

Neil Rice

Prima Power Analytics Application
Using React.js

Information Technology

2018

1

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT
Author Neil Rice

Title Prima Power analytics application

Year 2018

Language English

Pages 65

Name of Supervisor Timo Kankaanpää

Over the last decade companies in the manufacturing industry have become very

efficient at gathering large amounts of data from machines. The problem many

companies face is how best to use this data for analysis in order to improve

production and essentially save money. Reporting dashboards have become

increasingly popular as a way to display data, however the analysis is still mainly left

to the human operator of the dashboard. With the current advancement of machine

learning and data visualization tools, future data analytic tools can rely more on

technology, giving the human operator more time to do other tasks.

The aim of this thesis work was to design and develop a front end web application for

the company Prima Power to demonstrate at the 2018 EuroBlech trade fair. The

application, made with the javascript framework ReactJS was to be modern in design,

fully functional and include a number of data analytic visualizations as well as a

notification system demonstrating machine learning outcomes.

The thesis work was completed with the finished web application meeting all the set

requirements and was presented at the 2018 EuroBlech trade fair in Hannover,

Germany.

Keywords React, redux, analytics, web application

2

Table of Contents

ABSTRACT ... 1

List of figures and tables .. 5

List of abbreviations ... 8

1. Introduction ... 9

1.1 Prima Power .. 9

1.2 Euroblech ... 10

2 Technologies used .. 11

2.1 Node.js .. 11

2.2 ReactJS... 11

2.2.1 React virtual DOM.. 13

2.2.2 One way data binding and flux .. 13

2.3 Redux and React-redux .. 15

2.4 Redux-thunk .. 15

2.5 Create-react-app ... 15

2.6 KendoUI-react ... 16

2.7 ReCharts .. 16

2.8 D3.js .. 16

2.9 Chap-links timeline ... 17

2.10 Twitter bootstrap CSS .. 17

2.11 JustInMyind .. 17

3 Analysis .. 18

3.1 Requirements ... 18

3.1.1 Table of requirements ... 18

3.1.2 Professional, modern, responsive design (R1) .. 19

3.1.3 Shift statistics view (R1) ... 20

3.1.4 Notification system (R1) ... 21

3.1.5 Root cause view (R1) ... 21

3.1.6 Creating the mock data (R1) .. 22

3.1.7 Advisor view (R2) .. 22

3.1.8 Calendar view (R2) ... 23

3

3.1.9 Alarm view (R2) .. 23

3.1.10 Messages component (R3) .. 23

3.1.11 Timeline view (R3) .. 24

3.1.12 Add note to timeline capability (R4).. 24

3.1.13 Maintenance view (R4) ... 25

3.1.14 Scheduler upcoming events component (R5) .. 25

3.1.15 Performance view (R6) ... 25

3.2 Initial mockups .. 26

3.2.1 Navigation .. 26

3.2.2 Content ... 28

3.2.3 Root cause .. 28

3.2.4 Shift statistics ... 29

3.2.5 Maintenance .. 30

4 Design ... 32

4.1 Library and component selection .. 32

4.1.1 Root cause view ... 32

4.1.2 Line and bar charts ... 33

4.1.3 Timeline ... 33

4.1.4 Form inputs and calendar .. 33

4.1.5 Modal ... 33

4.2 Architecture ... 34

4.2.1 State management ... 34

4.2.2 Asynchronous data request .. 36

4.2.3 Views .. 37

5 Implementation ... 44

5.1 Setup ... 44

5.2 Layout / Navigation ... 44

5.3 Example of the general architecture of each view .. 46

5.3.1 Data fetching and data filtering ... 46

5.3.2 Conditional rendering... 50

5.4 Using an external library with React .. 52

5.5 Passing data from the child component to the parent component 54

4

5.6 Passing callbacks from a React component to external scripts 56

5.7 Notification system .. 57

5.8 Implementation of the timeline .. 59

5.8.1 Adding the background color feature ... 59

5.8.2 Optimization .. 60

5.8.3 Adding a note to the timeline ... 61

5.9 Creating custom cells in kendoUI grid component .. 63

6 Testing .. 65

7 Conclusion ... 69

8 References .. 70

5

List of figures and tables

Figure 1. A React component example .. 12

Figure 2. An example using a callback in one data binding 14

Figure 3. Screenshot taken from the amazon.com webpage. 20

Figure 4. Amazon logo ... 20

Figure 5. Mock design of left navigation ... 26

Figure 6. Mock design of right navigation ... 27

Figure 7. Mock design of left navigation ... 27

Figure 8. Mockup design for default view of large screen... 28

Figure 9. Mock up design for root cause visualization .. 29

Figure 10. Mock up design for shift statistics layout ... 30

Figure 11. The mockup design for the maintenance view ... 31

Figure 12. Treemap mockup design for rootcause visualization 32

Figure 13. src container file structure... 35

Figure 14. The react-redux design with middleware.. 36

Figure 15. UML diagram to show component structure for the shift statistics view. 38

Figure 16. UML diagram to show component structure for the alarms view. 39

Figure 17. UML diagram to show component structure for the timeline view. 40

Figure 18. UML diagram to show component structure for the calendar view. 41

Figure 19. UML diagram to show component structure for the performance view. .. 42

Figure 20. UML diagram to show component structure for the root cause view. 43

Figure 21. Code snippet to show use of react-router-dom Link component 45

Figure 22. Code snippet to show use of BrowserRouter component 45

Figure 23. JSX dynamic className example .. 46

Figure 24. A code snippet of the alarmFilter container.. 47

Figure 25. The full code of the alarm module actions file. .. 48

Figure 26. The alarms module types file .. 48

6

Figure 27. The alarms module reducer file .. 49

Figure 28. Code snippet of the alarm module content container showing example of

conditional rendering. ... 50

Figure 29. Code snippet from the alarm content container showing the render

method. .. 51

Figure 30. Alarm view with default settings. ... 51

Figure 31. Alarm view with compare mode option selected...................................... 52

Figure 32. A code snippet of the shiftStats component showing example of external

library use. ... 53

Figure 33. The shift stats view including pie charts created with external library 53

Figure 34. The root cause view .. 54

Figure 35. Code snippet of the root cause content container passing a callback

function to child component.. 55

Figure 36. Full code of treeMap component .. 55

Figure 37. Code snippet of root cause content container ... 56

Figure 38. Code snippet to demonstrate how callbacks can be added and triggered on

a functional expression. ... 57

Figure 39. The notification drop down list ... 58

Figure 40. The advisor view ... 58

Figure 41. The timeline component with background colors. 59

Figure 42. The timeline view. .. 60

Figure 43. Code snippet demonstrating how amount of user updates is controlled... 61

Figure 44. The modal to create new note ... 61

Figure 45. Modal to display note ... 62

Figure 46. Maintenance history grid view ... 63

Figure 47. KendoUI grid code snippet ... 64

Figure 48. Code snippet to demonstrate custom cells and nesting component for

KendoUi grid ... 64

Figure 49. A diagram of the Jest testing process... 65

Figure 50. An example of a unit test .. 66

7

Figure 51 Command line displaying failed test ... 66

Figure 52. An example of an integration test ... 68

Table 1. Table of requirements ... 18

8

List of abbreviations

JS Javascript

MIT Massachusetts Institute of Technology.

NPM Node package manager

JSON JavaScript Object Notation

JSX An XML like syntax extension to ECMAScript

HTML Hypertext Markup Language

UI User interface

UX User experience

DOM Document Object Model

ES6 ECMAScript 6

CSS Cascading Style Sheet

SVG Scalable Vector Graphics

AI Artificial Intelligence

UML Unified Modeling Language

PC Personal computer

API Application programming interface

URL Uniform resource locator

9

1. Introduction

In recent years it has become more and more common for companies manufacturing

machines to offer ongoing digital services to their customers to help technicians fix

problems and also to give performance information usually delivered through some

kind of a reporting dashboard. Although these reporting dashboards can give a good

overview of the machine data and give a general idea of where problem areas are, they

do not usually provide detailed analytic tools which give the user the ability to prevent

errors occurring without the need for time consuming manual analysis of data. As the

quality of machine learning technologies are currently at a point where they can be

utilized to analyze large sets of data to detect patterns and anomalies, companies are

starting to look at what more can be done to get the most out of their data collections

and provide their customers with tools to make their production more efficient. Prima

Power, a manufacturer of laser and sheet metal machines is one such company and will

serve as the client for this report. This thesis shall show the front-end development of

an analytic React.js web application made to be presented by Prima Power at the 25th

International Sheet Metal Working Technology Exhibition, EuroBLECH 2018. The

main purpose of the application is to market current and upcoming tools to be offered

as a service to customers.

1.1 Prima Power

Prima Power is one of the largest manufacturers of systems and machines for sheet

metal working with a global customer base. Prima Power is the brand created by the

merging of Finn-Power OY based in Finland and Prima Industrie group based in

Italy. The product range covers all stages of the sheet metal working process,

covering all applications: laser processing, punching, shearing, bending and

automation. Prima Power offer extensive services and support to customers

worldwide. As part of offered services, Prima Power have large data collection on

10

each customer machine, storage of the data and reporting tools to help analyze

performance and production. /1/

1.2 Euroblech

Euroblech is a trade fair for sheet metal working taking place once every two years in

Hannover, Germany. Over fifty thousand visitors from around the world attended the

2018 Euroblech trade fair to view the latest innovations of over 1500 companies from

40 countries./2/

11

2 Technologies used

2.1 Node.js

Built on the Google open sourced V8 javascript engine, Node.js is a run-time

environment which executes javascript code without the need for a browser. It was first

developed by creator Ryan Dahl in 2009, is open source under MIT license and works

on all the widely used operating systems. /3/

Along with the fact that javascript is a very commonly used language in modern web

development, node.js is very popular due to its high performance which can be

attributed to the fact it uses event driven programming. Instead of using sequential

programming the event driven programming model uses callbacks to report when a

task has finished which eliminates the need for threading. Node.js can be used for

command line tools, desktop applications and backend web applications but for front-

end developers it mainly used locally to create a development server where

development tools such as webpack and babel can be used. /3/

In modern web development modules are used as a simple way to share and re-use

code. NPM standing for ‘node package manager’ has a registry with close to half a

million packages available to use with a simple command using the command line. A

package.json file keeps track of all installed packages, version numbers and any

dependancies. There are other package managers also available to use with node.js,

however NPM is the default package manager used by node.js. /3/

2.2 ReactJS

Originally created by a Facebook engineer named Jordan Walke, ReactJS, commonly

known as simply React, is an open-source front-end javascript library used to create

12

user interfaces for web applications. React applications are made up of components

which are most commonly created using JSX syntax. Rather than keep the html and

javascript separate the JSX brings them together to give the developer a more powerful

and secure way to create a section of the UI. The separation of concerns is achieved by

the fact that each part of the UI is its own component. Components can be placed

anywhere in the application, any number of times and they can have any number of sub

components. The JSX syntax looks like a HTML templating language but has all the

capabilities of javascript, producing elements that are added to the DOM. Figure 1 is

an example of using JSX syntax to create a simple component. /4/

Figure 1. A React component example

13

2.2.1 React virtual DOM

React uses something very powerful called the virtual DOM which is a lightweight

copy of the actual DOM. As each virtual DOM object is only a representation of a real

DOM object it is very fast to update and so each time a JSX element is updated the

whole virtual DOM is updated. Once the virtual DOM has updated React can compare

it with a snapshot of the actual DOM and check for any differences. Only the elements

with differences found are then redrawn on the actual DOM then which gives the user

a very fast and smooth experience. /4/

2.2.2 One way data binding and flux

As React applications are built on a series of nested components, data is passed down

through props (properties) from a parent component to its child component. This can

be thought of as using javascript functions where an argument is passed in and this

same logic gives the developer a way to pass data from the child back up to the parent

using callbacks as seen in Figure 2. /5/

14

Figure 2. An example using a callback in one data binding

Using callbacks works perfectly for simple applications like the example in Figure 2

but as applications increase in complexity the callback method becomes increasingly

difficult to maintain and so a cleaner solution is needed which is achievable using

Flux. The Flux pattern was designed to control how data is shared between

components in an application by using a type of observer pattern. The idea of the

Flux pattern is there is one place within the application that holds all state information

which are called stores and these stores can only be updated by using actions. The

actions call on a dispatcher and so then the stores can in turn subscribe these actions

to update the stores state making it simple for the developer to know what, why and

how the change in the data is happening. /5/

15

2.3 Redux and React-redux

The Flux design pattern gives the developer an efficient way to manage state in a

React application, however it is not an out of the box library or framework but rather

an architecture design pattern. To make the lives of developers easier a programmer

named Dan Abranov created Redux which is a library using some of the main ideas

of Flux with some added features improving the management of application state

with the two most valuable of these features being reducers and middleware.

Reducers are functions that determine the way in which the state is affected by

actions. The reducer is called from the store each time an action is dispatched and

whatever the reducer returns replaces the internal state. Middleware in React gives a

point between the actions and reducers where third party code can be added. Redux

can be used in React applications by installing and importing the react-redux module.

/6/

2.4 Redux-thunk

When using react-redux action creators return an action object which is limiting as it

results in the action creator running synchronously. Redux-thunk is a middleware

which gives the action the possibility to return a function which has the dispatch

function of the store. This means actions can be conditionally dispatched for example

they can wait for an asynchronous task to finished before dispatching which makes

redux asynchronous scripting a lot easier to achieve and manage. /7/

2.5 Create-react-app

During the last few years one of the biggest problems a frontend developer

(especially a beginner) faces is the fact that technologies are changing at a rate that

the developer cannot keep up. The tooling, for example, is constantly improving and

whilst this can make applications easier to maintain (in some cases even improve

16

performance), the tooling still needs to be installed and understanding how to do that

is not always simple. To just begin a new React app many of these tools need to be

installed and configured which can be tiresome and frustrating and so the React team

created Create-react-app which is a command that creates a new React project with

all the build tools installed and configured including webpack, babel, jest and yarn.

Babel is the transpiler which allows the developer to include ES6 syntax which is not

yet browser standard and webpack is a tool that bundles modules ready to be used in

the browser. /8/

2.6 KendoUI-react

KendoUI- react is a framework of components which can be imported into any React

app ready to use. The components can follow a default style theme or a new theme

can be create on the KendoUI website. Examples of components include grids, date

pickers, navigation and more advanced UI components such as charts and maps. /9/

2.7 ReCharts

ReCharts is a chart library built on React components. The components are decoupled

and easily reusable so creating custom elements of the chart for example a custom

tooltip is made simple. /10/

2.8 D3.js

A javascript data visualization library which uses SVG and other modern web

standards such as HTML and CSS. Where other libraries and frameworks make a lot

of the decisions for the developer, D3.js gives the developer the freedom to create

truly unique interactive visualizations making it a very powerful tool. /11/

17

2.9 Chap-links timeline

Chap-links timeline is a javascript library which is used to visualize data over a

period of time. The visualization can be zoomed and panned and the time/dates are

automatically scaled. The timeline supports data which takes places on a single

moment down to a millisecond and also supports data which can have a start and end

time. /12/

2.10 Twitter bootstrap CSS

The twitter bootstrap framework provides responsive classes which can be combined

to create professionally styled elements such as grids, panels and modals. The

bootstrap column classes make creating responsive layouts simple. /13/

2.11 JustInMyind

JustInMind is a UI prototyping tool which gives the user the possibility to create

interactive mockups for example clicking on a navigation item can actually change

the mockup to navigate to a mockup up of another page. /14/

18

3 Analysis

3.1 Requirements

3.1.1 Table of requirements

Table 1. Table of requirements

Requirement

Importance (1 being the highest)

Use React.js R1

Professional, modern, responsive design R1

Shift statistics view R1

Notification system R1

Root cause view R1

Create realistic mock data R1

Advisor view R2

Calendar view R2

Alarm view R2

Messages component R3

Timeline view R3

19

Add note to timeline capability R4

Maintenance view R4

Scheduler popup R5

Performance view R6

3.1.2 Professional, modern, responsive design (R1)

Often in the beginning stages of developing an application, functionality is of higher

importance than the design of the UI and UX. As the purpose of this application is to

be a presentation to existing and potential future customers, it is important that the UI

and UX have a finished look and feel. The UI should look clean and uncluttered on

all screen sizes and devices as well as having a uniformity across views and

individual elements. The UX should feel simple and natural to use and give a first-

time user a sense of familiarity with the navigation and user inputs. The UI should

include the Prima Power logo and consequently the color scheme should work well

with the company logo colors. Data visualizations should use a consistent color

scheme where possible. The online retail store Amazon is a good example of using a

color scheme for the UI and data visualizations which incorporate the company brand

colors. As seen in Figure 3, colors from the company logo (Figure 4) are used in the

data visualizations which in this case is a rating system. The purpose of creating a

uniformed color scheme is to increase readability and legibility of the content being

displayed and to give a comfortable experience for the user.

20

Figure 3. Screenshot taken from the amazon.com webpage.

Figure 4. Amazon logo

3.1.3 Shift statistics view (R1)

A meeting was held with the Prima Power web development team and a group of

employees of one of Prima Power’s customers. The main points on the meeting

agenda were to gather information from a customer point of view and to understand

better what a typical customer would find useful in an application, why they would

find it useful and how to implement the features. One of the outcomes of this meeting

was that there should be a view that gives the statistics and important information of

the previous shift. The main purpose of this view would be for the factory manager to

21

see how the night shift had gone as soon as they open the application at the start of

the day. The view should include machine utilization averages, a performance history

chart, a message center and the option to drill down to machine level more detailed

statistics and information. When drilling down to machine level, the view should

show a timeline of the shift for each device, a table of stoppages, a chart showing top

alarms and the last known status of the machine. The user should be given the option

to change which date and which shift are being displayed. The default date should be

the current date and the default shift should be the previous shift.

3.1.4 Notification system (R1)

As machine learning technologies are being developed at Prima Power, the customer

will soon have the option to learn of any anomaly analysis and error prediction of

their machines. This information will be able to be viewed in many ways such as

email reports but will also be included in the analytics application. Rather than have

the information displayed on a page and give the user the responsibility to check for

updates, the application will include a notification system where the user will see a

color change of a notification icon to notify them there is a new notification.

Additionally the notification system should also notify the user of any new comments

or messages.

3.1.5 Root cause view (R1)

As the machines themselves are quite complex with many stages of the

manufacturing process it means that problems can occur in all different stages and

within different sub stages of those stages. Reading the error data may be helpful for

solving each individual problem but for trying to analyze large sets of data to

understand why a certain problem is occurring, a different approach is needed. A data

visualization is needed which can show the errors in the stages and sub stages in

which the error occurred. The purpose of the visualization is that the user can look at

large time spans of data and instantly see in what stages are occurring the most errors.

22

Additionally the alarm data which correlates to the error data should also be

displayed. The user should have a number of options when selecting the data to be

displayed including date range, shift name, line name and device. The default date

range should be starting one week from current date and ending on current date. The

default line will be the first in an alphabetical list. The default shift option will be ‘All

shifts’ and the default device option will be ‘All devices’.

3.1.6 Creating the mock data (R1)

The application must demonstrate the full capabilities of the Prima Power machine

data collection and machine learning tools. For confidentiality reasons the machine

data cannot be taken from an existing customer and so the data must be taken from

the Prima Power test machines. As the data on the test machines comes from testing,

it means often there can be days without any data input. To create the mock data, first

data on the test machine which is similar to real scenario must be found and then

replicated and modified to give a six month range of data for two assembly lines and

both with two devices each. The machine data types required are triggers, alarms and

machine state descriptions. As the Prima Power test machine which would be used

for data samples is not used on a consistent basis, it means that the data is not

sufficient to give optimum machine learning results. As there are no sufficient

machine learning samples to use for this application then the machine learning results

will have to be fabricated for demonstration purposes.

3.1.7 Advisor view (R2)

This view is to show the notification history in a grid format. The notifications shall

be divided in to two sections, AI notifications and user generated notifications. AI

notifications will show any anomaly detection and future error detection such as tool

wear out. User generated notifications will show notifications such as ‘comment

added to timeline’ and ‘new message’. The AI generated notifications will also

23

include advice or a remedy for the user to act on. The grid cell background colors will

show the severity of the notification for example red representing a critical problem.

3.1.8 Calendar view (R2)

The calendar view will be an interactive scheduler with day, week, month and agenda

views to choose from. The calendar will display upcoming tasks needed to be done

for example maintenance tasks and in addition show AI generated predictions such as

tool wear out. The view should include filtering capability of different assembly lines

as well as the option to filter different tasks and error predictions.

3.1.9 Alarm view (R2)

The alarm view should consist of bar charts of two different types. The first will show

the top ten alarm number frequencies. A method will be needed to determine the

alarm frequencies. The second chart type will be for top ten alarm duration. Each

alarm has an alarm duration property and so for each alarm number, the duration of

each alarm will be added. By default the view will display both the frequency and

duration charts but there will also be an option to be able to compare charts of the

night shift data with combined charts of that of the day and evening shifts. The user

should have a number of options when selecting the data to be displayed including

date range, shift name, production line name and device. The default date range

should be starting one week from current date and ending on current date. The default

line will be the first in an alphabetical list. The default shift option will be ‘All shifts’

and the default device option will be ‘All devices’.

3.1.10 Messages component (R3)

A component is needed to display messages sent from a local Prima Power

application on the machine PC. The component will give messages background

24

colors to show the importance of the message for example if the machine is currently

not running the background color will be red.

3.1.11 Timeline view (R3)

The main purpose of the timeline view is to show data over a period of time with

zooming and panning capabilities. The data to be displayed on the timeline is alarms

as items and machine state descriptions as background colors. A red background to

represent failure, yellow for idle and green for running. Upon clicking an alarm, a

modal view will be displayed to give detailed information of each alarm. Below the

timeline will be a grid showing alarms currently displayed in the timeline and show

some details of alarm information as well as a background color to represent relevant

machine state description. Beneath the timeline should also be space to show an

alarm chart which by default should be alarm frequencies but the user should also

have the option to change the chart to display alarm duration. The user should have a

number of options when selecting the data to be displayed including date range, shift

name, line name and device. The default date range should be starting one week from

current date and ending on current date. The default line will be the first in an

alphabetical list. The default shift option will be ‘All shifts’ and the default device

option will be ‘All devices’.

3.1.12 Add note to timeline capability (R4)

By double clicking on the timeline a modal popup dialog should be displayed with

user inputs which gives the user the option of recording a comment (a note). All

notes recorded will be displayed as note icons on the timeline, when the user clicks

on a note icon a modal will be shown displayed the note information. When a new

note is recorded, all authorized users of the same customer will receive a notification.

25

3.1.13 Maintenance view (R4)

The maintenance view will show a history log of the maintenance schedule. A grid

component will be used to show each log and on clicking the grid row a more

detailed table of each maintenance task will open up along with any remarks the

operator has recorded. Each log will have a background color to show if all tasks are

complete or not, green for complete and red for incomplete. The grid shall be

filterable by date, status (complete or incomplete), line, operator name and remark.

The view should also give the user the option to log the maintenance task, a grid of

upcoming tasks will be shown and upon clicking a row, a modal will be shown which

lets the user log the tasks. If a remark is logged on consecutive weeks for the same

task and same line then a notification should be created to bring this to attention.

3.1.14 Scheduler upcoming events component (R5)

An easily accessible modal or dropdown to display upcoming calendar items without

navigating away from current view. The user should be able to filter which events are

listed. When the user clicks on an event item, the main view will navigate to the

calendar view.

3.1.15 Performance view (R6)

A view to show charts displaying machine utilization percentage for each day. There

is to be a chart for each assembly line. The default view will show each device’s

utilization on the chart but also an option to display each shift’s utilization. The charts

will be filterable by date with the default start date to be one week from current date

and the default end date to be current date.

26

3.2 Initial mockups

3.2.1 Navigation

Figure 5 shows main navigation is a left aligned text list with icons. The list collapses

to only icons upon clicking a hamburger menu icon in the top navigation bar as well

as when the screen width is smaller than a certain width. The Prima Power logo is

included at the top left of the navigation and when the left menu is collapsed the

logo’s text is hidden.

Figure 5. Mock design of left navigation

27

Figure 6 shows a top navigation bar with icons in the top right of the screen. This

includes a user icon to show a dropdown menu of user options. The calendar icon will

open a panel from the right with upcoming events as shown in Figure 7.

Figure 6. Mock design of right navigation

Figure 7. Mock design of left navigation

28

3.2.2 Content

Figure 8 shows the default view for large screens which will show both left and right

sidebars. On a medium sized screen the right side bar will be hidden by default.

Figure 8. Mockup design for default view of large screen.

3.2.3 Root cause

Figure 9 shows the initial idea for the root cause visualization. The triggers (errors)

are split up into separate nodes representing stages and sub stages. The center node

29

represents all triggers. Each node is connected to a parent node by a blue line with the

thickness of the line representing the amount of triggers in the child node. Looking at

the visualization the user can quickly see which stages have the most errors.

Figure 9. Mock up design for root cause visualization

3.2.4 Shift statistics

Figure 10 shows the mock up for the shift statistics page to show the machine

utilization clearly for each line and the factory average. Each line/factory box

contains a pie chart to show the shift utilization with a green bar if the utilization was

30

above base line. Each box also shows how many stoppages occurred in the shift and

if the shift ended in failure and explanation mark symbol is displayed. The shift

selection box is displayed with a red background if there were problems during the

shift. The machine utilization history is displayed as a line chart below the pie charts

so the user can compare shift to previous weeks. A message box is also displayed so

the user can see if any messages were wrote regarding the relevant shift.

Figure 10. Mock up design for shift statistics layout

3.2.5 Maintenance

Figure 11 shows the weekly maintenance view mockup showing an example of what

is displayed when a user clicks on a log item.

31

Figure 11. The mockup design for the maintenance view

32

4 Design

4.1 Library and component selection

4.1.1 Root cause view

After researching different open sourced data visualization libraries, originally a

component from a library named vis.js was selected to work with. The resulting demos

were successful in implementing the mockup design idea, however after some user

testing, it was decided the visualization was not easy to understand and for

presentational purposes it was not sufficient. A second solution was designed as shown

below.

Figure 12. Treemap mockup design for rootcause visualization

33

The type of design in Figure 12 is known as a treemap of which there are many open

sourced libraries available to create such a tool. After researching many libraries it

became apparent that there would need to be some customization done to achieve the

desired outcome. The most customizable data visualization library is D3.js which

already has a feature to build treemaps. D3.js allows users to create something called a

block which is a URL to a block of code that can be shared with other developers.

Rather than developers starting from scratch on a visualization it is common to fork a

block. Deenar Toraskar’s Block 336efdeb97f1c79d4a6b was selected to fork. /15/

4.1.2 Line and bar charts

The React re-charts component was to be used to create the charts. A custom tooltip

will be created so that the tooltip colors will match the site color theme.

4.1.3 Timeline

Chap-links timeline was to be used for timeline component. The library is not available

as a React component and so a wrapper is needed to be created to link the plain

javascript with the React library. The library does not include a feature to display

background colors and a custom implementation of the source code is needed.

4.1.4 Form inputs and calendar

The React version of the KendoUI framework will provide React components for all

user inputs and grids as well as the calendar component.

4.1.5 Modal

React-bootstrap is to be used for the modal components. The modal components will

be shown and hidden using the setState() method.

https://bl.ocks.org/deenar
https://gist.github.com/deenar/336efdeb97f1c79d4a6b

34

4.2 Architecture

4.2.1 State management

The React-redux library will be used to manage state between views. This makes the

design and maintenance of the state management much more simple and efficient. It

could be argued that in an application of this size that all state-management could be

handled through call backs, however it is important that this application is scalable as

it will grow in size and requirements in the future and therefor react-redux was

considered the best choice. Each view will have four directories: containers,

components, reducers and actions, an example of this can be seen in the root cause

branch of the file structure diagram in Figure 13. The separate reducers and actions

files will be imported into their respective global files. Only containers will contain

logic handling global state. Component files will only contain logic for local state.

35

Figure 13. src container file structure

36

4.2.2 Asynchronous data request

When using react-redux, action creators return an action object which is limiting as it

results in the action creator running synchronously. Redux-thunk is a middleware

which gives the action the possibility to return a function which has the dispatch

function of the store. This means actions can be conditionally dispatched for example

they can wait for an asynchronous task to finish before dispatching which makes

redux asynchronous scripting a lot easier to achieve and manage. Figure 14

displaying a diagram of how a middleware such as thunk is placed between the redux

store and the reducers which gives possibilities such as animating a loading bar.

 Figure 14. The react-redux design with middleware

37

4.2.3 Views

The architecture of each view will be divided into two containers connected to the

redux store. The first container is used to set the filter options from user inputs. The

second container will contain all visualizations and other content as components. The

diagrams shown from Figure 15 through to 20 show how the React components of each

view are organized. The diagram design is taken from developer Ashley Kitson with

the core principles as follows: /16/

 Dashed two headed arrow indicates that the linked components share their

stores. A change initiated in any component is reflected wherever that store is

surfaced.

 Parent to child component connected with line and the parent is denoted with

an arrowhead.

 A callback is represented by a dashed arrow pointing towards the parent

component with a label showing the child component method name. The parent

method is added as a label on the parent/ child connecting arrowhead line.

 A user interaction can be shown by using a standard UML inheritance arrow

with an ‘instance’ stereotype.

38

Figure 15. UML diagram to show component structure for the shift statistics view.

39

Figure 16. UML diagram to show component structure for the alarms view.

40

Figure 17. UML diagram to show component structure for the timeline view.

41

Figure 18. UML diagram to show component structure for the calendar view.

42

Figure 19. UML diagram to show component structure for the performance view.

43

Figure 20. UML diagram to show component structure for the root cause view.

44

5 Implementation

5.1 Setup

Before development on the application could be started, first the development

environment and build tools had to be installed. Node.js and npm were installed

before the create-react-app command was used to set up the build tools and the basic

directory structure of the application. Next using npm all dependencies were installed

and any none npm dependencies were manually added to the public directory and

referenced in index.html. The npm start command starts the application using nodejs

in a local environment.

5.2 Layout / Navigation

The layout of the application is split into 3 sections: the left navigation sidebar, the

top navigation bar and an area to display the selected view with the shiftStatistics

view as the default view. The views are selected and displayed using the Link and

BrowserRouter components from the react-router-dom package. The Link

components are used in the navigation components whilst BrowserRouter is used to

display the routes as shown in Figure 21 and Figure 22 respectively.

45

Figure 21. Code snippet to show use of react-router-dom Link component

Figure 22. Code snippet to show use of BrowserRouter component

46

The left sidebar changes to a smaller size when either the user clicks on the

hamburger menu icon or the screen width is detected to be below 768px. When the

user clicks the hamburger icon the state is updated which in turn changes the CSS

class of the sidebar using the JSX className attribute as seen in Figure 23. CSS

media queries are used to change the style of the sidebar for different screen widths.

Figure 23. JSX dynamic className example

5.3 Example of the general architecture of each view

5.3.1 Data fetching and data filtering

React-redux and the middleware thunk are used to manage the application state and

enable the container files to share information. Each view contains two containers: a

filter container and a content container. When the filter container mounts an action

creator is called to fetch the relevant data and the default filter object is set. The

content container uses conditional rendering to display an animation of a loading

spinner until data is received from the reducer at which point it will read the filter

object to decide which content to render. An example of this is the alarm view

module of which the React code can be viewed in figures 24 through to 29. Figure 24

shows the alarmFilter container which uses the React componentDidMount method to

call action creators to fetch the data and set the default filter properties. The

setAlarmFilter object is the single element of an array, the reason being that redux

reducers do not always recognize changes in an object but always update arrays when

the es6 spread operator is used in the reducer. The shiftHandler method seen in Figure

24 is an example of how a user input calls an action creator. The redux

mapStateToProps method returns the filter in its latest state which can be accessed

using this.props.

47

Figure 24. A code snippet of the alarmFilter container

The code as seen in Figure 25 shows the action creators used in the alarm module.

The fetchAlarms action creator uses thunk middleware to control when the actions

are dispatched which allows the use of the axios library for requesting data from the

server and waiting for the response before dispatching the relevant action. This

control over when an action is dispatched also gives the possibility to dispatch the

IS_FECTHING_ALARMS action which when set to true will result in the UI

displaying a loading animation. The setAlarmFilter does not use the thunk

middleware and is instead returning the default redux action-creator object which has

two properties the type and the payload. All types are imported from a separate file

(Figure 26) as they are also used in the reducers file and so having the types coming

from a single source ensures easier maintenance of the code and less start up bugs.

48

 Figure 25. The full code of the alarm module actions file.

 Figure 26. The alarms module types file

49

Figure 27. The alarms module reducer file

Figure 27 shows the alarm module reducer file. In each reducer function a switch

statement is used to determine if the dispatched action is relevant and if so the new

state is returned using the ES6 spread operator.

50

5.3.2 Conditional rendering

Using the mapStateToProps method the alarm content container receives the state of

the setAlarms array, the alarmFilter array and the fetching Boolean which are set as

props to be accessed by the JSX. Conditional rendering is used in the renderContent

method to return the appropriate JSX as shown in Figure 28. The renderContent

method is called from the component render method (see Figure 29) which updates

every time state is updated. The finished alarm view can be viewed in Figure 30 and

Figure 31.

Figure 28. Code snippet of the alarm module content container showing example of

conditional rendering.

51

Figure 29. Code snippet from the alarm content container showing the render

method.

Figure 30. Alarm view with default settings.

52

Figure 31. Alarm view with compare mode option selected.

5.4 Using an external library with React

Some libraries were chosen to use in this application that did not have a React

package which meant those libraries could not be imported as React components and

instead had to be added to the global window object. An example of this was the

jquery easy-pie-chart library of which the script was included in the index.html head.

To use the library, the library’s global variable was referenced using

window.EasyPieChart and assigned to the const variable EasyPieChart. To pass in the

relevant HTML element to the library, a ref is assigned to the element and accessed

using this.refs. Figure 32 shows a code snippet of how the easy-pie-chart was

implemented in the shiftStats component.

53

Figure 32. A code snippet of the shiftStats component showing example of external

library use.

Figure 33. The shift stats view including pie charts created with external library

54

5.5 Passing data from the child component to the parent component

To pass data from a child component to the parent container, callback functions were

used. An example of this technique is in the root cause view. Figure 34 shows the

root cause view which includes a tree map visualization and an alarm chart. When the

user clicks on a treemap node, the alarm chart is updated to show relevant alarm data

of selected node. Figure 35 shows a code snippet of the root cause content container

(parent) passing a callback function to treemap component (child), this callback is

then called from within the child component using props as seen in Figure 36. Calling

the callback is done so from a function which is passed as a callback into the external

rootCause script. When the original callback is called the parent container filters the

relevant alarms and renders the alarm chart with the updated data as seen in Figure

37.

Figure 34. The root cause view

55

Figure 35. Code snippet of the root cause content container passing a callback

function to child component.

Figure 36. Full code of treeMap component

56

Figure 37. Code snippet of root cause content container

5.6 Passing callbacks from a React component to external scripts

Each external script of code is wrapped in a function expression that can be accessed

by the React component. The code shown in Figure 38 demonstrates how callbacks

can be added and triggered on a functional expression.

57

Figure 38. Code snippet to demonstrate how callbacks can be added and triggered on

a functional expression.

5.7 Notification system

As the server side of the application was not yet implemented, the requirement of a

notification system was only to demonstrate to the customer how it would look and

work so the concept could be easily understood. Figure 39 shows how the drop down

list displays an array of notification objects whilst Figure 40 shows the notifications

array displayed in the advisor view along with the advice/remedy for each

notification. A new notification can be made for example when a user makes a note

58

on the timeline. When a new notification is made, the notification object is pushed to

the notification array and an action creator is called to update a new notification

Boolean. The top navbar container updates the color of the notification icon whenever

the new notification state is updated.

Figure 39. The notification drop down list

Figure 40. The advisor view

59

5.8 Implementation of the timeline

5.8.1 Adding the background color feature

The chap-links-timeline javascript library was used to visualize alarm data across a

timespan. One of the requirements of the timeline was to display machine times as

backgrounds colors with start and end times, however the chap-links-timeline does

not have such a feature. The chap-links-timeline has an event named onRangeChange

which returns the start and end times of the timeline each time the timeline is zoomed

or panned by the user. The chap-links timeline has a method to set the start and end

times of the timeline named setVisibleChartRange. The solution was to create two

timeline instances, the first to display alarm items and the second to display machine

times as blocks of color. All axis and labels were removed from the second timeline

instance which was then placed directly behind the transparent first timeline. Using

the onRangeChange event and the setVisibleChartRange method the two timeline

instances could be synced when the user panned or zoomed the first timeline instance

which gives the illusion of one complete timeline. The result of syncing the two

timeline instances can be seen in Figure 41.

Figure 41. The timeline component with background colors.

60

5.8.2 Optimization

The timeline view contains a grid component and a chart component displaying data

from the timeline component as seen in Figure 42. Each time the timeline is zoomed

or panned by the user the data visible on the timeline can change and so the grid and

chart components have to be updated. This is achieved through callbacks, however

the way in which chap-links-timeline works is that the update would occur every

single time the timeline is changed which on a mouse scroll zoom would be faster

than once every millisecond. Attempting to render the grid and chart components

every millisecond results in the event loop being overloaded and crashing. To stop the

script from crashing it was decided that the callback should be only fired every 300

milliseconds. This was achieved using javascript setInterval function.The setInterval

was cleared each time the onRangeChanged event was triggered and the components

only updated if the setInterval of 100 milliseconds occurred three times. Figure 43 is

a code snippet demonstrating this method.

Figure 42. The timeline view.

61

Figure 43. Code snippet demonstrating how amount of user updates is controlled

5.8.3 Adding a note to the timeline

The chap-links-timeline library contains an event named select. When a timeline

object is clicked the select event returns the object and when an empty space on the

timeline is clicked, an object is returned containing the time of the point clicked.

Callbacks are used to the send the select event up to the parent container where a

popup modal component can be displayed. When a timeline item is clicked the modal

renders the item information (Figure 45). When an empty space on the timeline is

clicked the modal displays a text area to add a new note (Figure 44). When the user

submits a new note, the note object is pushed into note array and the timeline is

updated to show the note.

Figure 44. The modal to create new note

62

Figure 45. Modal to display note

63

5.9 Creating custom cells in kendoUI grid component

The kendoUI React grid component is used throughout the application. To give grid

cells custom colors depending on a condition, custom components were made. Figure

46 shows the Maintenance view which has a nested grid with custom background

colors and content. Figure 47 shows the grid component and Figure 48 shows a code

snippet to demonstrate how custom cells and nested grid components for the kendoUI

grid component are implemented.

Figure 46. Maintenance history grid view

64

Figure 47. KendoUI grid code snippet

Figure 48. Code snippet to demonstrate custom cells and nesting component for

KendoUi grid

65

6 Testing

On completion of each module, manual testing was used where the developer acted as

a user of the application to verify all the features work correctly and any bugs were

found and recorded to be fixed. During the development of each module, unit testing

and integration testing techniques were used. The testing framework used was Jest

and the library Enzyme was used to give more options in creating tests. Jest is

installed and run by using npm and the results of the test can be viewed in the

command line. When a test fails, information is given to as why the test failed, the

test then runs again each time there are then changes made to the code until the test

passes. The process of Jest testing can be seen in Figure 49.

Figure 49. A diagram of the Jest testing process

Unit testing is done by only testing individual units of code, an example of a unit test

can be seen in Figure 50. The unit test shown in Figure 50 is a test to see if the

performanceFilter component contains one SelectFilter component using the enzyme

shallow feature. Before passing a unit of code as tested, the test should first be failed.

66

To fail the test shown in Figure 50, line 13 of the code snippet was changed so that

the toEqual method on the expect method had a parameter of 2 instead of 1. The test

fail message shown in the command line can be viewed in Figure 51.

Figure 50. An example of a unit test

Figure 51 Command line displaying failed test

Whilst unit testing can be suitable for testing individual units of code, it can be

unnecessary with applications with a lot of boilerplate code such as the application of

this thesis work. As this application uses the redux library, action creators and reducer

functions are required which creates a lot of boilerplate. Reducers are very simple and

writing a unit test for each reducer function takes up time that could be used more

productively. Integration testing is when many units of code are combined and tested

together which makes it suitable to use for redux code as it means the action creators,

67

reducers and components can be combined in one test. The code snippet in Figure 52

shows an example of an integration test using the Jest, enzyme and moxios libraries.

The test is begun by simulating the initialization of the code which in the case of the

example is a button click, the test can find this button by using the HTML class

attribute. The moxios library enables the possibility to give a mock API response.

The moxios stubRequest method takes in a URL and whenever that URL is requested

in the test, moxios gives the mock response which in the case of the example is a

JSON array with 2 objects with the attribute ‘name’. This mock request and response

even though very fast, taking just microseconds to complete still needs to be waited

on before the test can continue and to achieve this, the moxios.wait method is used.

To complete the test, the component displaying the response is checked to see if the

expected output is correct which in this example case is two table row elements.

68

Figure 52. An example of an integration test

69

7 Conclusion

The main goal of the application described in this thesis was to give a demonstration

of an online analytics tool to customers at the euroBlech trade fair as part of the

Prima Power exhibition. All the requirements of the Prima Power analytics

application were met and Prima Power were able to give a demonstration of a

professional, working application. Challenges in developing this application included

learning how to make an application with the React javascript framework and

deciding on what were the most appropriate libraries to use. Throughout the

development of this application, the technologies used were continually studied and

the techniques used were continually revised. The application is designed to be

scalable so that Prima Power can continue to add new features to the existing

application in the future.

70

8 References

/1/ Prima Power – Last access 06/12/2018

https://www.primapower.com/company/

/2/ EuroBlech – Last access 06/12/2018

https://www.euroblech.com/2018/english/event/about-euroblech/

/3/ node.js – Last access 06/12/2018

https://nodejs.org/en/about/

/4/ ReactJS – Last access 06/12/2018

https://reactjs.org/

/5/ Flux – Last access 06/12/2018

https://scotch.io/tutorials/getting-to-know-flux-the-react-js-architecture

/6/ Redux – Last access 06/12/2018

https://redux.js.org/

/7/ Thunk – Last access 06/12/2018

https://redux.js.org/api/applymiddleware

/8/ Create-react-app – Last access 06/12/2018

https://reactjs.org/docs/create-a-new-react-app.html

/9/ KendoUI – Last access 06/12/2018

https://www.telerik.com/kendo-ui

https://www.primapower.com/company/
https://www.euroblech.com/2018/english/event/about-euroblech/
https://nodejs.org/en/about/
https://reactjs.org/
https://scotch.io/tutorials/getting-to-know-flux-the-react-js-architecture
https://redux.js.org/
https://redux.js.org/api/applymiddleware
https://reactjs.org/docs/create-a-new-react-app.html
https://www.telerik.com/kendo-ui

71

/10/ Recharts – Last access 06/12/2018

http://recharts.org/en-US/

/11/ D3.js – Last access 06/12/2018

https://d3js.org/

/12/ Chap-links-timeline – Last access 06/12/2018

https://almende.github.io/chap-links-library/timeline.html

/13/ Twitter bootstrap – Last access 06/12/2018

https://getbootstrap.com/

/14/ Just in mind – Last access 06/12/2018

https://www.justinmind.com/

/15/ Deenar Toraskar d3 block – Last access 06/12/2018

https://bl.ocks.org/deenar/336efdeb97f1c79d4a6b

/16/ Ashley Kitson UML React design – Last access 06/12/2018

http://zf4.biz/blog/visualizing-react

http://recharts.org/en-US/
https://d3js.org/
https://almende.github.io/chap-links-library/timeline.html
https://getbootstrap.com/
https://www.justinmind.com/
https://bl.ocks.org/deenar
https://bl.ocks.org/deenar/336efdeb97f1c79d4a6b

