
Algorithms for compression and
real-time internet services of
intelligent road data

LAPLAND UAS PUBLICATIONS
Publication series B. Research reports and

Compliations Publication series 18/2018

BHanna Kumpula, Kari Peisa & Jouko Teeriaho

Algorithms for compression and real-time internet services of
intelligent road data

Lapland University of Applied Sciences
Rovaniemi 2018

Publication series B. Research reports and Compliations 18/2018

Hanna Kumpula, Kari Peisa & Jouko Teeriaho

Algorithms for compression
and real-time internet services
of intelligent road data

© Lapland UAS and authors

ISBN 978-952-316-258-7 (pdf)
ISSN 2489-2637 (verkkojulkaisu)

Publications of Lapland UAS
Publication series B. Research reports and
Compliations Publication series 18/2018

Financiers: Interreg Nord
Authors: Hanna Kumpula, Kari Peisa
& Jouko Teeriaho
Layout: Lapland UAS, Communications

Lapland University of Applied Sciences
Jokiväylä 11 C
96300 Rovaniemi, Finland

Tel. + 358 020 798 6000
www.lapinamk.fi/Publications

The Lapland University Consortium is a unique
form of strategic alliance in
Finland, as it comproses a union
between University and University
of Applied Sciences.
www.luc.fi

Table of contents

INTRODUCTION 7

1 VECTOR MATHEMATICS 9

2 IMPLEMENTED COMPRESSION ALGORITHM 10

2.1 DESCRIPTION OF THE COMPRESSION ALGORITHM 10
2.1.1 Written description of the algorithm 10
2.1.2 Visual description of the algorithm 12

2.2 IMPLEMENTATION OF THE ALGORITHM 14
2.2.1 Mathematica implementation 15
2.2.2 Python implementation 16

3 TOWARDS REAL-TIME TRACKING OF SPATIAL ROAD DATA 20

3.1 CONSTRUCTING THE MESH. 20
3.1.1 Algorithm for the mesh construction 22

3.2 TESTING IF THE POINT IS INSIDE A POLYGON 24
3.2.1 Algorithm for determining if the point is inside the polygon . . . 25

3.3 SYSTEM 26
3.3.1 The usage of R-tree in tracking location from the mesh . . . 26
3.3.2 The details of updating sensor value information 28
3.3.3 An example of accessing the mesh in an R-tree installed in Python . 29

4 DISCUSSION 32

BIBLIOGRAPHY 33

APPENDIX A 34

Algorithms for compression and real-time internet services of intelligent road data 7

Introduction

The road weather station (RWS) network in the Northern parts of Finland is too
sparse for the purposes of delivering detailed information of the road weather. There
may be a hundred kilometers of road between two stations and while these stations
deliver information from their locations, the road condition may be completely
different half way between them.

The Interreg Nord funded Winter Road Maintenance (WiRMa) project researches
the possibility of using large goods vehicles (LGV) as mobile RWSs by equipping them
with sensors measuring a number of variables directly on the road. These variables
include road condition, water level on road, temperature, and friction data. Figure 1
shows detail of one of the LGVs with the sensors. Furthermore, WiRMa project
provides a unique testing platform for different road weather sensors.

Figure 1 Detail of a vehicle equipped with sensors. (Autioniemi 2018)

The collected sensor data is stored in a cloud storage and delivered to road maintenance
personnel through a web based user interface (UI) as well as varied research purposes
for road weather predictions through application programming interface (API).
Figure 2 shows the main view of the WiRMA UI designed in the project.

8 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

Figure 2 Main view of the WiRMa UI designed in the project.

This article describes the technical points in compressing the collected measurement
data. Both the currently implemented algorithm and thoughts on future development
are shared.

Chapter 2 shortly explains the required vector mathematics used in these algorithms.
Chapter 3 describes the algorithm developed by Jouko Teeriaho (Lapland UAS)

currently implemented in WiRMa project. It explains the mathematics used in the
algorithm, pseudo code of the algorithm, and explanation of variables. Implementation
using Mathematica and Python as well as the visual explanations are included.

Chapter 4 describes the work of Kari Peisa (Lapland UAS). It concentrates on future
and discusses how the algorithm could be improved and taken toward real-time
tracking application mainly through the use of R-trees. Implementation of the test
runs made using Python are included as well.

Algorithms for compression and real-time internet services of intelligent road data 9

1 Vector mathematics

Algorithms are based on vector mathematics. Position on the road is presented as a
point (x,y) in the data, where x and y refer to coordinates along the x- and y-axis.
Mathematically these points can be called position vectors r=(x,y).

For two position vectors a=(ax, ay) and b=(bx, by), the operations are

Addition
 (1)

Multiplication by a constant
 (2)

Subtraction
 (3)

Dot product
 (4)

where g is the angle between the vectors.
Length of a vector
 (5)

Angle between two vectors in radians
 (6)

Arc length of a circle
 (7)

where g is the angle in radians and r is the circle radius.
Vector projection a onto b
 (8)

10 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

2 Implemented compression
algorithm

The LGV sent data must be compressed in such a way that following requirements are
fulfilled:

• Geometry of the road is preserved
• Points where the condition parameter changes should be included in the

compressed file.

The algorithm goes through the road points in order. First two points determine the
road direction and are added to the compressed points. Then points are inspected one
by one and added to the compression if either the color changes or lateral deviation
from the inspected point is too large from the established road direction. Every time
a point is added to the compression, the road direction is determined again.

For two road points a and b, the connection vector b-a forms the road direction
line. The lateral deviation of point c under inspection from the road direction line is
calculated using equations (5) to (7)

	 	 	 	 	 	 	 	 	 (9)

2.1 DESCRIPTION OF THE COMPRESSION ALGORITHM

First, the algorithm in explained in pseudocode and then using images.

2.1.1 Written description of the algorithm

Variables
data : [[x1,y1],[x2,y2], … ,[xn,yn]] # points of the road data
colors : [color1, color2, … ,colorn] #colors expressing condition parameter
c_list : [[x1,y1],[x2,y2], …] # compressed list of points
pcolors : [color1, color2, …] #colors of points for c_list

Variables a and b are used to determine the direction of the road, the third pointer c
moves forward in array data
a, b, c : pointers of type [a1,a2], [b1,b2], and [c1,c2], respectively

Algorithms for compression and real-time internet services of intelligent road data 11

Constants
MAXDEV : parameter giving the maximal lateral deviation of point c from the

straight line determined by a and b. If the scale of the map is changed, then MAXDEV
should be changed proportional to the scale.

Initialisation:
Pointers a and b are set to point to the first points

Initialisation:
Pointers a and b are set to point to the first two
points of the road data
a = array(data[0])
b = array(data[1])

First two points are added to the c_list and the colors
to c_colors
c_list = [data[0], data[1]]
pcolors = [colors[0], colors[1]]

Set index for the while structure
k = 2

while structure
while (k < len(data)):
 c = array(data[k])
 angle = angleBetween(c-a, b-a)
 s = norm(c-a)*angle

 if(color[k] != color[k-1]):
 if(data[k-1] != c_list(len(c_list)-1):
 c_list.append(data[k-1])
 pcolors.append(colors[k-1])
 c_list.append(data[k])
 pcolors.append(colors[k])
 a = data[k-1]
 b = data[k]
 else:
 if(s > MAXDEV):
 c_list.append(data[k])
 pcolors.append(append(colors[k])
 a = b
 b = c
 k = k+1

12 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

2.1.2 Visual description of the algorithm

Initialisation:
Pointers a and b are set to point to the first points

Figure 3 Initialisation phase: set pointers a and b.

Figure 4 Set pointer c and calculate s. Check if conditions.

Figure 5 Set pointer c and calculate s. Check if conditions.

Algorithms for compression and real-time internet services of intelligent road data 13

Figure 7 Reposition pointers a and b.

Figure 8 Set pointer c and calculate s. Check if conditions.

Figure 6 Set pointer c and calculate s. Check if conditions. First if condition catches color
change.

Figure 9 Set pointer c and calculate s. Check if conditions.

14 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

Figure 10 Set pointer c and calculate s. Check if conditions.

Figure 11 Set pointer c and calculate s. Check if conditions.

Figure 12 Set pointer c and calculate s. Check if conditions. Second if condition catches
s>MAXDEV

2.2 IMPLEMENTATION OF THE ALGORITHM

Implementation of the algorithm in Mathematica and Python is described in detail.
Both of the algorithms use the same dataset. Figure 13 shows a scatter plot of 191 points
of example road data. The data table is available in Appendix A.

Algorithms for compression and real-time internet services of intelligent road data 15

Figure 13 191 points of example road data.

2.2.1 Mathematica implementation

Mathematica has a function called VectorAngle to calculate the angle between two
vectors and Norm to calculate the length.

Initialisation of variables.
While
maxdev = 30.0;
a = data[[1]];
b = data[[2]];
c_lista = {a, b};
c_colors = {colors[[1]], colors[[2]]};
While –loop
k = 3;
While[k < 191,
 c = data[[k]];
 a = VectorAngle[c-a, b-a];
 d = a*Norm[c-a];

 If[colors[[k-1]]≠colors[[k]],
 If[c_list[[Length[c_list]]]≠data[[k-1]],
 c_list = Append[c_list, data[[k-1]]];

16 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

 c_colors = Append[c_colors, colors[[k-1]]];];
 c_list = Append[c_list, data[[k]]];
 c_colors = Append[c_colors, colors[[k]];
 a = data[[k-1]];
 b = data[[k]],
 If[d>maxdev, c_list = Append[c_list, c];
 c_colors = Append[c_colors, colors[[k]];
 a = b;
 b = c;];
];
 k++;
]

Compressed list has following points:

c_list
{{500., 400.}, {510., 386.721}, {580., 344.659}, {620., 355.779}, {680.,

411.073}, {750., 520.}, {870., 765.9}, {980., 915.25}, {1010., 935.548},
{1020., 941.05}, {1130., 966.065}, {1210., 952.912}, {1370., 894.583},
{1440., 867.047}, {1450., 862.886}, {1710., 719.846}, {2030., 581.462},
{2060., 587.009}, {2070., 589.423}, {2250., 665.462}

2.2.2 Python implementation

Python’s basic version has no vector class. By loading numpy –packages the angle
between two vectors can be calculated:

from numpy import (array, dot, arccos, subtract)
from numpy.linalg import norm
a = array([4, 2])
b = array([1,6])
dot(a,b) calculates dot product
norm(a) calculates the length of vector a
angle = arccos(dot(a,b)/norm(a)/norm(b))

from numpy import (array, dot, arccos, subtract)
from numpy.linalg import norm

#Move test data points into variables data and colors

Algorithms for compression and real-time internet services of intelligent road data 17

data =[[500., 400.], [510., 386.721], [520., 375.37], [530.,365.891],
[540., 358.229], [550., 352.33], [560., 348.138], [570.,345.6], [580.,
344.659], [590., 345.261], [600., 347.352], [610.,350.877], [620.,
355.779], [630., 362.006], [640., 369.501], [650.,378.21], [660., 388.079],
[670., 399.051], [680., 411.073], [690.,424.089], [700., 438.045], [710.,
452.886], [720., 468.557], [730.,485.003], [740., 502.169], [750., 520.],
[760., 538.442], [770.,557.439], [780., 576.937], [790., 596.881], [800.,
617.216], [810.,637.887], [820., 658.839], [830., 680.018], [840.,
701.368], [850.,722.835], [860., 744.364], [870., 765.9], [880., 787.388],
[890.,808.773], [900., 830.], [910., 843.352], [920., 855.895], [930.,
867.65], [940., 878.635], [950., 888.869], [960., 898.37], [970.,907.157],
[980., 915.25], [990., 922.667], [1000., 929.427], [1010.,935.548],
[1020.,941.05], [1030., 945.951], [1040., 950.27], [1050., 954.026],
[1060.,957.238], [1070.,959.925], [1080., 962.105], [1090., 963.797],
[1100.,965.021], [1110., 965.794], [1120., 966.136], [1130.,966.065],
[1140.,965.601], [1150., 964.762], [1160.,963.567], [1170., 962.035],
[1180.,960.185], [1190.,958.035], [1200., 955.604], [1210., 952.912],
[1220.,949.976], [1230., 946.816], [1240., 943.451], [1250.,939.899],
[1260.,936.18], [1270., 932.311], [1280.,928.312], [1290., 924.202],
[1300.,920.], [1310., 916.463], [1320.,912.899], [1330., 909.306],
[1340.,905.681], [1350.,902.02], [1360., 898.322], [1370., 894.583],
[1380.,890.801], [1390.,886.973], [1400., 883.096], [1410.,879.168],
[1420.,875.186], [1430.,871.146], [1440., 867.047], [1450., 862.886],
[1460.,858.659], [1470.,854.365], [1480., 850.], [1490., 845.562], [1500.,
841.047], [1510.,836.454], [1520., 831.779], [1530., 827.019], [1540.,
822.173], [1550.,817.237], [1560., 812.208], [1570.,807.084], [1580.,
801.862], [1590.,796.539], [1600., 791.113], [1610., 785.58], [1620.,
779.939], [1630.,774.185], [1640., 768.318], [1650., 762.333],
[1660.,756.228], [1670.,750.], [1680., 742.551], [1690., 735.028], [1700.,
727.453], [1710., 719.846], [1720.,712.228], [1730.,704.62], [1740.,
697.042], [1750., 689.515], [1760., 682.06], [1770.,674.697], [1780.,
667.448], [1790., 660.333], [1800., 653.373], [1810., 646.588], [1820.,640.],
[1830., 634.086], [1840., 628.392], [1850., 622.926], [1860.,617.695],
[1870.,612.707], [1880., 607.97], [1890., 603.491], [1900., 599.278],
[1910., 595.338], [1920.,591.678], [1930., 588.307], [1940., 585.232],
[1950., 582.461], [1960., 580.], [1970.,579.112], [1980., 578.611],
[1990.,578.483], [2000., 578.717], [2010., 579.3], [2020.,580.219],
[2030., 581.462], [2040., 583.016], [2050., 584.869], [2060., 587.009],
[2070.,589.423], [2080., 592.098], [2090., 595.022], [2100., 598.182],
[2110., 601.567], [2120.,605.163], [2130., 608.957], [2140., 612.938],
[2150., 617.094], [2160., 621.41], [2170.,625.876], [2180., 630.478],
[2190., 635.204], [2200., 640.041], [2210., 644.977], [2220.,650.],
[2230., 655.097], [2240.,660.255], [2250., 665.462], [2260., 670.706],

18 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

[2270.,675.973], [2280., 681.253], [2290., 686.531], [2300., 691.795],
[2310., 697.034], [2320.,702.234], [2330., 707.383], [2340., 712.469],
[2350., 717.478], [2360., 722.399], [2370.,727.219], [2380., 731.926],
[2390.,736.506], [2400., 740.948], [2410., 745.24], [2420.,749.367], [2430.,
753.319], [2440., 757.082], [2450., 760.644], [2460., 763.993], [2470.,
767.116], [2480., 770.]]

colors=[1,
1,
1, 1, 1, 1, 2,
2, 1, 1, 1,
1,
1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2]

Initialize vectors a and b
a = array(data[0])
b = array(data[1])

Move first two points to vectors containing compressed
data points
c_list = [data[0],data[1]]
c_colors = [colors[0],colors[1]]

Define maximum deviation for the compression
MAXDEV=30
Starting position for the index
k = 2;

While loop for selecting data points to the compressed
data
while (k<len(data)):
 #move next data point for comparison
 c = array(data[k])
 #difference vector c-a
 d1 = subtract(c,a)
 #difference vector c-b
 d2 = subtract(b,a)
 #calculate angle between difference vectors
 angle = arccos(dot(d1,d2)/norm(d1)/norm(d2))
 #calculate deviation of point c from the line ab
 d = angle*norm(d1)

Algorithms for compression and real-time internet services of intelligent road data 19

 if (colors[k-1] != colors[k]): #if color has changed
 if (data[k-1] != c_list[len(c_list)-1]):
 c_list.append(data[k-1])
 c_colors.append(colors[k-1])
 #add point c and the previous point to the

compressed data
 c_list.append(data[k])
 c_colors.append(colors[k])
 #reposition vectors a and b
 a = data[k-1]
 b = data[k]
 else:
 if(d>MAXDEV): #if deviation exceeds MAXDEV
 #add point c in the compressed data
 c_list.append(data[k])
 c_colors.append(colors[k])
 #reposition vectors a and b
 a = b
 b = c
 k = k+1 #add index for the while loop

#print the points, colors, and the number of the points
in the compressed data

print(“Results of the test run: “)
print(“Compressed data points: “,c_list)
print(“\nColors of the compressed data points: “,c_colors)
print(“\nCompressed data contains “,len(c_list),” points”)

20 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

3 Towards real-time tracking of
spatial road data

The core of the system’s operation is a fixed indexed mesh structure, by which the
roads in different countries subject to measurement will be framed. The mesh enables
the system to locate and organise the road information that is coming from the
sensors. The data consists of road surface condition and weather-related parameters
which are stored in a cloud storage as JSON (JavaScript Object Notation) data format.
Furthermore, the mesh also makes it possible to present real-time knowledge of road
condition to other vehicles travelling on the roads.

The mesh is stored in an R-tree for fast spatial queries. R-trees are powerful tree
form data structures for efficient access methods of spatial data. The mesh is made of
indexed quadrilaterals, i.e., each quadrilateral has a unique index that includes the
identification of the country, the road, and the order number of the quadrilateral in
the road. The mesh is an extension to the idea to divide road into linear segments.

3.1 CONSTRUCTING THE MESH

The mesh construction requires the road being represented as a polyline. The
interconnected quadrilaterals forming the mesh are constructed around the linear
segments of the polyline. Figure 14 shows part of the road data with the mesh.

Algorithms for compression and real-time internet services of intelligent road data 21

Figure 14 Part of the road data along with the mesh. Mesh width is around 20 m and the
maximum deviation of a point inside a linear segment is 5 m.

First, the length of the projection vector can be calculated using equation (8). If vector
b in said equation is a unit vector , then the length of the projection vector can be
obtained efficiently simply using
 (10)

Second, as the dot product of two perpendicular vectors is zero, perpendicular unit
vectors and to some unit vector can be formed as

 (11)

Figure 15 shows the mesh elements that form the quadrilaterals around the road
polyline. Road points are handled as position vectors in calculations.

22 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

Figure 15 Mesh elements: quadrilateral corners (X1,…,X4), unit vectors for road direction
(i) and their perpendicular unit vectors () in each road point (Pi).

The mesh is constructed from the collected LGV data. First, the polyline for the road
is determined by going through the data points, which must be in the correct order
and must not contain any discontinuities. Second, the quadrilaterals are formed
around the polyline segments.
For	 the	polyline,	 the	first	point	 is	 added	 to	 the	polyline	and	used	as	 a	 reference	

point.	The	direction	unit	vector	of	the	linear	segment	as	well	as	the	normal	to	it	are	
calculated	using	the	next	point	in	the	data.	The	algorithm	goes	through	all	the	suc-
cessive	data	points,	constructs	a	trial	linear	segment,	and	projects	it	on	the	previously	
calculated	normal.	The	length	of	this	projection	is	then	compared	to	the	maximum	de-
viation.	If	the	maximum	deviation	is	exceeded,	then	the	previous	data	point	is	added	
to	the	polyline	and	used	as	starting	point	for	the	next	linear	segment.
For	the	quadrilaterals,	the	polyline	points	are	traversed.	At	the	first	and	last	points	

the	quadrilateral	side	is	set	parallel	to	the	normal,	but	for	all	other	points	quadrilateral	
sides	are	placed	such	that	 they	act	as	 the	bisector	for	 the	two	neighboring	polyline	
segments.	The	polyline	goes	through	the	middle	of	the	mesh	quadrilaterals.

3.1.1 Algorithm for the mesh construction

Algorithm for constructing the polyline.

””” denote
 xyList #list of successive points of the road
 polyline #list of vertices in polyline of the road
 nextP++ #nextP is the next point in a point list
 nextP-- #nextP is the previous point in a point list
”””
 startP = xyList[0]
 polyLine=[startP]
 nextP = xyList[1]

Algorithms for compression and real-time internet services of intelligent road data 23

 while nextP in xyList
 s0 = normalize(nextP-startP) # make a unit vector
 n0 = [-s0[1], s0[0]]
 nextP++
 while nextP in xyList and
 dotProduct(nextP-startP,n0) <= maxDeviation
 nextP++
 nextP--
 if nextP in xyList append nextP to polyLine
 startP = nextP
 nextP++
 return polyLine

Algorithm for constructing the quadrilaterals.

””” denote
 segment points = [P0, P1, P2,…,Pn-1] is a list of consecutive

points that form the polyline of the road.
”””
at the beginning i = 0
 s0 = normalize(P1-P0) # make a unit vector
 n0 = [-s0[1], s0[0]]
 X1 = P0 + h* n0
 X2 = P0 - h* n0
repeat on the following segments i = 1,2,…,n-2
 s1 = normalize(Pi+1-Pi) # make a unit vector
 n1 = [-s1[1], s1[0]]
 X3 = Pi+1 - ½*h*(n0+ n1) # - for counter clockwise order
 X4 = Pi+1 + ½*h*(n0+ n1) # + for counter clockwise order
 Append [X1, X2, X3, X4] to the mesh
 X1 = X4
 X2 = X3
 n0 = n1
at the end
 X3 = Pn-1 - h*n1
 X4 = Pn-1 + h*n1
 Append [X1, X2, X3, X4] to the mesh
return mesh

The algorithms described above only work with data that contains data points that
form a clean road and do not contain any discontinuities or return trips. If the original
data does include anything like these, then points that fulfill the requirements must
be extracted for the algorithms.

24 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

Furthermore, the algorithms in their current form do not work with data having
geodetic (latitude and longitude) coordinates in degrees. Instead, the coordinates
must be presented in Cartesian coordinates.

During the development process these challenges were taken care of by, firstly,
ensuring that the data set only contained properly successive points. Secondly, the
coordinates were converted from geodetic into ETRS-TM35FIN Cartesian coordinates
by copying the code from a PHP library (Loukko.net 2013) into the Python program.
The conversion was reviewed through the transformation service of the Finnish
Geodetic Institute (n.d.).

3.2 TESTING IF THE POINT IS INSIDE A POLYGON

Algorithm for testing whether a point is inside a polygon is based on the general
crossing number algorithm also known as even-odd rule algorithm. The implementation
of the algorithm described here and presented in section 4.2.1 is based on the work
described by Paul Bourke (1987). The underlying concept of the algorithm is to calculate
the number of intersections the horizontal line drawn from the query point makes
with the polygon edges. In the case of query point being inside the polygon, the
number shall be even and odd otherwise. This property is true for both convex and
concave polygons. The polygon edges may be traversed in either clockwise or counter-
clockwise.

The algorithm goes through the polygon edge-by-edge and checks the parity of the
number of intersections from the query point. After a number of checks regarding the
location of the query point to the polygon edge, the x-coordinate of the intersection is
determined by solving

where is the y-coordinate of the query point, (P1x, P1y) and (P2x, P2y) are the first and
second end point of the polygon edge under inspection, respectively. Figure 16
illustrates the algorithm checking the query point against one of the polygon edges
traversed in clockwise direction.

Algorithms for compression and real-time internet services of intelligent road data 25

Figure 16 Illustration of the algorithm determining if the queried point Q is inside the
polygon.

The crossing number algorithm is efficient and is running in linear time. The implementation
of the algorithm falsely categorises some points that lie on an edge or a vertex,
therefore, these cases should be checked in a separate process. However, for the
purpose of tracking locations with the mesh, cases where the query point hits an edge
or a vertex are extremely rare and therefore can be left untracked.

3.2.1 Algorithm for determining if the point is inside the polygon

A Python implementation of the algorithm.

def isInsidePolygon(x, y, points):
 n = len(points)
 inside = False
 p1x, p1y = points[0]
 for i in range(1, n + 1):
 p2x, p2y = points[i % n]
 if y > min(p1y, p2y):
 if y <= max(p1y, p2y):
 if x <= max(p1x, p2x):
 if p1y != p2y:
 xinters = (y - p1y)*(p2x - p1x)/(p2y - p1y) + p1x
 if p1x == p2x or x <= xinters:
 inside = not inside
 p1x, p1y = p2x, p2y
 return inside

26 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

3.3 SYSTEM
The proposed system is based on data in a cloud storage, which is continually updated
via mobile sensors.

Figure 17 Proposed procedure for real-time tracking of spatial road information.

Figure 17 shows a flow chart describing the proposed procedure for a real-time internet
application updating road information.

3.3.1 The usage of R-tree in tracking location from the mesh

R-trees are dynamic tree form data structures, where the indexing is based on
multidimensional information, such as spatial data. In dynamic tree form global
reorganisation is not required to handle insertions or deletions. The R-tree concept
was created by Toni Guttman (1984). After that many variants such as R*-tree or R+-
tree have been developed. Here, the use of R-tree is restricted only for the use of 2D
geospatial data. Therefore, the indexing of R-tree is based on rectangles (xmin, ymin,
xmax, ymax) which are inserted into the tree.

When an R-tree is created and new elements are inserted in it, R-tree groups nearby
objects and represents them with their minimum bounding rectangle (MBR) in the
next higher level of the tree. The inner nodes of an R-tree are called pages, and they
have knowledge of the MBR and the connections to the next lower level pages. The
MBRs of a higher level include all the MBRs in its subtree. In the lowest level the leaf
nodes have three entities: the unique index number in the tree, the MBR, and the data
object to be stored. Here, the data objects are the quadrilaterals of the mesh.

Algorithms for compression and real-time internet services of intelligent road data 27

When a query including a 2D point or a polygon is made to R-tree, the tree is traversed
starting from the root node to find which MBRs intersect, i.e., include, the point or
the polygon. Depending on how many intersections are found, a list of hits of leave
nodes is returned.

There are two kinds of requests in the WiRMa road service application. First, from
the coordinates of the tracked vehicle, the quadrilateral the vehicle is located in needs
to be determined, possibly along with the next couple of nearest quadrilaterals as well.
Second, real-time sensor value information regarding the segments or the whole road
needs to be acquired.

Spatial requests are typical tasks that are handled by the R-tree. Storing all the
sensor value data in the R-tree results in multiple queries and updates, which might
cause R-tree performance to collapse. Therefore, only the mesh of each road is constructed
and inserted into the R-tree and considered fixed. Then, the R-tree is mainly subject
to the queries and its performance remains effective. The sensor value data is to be
stored in a separate database, where the keys for accessing information consist of the
identification of the country, the road, and the mesh quadrilateral. This data is stored
in the R-tree as well and returned in the response.

The identification of the country, the road, and the mesh quadrilateral can be
combined into one unique index number of an R-tree element. It can be constructed,
e.g., by concatenating strings. Each country has a unique identifying number, each
road within a country has unique identifying number, and each mesh quadrilateral
has order number from 1 to the number of quadrilaterals in the road. These identifying
numbers are converted to a certain length of strings and then concatenated. The length
of strings can be, e.g., the following:

2 digits for country, max 99 different countries
3 digits for roads in each country, max 999 different roads /country
7 digits for quadrilaterals, max 9 999 999 different segments /road
The index string length is 12, thus including up to 999 999 999 999 possible different

index numbers. When necessary, the number is padded with zeros from the beginning
to reach the desired length.

When the quadrilateral is inserted into the R-tree, the concatenated index string is
converted to long int which is the unique index number of the inserted R-tree element.
Here is an example of indexing:

If country unique number = 3, road number within the country = 4, and the order
number of the mesh quadrilateral =11, then

3 ->’03’
4 -> ’004’
11 -> ’0000011’
concatenated bit string is converted to a long integer
’030040000011’ -> 30040000011
The long integer index number in R-tree respond can be parsed back to identify the

country, road, and the mesh quadrilateral.
3004000001 -> ’03004000001’-> [’03’,’004’,’0000011’]

28 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

3.3.2 The details of updating sensor value information

The unit module of the information of the road that is going to be extracted from the
JSON data in the cloud storage is a list of road points, which are connected to a certain
normalised integer value of the selected sensor type. When the sensor value changes,
a new point list will be created. Sensor types are the road features that are presented
in road services. There are five sensor types currently in use: water level on the road,
road temperature, air temperature, road condition, and friction. The road information
of each sensor type can be extracted from JSON file into the following (Python) list
format:
[[sensor_value, spatial point list], …]
In real data, the spatial point lists of the sensor values, or the points in one list, do

not necessary form a continuous list of successive points of the road. The vehicle may
have stopped for a moment, it may have deviated from its route, it may have made back
and forth moving, or there may be other discontinuities. When updating the road
information, we need to be sure that JSON data has enough new information of the
current section of the road. This can be ensured by using the same technology used in
the R-tree, i.e., the MBR.

Figure 18 MBR for new data in mesh that is going to be updated.

The road information in the current quadrilateral will be updated in the database if
condition

where b is some predefined boundary level and is the area of the rectangle, is
fulfilled. Figure 18 illustrates the setting of a minimum width to the bounding
rectangle in order to avoid getting near zero in some cases where the x- or
y-coordinates are nearly constant.

The database of sensor value information uses the country, the road, and the order
number of mesh quadrilateral as the key values ensuring fast access to the data
elements. It depends on service application, which information is stored to the
database besides the sensor values with their spatial boundaries.

Algorithms for compression and real-time internet services of intelligent road data 29

3.3.3 An example of accessing the mesh in an R-tree installed in Python

This example is written for libspatialindex version 1.8.5 and Python version 2.7.9. After
installing the libraries libspatialindex and rtree, the R-tree index variable can be created:

from rtree import index
idx = index.Index()

In the following, the list quads contains the mesh consisting of quadrilaterals [X1, X2,
X3, X4]. The long integer index numbers of the quadrilaterals are determined as described
in section 4.3.1 and contained in the list Lint. Function getMBR returns the MBRs as
a Python tuple (minx, miny, maxx, maxy), where the smallest and largest coordinates
are selected from the vertices of the quadrilateral given as argument. MBR format
(x,y,x,y) is required for inserting or making a query of one point (x,y).

The quadrilaterals of a road are inserted into the R-tree as follows:

for i in range(0,len(quads)):
 idx.insert(Lint[i],getMBR(quads[i]),obj=quads[i])

The query for a point=(x,y), such that we get both the index and the quadrilateral is
made as follows:

respond=[[n.id,n.object] for n in
 idx.intersection((point[0],point[1],point[0],point[1]),
 objects=True)]

The following presents an example of accessing the mesh stored in the standard R-tree
and the result of the program run. An example of a road having a mesh already exists.
First, an R-tree is created and mesh inserted into it.

Creating the R-tree index for mesh of the road
idx = index.Index()

Generating long integer indexes for each quadrilateral
of the current road
print(“We have indexes: country=3, road=15, and we generate

the long integer indexes for each quadrilateral of the
mesh”)
country=3;road=15;
Lint=[]
for i in range(0,len(quads)):
 ind=indexGener(country,road,i)
 Lint.append(ind)

30 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

print (“The number of quadrilaterals is “+ str(len(quads)))
print(“\nInserting the quadrilaterals into the R-tree...”)
print(“”)

inserting quads into the R-tree
for i in range(0,len(quads)):
 idx.insert(Lint[i],getMBR(quads[i]), obj=quads[i])
Then, a query containing an original road point is formed.
making a query to the R-tree
point=xy[1359] # select an original road point
print(“We make a query with a road point “+ str(point))
print(“”)

the query, where we get both the long int index and the
quadrilateral(s)
respond=[[n.id,n.object] for n in
idx.intersection((point[0],point[1],point[0],point[1]),

objects=True)]

The respond of R-tree includes one quadrilateral and the query point is checked for
being inside it.

print(“The respond from R-tree: “)
print(“”)
print(“long integer index from the respond: “+ str(respond[0][0]))

printing the quadrilateral related to long integer index
print(“The quadrilateral related to long integer index = “+
str(respond[0][1]))

testing if the point is inside the quadrilateral
print(“Result of testing, if the query point is inside the

quadrilateral: “ +
str(isInsidePolygon(point[0],point[1],respond[0][1])))

The identifications for the country, the road, and the mesh quadrilateral are parsed
from the respond index number. Function fromIndex uses the parsing method described
in section 4.3.1.

print(“The country, road, and order number of quadrilateral
from the respond:”
+ str(fromIndex(respond[0][0]))
The program run:

Algorithms for compression and real-time internet services of intelligent road data 31

We have an example of a road which have a mesh. We create
an R-tree, and insert the mesh in it
We have indexes: country=3, road=15, and we generate the

long integer indexes for each quadrilateral of the mesh
The number of quadrilaterals is 64

Inserting the quadrilaterals into the R-tree...

Making a query with a road point [7307328.103078449,
387951.0093313182]

The respond from R-tree:
long integer index from the respond = 30150000029
The quadrilateral related to long integer index =

[[7307474.769375576, 388032.68673849193], [7307501.23424275,
387936.28092190035], [7306342.843770854, 387648.10530477605],
[7306307.472878471, 387740.87329855404]]
Result of testing, if the query point is inside the

quadrilateral: True
The country, road, and mesh order number from the respond:

[3, 15, 29]

32 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

This article concentrated on the algorithms behind the mobile RWS data collection.
It covered both the currently implemented algorithm and future thoughts on how the
algorithm can be further improved in order to develop the system toward a real-time
tracking application.

The currently implemented algorithm could be further improved by using triplets
containing information on position (x- and y-coordinates) as well as the color instead
of storing these data separately.

The R-tree is a balanced search tree like B+-tree, i.e., it reorganises the grouping of
MBRs to be such that all leaf nodes are at the same height. Each internal node can
contain a maximum number M of entries, whereas the minimum number of entries
is some number m such that m . (Manopoulos 2006.)

In spite of the balanced tree property, there are plenty of issues in improving the
effectiveness of R-tree. The many variants of R-tree implementations like R*-tree or
R+-tree have been developed in order to improve the effectiveness in different situations.
In a query, the tree is traversed starting from the root node to find which MBRs
intersect. The traversing continues to the subtrees of a MBR, only if it intersects the
bounding rectangle of the query region. In a standard R-tree, the grouped MBRs at
the same level usually overlap. Therefore, there is no guarantee on good worst-case
traversing. The R+-tree, a variant of the standard R-tree, tries to avoid overlapping of
internal nodes by inserting an object into multiple leaves when necessary. This causes
a slightly higher construction cost for R+-tree in inserting new data and maintaining
the tree than in standard R-trees. On the other hand, the traversing for a query will
usually perform better. In WiRMa project, using the R+-tree is justified, as R-tree is
primarily subjected to queries.

In addition, many techniques for inserting elements into the R-tree. Different
ordering of the inserted elements can result in an ineffective structure of the standard
R-tree. To overcome this shortcoming many packing or bulk loading methods have
been developed. These methods require advance knowledge of the data to be inserted
in the R-tree. R-trees formed through packing or bulk loading methods are called
static versions of R-trees. (Manopoulos 2006.) The static R-tree methods can also be

4 Discussion

Algorithms for compression and real-time internet services of intelligent road data 33

utilised in the system for WiRMa project as the data consists of the static mesh
structure.

The algorithms described in this article will be further tested and improved during
the WiRMa project during year 2019. New follow-up projects taking the results from
WiRMa further are being designed. The follow-up projects are planned to concentrate
on larger datasets and will hold a larger role for the optimization of data analysis and
visualisation.

Autioniemi, M. 2018. Photograph.
Bourke, P. 1987. Determining if a point lies on the interior of a polygon. Polygons and

meshes. Accessed 28.5.2018. http://paulbourke.net/geometry/polygonmesh/
Finnish Geodetic Institute. n.d. Koordinaattimuunnokset. Accessed 28.5.2018. http://

coordtrans.fgi.fi/transform.jsp
Guttman, T. 1984. R-trees: A Dynamic Index Structure for Spatial Searching.

Proceedings ACM SIGMOD Conference on Management of Data. Boston. MA. 47-57
Loukko.net. 2013. ETRS89-TM35FIN –karttaprojektiokonversiot. Loukko.net 29.4.2013.

Accessed 28.5.2018. http://www.loukko.net/koord_proj/
Manopoulos, Y. et al. 2006. R-trees: Theory and Applications. ISBN 978-1-85233-977-7.

Bibliography

34 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

Appendix A

Data table

x y color
500 400,00 1
510 386,721 1
520 375,370 1
530 365,891 1
540 358,229 1
550 352,330 1
560 348,138 1
570 345,600 1
580 344,659 1
590 345,261 1
600 347,352 1
610 350,877 1
620 355,779 1
630 362,006 1
640 369,501 1
650 378,210 1
660 388,079 1
670 399,051 1
680 411,073 1
690 424,089 1
700 438,045 1
710 452,886 1
720 468,557 1
730 485,003 1

Algorithms for compression and real-time internet services of intelligent road data 35

740 502,169 1
750 520,000 1
760 538,442 1
770 557,439 1
780 576,937 1
790 596,881 1
800 617,216 1
810 637,887 1
820 658,839 1
830 680,018 1
840 701,368 1
850 722,835 1
860 744,364 1
870 765,900 1
880 787,388 1
890 808,773 1
900 830,000 1
910 843,352 1
920 855,895 1
930 867,650 1
940 878,635 1
950 888,869 1
960 898,370 1
970 907,157 1
980 915,250 1
990 922,667 1

1000 929,427 1
1010 935,548 1
1020 941,050 2
1030 945,951 2
1040 950,270 2
1050 954,026 2
1060 957,238 2
1070 959,925 2
1080 962,105 2

36 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

1090 963,797 2
1100 965,021 2
1110 965,794 2
1120 966,136 2
1130 966,065 2
1140 965,601 2
1150 964,762 2
1160 963,567 2
1170 962,035 2
1180 960,185 2
1190 958,035 2
1200 955,604 2
1210 952,912 2
1220 949,976 2
1230 946,816 2
1240 943,451 2
1250 939,899 2
1260 936,180 2
1270 932,311 2
1280 928,312 2
1290 924,202 2
1300 920,000 2
1310 916,463 2
1320 912,899 2
1330 909,306 2
1340 905,681 2
1350 902,020 2
1360 898,322 2
1370 894,583 2
1380 890,801 2
1390 886,973 2
1400 883,096 2
1410 879,168 2
1420 875,186 2
1430 871,146 2

Algorithms for compression and real-time internet services of intelligent road data 37

1440 867,047 2
1450 862,886 1
1460 858,659 1
1470 854,365 1
1480 850,000 1
1490 845,562 1
1500 841,047 1
1510 836,454 1
1520 831,779 1
1530 827,019 1
1540 822,173 1
1550 817,237 1
1560 812,208 1
1570 807,084 1
1580 801,862 1
1590 796,539 1
1600 791,113 1
1610 785,580 1
1620 779,939 1
1630 774,185 1
1640 768,318 1
1650 762,333 1
1660 756,228 1
1670 750,000 1
1680 742,551 1
1690 735,028 1
1700 727,453 1
1710 719,846 1
1720 712,228 1
1730 704,620 1
1740 697,042 1
1750 689,515 1
1760 682,060 1
1770 674,697 1
1780 667,448 1

38 Hanna Kumpula, Kari Peisa & Jouko Teeriaho

1790 660,333 1
1800 653,373 1
1810 646,588 1
1820 640,000 1
1830 634,086 1
1840 628,392 1
1850 622,926 1
1860 617,695 1
1870 612,707 1
1880 607,970 1
1890 603,491 1
1900 599,278 1
1910 595,338 1
1920 591,678 1
1930 588,307 1
1940 585,232 1
1950 582,461 1
1960 580,000 1
1970 579,112 1
1980 578,611 1
1990 578,483 1
2000 578,717 1
2010 579,300 1
2020 580,219 1
2030 581,462 1
2040 583,016 1
2050 584,869 1
2060 587,009 1
2070 589,423 2
2080 592,098 2
2090 595,022 2
2100 598,182 2
2110 601,567 2
2120 605,163 2
2130 608,957 2

Algorithms for compression and real-time internet services of intelligent road data 39

2140 612,938 2
2150 617,094 2
2160 621,410 2
2170 625,876 2
2180 630,478 2
2190 635,204 2
2200 640,041 2
2210 644,977 2
2220 650,000 2
2230 655,097 2
2240 660,255 2
2250 665,462 2
2260 670,706 2
2270 675,973 2
2280 681,253 2
2290 686,531 2
2300 691,795 2
2310 697,034 2
2320 702,234 2
2330 707,383 2
2340 712,469 2
2350 717,478 2
2360 722,399 2
2370 727,219 2
2380 731,926 2
2390 736,506 2
2400 740,948 2
2410 745,240 2
2420 749,367 2
2430 753,319 2
2440 757,082 2
2450 760,644 2
2460 763,993 2
2470 767,116 2
2480 770,000 2

The road weather station (RWS) network in the Northern parts of Finland
is too sparse for the purposes of delivering detailed information of the road
weather. Therefore, the Interreg Nord funded Winter Road Maintenance (WiR-
Ma) project researches the possibility of using large goods vehicles (LGV) as
mobile RWSs by equipping them with sensors measuring a number of variab-
les directly on the road.

The collected sensor data is stored in a cloud storage and delivered to road
maintenance personnel through a web based user interface (UI) as well as
varied research purposes for road weather predictions through application
programming interface (API). This article describes the technical points in
compressing the collected measurement data. Both the currently imple-
mented algorithm and thoughts on future development are shared.

WiRMa project is implemented in years 2016-2019. The lead partner is
Lapland University of Applied Sciences Ltd. The co-beneficiaries are Luleå
University of Technology, Arctic University of Norway, Foreca Ltd., Finnish
Meteorological Institute, and Casselgren Innovation AB.

www.lapinamk.fi

ISBN 978-952-316-258-7

	Introduction
	1 Vector mathematics
	2 Implemented compression algorithm
	2.1 DESCRIPTION OF THE COMPRESSION ALGORITHM
	2.1.1 Written description of the algorithm
	2.1.2 Visual description of the algorithm

	2.2 IMPLEMENTATION OF THE ALGORITHM
	2.2.1 Mathematica implementation
	2.2.2 Python implementation

	3 Towards real-time tracking of spatial road data
	3.1 CONSTRUCTING THE MESH
	3.1.1 Algorithm for the mesh construction

	3.2 TESTING IF THE POINT IS INSIDE A POLYGON
	3.2.1 Algorithm for determining if the point is inside the polygon

	3.3 SYSTEM
	3.3.1 The usage of R-tree in tracking location from the mesh
	3.3.2 The details of updating sensor value information
	3.3.3 An example of accessing the mesh in an R-tree installed in Python

	4 Discussion
	Bibliography
	Appendix A

