

Teemu Takasuo

Software-Defined Networking

Bachelor’s Thesis
Information technology

December 2018

Tekijä/Tekijät

Teemu Takasuo

Tutkinto

Insinööri (AMK)

Aika

Joulukuu 2018

Opinnäytetyön nimi

Ohjelmistopohjaiset verkot

45 sivua

Toimeksiantaja

Kymijoen ICT

Ohjaaja

Vesa Kankare

Tiivistelmä

Ohjelmistopohjainen verkottaminen on moderni lähestymistapa tietoverkkoihin tarjoten
joustavan ja kustannustehokkaan tavan konfiguroida verkkoja ohjelmiston ja virtuali-
soinnin avulla. SDN-teknologia yleistyy kuukausittain ja on keskeisessä roolissa kos-
kien tulevaisuuden verkkoja. Tämän opinnäytetyön tavoitteena oli selventää sitä, miten
SDN-teknologia toimii ja mitä hyötyjä kyseisessä tekniikassa on verrattuna perinteisiin
verkkoarkkitehtuureihin, kuin myös luoda esimerkki ohjelmistopohjaisesta verkkoratkai-
susta VMware NSX:n avulla.

Tämä opinnäytetyö tehtiin kehittämistutkimuksena. Työn alkuvaiheet koostuivat SDN-
aihealueen opiskelusta ja muistiinpanojen tekemisestä käytännön asennuksia varten,
koska aiheesta ei ollut aiempaa tietoa ennen työn aloittamista.

Asennukset suoritettiin käyttäen fyysisiä ja virtuaalisia komponentteja. Fyysisille ESXi-
isännille perustettiin vCenter-ympäristö, jonka jälkeen nämä ESXi-isännät liitettiin toi-
siinsa Ciscon 2960-kytkimen kautta. Myöhemmissä asennusvaiheissa fyysistä tasoa
käytettiin harvoin, koska NSX-verkko oli kokonaan virtualisoitu ja reititys virtuaalikonei-
den välillä toimi virtuaalisesti ilman, että fyysiset verkkolaitteet osallistuivat prosessiin.

SDN-ympäristö luotiin onnistuneesti erottaen fyysisen ja virtuaalisen tason toisistaan ja
mahdollistaen kokonaan virtuaalisen reitityksen. Työlle asetetut tavoitteet saavutettiin
onnistuneesti ja Kymijoen ICT sai hyödyllistä informaatiota SDN-teknologian hyödyistä
ja käyttötarkoituksista. Tämä mahdollistaa paremman päätöksenteon mahdollisessa
migraatiossa SDN-arkkitehtuuriin tulevaisuudessa.

Asiasanat

NSX, SDN, virtualisointi, ACI, ohjelmistot, tietoverkot

Author (authors) Degree Time

Teemu Takasuo

Bachelor of Engineer-
ing

December 2018

Thesis Title

Software-defined networking

45 pages

Commissioned by

Kymijoen ICT

Supervisor

Vesa Kankare

Abstract

Software-defined networking is a modern approach to networking, providing a flexible
and cost-effective way of configuring networks with the help of software and virtualiza-
tion. SDN technology is becoming more popular with each passing month and is in a
defining role in the future of networking. The objective of this thesis was to clarify the
way SDN technology works and what benefits can be gained from it compared to tradi-
tional networking architectures, and to create an example of software-defined network
using VMware NSX.

This thesis was composed as a design-based study, and because there was zero-
knowledge of the subject before the study was started, the initial phase consisted of
studying the subject of SDN and making notes for installations.

The installations were done using both physical and virtual components. vCenter envi-
ronment had to be established on physical ESXi hosts which were connected to each
other through a Cisco 2960 switch. In the later phases of the installation, the physical
layer was used minimally as the NSX network was fully virtualized and the routing be-
tween virtual machines occurred virtually without participation from physical network
devices.

SDN environment was successfully created with separation between physical and vir-
tual layers, enabling all-virtual routing. The objectives set for this thesis were success-
fully achieved. Kymijoen ICT gained useful information from the benefits and use cases
of SDN technology, allowing them to make better decisions on the possible migration to
SDN architecture in the future.

Keywords

NSX, SDN, virtualization, ACI, software, networks

CONTENTS

1 INTRODUCTION .. 6

2 SOFTWARE-DEFINED NETWORKS ... 7

2.1 What is Software-Defined Networking (SDN) ... 7

2.2 Architecture .. 7

2.2.1 Infrastructure Layer .. 8

2.2.2 Control Layer .. 8

2.2.3 Application Layer .. 8

2.3 Controllers .. 9

2.3.1 Northbound API .. 9

2.3.2 Southbound API ... 10

3 SDN SOLUTIONS .. 10

3.1 VMware NSX .. 10

3.1.1 NSX Manager ... 12

3.1.2 NSX Controllers ... 12

3.1.3 Logical switching and VXLAN .. 13

3.1.4 Logical distributed routing and edge gateway .. 15

3.2 CISCO ACI ... 16

3.2.1 ACI Leaf-Spine fabric ... 16

3.2.2 APIC ... 17

4 SDN USE CASES ... 18

4.1 Use cases for VMware NSX ... 19

4.1.1 Security .. 19

4.1.2 Data restoration .. 19

4.1.3 Pooling with NSX ... 20

4.2 Use case for Cisco ACI ... 21

4.3 Conclusion .. 21

5 CREATING A VCENTER ENVIRONMENT WITH NSX NETWORKING 23

5.1 Preparing for the installations ... 23

5.2 ESXi .. 23

5.3 vCenter Server.. 25

5.4 Starting over ... 28

5.5 vDS and migrating the network ... 30

5.6 The final installations .. 33

5.7 NSX .. 34

5.7.1 NSX Controllers ... 35

5.7.2 Host preparation ... 36

5.7.3 VXLAN ... 37

5.7.4 Segment ID and Transport Zones .. 37

5.7.5 Creating a logical switch .. 38

5.7.6 Creating a distributed logical router .. 39

6 CONCLUSION AND FURTHER DEVELOPMENT ... 42

TABLE OF FIGURES... 44

REFERENCES .. 45

6

1 INTRODUCTION

Software-defined networking market grows worldwide each passing year. In

2013, SDN market volume worldwide was 0.41 billion U.S dollars. Now, in

2018, it has grown to 7.9 billion dollars and is excepted to grow up to 14 billion

dollars in 2021. The increasing evolution and demand in network mobility

drives businesses to switch to software-defined networks, and the need for

this keeps growing each passing month. (Statista, 2018.)

This thesis study was commissioned by Kymijoen ICT, which provides diverse

ICT-services for different businesses and municipalities in Finland. Kymijoen

ICT has experience with multiple levels of networking and virtualization, and

SDN is a potential networking model, which could be utilized in the future.

VMware, a global leader in cloud infrastructure and digital workspace technol-

ogy, was also associated with the thesis, especially during the empirical part.

The company provided the needed installation medias and licenses, enabling

the creation and deployment of SDN environment with VMware NSX and al-

ways providing support when needed.

This thesis was composed as a design-based study. Kymijoen ICT required

more information about SDN technology because of the potential advantages

it could give for their company, thus creating the need for this study. The ob-

jective of the study is to create a better understanding of software-defined

networking and its benefits, disadvantages and use cases. Lab environment,

which demonstrates the use of SDN, is also created to see how the technolo-

gy works in practice. (Hautamäki, 2015.)

7

2 SOFTWARE-DEFINED NETWORKS

2.1 What is Software-Defined Networking (SDN)

Traditional networks struggle to keep up with the networking requirements that

are currently needed in the networking industry. Networks must get faster and

more flexible every year, which in turn makes them more complicated and

harder to manage. There is often need for on the fly configuration changes

and data traffic management is becoming a problem due to increasing

amounts of mobile data traffic. (Arora, 2017.)

Provisioning networks for new applications and users may take considerable

amount of time and this creates increasing amounts of operating costs which

businesses must handle. Cost optimizations like CAPEX and OPEX are barely

present in modern networking at all and the time to market (TTM) is too long

for today’s needs. (Arora, 2017.)

Software-defined networking (SDN) is a technology, that aims to address

many of the limitations that older network designs bring by virtualization, re-

source optimization, automation and simplification, which in turn reduce the

costs of managing the network. SDN networks are highly flexible and can

quickly adapt to the needs of different businesses on a case-by-case basis.

(Pujolle 2015, 15.)

This is achieved by decoupling the physical and virtual layers from each other,

enabling virtual devices to be loaded on hardware machines and making the

network independent of the hardware. This way the system treats both physi-

cal and virtual devices the same way, making it possible to change the net-

work without modifying the host machines at all. However, some manufactur-

ers still require their own hardware for their SDN solutions to work. (Pujolle

2015, 16.)

2.2 Architecture

In a classic network architecture control plane and data planes are integrated

and rely on each other to work. Data plane handles the traffic in the network

8

and the control plane defines the topology and how the traffic is handled. Eve-

ry network device also has both planes on them at the same time, and be-

cause many protocols go through this one integrated layer, any changes

made to the system depend on the network devices, protocols, and the soft-

ware that is supported, which limits the changes that can be made. (Raza,

2018.)

In Software-defined networks, the architecture consists of three main layers, in

which data plane and control planes are separated from each other. The lay-

ers are following:

2.2.1 Infrastructure Layer

This is where the data plane is, where data transportation happens and where

the protocols and algorithms enable IP packets to find their destination in net-

works. (Pujolle 2015, 19.)

2.2.2 Control Layer

The second layer is the control layer, which contains the controllers and the

control plane. The controllers provide the data plane with instructions on how

to forward the data as effectively as possible. In SDN, controllers act as the

“brains” of the network and are responsible of optimizing the performance of

the network, deploying firewalls and overall managing the whole network and

acting as a centralized control point. (Pujolle 2015, 19.)

2.2.3 Application Layer

The last layer is the application layer, which is responsible for the applications

and their requirements for computing, storage, networking, security and man-

agement. It sends information to the controller about how the system must be

customized for the applications to work properly. New services and applica-

tions can be easily implemented on networks, because of the communication

between application layer and the controllers. See (Figure 1.) for reference

and comparison of traditional and SDN architectures. (Pujolle 2015, 19.)

9

Figure 1. Comparison between traditional and SDN architecture (André, 2014)

2.3 Controllers

SDN controllers can perform numerous tasks and act as a centralized control

point for the whole network. Because of their positioning in between of net-

work devices and applications, they can manage flow control and enable intel-

ligent networking. Controllers communicate through two different Application

Programmable Interfaces, Northbound API and Southbound API. (Rouse,

2012.)

2.3.1 Northbound API

Controllers communicate with the services and applications through the

Northbound APIs, so that they can analyze the applications needs such as

security, quality of service and management. With the information gathered by

analyzing, controllers try to build a network based on those needs. The proto-

10

col, which makes this communication possible, is called REST (Representa-

tive State Transfer). Currently there are not many different protocols for

Northbound APIs to use, but many organizations are in the progress of de-

signing different alternatives for REST. (Pujolle 2015, 31.)

2.3.2 Southbound API

In SDN architecture, Southbound APIs are used to communicate between the

controller and network devices, such as virtual or physical switches and rout-

ers. This makes it possible for the controller to dynamically make changes on

the network, based on the information received from the Northbound APIs.

The most common protocol used in Southbound interfaces is OpenFlow, but

many alternatives exist on the market. With OpenFlow, the flow-table of

switches and routers can be changed based on the needs, thus making the

network much more agile and responsive. (SDxCentral, s.a. a.)

3 SDN SOLUTIONS

Currently there are many different SDN solutions on the market from different

vendors which could be talked about here. However, this thesis focuses on

VMware NSX as the practical work was done based on it. However, because

NSX is a fully software-based overlay network, which is built over a physical

network, it is also good to talk about an underlay SDN solution, such as Cisco

ACI (Application Centric Infrastructure), which is based on hardware. In some

cases, both are used as an integrated SDN solution, NSX as the overlay net-

work and ACI as the underlay network.

3.1 VMware NSX

VMware NSX is a platform for network security and virtualization from

VMware. It allows virtual networks to be implemented on physical network and

server infrastructure and to dynamically change, control and manage networks

and their security through software. VMware NSX is also independent of the

underlying hardware, as the virtual networks that it creates are programmati-

cally managed and provisioned. This allows for very cost effective and adapt-

11

able network environments to be built without having to worry about any spe-

cific hardware. (Deuren, 2017.)

Even complex networks with multiple tiers can be created quickly with ease,

because the entire network model is reproduced in software. Provisioning the

network can take less than a minute to perform, which can take days without

SDN solution like NSX. This is made possible, because NSX exposes REST-

ful API, which allows automated delivery of network services by cloud man-

agement platforms. This way there is no need of manual reconfiguration of

hardware devices, as the network services are delivered to applications by the

virtual network. (Deuren, 2017.)

The key functions VMware NSX can provide are its logical networking ele-

ments. These elements include:

- Logical load balancing: NSX provides support for layer 4 and 7 load

distribution with SSL termination;

- Logical firewall: NSX uses a distributed, virtualization-oriented firewall

which can monitor activity and provide identification at host kernel level;

- Logical switching: NSX can provide complete layer 2 or 3 switching

virtually, decoupled from the underlying hardware;

- Logical routing: Dynamic routing between the logical switches and

different virtual networks.

- NSX gateway: layer 2 gateways with transparent connection to the

legacy VLANs and physical loads;

- Logical VPN: Software based site-to-site and Remote Access VPN

(Virtual Private Network);

12

- NSX API: Any cloud management platform can be integrated with the

RESTful API NSX uses.

These capabilities can be used to create diverse networks suited for the spe-

cific needs of different businesses. Next, NSX architecture and components

will be described in detail. (Deuren, 2017.)

3.1.1 NSX Manager

Starting from the management plane, referring to Figure 2, NSX manager al-

lows the management of NSX environment through VMware vCenter. This is

made possible by NSX APIs like REST, which vCenter uses to communicate

with NSX and delegate tasks to correct parts of the environment. (Juniper

Networks, 2014.)

3.1.2 NSX Controllers

NSX controllers are deployed in the control plane in a cluster of three control-

lers. They can be considered as the virtualized control plane of the SDN net-

work. All the provisioning and the learning of MAC address table, ARP table

and VTEP table is handled through the controllers, as is the controlling of vir-

Figure 2. NSX architecture (Pujolle, 2015, 38)

13

Figure 3. The process of VXLAN encapsulation. (Rajeev, 2017)

tual firewalls and load balancing. VM and host information is collated together

in the tables that each controller learns and then replicated through the NSX

domain. This allows multi-cast free VXLAN to work on the underlay network,

which reduces administrative overheard and alleviates a lot of complexity.

(Juniper Networks, 2014.)

3.1.3 Logical switching and VXLAN

All the virtual routing and switching devices reside in the data plane, such as

logical switches. Logical switches are software kernel based and they work as

extensions to virtual Distributed Switches (vDS). Each switch is also part of a

Transport Zone. Transport zones control which virtual machines and host

clusters can use a particular network, and which hosts a logical switch can be

part of. Unlike traditional virtual switches, logical switches offer a key feature

of network virtualization; VXLAN (Virtual Extensible LAN). (Rajeev, 2017.)

VXLAN is a protocol used in overlay networks. It provides encapsulation of

layer 2 ethernet frames in UDP (User Datagram Protocol) packets. VXLAN

allows two devices in a virtualized network to communicate with each other by

setting up an VXLAN tunnel between the devices. The encapsulation and de-

encapsulation happens in the VXLAN Tunnel EndPoints (VTEPs), which in

NSX are the Distributed Logical Routers (DLR) installed in the ESXi hypervi-

sors. See Figure 3 for visual representation of the encapsulation process.

(Rajeev, 2017.)

14

As with VLAN ID, that is used to identify different VLANs, VXLAN is provided

with VXLAN Network Identifier (VNI). However, maximum number of tradition-

al VLANs with the 802.1q encapsulation is 4096. Because VXLAN uses 24-bit

VNIs, it is possible to deploy 16 million different VXLANs, making it much

more scalable. (Gerard, 2017.)

The layer 2 ethernet frame segment is also identified by the VNI, making the

communication between virtual machines or hosts that share the same VNI

possible. However, MTU (Maximum Transmission Unit) of 1600 is required for

the VXLAN encapsulation to work, as the process of encapsulating the layer 2

ethernet frames in UDP adds overhead. (Gerard, 2017.)

VXLAN uses different control plane modes (multicast, hybrid or unicast) for

learning the destinations to forward traffic to, which depends on what is re-

quired on the network and what SDN solution is being used. With multicast,

the process is basic “flood and learn”, which floods frames with multicast des-

tination IP addresses that each VXLAN VNI is associated with and the physi-

cal network handles the replication and forwarding and does not require NSX

controllers to work. (Kalitsev, 2015.)

In hybrid mode, NSX controllers maintain a table of VTEPs that have joined

each VXLAN. Hosts directly communicate with controllers to check matching

entries in their VTEP tables, and the physical network performs the forwarding

process. (Kalitsev, 2015.)

Unicast mode does not require physical network replication and only relies on

the controllers. Unicast does not use multicast IP addresses at all, instead

both source and destination host compile a list of VTEPs with the same VNI

as themselves. All replication is done on the hosts, resulting in unicast com-

munications between the VTEPs. With the utilization of controllers, ARP sus-

pension is also available. (Kalitsev, 2015.)

15

3.1.4 Logical distributed routing and edge gateway

Going back to Figure 2, there are still some important elements of NSX to dis-

cuss about, such as the DLR (Distributed Logical Router) and ESG (Edge

Services Gateway).

DLR in NSX is a virtual appliance that contains the routing control plane. The

data plane is distributed to each ESXi hypervisor in kernel modules, which

encapsulate the traffic inside a VXLAN header, as talked about earlier. Each

DLR can create logical switches with VNI, that act the same way as physical

network VLANs. Multi-tier networks for different applications can be created

with ease using logical switches and routers. (Juniper Networks, 2014.)

Distributed Logical Routers provide the virtual networks with many important

functions, such as routing and bridging, enforcement and security policies,

mac address learning and flooding and acting as a default gateway for all the

VMs. They also provide many different routing functions, such as OSPF or

BGP and they peer with ESG for egress traffic progressing, outside of the vir-

tual networks. These qualities are why DLR is used for routing the east-west

traffic, which means all the traffic that happens inside the network between the

virtual machines and devices. (Juniper Networks, 2014.)

For all the traffic moving from the internal virtual network to the outside net-

work such as physical devices and the internet (also called north-south traffic),

Edge Services Gateway is used. ESG provides many gateway services, such

as dynamic routing, load balancing, firewall, VPN, NAT (Network Address

Translation) and DHCP (Dynamic Host Configuration Protocol). (VMware,

s.a.)

In the top layer are different cloud management platforms, which are not the

focus on this thesis study. Moving on to the bottom, all the physical networking

and server equipment reside there, such as the ESXi hypervisors. The physi-

cal, underlay network is also where the Cisco ACI SDN solution is running on.

16

3.2 CISCO ACI

Cisco ACI is an underlay SDN solution for data center and cloud networks,

which integrates hardware and software and is driven by policies. The ACI is

based on the Cisco Nexus 9000 switch family and is required for the solution

to work. However, it can be integrated to older Nexus 7000 fabric of switches

for some savings when building the ACI fabric. The points where the software

integration happens in ACI include components such as Data Center Policy

Engine, additional Data Center Pod and virtual and physical leaf switches. The

Application Virtual Switch (AVS) from Cisco is used to push policies to the vir-

tual switches. (SDxCentral, s.a.)

3.2.1 ACI Leaf-Spine fabric

Cisco ACI uses a Leaf-Spine fabric, that offers a linear scale in performance

and cost. If more device connectivity or servers are needed, a new Leaf switch

can be added up to the capacity of the Spine. If more redundancy or band-

width is needed, more Spines can be added. (Wang, 2016)

The Leaf-Spine ACI fabric uses native layer 3 IP provisioning, supporting

ECMP (Equal-cost-multi-path) routing between the endpoints in the network

as well as using VXLAN and other overlay protocols for network location inde-

pendent workloads. Physical or virtual machines can reside in the same logi-

cal layer 2 domain network with routing on layer 3 ran down to the top of each

rack. (SDxCentral, s.a. b.)

17

3.2.2 APIC

As with VMware NSX and the NSX controllers, Cisco Application Policy Infra-

structure Controller (APIC) is in a central role of managing the network, as it is

the single point of policy management in an ACI fabric. The APIC differs from

the most of SDN controllers and designs in a way, that there is no de-coupling

of the control and data planes from each other. It is only used for configuring

the policies, which are then delivered and instantiated on every node in the

network. This allows higher orders of logic to be better integrated with the

consumers of the network, such as the system and application teams. (SDx-

Central, s.a. b.)

For an example, when deploying a 3-tier application in traditional networks,

administrators must at least know the IP ranges, VLANs, firewall and load bal-

ancing policies. These are network-centric terms that the consumers of the

network may not know. (SDxCentral, s.a. b.)

Cisco ACI tries to resolve the communication gap between the consumers and

the network adiminstrators by creating EPGs (Endpoint Groups), that focus on

a specific area like web, applications, or database. Through APIC, contracts

about the desired functions like quality of service, firewalls or load balancing

Figure 4. Cisco ACI fabric (Wang, 2016)

18

are created between the EPGs. When more hosts or virtual machines are re-

quired by businesses, all that is needed is to place the machine in the correct

EPG, which dynamically changes all the required configurations according to

the policies from the APIC. (SDxCentral, s.a. b.)

APIC also provides Layer 2 – 7 analytic visibility on per host, tenant or appli-

cation level, providing tools to check information such as condition of the net-

work, hardware utilization and latency. For more traditional testing pinging is

also possible, as is checking bandwidth, packet loss and jitter, making man-

agement of the ACI fabric quick and efficient. See Figure 5 for reference of

APIC in use. (Wang, 2016.)

4 SDN USE CASES

Software-defined networking is a large concept. There are many different so-

lutions and techniques being used and applied, and there is a clear benefit of

transferring to SDN from traditional networks, at least on theory. One might

wonder, however, what are the real use cases for different SDN solutions.

This chapter aims to clarify, why different businesses have decided to change

to SDN and why would it be beneficial to do so by giving examples and quotes

from the actual businesses, that have done the change.

Figure 5. Cisco APIC GUI (Wang, 2016)

19

4.1 Use cases for VMware NSX

Starting from VMware NSX, many businesses first choose NSX because of

the increased security that it provides with features such as microsegmenta-

tion. Hardware-based firewalls are not required with microsegmentation, as

applications can receive security policies on the workload level, providing in-

tegrated network security to the virtualized workloads. However, some busi-

nesses find out about the other use cases of NSX than just security, such as

automation, multi-data center pooling and disaster recovery, and expand to

them. (Hardcastle, 2017.)

4.1.1 Security

Alliant Credit Union deployed NSX in June 2016 for its security features but

found other benefits as well, as Julio Arevalo from Alliant Credit Union (Hard-

castle, 2017) said: “I can’t say we didn’t expect it, but a number of issues were

resolved with the migration. The most noteworthy was the data warehouse

load.” The completion of the process would take up to four hours and occa-

sionally cause timeouts. Timeouts haven’t happened with NSX and the pro-

cess takes less time. (Hardcastle, 2017.)

Alliant Credit Union also had same positive effects affecting their SQL, which

used to timeout too when transferring files from SQL to file server on off-site

partners. The company also uses NSX load balancing and Guest Introspec-

tion properties, which removes the need of anti-virus agents within the guest

OS (Operating System). (Hardcastle, 2017.)

4.1.2 Data restoration

As talked about in chapter 3.1, NSX networks are created in software, which

can be saved, deleted and restored on demand without the need of address-

ing the physical network. For disaster recovery purpose, this means networks

can be replicated automatically between protected and recovery sites and can

be as simple as copying, pasting, keeping and syncing. (Hardcastle, 2017.)

20

A service provider company called Expedient use NSX to allow their IT infra-

structure components to be replicated by the customers, reducing the recov-

ery times considerably. Something that took hours to do before, could be done

in minutes with NSX. (Hardcastle, 2017.)

John White from Expedient also tells: “We use NSX to basically span the cus-

tomer’s network from their premises into one of our data centers to make that

seamless to them. It allows them to move virtual machines from one place to

the other without any reconfiguration, without any issue.” (Hardcastle, 2017.)

4.1.3 Pooling with NSX

John White also has use cases for NSX Pooling. In one situation an applica-

tion of a customer had to be migrated to the cloud by Expedient. The way this

was resolved, was by moving the application to a new private cloud created

for this specific case in the customers datacenter. After that, they were able to

replicate it in one of their datacenters and used NSX to create one big network

for the customer between their site and Expedients data center. (Hardcastle,

2017.)

For the last use case, Expedient has a customer, who has data in two Expedi-

ent data centers. With NSX, the two datacenters are connected as one and

visually made to seem as it would be located between the two sites to allow

customers to transfer applications between them. The process is called multi-

data center pooling, which gives flexibility and mobility and allows resources to

be used on single operations on different sites, expanding applications to

where the capacity is. This technology is used by companies to better allocate

their resources. (Hardcastle, 2017.)

As can be seen, while this is only a small part of what VMware NSX can pro-

vide, there are many use cases where NSX has helped a company to over-

come some of their problems and make their networking overall more fluid

and reliable.

21

4.2 Use case for Cisco ACI

Moving on to the Cisco ACI there are some differences, on what businesses

look for in underlay and overlay SDN solutions. Referencing to a Cisco inter-

view with E-Trades Sr. Manager Network Engineer Jaz Rahul on (SDxCentral,

2015), there are some clear benefits and use cases with Cisco ACI.

E-Trade already had Nexus 9000- fabric running on their market data envi-

ronment for high port density and bandwidth. However, they faced some prob-

lems that needed to be solved somehow, such as automation flow. Too much

time was used on turning up ports and configuring the network to support the

server. (SDxCentral, 2015.)

Using ACI, they were able to programmatically automate the process of put-

ting the server on the network and the right work groups with the API calls,

reducing the operational expenses considerably. Acquiring a server and be-

coming it running could take up to fifteen hours, and with ACI the process

could be done in two hours. (SDxCentral, 2015.)

The process of becoming a server running required multiple teams working on

it on a sequence of tasks such as OS installation, storage, network and appli-

cation provisioning, security, and others. This process could take a long time,

and because so many different persons were working on the same process, it

was also prone to human errors. (SDxCentral, 2015.)

With ACI, every team can start off with the involvement and can talk about the

required policies that must be distributed. When that policy is defined and

working, it can be used and tweaked for the next workflow that is added to the

network, without the need of going through the long sequence of tasks that

was needed before, making the change for human error almost negligible.

(SDxCentral, 2015.)

4.3 Conclusion

Overall, there are tens of different SDN solutions commercially available on

the market right now. On this thesis, only the market leaders VMware NSX

22

and Cisco ACI are talked about, and there are many more with different prop-

erties and uses for the interested.

However, by comparing the two, both provide businesses with different prop-

erties of software-defined networking suited for the needs of the buyer. In

some cases, both are used at the same time as an integrated solution, be-

cause of the different properties they offer, allowing the other to do work

where the other one lacks, mitigating the potential weaknesses of one system.

Talking about the weaknesses, there are not many known currently, as SDN is

still relatively new technology, and there has not been that much research

done on the subject yet. One disadvantage, that often is talked about is the

security. Even though SDN networks are advertised as secure solutions with

properties like micro-segmentation and distributed firewall, all the way to zero-

trust models, there is still one problem. With centralized control, comes cen-

tralized vulnerability.

There are concerns about how the potential hacker can access the controllers

of SDN network, and gain access to everywhere through it. This is a real pos-

sibility, and businesses should do everything to keep the controllers as safe as

possible from the hackers and other potential dangers.

The implementation cost is another disadvantage that comes with SDN, de-

pending on the solution. In all cases, implementing SDN solution to an existing

network requires some configuration changes in the network.

Underlying solutions such as Cisco ACI may cost more initially, as it requires

exact hardware to work and it must be implemented in the physical network.

VMware NSX, on the other hand, works with any underlay solution and is im-

plemented virtually, in the overlay network. NSX is also sold on per CPU li-

cense basis and does not need new hardware to function, and as such is po-

tentially cheaper to implement in smaller to mid-size businesses. Both offer

potential savings in CAPEX and especially OPEX in the long run, but the initial

cost and the risks of switching to completely different networking architecture

may be too much for some businesses.

23

The next chapter is the start of the practical part of this thesis study, which is

about demonstrating, how an SDN solution like VMware NSX is deployed to a

small lab environment. In a small environment like that, NSX can’t really be

utilized properly, but the key elements in the deployment stay the same.

5 CREATING A VCENTER ENVIRONMENT WITH NSX NETWORKING

5.1 Preparing for the installations

The first installations were done without much knowledge about the vCenter

environment. Trying to build the environment and learning while doing it

seemed to be the best way to get more familiar with the environment and the

software that is used with it. This approach, however, caused some errors in

the configurations and a lot of troubleshooting had to be done while the envi-

ronment was being built.

The errors and mistakes were fixed on later installations, when the environ-

ment was built with much more knowledge of the subject and better prepara-

tion before the installations. The whole process is described on this chapter,

starting with the early installations and in the end proceeding to the final and

working environment.

VMware NSX is a network virtualization platform software installed to vCenter

Server, so a working vCenter environment must be created first to be able to

install the NSX. It was decided to use physical server hardware on which to

install ESXi and deploy the vCenter. A Sunfire server was chosen as the de-

vice to do the installations on, which should have had at least 32Gb RAM and

a 4-core Intel Xeon processor. Later this turned to be false.

5.2 ESXi

ESXi hypervisor is the core of vCenter environment. Every virtual machine

that is created runs on it, including the vCenter itself. The first step was to

download an ESXI 6.5 ISO-file from VMware’s website, which will be convert-

ed into an installation media using a software called “Rufus” and an USB-

storage device

24

.

The process formats the USB-storage device and converts its file system to

FAT32. The ISO-file is also converted to a form, where devices can read the

files and boot from the USB-storage.

Installation was started by inserting the USB-storage device to the servers

USB-port and changing the BIOS settings to prioritize the storage device as

the main booting option and then booting the server from the USB-storage.

The installation itself is straightforward, passwords for the system and the lo-

cation of the installation are the main settings to be considered. After the in-

stallation is completed, ESXi will try to get an IP address with DHCP, but a

static IP is needed in this case, so the network settings were changed for the

following:

IP address 10.69.10.120 255.255.255.0

Default gateway 10.69.10.1

DNS 8.8.8.8, 8.8.4.4 (Googles DNS servers)

Figure 6. Rufus

25

Now the ESXi was properly configured and running. The network tests in ESXi

passed and it was now possible to connect to the devices through the VPN in

the ICTlab environment. The connection could be established by using Cisco

Anyconnect- software and connecting to vpn.ictlab.fi, opening a browser and

typing the ESXi hosts IP address. The browser will warn about the SSL certifi-

cates of the ESXis website, but the message can be ignored without hesita-

tion. For this kind of lab environment, these warnings are normal.

The credentials that were defined during the ESXi installation could be used to

log in to the system. At this point however, no changes were needed, and it

was possible to move on to vCenter Server installations.

5.3 vCenter Server

vCenter Server has a few different versions with different properties available

online. For this thesis study VCSA (vCenter Server Appliance) was chosen, so

that there is not a need for Windows-servers or specific hardware. VCSA can

be fully virtualized and ran on a ESXi host.

The installation was started by using an ISO-image of VCSA 6.5 downloaded

from VMwares website and mounting it on a computers virtual CD drive and

running it. It opens a clear installer that gives all the needed configuration op-

tions that for a working vCenter Server.

For the appliance installation type, Embedded Platform Services Controller

was chosen. This means that the Platform Service Controller and all the ser-

vices needed for the vCenter Server to run are installed on the same device

as the server itself and everything runs on one vCenter Server instance. This

works the best for small environments, in which simplicity and resource man-

agement are high priority, such as the environment in this thesis study.

The other option, External Platform Services Controller, would install all the

services and the Platform Service Controller in a different system that is sepa-

rated from the vCenter Server. This would work in a much larger scale net-

work environment, where there is a need for many different vCenter Server

26

instances which can be controller through one Platform Service Controller,

making larger scale management easier.

The vCenter Server will be installed on the ESXi host that was installed earlier

and the deployment size was set to tiny to limit the use of resources as much

as possible. At this point the DNS settings were not set up properly, so the

deployment target was defined with an IP address instead of FQDN (Fully

Qualified Domain Name).

SSO (Single Sign On) was configured with default values. Googles DNS and

NTP servers were used and a static IP address from our school lab network

was assigned to the server from the same network as the ESXi host. The set-

tings could have been better and further thought out, but at the time the point

was to get the environment running and to get more familiar with it. See Figure

7 for the configuration settings.

Figure 7. VCSA settings

27

After the installation was finished and everything was working, it was possible

to connect to the vCenter Server through a web browser by typing in its IP

address. This site is mainly for monitoring and general management and only

the NTP settings were modified to use the correct time zones and to synchro-

nize the time between vCenter and ESXi. (Figure 8.)

Figure 8. VCSA

Figure 9. vSphere Web Client

28

For the ESXi and the vCenter to recognize each other, a virtual datacenter

had to be created and the ESXi host added to the datacenter. This way they

can communicate with each other and the hosts and virtual machines can be

managed and changed from the vSphere Web Client.

After the datacenter was created and the host was added, it was possible to

take a better look of the environment that was built, and the first major prob-

lem soon occurred. The physical server, on which everything was installed,

had only 12Gb RAM instead of the 64gb that should have been there. At min-

imum, NSX environment needs 32Gb of memory to work correctly.

There was one another sunfire server in the school, which also had 12Gb ram

installed. Everything on that server was removed and then installed to the one

used in this thesis study. The RAM sticks also were older ddr- memory and in

total the server still had only 24Gb to use, so there were two options left. The

work could be started over with new devices or NSX could be deployed with

current setup and 24Gb ram to use. It was decided to try and install NSX to

see how it looks and to see if it is possible to run it on lower memory.

The installations were done quick just to see how the system handles NSX

with such low memory and the actual installation process will be described in

more detail later. Everything seemed to be working at first, but after deploying

some new virtual machines and the controllers for NSX, the environment

started to have some problems running properly and it was not possible to

continue any further.

The work had to be started again, this time with different devices and better

preparation. Now, as the software and the environment overall were both

much more familiar, it was easier to find information and plan how to build this

new environment.

5.4 Starting over

This time the ESXi installations were done on three different physical comput-

ers with 32Gb RAM and three ethernet ports available each, two on the exter-

nal NIC and one integrated on the motherboard. The hosts were connected to

29

each other through a Cisco 2960 switch. Running the environment on three

hosts provides redundancy and allows the NSX controllers to be placed cor-

rectly on their own hosts and datastores later when setting up NSX. The in-

stallations were done on a new network and the schools DNS was used to be

able to use the hostnames of the machines when connecting to them.

IP address: 10.69.51.10, 10.69.51.20, 10.69.51.30

Default gateway: 10.69.51.1

Hostnames: nsx-esx1.ictlab.local, nsx-esx2.ictlab.local, nsx-esx3.ictlab.local

DNS: 10.69.10.11, 10.69.10.12

NTP: time.google.com

After the installations were finished it seemed like the NICs (Network Interface

Card) were not working on any of the computers. This was caused by a com-

patibility error with the 6.5 version of ESXi and the NIC. It was possible, how-

ever, to enable community supported VIBs (vSphere Installation Bundle) by

connecting to ESXi host with SSH using putty, logging in as root and typing

the command:

esxcli software acceptance set --level=CommunitySupported

Now, it was possible to download and install community made drivers and

other packages from the internet and check the model of the NIC with the

command:

lspci -v | grep "Class 0200" -B 1

According to the output, the computer had a Realtek 8168 NIC installed in it

and now it was possible to download and install the right drivers for the NIC

with:

esxcli software vib install -n net51-drivers -d https://vibsdepot.v-front.de

After the installation was complete the ESXi had to be booted for the changes

to take effect. After this was done to all three hosts, they all had properly work-

ing NICs in them and the work could be continued with vCenter installations.

30

vCenter was installed on nsx-esx1 with some network configuration changes:

IP address: 10.69.51.100 255.255.255.0

Default gateway: 10.69.51.1

Hostname: nsx-vcsa.ictlab.local

DNS: 10.69.10.11, 10.69.10.12

NTP: time.google.com

The earlier DNS configuration was not working properly and none of the

names of the devices and machines could be resolved. After adding all the

ESXi hosts and vCenters hostnames and IP addresses to the DNS forwarding

and reverse lookup zones, it was possible to connect to all the virtual ma-

chines and devices with their hostnames and use FQDN (Fully Qualified Do-

main Name) on the installations. All three ESXi hosts were added to one

“Management and Edge” cluster after creating the datacenter.

5.5 vDS and migrating the network

Now, for the NSX to work properly, it needs the advanced features of vDS

(vSphere Distributed Switch) instead of vSS (vSphere Standard Switch),

which everything is connected to when vCenter environment is created. Dis-

tributed switches allow different hosts to use the switch if they exist within the

same host cluster. It extends its ports and management across all the servers

in a cluster and can support up to 500 hosts per switch. This means, that a

VDS needs to be created and the current network must be migrated over to

the VDS from the vSS. For the NSX VXLANs to work properly, MTU of 1600

must be configuired on the vDS.

After the vDS was created, uplink from the external NIC and two port groups

were assigned to it, one for vCenter VM Network and one for ESXi hosts.

However, migrating the hosts to the vDS caused a connection error between

vCenter and the hosts. There shouldn’t have been any errors, because there

was always a backup connection for the ESXi, as it had two uplinks, one to

the VM Network and one to the vDS. After trying to migrate vCenter with the

ESXi 1, the migration didn’t go through as the vCenter automatically per-

formed a rollback on the settings with an error message stating, that the con-

31

nection to the ESXi host was lost and the configuration changes have been

reset.

The fault appeared to be in the NIC of the computers, caused by the compati-

bility issue with ESXi, as discussed earlier. Even though vSphere recognized

the NICs and they seemed to be usable, no network traffic was able to pass

through their interfaces. This meant, that an alternative way to migrate the

network from vSS to vDS had to be invented, as only one ethernet port was

available for use and the network rollback feature prevented the migration.

A solution was found within vCenter Servers advanced settings. From there, it

was possible to disable the network rollback feature. The only problem with

disabling that option is, that it is possible to lose the connection between ESXi

host and vCenter completely because there are not any safety measures to

prevent it in a case where loss of connection happens. However, it was the

only option available to migrate the network to the vDS.

After changing the setting, it was possible to try the migration again. ESXi

hosts still lost the connection when migrated to vDS, as expected with just one

uplink available and vCenter still connected to vSS. When vCenter vas mi-

grated with ESXi 1, all the connections to vCenter vas lost. It was still possible

Figure 10. Creating a vDS

32

to connect to all the ESXi hosts, but vCenter just would not come back up,

even after rebooting.

According to ESXi, vCenter did migrate with the host and a ping test between

the two was successful using the ESXi hosts command line. However, it was

not possible to connect to vCenter through browser or PuTTY (a SSH and

telnet client for windows) through the management computer, on which all the

setups and connections were done earlier.

Through ESXi, it was still possible to connect to the vCenter Servers console

to see if all the settings were correct. First the shell had to be enabled and

launched with the following commands:

shell.set --enabled true (enabling the shell)

shell (launching the shell)

cd /bin (changing to correct directory)

Then it was possible to list and try to restart the services with:

service-control --list

service-control --stop --all

service-control --start --all

Most of the services (in example vmware-vpdx) that are required for vCenter

Server to run properly were stopped and trying to restart them returned an

error message stating, that the service name is invalid. The service names

were double checked, and the commands used were right, but the vCenter

had just lost the services somehow and there was no way to restart them.

The real reason why vCenter could not find and start the services anymore

was never found out. There is a change it was caused by an error during the

migration to vDS, as the port group vCenter was migrated to was not set to

33

ephemeral binding, but as static binding. Also, the network rollback feature

was disabled, so the false configuration would have gone through without

vCenter stepping in and rollbacking the change.

Because the ESXi and vCenter trial licenses were running out and new 6.7

versions of them were just released, as well as NSX 6.4.1 that supported the

new versions, it was decided to once again install everything with the new

versions and new licenses.

5.6 The final installations

This time all the installations were done the same way, because everything

was working as it should on the previous environment. Only the network mi-

gration from vSS to vDS was done differently, and successfully this time.

When the port groups on the vDS were being created, the one used for

vCenter migration was changed to ephemeral binding and the one used for

the hosts was left to static binding. Figure 2 can be referred to when reading

about the installations to see a better overall picture of what is being installed

and where.

First all the hosts were migrated to the vDS including ESXi 1, which is where

the vCenter was running on. This meant, that the connections were once

again lost. Now, because the vDS port group was first set to ephemeral before

the migration, it was possible to change the vCenters network through the

ESXi 1 from the virtual machine settings. Without the ephemeral binding, it

wouldn’t have been possible to switch the network from vSS to vDS because

vCenter would not allow it.

After vCenter was successfully migrated and it was possible to connect to it

through a browser, the port group binding was once again changed to static,

which is recommended for general use. Ephemeral port binding is mostly used

for recovery purposes, and if a virtual machine assigned to it powers off, the

port is deleted. In this case it was required for the migration but has no other

uses. Now with everything running through vDS, it was possible to start the

NSX installations.

34

5.7 NSX

NSX is installed to vCenter Server by creating a new virtual machine and de-

ploying it with an ova file. The settings include virtual machine name, installa-

tion destination, licenses, passwords for administrator usage, destination net-

work and the actual network settings. Now, because the earlier network migra-

tion was successful, the NSX can be correctly deployed under the vDS net-

work. The network settings were configured as following:

Hostname: NSX-manager

IP Address: 10.69.51.50 255.255.255.0

Default gateway: 10.69.51.1

DNS: 10.69.10.11, 10.69.51.12

NTP: time.google.com

After the installation was done, it was possible to connect to NSX IP address

on a browser to access NSX Manager Virtual Appliance Management to see if

NSX installed properly by checking if all the required services are running. The

services to check are vPostgres, RabbitMQ and NSX Management Services,

and all of them were running properly.

Before NSX can be used, adding it to the vCenter Server is required. This was

done by adding the vCenters IP address and SSO user name to the settings.

If the connection is successful, the status changes to “connected” and NSXs

“Networking & Security” icon appears to vCenters inventory.

The Lookup Service was also configured, even though it is used mostly to au-

thenticate users from other identify sources such as AD or LDAP. Both pro-

cesses are done under the “Manage vCenter Registration” menu in the NSX

Manager Virtual Appliance Management. Nothing else needed configuring

here, so it was time to set up NSX for actual use. All the future NSX configura-

tions are done under the “Networking & Security” menu in vCenter.

35

5.7.1 NSX Controllers

Three NSX controllers were deployed (Figure 12), each to different ESXi host.

This is for redundancy and failover capacity. Even if one ESXi host fails the

controllers can still operate without problems. When the controllers are de-

ployed, they automatically create a cluster among themselves in which they

will join one by one after the deployments.

All the controllers are placed to the vDS, as all the other components in the

environment are. Also, an IP address pool of 10.69.51.40 - 10.69.51.42 is cre-

ated for the controllers and an IP address from that pool is automatically as-

signed to every created controller one at a time. Now, with NSX manager and

controllers deployed, management and control planes are established in the

environment. (Figure 13.)

Figure 11. Adding NSX to vCenter

36

5.7.2 Host preparation

The hosts are prepared for NSX to install different features to ESXi using VIB,

such as VXLAN, distributed firewall and distributed routing. The actual prepa-

ration process was as simple as clicking “Install” in host preparation panel.

This process installs the necessary VIBs to all the hosts in the cluster.

Figure 13. Adding the controllers

Figure 12. Controllers deployed

37

5.7.3 VXLAN

As talked about in chapter 3.1.1.3, VXLAN allows for virtual machines to

communicate with each other though the virtual networks. VXLAN is config-

ured on all the hosts at the same time. Again, vDS was used for the VXLAN

and MTU of 1600 was configured, considering the overheard which the en-

capsulation causes. Also, a new IP pool of 10.69.51.70-10.69.51.73 was cre-

ated for the VXLAN. These are the VTEP addresses, that the NSX is going to

assign to ESXi hosts after the configuration.

The configuration was successful, because the VXLAN status icon changed to

“configured” and the VXLAN kernel interfaces appeared in the ESXi hosts.

See (Figure 14.) for reference. However, for VXLAN to work properly, seg-

ment id, transport zones and a logical switch still must be configured.

5.7.4 Segment ID and Transport Zones

Segment ID defines the maximum number of logical switches in the environ-

ment and to avoid confusion between VLANs, the range of Segment ID starts

from 5000 to 16777216. A range of 5000-6000 was chosen for this small lab

environment.

Figure 14. VXLAN configured

38

To control the width of VXLAN reach, a transport zone is created. All the logi-

cal switches created and assigned to the transport zone become available as

distributed port groups on the vDS on every cluster in the transport zone.

The transport zone was named “Global” and the replication mode was set to

“Unicast” to allow NSX controller to handle the VXLAN control plane. This was

the best choice for this environment, as no special configuration is required. In

example, the Hybrid mode offloads traffic to the physical network and requires

specific underlay configuration.

5.7.5 Creating a logical switch

Now it was possible to create a logical switch to connect virtual machines to-

gether with the VXLAN encapsulation. The switch was named “Global”,

unicast replication mode was chosen, and the switch was added to the

transport zone which was created earlier. The port group vxw-dvs-22-

virtualwire-1-sid-5000-Global was created in the vDS, meaning that the logical

switch was created.

For the testing of the logical switch and VXLAN, two virtual machines were

created, VM1 with IP of 172.16.51.10 and VM2 with 172.16.51.20. VM1 was

running on nsx-esx1 and VM2 on nsx-esx2 and pinging between the two was

not possible. However, after adding the virtual machines to the logical switch

that was created, the ping went through, even when there was no subnet of

172.16.51.x created on the underlay. Next and the last step was to create a

distributed logical router, that provides routing between two logical switches.

Figure 15. Transport Zone configured

39

5.7.6 Creating a distributed logical router

In a traditional vSphere network virtual machines communicating with other

VM on different subnets must go through the physical adapter of the ESXi to a

switch and to a physical router that provides the routing services before going

back to the server and to the target VM. This kind of traffic flow is not optimal

and is referred to as “hair pinning”. (Vinilth, 2016.)

DLR prevents the hair pinning with hypervisor level routing. Every ESXi hy-

pervisor has a routing kernel module installed in it by NSX that performs rout-

ing between the logical interfaces defined on the DLR, which means the traffic

never has to leave the virtual network. (Vinilth, 2016.)

First, one more logical switch named “Applikaatio” was created the same way

as earlier and the “Global” switch was renamed to “Netti”. Also, one new virtu-

al machine named “VM3” was deployed on nsx-esx3 with IP 172.16.52.30 and

added to the switch “Applikaatio”. For a reference topology of the configura-

tion, see Figure 18.

Figure 16. Logical switch created

40

Figure 17. NSX ESG

DLR is created from “NSX Edges” menu, with the possibility of creating ESG

with the same installer. The DLR was named “DLR” with a hostname of DLR1.

CLI credentials were defined, SSH access enabled and the Management and

Edge cluster was chosen for the deployment target for the router.

Next the management interface for SSH connection was defined with an IP

address of 10.69.51.120 /24 and the internal connections to the logical

switches were configured as logical interfaces (LIF) in the DLR. The first inter-

face was connected to “Netti” with an IP of 172.16.51.1 /24 and the second

interface to “Applikaatio” with an IP of 172.16.52.1 /24. The configuration set-

tings were then reviewed and the DLR deployed.

Now, ping tests between the virtual machines connected to two different

switches were successful. This meant, that the routing was working as intend-

ed, still avoiding the physical underlay, and the environment was complete.

NSX Edge was later added to see its features, but It was never implemented

for real use. After the NSX licenses ran out, the lab environment was deleted

and taken down.

41

Figure 18. Topology

42

6 CONCLUSION AND FURTHER DEVELOPMENT

Software-defined networking is a technology that should be considered by

every business in the IT field. Especially, service providers and other network-

ing companies should pay attention to it. It is the future of networking, and

more businesses adapt some form of SDN every passing year.

The objective of this thesis was to provide a better understanding of the SDN

technology and how it can be used and what benefits it would give compared

to traditional networks. Kymijoen ICT is currently not planning on transferring

to SDN, but with this thesis they have much clearer understanding on how to

do it and what they can achieve with it.

The objectives set for the thesis were successfully achieved and much was

learned in the process of composing it. When Kymijoen ICT introduced the

idea of a thesis about SDN, there was no information about the subject, and

much research had to be done before the writing or the installations.

Even though the practical part of the thesis may seem like a simple step-by-

step installation, many difficulties were faced during the installations, and eve-

ry step required much examination before it was possible to continue further,

especially on the last installations.

There are many ways, in which the study could be developed further, such as

the security of SDN. There was only little reliable information about the securi-

ty of software-defined networks, as most of the information was from forums

and some video sources, and always concerned the same central vulnerability

problem. It would be quite interesting to see which other vulnerabilities come

with SDN, as it is a software, and software always has bugs which can possi-

bly be exploited.

Another area of development would be continuing further with the NSX instal-

lations. The installations done in this thesis were a small part of what NSX can

provide as the aim was to create an example of how the virtual routing and

43

switching is done and how the underlay is separated from the virtual network,

since these are key elements in NSX.

VMware NSX is one of the most diverse SDN solutions on the market, and

there are many ways to continue and expand the lab environment that was

built, such as the many properties of NSX edge router. With it, larger more

complex networks can be created with load balancing, firewall, routing proto-

cols such as OSPF and BGP. Microsegmentation is also a feature of NSX that

would be interesting to see when implemented to use.

SDN is such a vast concept, that there are countless of ways to study and de-

velop it further. Software-defined networking was an interesting technology to

study and the possibilities of what it can do are astonishing. It has clear bene-

fits compared to traditional networks, and as the technology keeps evolving

further, new possibilities are revealed each year. There may come a time,

when the networks around the world are completely virtualized with no physi-

cal networking hardware used.

44

TABLE OF FIGURES

Figure 1. Comparison between traditional and SDN architecture (André, 2014)

 ... 9

Figure 2. NSX architecture (Pujolle, 2015, 38) ... 12

Figure 3. The process of VXLAN encapsulation. (Rajeev, 2017) 13

Figure 4. Cisco ACI fabric (Wang, 2016) .. 17

Figure 5. Cisco APIC GUI (Wang, 2016) .. 18

Figure 6. Rufus ... 24

Figure 7. VCSA settings ... 26

Figure 8. VCSA .. 27

Figure 9. vSphere Web Client .. 27

Figure 10. Creating a vDS .. 31

Figure 11. Adding NSX to vCenter ... 35

Figure 12. Controllers deployed ... 36

Figure 13. Adding the controllers .. 36

Figure 14. VXLAN configured ... 37

Figure 15. Transport Zone configured .. 38

Figure 16. Logical switch created ... 39

Figure 17. NSX ESG .. 40

Figure 18. Topology ... 41

file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850045
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850045
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850046
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850047
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850048
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850049
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850050
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850051
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850052
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850053
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850054
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850055
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850056
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850057
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850058
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850059
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850060
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850061
file:///C:/Users/teemu/Downloads/teemu_takasuo%20(2).docx%23_Toc532850062

45

REFERENCES

André, R. 2014. Programmable networks: Separating the hype and the reality.
Online.
Available at:
https://datablast.wordpress.com/tag/sdn/ André, R. 2014
(Accessed 16 October 2018)

Arora, H. 2017. Software Defined Networking (SDN) explained for beginners.
Online.
Available at:
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-
explained-for-beginners/
(Accessed 12 October 2018)

Deuren, J. 2017. VMware NSX: Secure and Flexible Network Virtualization.
Online.
Available at:
https://securelink.be/blog/nsx-vmware/
(Accessed 27 November 2018)

Gerard, S. 2017. VXLAN – Overlay protocol. Online.
Available at:
https://securelink.be/blog/vxlan-overlay-protocol/
(Accessed 30 November 2018)

Hardcastle, J. 2017. How Customers Use VMware’s NSX (Hint: It’s Not Just a
Security Use Case). Online.
Available at:
https://www.SDxCentral.com/articles/news/customers-use-vmwares-nsx-hint-
security-use-case/2017/07/
(Accessed 2 December 2018)

Juniper Networks. 2014. Understanding Network Virtualization with VMware
NSX. Online.
Available at:
https://www.juniper.net/documentation/en_US/release-
independent/nce/topics/concept/metafabric-2.0-vmware-nsx.html
(Accessed 1 December 2018)

Pujolle, G. 2015. Software Networks: Virtualization, SDN, 5G and Security.
John Wiley & Sons, Incorporated. 262s.

Raza, M. 2018. What is Software Defined Networking? SDN Explained.
Online.
Available at:
https://www.bmc.com/blogs/software-defined-networking/
(Accessed 15 October 2018)

Rouse, M. 2012. SDN controller (software-defined networking controller).
Online.

https://datablast.wordpress.com/tag/sdn/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-explained-for-beginners/
https://www.howtoforge.com/tutorial/software-defined-networking-sdn-explained-for-beginners/
https://securelink.be/blog/nsx-vmware/
https://securelink.be/blog/vxlan-overlay-protocol/
https://www.sdxcentral.com/articles/news/customers-use-vmwares-nsx-hint-security-use-case/2017/07/
https://www.sdxcentral.com/articles/news/customers-use-vmwares-nsx-hint-security-use-case/2017/07/
https://www.juniper.net/documentation/en_US/release-independent/nce/topics/concept/metafabric-2.0-vmware-nsx.html
https://www.juniper.net/documentation/en_US/release-independent/nce/topics/concept/metafabric-2.0-vmware-nsx.html
https://www.bmc.com/blogs/software-defined-networking/

46

Available at:
https://searchsdn.techtarget.com/definition/SDN-controller-software-defined-
networking-controller
(Accessed 15 October 2018)

Rajeev, S. 2017. NSX Logical Switch. Online.
Available at:
http://www.rajeevsrikant.com/nsx-logical-switches/
(Accessed 30 November 2018)

SDxCentral. s.a. a. What are SDN Southbound APIs? Online.
Available at:
https://www.SDxCentral.com/sdn/definitions/southbound-interface-api/
(Accessed 17 October 2018)

SDxCentral. s.a. b. What Is Cisco Application Centric Infrastructure (or Cisco
ACI or Cisco SDN)? Online.
Available at:
https://www.SDxCentral.com/cisco/datacenter/definitions/what-is-cisco-aci/
(Accessed 2 December 2018)

SDxCentral. 2015. Featured Videos: Customers Discuss Their Cisco ACI Use
Cases. Online
Available at:
https://www.SDxCentral.com/articles/featured/cisco-aci-use-cases-
videos/2015/03/
(Accessed 2 December 2018)

Statista. 2018. Software-defined networking (SDN) market size worldwide
from 2013 to 2021 (in billion U.S. dollars). Online.
Available at:
https://www.statista.com/statistics/468636/global-sdn-market-size/
(Accessed 4 December 2018)

Vinilth. 2016. Hair-pinning Solved with VMware NSX DLR. Online.
Available at:
http://virtualize-automate.com/wp/index.php/2016/03/17/hair-pinning-solved-
with-vmware-nsx-dlr/
(Accessed 3 December 2018)

VMware. s.a. NSX Edge. Online.
Available at:
https://pubs.vmware.com/NSX-
6/index.jsp?topic=%2Fcom.vmware.nsx.admin.doc%2FGUID-3F96DECE-
33FB-43EE-88D7-124A730830A4.html
(Accessed 1 December 2018)

Wang, J. 2016. What is Cisco ACI Fabric. Online.
Available at:
https://www.speaknetworks.com/what-is-cisco-aci-fabric/
(Accessed 2 December 2018)

https://searchsdn.techtarget.com/definition/SDN-controller-software-defined-networking-controller
https://searchsdn.techtarget.com/definition/SDN-controller-software-defined-networking-controller
http://www.rajeevsrikant.com/nsx-logical-switches/
https://www.sdxcentral.com/sdn/definitions/southbound-interface-api/
https://www.sdxcentral.com/cisco/datacenter/definitions/what-is-cisco-aci/
https://www.sdxcentral.com/articles/featured/cisco-aci-use-cases-videos/2015/03/
https://www.sdxcentral.com/articles/featured/cisco-aci-use-cases-videos/2015/03/
https://www.statista.com/statistics/468636/global-sdn-market-size/
http://virtualize-automate.com/wp/index.php/2016/03/17/hair-pinning-solved-with-vmware-nsx-dlr/
http://virtualize-automate.com/wp/index.php/2016/03/17/hair-pinning-solved-with-vmware-nsx-dlr/
https://pubs.vmware.com/NSX-6/index.jsp?topic=%2Fcom.vmware.nsx.admin.doc%2FGUID-3F96DECE-33FB-43EE-88D7-124A730830A4.html
https://pubs.vmware.com/NSX-6/index.jsp?topic=%2Fcom.vmware.nsx.admin.doc%2FGUID-3F96DECE-33FB-43EE-88D7-124A730830A4.html
https://pubs.vmware.com/NSX-6/index.jsp?topic=%2Fcom.vmware.nsx.admin.doc%2FGUID-3F96DECE-33FB-43EE-88D7-124A730830A4.html
https://www.speaknetworks.com/what-is-cisco-aci-fabric/

47

Hautamäki, J. 2015. Kehittämistutkimusta ja ongelmanratkaisua YAMK-
opinnäytetöissä. (Online)
Available at:
https://centriaamk.wordpress.com/2015/12/18/kehittamistutkimusta-ja-
ongelmanratkaisua-yamk-opinnaytetoissa/
(Accessed 17 December 2018)

Kalintsev, D. 2015. NSX for vSphere: VXLAN Control Plane modes explained.
Online.
Available at:
https://telecomoccasionally.wordpress.com/2015/01/11/nsx-for-vsphere-vxlan-
control-plane-modes-explained/
(Accessed 17 December 2018)

https://centriaamk.wordpress.com/2015/12/18/kehittamistutkimusta-ja-ongelmanratkaisua-yamk-opinnaytetoissa/
https://centriaamk.wordpress.com/2015/12/18/kehittamistutkimusta-ja-ongelmanratkaisua-yamk-opinnaytetoissa/
https://telecomoccasionally.wordpress.com/2015/01/11/nsx-for-vsphere-vxlan-control-plane-modes-explained/
https://telecomoccasionally.wordpress.com/2015/01/11/nsx-for-vsphere-vxlan-control-plane-modes-explained/

