumablesSelectors.getConsumablesMetadataPerPage(state),
 totalEntries: consumablesSelectors.getConsumablesMetadataTotal-
Entries(state),
 orderBy: consumablesSelectors.getConsumablesMetadataOrderBy(state),
 orderDirection: consumablesSelectors.getConsumablesMetadataOrderDirec-
tion(state),
 loading: consumablesSelectors.getConsumablesLoading(state),
 messages: consumablesSelectors.getConsumablesMessages(state),
 search: consumablesSelectors.getConsumablesSearchInputValue(state),
 columns: currentUserSelectors.getConsumableModelColumns(state),
 displayedColumnNames: currentUserSelectors.getDisplayedConsumable-
ModelColumnNames(state),
});

const mapDispatchToProps = {
 loadConsumables: consumablesActions.loadConsumables,
 dismissMessage: consumablesActions.dismissConsumablesMessageById,
 updateSearchInput: consumablesActions.updateConsumablesSearchInput,
 updateOrder: consumablesActions.updateConsumablesOrder,
 updatePage: consumablesActions.updateConsumablesPage,
};

export default translate('', { wait: true })(
 connect(mapStateToProps, mapDispatchToProps)(ConsumablesListPage)
);

Appendix 5

 1 (3)

Consumables actions (actions/consumables.js)

import * as types from 'actions/actionTypes';
import { constructSuccessMessage } from 'utils/messages';
import { handleError } from 'utils/utils';
import * as consumablesSelectors from 'reducers/consumables';

const loadConsumablesRequest = () => ({
 type: types.CONSUMABLES_LOAD_REQUEST,
});

const loadConsumablesSuccess = payload => ({
 type: types.CONSUMABLES_LOAD_SUCCESS,
 payload,
});

const loadConsumablesFailure = message => ({
 type: types.CONSUMABLES_LOAD_FAILURE,
 payload: { message },
});

const addConsumablesSuccess = (model, message) => ({
 type: types.CONSUMABLES_ADD_SUCCESS,
 payload: { model, message },
});

const addConsumablesFailure = message => ({
 type: types.CONSUMABLES_ADD_FAILURE,
 payload: { message },
});

const destroyConsumableSuccess = message => ({
 type: types.CONSUMABLE_DESTROY_SUCCESS,
 payload: { message },
});

const destroyConsumableFailure = message => ({
 type: types.CONSUMABLE_DESTROY_FAILURE,
 payload: { message },
});

const dismissConsumablesMessage = messageId => ({
 type: types.CONSUMABLES_MESSAGE_DISMISS,
 payload: { messageId },
});

const changeConsumablesSearchInputValue = value => ({
 type: types.CONSUMABLES_SEARCH_INPUT_VALUE_CHANGE,
 payload: { searchInputValue: value },
});

const changeConsumablesOrder = (orderBy, orderDirection) => ({
 type: types.CONSUMABLES_ORDER_CHANGE,
 payload: { orderBy, orderDirection },
});

const changeConsumablesPage = page => ({
 type: types.CONSUMABLES_PAGE_CHANGE,
 payload: { page },
});

Appendix 5

 2 (3)

const loadConsumables = () =>
 async (dispatch, getState, api) => {
 const resource = '/models/consumables.json';

 dispatch(loadConsumablesRequest());

 try {
 const response = await api.get(resource, {
 'page': consumablesSelectors.getConsumablesPage(getState()),
 'search[free]': consumablesSelectors.getConsumablesSearchInput-
Value(getState()),
 'search[order_by]': consumablesSelectors.getConsuma-
blesOrderBy(getState()),
 'search[order_direction]': consumablesSelectors.getConsuma-
blesOrderDirection(getState()),
 });

 dispatch(loadConsumablesSuccess(response));
 } catch (error) {
 const messageContent = { text: 'consumables.messages.consuma-
bles_list_failure' };

 handleError(error, messageContent, message => dispatch(loadConsuma-
blesFailure(message)));
 }
 };

const destroyConsumable = ({ modelId, modelName }) =>
 async (dispatch, getState, api) => {
 const resource = `/models/${modelId}.json`;

 dispatch(loadConsumablesRequest());

 try {
 await api.delete(resource);

 const message = constructSuccessMessage({
 header: modelName, text: 'models.messages.model_delete_success',
 });
 dispatch(destroyConsumableSuccess(message));
 } catch (error) {
 const messageContent = { header: modelName, text: 'models.mes-
sages.model_delete_failure' };

 handleError(error, messageContent, message => dispatch(destroyConsuma-
bleFailure(message)));
 }
 };

const addConsumables = (
 { modelId, modelName },
 { quantityDiff, price, locationId, departmentId }) =>
 async (dispatch, getState, api) => {
 const resource = `/models/${modelId}/add_consumables.json`;

 try {
 const response = await api.post(resource, {
 quantity_diff: quantityDiff,
 price: price,
 location_id: locationId,
 department_id: departmentId,
 });

 const message = constructSuccessMessage({

Appendix 5

 3 (3)

 header: modelName, text: 'stock_balances.messages.balance_update_suc-
cess',
 });
 dispatch(addConsumablesSuccess(response.model, message));
 } catch (error) {
 const messageContent = {
 header: modelName,
 text: 'stock_balances.messages.balance_update_failure',
 };

 handleError(error, messageContent, message => dispatch(addConsuma-
blesFailure(message)));
 }
 };

const dismissConsumablesMessageById = id =>
 async dispatch => dispatch(dismissConsumablesMessage(id));

const updateConsumablesSearchInput = value => async dispatch => dis-
patch(changeConsumablesSearchInputValue(value));

const updateConsumablesOrder = (orderBy, orderDirection) => async dispatch =>
 dispatch(changeConsumablesOrder(orderBy, orderDirection));

const updateConsumablesPage = page => async dispatch =>
 dispatch(changeConsumablesPage(page));

export {
 loadConsumables,
 destroyConsumable,
 addConsumables,
 dismissConsumablesMessageById,
 updateConsumablesSearchInput,
 updateConsumablesOrder,
 updateConsumablesPage,
};

Appendix 6

 1 (3)

Consumables reducer and selectors (reducers/consumables.js)

import * as types from 'actions/actionTypes';
import { appendMessage, removeMessageById } from 'utils/messages';
import { replaceArrayEntry } from 'utils/utils';

const stopLoading = () => ({
 loading: false,
});

const defaultState = {
 entries: [],
 messages: [],
 loading: false,
 loaded: false,
 page: 1,
 searchInputValue: '',
 orderBy: '',
 orderDirection: 'asc',
 metadata: {
 page: 1,
 totalPages: 1,
 perPage: 20,
 totalEntries: 0,
 orderBy: '',
 orderDirection: 'asc',
 },
};

const consumables = (state = defaultState, action) => {
 const { type, payload } = action;

 switch (type) {
 case types.CONSUMABLES_LOAD_REQUEST: {
 return { ...state, loading: true, messages: [] };
 }
 case types.CONSUMABLES_LOAD_SUCCESS: {
 const md = payload.metadata;
 return {
 ...state,
 ...stopLoading(),
 loaded: true,
 entries: payload.data,
 metadata: {
 page: md.page,
 totalPages: md.total_pages,
 perPage: md.per_page,
 totalEntries: md.total_entries,
 orderBy: md.order_by,
 orderDirection: md.order_direction,
 },
 };
 }
 case types.CONSUMABLES_LOAD_FAILURE: {
 return { ...state, ...stopLoading(), messages: appendMessage(pay-
load.message, state.messages) };
 }
 case types.CONSUMABLES_ADD_SUCCESS: {
 return { ...state, entries: replaceArrayEntry(payload.model, state.en-
tries) };
 }
 case types.CONSUMABLES_ADD_FAILURE: {

Appendix 6

 2 (3)

 return state;
 }
 case types.CONSUMABLE_DESTROY_SUCCESS: {
 return { ...state, ...stopLoading() };
 }
 case types.CONSUMABLE_DESTROY_FAILURE: {
 return { ...state, ...stopLoading() };
 }
 case types.CURRENT_USER_LIST_COLUMNS_UPDATE_FAILURE: {
 const messages = [...state.messages, action.payload.message];

 return { ...state, ...stopLoading(), messages };
 }
 case types.CONSUMABLES_MESSAGE_DISMISS: {
 return { ...state, messages: removeMessageById(payload.messageId,
state.messages) };
 }
 case types.CONSUMABLES_SEARCH_INPUT_VALUE_CHANGE: {
 return { ...state, searchInputValue: payload.searchInputValue };
 }
 case types.CONSUMABLES_ORDER_CHANGE: {
 const { orderBy, orderDirection } = payload;

 return { ...state, orderBy, orderDirection };
 }
 case types.CONSUMABLES_PAGE_CHANGE: {
 return { ...state, page: payload.page };
 }
 default: {
 return state;
 }
 }
};

const getConsumables = state => state.consumables.entries;
const getConsumablesLoading = state => state.consumables.loading;
const getConsumablesLoaded = state => state.consumables.loaded;
const getConsumablesMessages = state => state.consumables.messages;
const getConsumablesSearchInputValue = state => state.consumables.searchInput-
Value;
const getConsumablesPage = state => state.consumables.page;
const getConsumablesOrderBy = state => state.consumables.orderBy;
const getConsumablesOrderDirection = state => state.consumables.orderDirec-
tion;
const getConsumablesMetadata = state => state.consumables.metadata;
const getConsumablesMetadataPage = state => getConsuma-
blesMetadata(state).page;
const getConsumablesMetadataTotalPages = state => getConsuma-
blesMetadata(state).totalPages;
const getConsumablesMetadataPerPage = state => getConsuma-
blesMetadata(state).perPage;
const getConsumablesMetadataTotalEntries = state => getConsuma-
blesMetadata(state).totalEntries;
const getConsumablesMetadataOrderBy = state => getConsuma-
blesMetadata(state).orderBy;
const getConsumablesMetadataOrderDirection = state => getConsuma-
blesMetadata(state).orderDirection;

export default consumables;
export {
 getConsumables,
 getConsumablesLoading,
 getConsumablesLoaded,
 getConsumablesMessages,

Appendix 6

 3 (3)

 getConsumablesSearchInputValue,
 getConsumablesPage,
 getConsumablesOrderBy,
 getConsumablesOrderDirection,
 getConsumablesMetadata,
 getConsumablesMetadataPage,
 getConsumablesMetadataTotalPages,
 getConsumablesMetadataPerPage,
 getConsumablesMetadataTotalEntries,
 getConsumablesMetadataOrderBy,
 getConsumablesMetadataOrderDirection,
};

Appendix 7

 1 (3)

Server API middleware (api/Api.js)

import qs from 'qs';

import { ApiError, HttpError } from 'actions/actionErrors';

const extractCSRFToken = () => {
 const el = document.getElementsByName('csrf-token')[0];
 const CSRFToken = el ? el.content : '';

 return CSRFToken;
};

const getHeaders = () => {
 const headers = {
 Accept: 'application/json',
 'Content-Type': 'application/json',
 };

 const CSRFToken = extractCSRFToken();
 if (CSRFToken) {
 headers['X-CSRF-Token'] = CSRFToken;
 }

 return headers;
};

class Api {
 config = {};
 dispatch = null;

 constructor() {
 const origin = window.location.origin;
 let endpoint = '';
 if (window.location.hostname.includes('localhost')) {
 if (window.location.port === '9292') {
 // Robot environment
 endpoint = origin;
 } else {
 endpoint = process.env.ENDPOINT;
 }
 } else {
 // E.g. ORGNAME.trail.fi
 endpoint = origin;
 }

 this.config.baseURL = endpoint;
 }

 throwErrorsIfExist = async (response) => {
 if (response.status === 400) {
 const responseJson = await response.json();
 const { errors } = responseJson;

 if (errors) {
 throw new ApiError(errors, response.status);
 } else {
 throw new HttpError(response.statusText, response.status);
 }
 } else if (response.status < 200 || response.status >= 300) {
 throw new HttpError(response.statusText, response.status);

Appendix 7

 2 (3)

 }
 }

 async get(uri, params = {}) {
 const query = qs.stringify(params);
 const init = {
 headers: getHeaders(),
 credentials: 'include',
 };
 const separator = uri.includes('?') ? '&' : '?';

 const response = await fetch(`${this.config.baseURL}${uri}${separa-
tor}${query}`, init);

 await this.throwErrorsIfExist(response);

 return response.json();
 }

 async post(uri, body = {}, isFile = false) {
 const headers = getHeaders();

 if (isFile) {
 delete headers['Content-Type'];
 }

 const response = await fetch(`${this.config.baseURL}${uri}`, {
 method: 'POST',
 headers: headers,
 body: isFile ? body : JSON.stringify(body),
 credentials: 'include',
 });

 await this.throwErrorsIfExist(response);

 if (response.status === 204) {
 return {};
 }

 return response.json();
 }

 async put(uri, params = {}) {
 const response = await fetch(`${this.config.baseURL}${uri}`, {
 method: 'PUT',
 headers: getHeaders(),
 credentials: 'include',
 body: JSON.stringify(params),
 credentials: 'include',
 });

 await this.throwErrorsIfExist(response);

 return response.json();
 }

 async delete(uri) {
 const response = await fetch(`${this.config.baseURL}${uri}`, {
 method: 'DELETE',
 headers: getHeaders(),
 credentials: 'include',
 });

 await this.throwErrorsIfExist(response);

Appendix 7

 3 (3)

 if (response.status === 204) {
 return {};
 }

 return response.json();
 }
}

export default Api;

Appendix 8

 1 (2)

Table generating component (components/tables/ListTable.js)

import React from 'react';
import { Table } from 'semantic-ui-react';
import isEmpty from 'lodash/isEmpty';

import { getOppositeDirection, getDirectionFullName } from 'utils/utils';

const ListTable = (props) => {
 const { entries, columns, sortDirection, sortColumnName, onSort, tableProps
} = props;

 if (isEmpty(entries)) {
 return null;
 }

 const handleSort = (columnName) => {
 const direction = (sortColumnName !== columnName) ? 'asc' : getOppositeDi-
rection(sortDirection);

 onSort(columnName, direction);
 };

 const HeaderCells = columns.map((column) => {
 const headerCellProps = column.headerCellProps || {};
 if (column.sortable) {
 const direction = getDirectionFullName(sortDirection);

 headerCellProps.sorted = (sortColumnName === column.name) ? direction :
null;

 if (onSort) {
 headerCellProps.onClick = () => handleSort(column.name);
 }
 }

 return (
 <Table.HeaderCell key={column.name} {...headerCellProps}>
 {column.label || ''}
 </Table.HeaderCell>
);
 });

 const HeaderRow = <Table.Row>{HeaderCells}</Table.Row>;

 const BodyRows = entries.map((entry) => {
 const BodyCells = columns.map((column) => {
 const tableCellProps = column.tableCellProps || {};
 const TableCellContent = column.component || entry[column.name];

 return (
 <Table.Cell key={column.name} className={`column_${column.name}`}
{...tableCellProps}>
 {column.component ? <TableCellContent entry={entry} /> : TableCell-
Content }
 </Table.Cell>
);
 });

 return <Table.Row key={entry.id}>{BodyCells}</Table.Row>;
 });

Appendix 8

 2 (2)

 return (
 <div>
 <Table {...tableProps}>
 <Table.Header>{HeaderRow}</Table.Header>
 <Table.Body>{BodyRows}</Table.Body>
 </Table>
 </div>
);
};

export default ListTable;

Appendix 9

 1 (2)

Webpack configuration files (config/webpack/base|production.js)

// Base configuration

const path = require('path');
const webpack = require('webpack');
const ExtractTextPlugin = require('extract-text-webpack-plugin');

module.exports = {
 entry: {
 main: ['babel-polyfill', 'whatwg-fetch', path.join(__dirname,
'../../src/client.jsx')],
 'navigation-search': path.join(__dirname, '../../src/containers/naviga-
tionSearch/bootstrap.js'),
 },
 output: {
 filename: 'javascripts/react/[name].js',
 path: path.resolve(__dirname, '../../../public'),
 publicPath: '/',
 },
 resolve: {
 extensions: ['.js', '.jsx', '.json', '.less'],
 modules: [
 path.resolve('./src'),
 path.join(__dirname, '../'),
 'node_modules',
],
 },
 plugins: [
 new ExtractTextPlugin('stylesheets/react/[name].css'),
 new webpack.optimize.CommonsChunkPlugin({
 name: 'vendor',
 }),
 new webpack.ContextReplacementPlugin(/moment[/\\]locale$/, /en|fi/),
 new webpack.ContextReplacementPlugin(/i18n-iso-countries[/\\]langs$/,
/en|fi/),
],
 module: {
 loaders: [
 {
 test: /\.(js|jsx)$/,
 include: path.resolve(__dirname, '../../src'),
 loader: 'babel-loader',
 query: {
 plugins: [
 ['babel-plugin-transform-builtin-extend', { globals: ['Error'],
approximate: true }],
],
 presets: ['env', 'stage-2', 'react'],
 },
 },
 {
 test: /\.css$/,
 loader: ExtractTextPlugin.extract({ fallback: 'style-loader', use:
'css-loader' }),
 },
 {
 test: /\.less$/,
 loader: ExtractTextPlugin.extract({ fallback: 'style-loader', use:
['css-loader', 'less-loader'] }),
 },

Appendix 9

 2 (2)

 {
 test: /\.json$/,
 loader: 'json-loader',
 },
 {
 test: /\.(woff|woff2|ttf|eot|svg|png)(\?v=[a-z0-9]\.[a-z0-9]\.[a-z0-
9])?$/,
 loader: 'url-loader?limit=100000',
 },
],
 },
};

// Production configuration

const merge = require('webpack-merge');
const webpack = require('webpack');
const CopyWebpackPlugin = require('copy-webpack-plugin');

const MinifyPlugin = require('babel-minify-webpack-plugin');
const config = require('./webpack.config.base');

const GLOBALS = {
 'process.env.NODE_ENV': JSON.stringify('production'),
 'process.env.ENDPOINT': JSON.stringify(process.env.ENDPOINT || 'http://lo-
calhost:3000'),
};

module.exports = merge(config, {
 stats: 'errors-only',
 plugins: [
 new webpack.NoEmitOnErrorsPlugin(),
 new webpack.DefinePlugin(GLOBALS),
 new MinifyPlugin({}, { sourceMap: null }),
 new CopyWebpackPlugin([
 {
 from: 'src/public/locales',
 to: 'locales',
 },
]),
],
});

Appendix 10

 1 (1)

Observational script

window.addEventListener('completeObservation', () => {
 const observationsLeft = parseInt(sessionStorage.getItem('observa-
tionsLeft'));
 if (!observationsLeft || observationsLeft < 1) return;

 const timing = performance.timing;
 const loadEventStart = timing.loadEventStart - timing.navigationStart;
 const usableEntries = performance.getEntriesByName('usable');
 const firstUsefulEntries = performance.getEntriesBy-
Name('firstUseful');
 const secondUsefulEntries = performance.getEntriesBy-
Name('secondUseful');

 const domLoading = timing.domLoading - timing.navigationStart;
 const domComplete = timing.domComplete - timing.navigationStart;
 const usable = usableEntries.length ? Math.ceil(usableEn-
tries[0].startTime) : loadEventStart;
 const firstUseful = firstUsefulEntries.length ?
Math.ceil(firstUsefulEntries[0].startTime) : loadEventStart;
 const secondUseful = secondUsefulEntries.length ?
Math.ceil(secondUsefulEntries[0].startTime) : 2 * loadEventStart;

 const observation = { domLoading, domComplete, usable, firstUseful,
secondUseful }
 const data = JSON.parse(sessionStorage.getItem('data'));
 const newData = [...data, observation];

 sessionStorage.setItem('data', JSON.stringify(newData));
 sessionStorage.setItem('observationsLeft', observationsLeft - 1);

 location.reload();
 });

Appendix 11

 1 (1)

Usable.jsx

import { Component } from 'react';

class Usable extends Component {
 componentDidMount() {
 window.requestAnimationFrame(() => performance.mark('usable'));
 }

 render() {
 return '';
 }
}

export default Usable;

Appendix 12

 1 (1)

Useful.jsx

import { Component } from 'react';

class Useful extends Component {
 componentDidMount() {
 window.requestAnimationFrame(this.handleFirstAnimationFrameRequest);

 window.addEventListener('loadListAnew', async () => {
 await this.props.loadListAnew();

 window.requestAnimationFrame(this.handleSecondAnimationFrameRequest);
 });
 }

 handleFirstAnimationFrameRequest = () => {
 performance.mark('firstUseful');

 const loadListAnew = new Event('loadListAnew');
 window.dispatchEvent(loadListAnew);
 }

 handleSecondAnimationFrameRequest = () => {
 performance.mark('secondUseful');

 const completeObservation = new Event('completeObservation');
 window.dispatchEvent(completeObservation);
 }

 render() {
 return '';
 }
}

export default Useful;

Appendix 13

 1 (2)

Benchmark results (without resource cache)

 0 20 50 100 300
DOM loading 155 (34) 275 (81) 466 (64) 694 (66) 1699 (99)
DOM complete 754 (61) 869 (131) 1090 (108) 1402 (97) 2638 (116)
Usable 754 (61) 870 (131) 1090 (108) 1402 (97) 2638 (116)
First useful 754 (61) 870 (131) 1090 (108) 1402 (97) 2638 (116)
Second useful 1508 (123) 1740 (263) 2180 (216) 2804 (194) 5277 (233)

Table 1. Google Chrome, server-side rendering results. Means with standard deviations

 0 20 50 100 300
DOM loading 188 (17) 188 (40) 198 (45) 220 (67) 331 (98)
DOM complete 1532 (66) 1502 (70) 1539 (75) 1565 (93) 1674 (118)
Usable 1670 (66) 1637 (73) 1687 (100) 1707 (96) 1862 (122)
First useful 1817 (66) 1953 (88) 2331 (129) 2723 (122) 4412 (165)
Second useful 1951 (67) 2318 (115) 2930 (134) 3681 (139) 6709 (246)

Table 2. Google Chrome, client-side rendering results. Means with standard deviations

 0 20 50 100 300

DOM loading 177 (50) 270 (62) 456 (66) 712 (88) 1736 (220)
DOM complete 780 (92) 958 (163) 1208 (196) 1601 (230) 3069 (428)
Usable 780 (92) 958 (163) 1208 (195) 1601 (230) 3069 (428)
First useful 780 (92) 958 (163) 1208 (195) 1601 (230) 3069 (428)
Second useful 1560 (185) 1916 (327) 2417 (391) 3203 (460) 6138 (857)

Table 3. Mozilla Firefox, server-side rendering results. Means with standard deviations

 0 20 50 100 300
DOM loading 191 (56) 214 (105) 229 (146) 290 (81) 384 (150)
DOM complete 1610 (396) 1648 (454) 1680 (437) 1706 (174) 1848 (223)
Usable 1821 (396) 1856 (454) 1891 (441) 1914 (175) 2051 (232)
First useful 1984 (437) 2266 (488) 2606 (490) 3175 (246) 4811 (311)
Second useful 2123 (437) 2707 (520) 3262 (485) 4194 (245) 7204 (497)

Table 4. Mozilla Firefox, client-side rendering results. Means with standard deviations

Appendix 13

 2 (2)

 0 20 50 100 300
DOM loading 170 (33) 298 (85) 503 (95) 750 (100) 1724 (94)
DOM complete 734 (74) 892 (115) 1218 (148) 1583 (126) 3129 (120)
Usable 734 (74) 892 (115) 1218 (148) 1583 (126) 3129 (120)
First useful 734 (74) 892 (115) 1218 (148) 1583 (126) 3129 (120)
Second useful 1469 (148) 1785 (230) 2437 (297) 3167 (252) 6259 (240)

Table 5. Apple Safari, server-side rendering results. Means with standard deviations

 0 20 50 100 300
DOM loading 216 (45) 231 (36) 232 (35) 249 (44) 443 (134)
DOM complete 1277 (154) 1295 (71) 1302 (71) 1337 (75) 1513 (156)
Usable 1465 (157) 1497 (81) 1501 (75) 1531 (86) 1718 (153)
First useful 1610 (173) 1827 (85) 2164 (99) 2620 (141) 4302 (262)
Second useful 1752 (176) 2247 (213) 2869 (108) 3757 (195) 7006 (386)

Table 6. Apple Safari, client-side rendering results. Means with standard deviations

Appendix 14

 1 (2)

Benchmark results (with resource cache)

 0 20 50 100 300
DOM loading 166 (70) 336 (108) 467 (63) 720 (96) 1687 (88)
DOM complete 303 (73) 498 (109) 675 (69) 995 (94) 2232 (96)
Usable 303 (73) 498 (109) 675 (69) 995 (94) 2232 (96)
First useful 303 (73) 498 (109) 675 (69) 995 (94) 2232 (96)
Second useful 606 (147) 997 (219) 1351 (139) 1990 (189) 4465 (192)

Table 7. Google Chrome, server-side rendering results. Means with standard deviations

 0 20 50 100 300
DOM loading 191 (27) 183 (22) 206 (55) 207 (46) 327 (96)
DOM complete 500 (44) 507 (56) 545 (87) 558 (82) 699 (124)
Usable 589 (50) 590 (60) 621 (89) 648 (88) 777 (124)
First useful 733 (53) 962 (93) 1274 (117) 1666 (119) 3303 (186)
Second useful 872 (57) 1329 (122) 1874 (124) 2627 (136) 5575 (212)

Table 8. Google Chrome, client-side rendering results. Means with standard deviations

 0 20 50 100 300

DOM loading 180 (55) 302 (66) 473 (73) 726 (74) 1740 (116)
DOM complete 538 (87) 727 (159) 964 (207) 1296 (155) 2762 (358)
Usable 538 (87) 727 (159) 964 (207) 1296 (155) 2762 (358)
First useful 538 (87) 727 (159) 964 (207) 1296 (155) 2762 (358)
Second useful 1077 (175) 1454 (318) 1929 (415) 2592 (311) 5525 (717)

Table 9. Mozilla Firefox, server-side rendering results. Means with standard deviations

 0 20 50 100 300
DOM loading 166 (63) 168 (75) 170 (68) 212 (126) 362 (149)
DOM complete 539 (120) 547 (201) 635 (432) 684 (487) 950 (870)
Usable 683 (138) 680 (201) 774 (434) 822 (487) 1102 (873)
First useful 785 (135) 1169 (258) 1569 (505) 2061 (575) 3908 (1204)
Second useful 902 (143) 1539 (271) 2387 (529) 3211 (641) 6460 (1416)

Table 10. Mozilla Firefox, client-side rendering results. Means with standard deviations

Appendix 14

 2 (2)

 0 20 50 100 300
DOM loading 193 (57) 289 (73) 502 (104) 763 (117) 1723 (102)
DOM complete 447 (73) 562 (88) 843 (144) 1218 (174) 2462 (328)
Usable 447 (72) 562 (88) 844 (144) 1218 (174) 2462 (328)
First useful 447 (72) 562 (88) 844 (144) 1218 (174) 2462 (328)
Second useful 894 (145) 1124 (177) 1688 (289) 2437 (349) 4925 (657)

Table 11. Apple Safari, server-side rendering results. Means with standard deviations

 0 20 50 100 300
DOM loading 215 (72) 214 (55) 232 (180) 257 (114) 439 (178)
DOM complete 520 (170) 502 (194) 492 (211) 493 (138) 691 (199)
Usable 663 (190) 674 (348) 628 (221) 618 (152) 821 (202)
First useful 792 (201) 1027 (394) 1380 (293) 1804 (249) 3649 (528)
Second useful 938 (223) 1503 (463) 2178 (347) 3052 (274) 6588 (707)

Table 12. Apple Safari, client-side rendering results. Means with standard deviations

