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ROHM Co., Ltd and Kionix, Inc. had a need for a sensor evaluation kit that 
could process sensor samples at a rate of 25.6 kHz. Sufficiently fast sensors 
and PC evaluation software already existed but there was no suitable hardware-
firmware combination to bridge the gap between computer and sensor. The aim 
of this thesis was to optimize the firmware of one supported hardware platform 
to achieve the required sample-processing rate. The work was commissioned 
by ROHM Semiconductor GmbH. 

The work started with research into available tools for measuring the execution 
time of embedded code. Next, significant bottlenecks were discovered by care-
fully reviewing the firmware and measuring the execution times of various code 
sections. Once the bottlenecks were found, possible optimizations were re-
searched and attempts were made at applying them. 

The applied optimizations allowed the chosen evaluation kit firmware to process 
6-byte wide sensor samples at a rate of 25.6 kHz. The largest performance 
benefits were gained from general optimizations, such as hoisting invariant 
checks out of loops, and by optimizing the usage of SPI hardware FIFOs when 
reading from the bus. 
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VOCABULARY 

BLE Bluetooth Low Energy, a wireless personal area network technolo-

gy 

CDC-ACM Communication Device Class (Abstract Control Model), a USB 

subclass definition 

CPLD Complex Programmable Logic Device 

FIFO First-in, First-out 

GPIO General Purpose Input/Output 

I2C Inter-Integrated Circuit, an inter-IC serial communication protocol 

ISR Interrupt Service Handler, a function that is executed when an inter-

rupt occurs 

ODR Output Data Rate, the frequency at which a sensor refreshes its 

outputs 

PLL Phase-Locked Loop 

RX Receive 

SAR Successive Approximation Register, a type of analog-to-digital con-

verter 

SDK Software Development Kit 

SPI Serial Peripheral Interface, an inter-IC serial communication proto-

col 

SPS Samples per Second 

TX Transmit 

This document uses decimal and binary prefixes; e.g. 1 kB is equal to 103 B 

and 1 KiB to 210 B. 
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1 INTRODUCTION 

ROHM Co., Ltd. and Kionix, Inc. (a subsidiary of ROHM Group) develop sen-

sors as part of their product portfolio, and they offer various sensor evaluation 

kits. The most recently published evaluation solution is the RoKiX IoT Develop-

ment Platform, which is a “complete offering of HW and SW for sensor evalua-

tion purposes” (1, p. 2).  The development platform software can be used with a 

sensor node with embedded sensors or a combination of a development board 

(e.g. Arduino Uno), adapter board, and sensor boards that are compatible with 

the adapter board. The development platform software provides a proprietary 

firmware for the development board and various client programs that run on 

computers or smartphones. The firmware abstracts the various supported 

hardware platforms into one interface that the client programs use. 

One of the supported hardware platforms, Cypress CY8CKIT-059 with a RoKiX 

Adapter Board and a Kionix accelerometer, was intended to be suitable for 

high-speed sensor evaluation but could not achieve the desired sample pro-

cessing rate of 25.6 kHz. The aim of this thesis was to discover performance 

issues and find methods to optimize them so that the performance target could 

be reached. 

https://www.rohm.com/sensor
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2 ROKIX IOT DEVELOPMENT PLATFORM 

The RoKiX IoT Development Platform is a sensor-evaluation platform that was 

released in November 2018 and is used in this thesis. The platform can be split 

into three major components: host adapters, sensor hardware, and client soft-

ware as illustrated below, in figure 1. 

 

FIGURE 1. RoKiX IoT Development Platform top-level components. 
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Usually, a computer or smartphone cannot be connected to a sensor directly; 

hence host adapters and adapter boards are used to bridge sensors to client 

devices. The adapter boards and sensor evaluation boards work in union to 

connect the hardware together, and the host adapter provides a uniform way for 

the clients to control and read the sensors. The host adapter not only serves as 

a bridge but it also provides some convenience and performance-related fea-

tures, such as reading a sensor register on GPIO interrupt or writing to a regis-

ter periodically, both of which are faster and more accurate time-wise than poll-

ing interrupt registers or timing intervals on the client side. (1.) 

2.1 Hardware 

Some RoKiX evaluation kits come with an off-the-shelf embedded development 

kit (e.g. Arduino Uno or Cypress CY8CKIT-059) combined with an adapter 

board and some sensor evaluation boards that can be plugged easily into the 

adapter board. The primary RoKiX evaluation hardware platforms include 

onboard sensors but as they are not used in this thesis, they will not be men-

tioned further. (1.) 

The hardware used in this project consists of a Cypress CY8CKIT-059 devel-

opment kit, a RoKiX Adapter Board, and a Kionix KX122 accelerometer. The 

combination is displayed in figure 2. The remainder of this document will refer to 

the RoKiX Adapter Board as the adapter board and to Cypress CY8CKIT-059 

as the Cypress board for brevity. 

The Cypress board features an ARM Cortex-M3-based PSoC 5LP microcontrol-

ler, which features a native full-speed USB, SAR and Delta-Sigma ADCs, DMA, 

and CPLD-based programmable logic. SPI supports frequencies up to 18 MHz, 

and I2C can achieve up to 1 Mb/s. The CPU has a maximum operating frequen-

cy of 80 MHz, and its clock is generated with a configurable PLL, which allows 

for considerable freedom in choosing clock frequencies. (2, p. 1.) 

The low price, compatibility with an adapter board, and adequate specified per-

formance of the Cypress board were major reasons for choosing the board for 

the high-performance evaluation kit. 



 

 9 

 

FIGURE 2. RoKiX Adapter Board (1), Kionix KX122 evaluation board (2), and 

Cypress CY8CKIT-059 (3). 

The only requirements for the sensor were that it must support a 25.6 kHz tri-

axis accelerometer output data rate (ODR) and at least SPI. The chosen sen-

sor, Kionix KX122, is a tri-axis accelerometer with an integrated buffer, some 

algorithms (e.g. tap detection), and support for both I2C and SPI. The highest 

supported ODR is 25.6 kHz, and the highest acceleration range is ±8 g. It 

comes in a small 2x2x0.9 mm LGA package. Certain other Kionix accelerome-

ters, such as KX112, also met the requirements and could have been used. As 

long as the sensor meets the aforementioned requirements, the choice is not an 

important one because once the system has been improved so that it is capable 

of processing samples at 25.6 kHz, any similar sensor can be used at that rate. 

(3; 4.) 

Surface-mount sensors, such as the chosen KX122, cannot easily be connect-

ed to a microcontroller’s GPIO pins, so a sensor evaluation board is used in-

stead of a bare sensor. The Kionix sensor-evaluation board provides a 14-pin 
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connector and supporting components for the sensor and is directly compatible 

with the adapter board. ROHM sensors have separate evaluation boards with 

different connectors. As they are not used in this project, they will not be dis-

cussed further. 

The adapter board support for development kits includes Arduino Uno, several 

Cypress PSoC kits, and Raspberry Pi. Adjustable level shifters are included on 

the board for I2C and SPI communication between hardware that uses different 

I/O voltages. On the sensor-connector side, there is support for Kionix 14-pin 

evaluation boards, ROHM 5 or 4-pin sensor shield modules, and RoKiX 24-pin 

add-on boards. (1.) 
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2.2 Firmware 

The purpose of the firmware is to offer a uniform interface for manipulating sen-

sors and streaming sensor data from a microcontroller to a computer or 

smartphone. The interface has been implemented as a binary-message based 

system. The interface uses the request-response pattern and it can be used to 

control various features offered by the firmware. The interface is mostly plat-

form-independent; the same messages can be used regardless of the underly-

ing hardware platform. However, not all platforms support all features, and 

GPIO pin numbers are not portable. 

The firmware code has been written in ISO C99 (5) and is split into a portable 

common core and platform-specific implementations of the platform API that the 

core uses to control hardware. The core handles message serialization and 

deserialization and delegation of hardware operations to the hardware via the 

platform API. The core itself does not directly use any platform-specific features 

(e.g. vendor APIs or hardware registers). It restricts itself to only use parts of the 

C standard library and the platform API, which is a platform-independent ab-

straction over the necessary hardware. The abstraction was created to permit 

the re-use of the portable parts of code by separating the platform-specific parts 

behind an interface that can be implemented separately for each platform.  

2.3 Client software 

The three major clients available are RoKiX Windows GUI (figure 3), RoKiX Py-

thon CLI, and RoKiX Android App. They offer interfaces for editing sensor regis-

ters, streaming sensor data, and collecting or displaying data. The Windows 

GUI and the Android App have graphical user interfaces, whereas the Python 

CLI has a command-line oriented interface. The Android App only works with 

Bluetooth-capable RoKiX hardware, and thus cannot be used with the Cypress 

board. The GUI and CLI work with both USB and Bluetooth. The CLI cannot 

achieve the high data rates used in this project and thus the only client that 

works with the Cypress board at high data rates is the Windows GUI. 
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FIGURE 3. 3-axis acceleration data at 25.6 kHz output data rate (ODR) in 

RoKiX Windows GUI's plotter-view. 
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3 SOFTWARE PERFORMANCE ANALYSIS TOOLS 

The firmware has to be able to process samples at the frequency of the output 

data rate of the sensor and it is thus a real-time system. The time window for 

execution is fixed per sensor ODR and thus it is very useful to be able to meas-

ure the execution times of various parts of the system. The measured execution 

times can tell which parts of the system are taking the largest portions of the 

available time-window; the parts that consume the most are often good candi-

dates for optimization. The ability to measure execution times is also vital for 

measuring the effects of attempted optimizations. 

All performance profilers, which are not assisted by hardware, add some addi-

tional strain to the system under test, which can impact the measurements 

themselves. The tools also have other qualities that affect measurement resolu-

tion, convenience, and accuracy. With a 25.6 kHz sensor ODR, the entire exe-

cution time-window in this project is only a mere 39 µs, and thus both resolution 

and accuracy are important. 

3.1 GPIO pin toggling 

An oscilloscope or a digital analyzer can provide good but somewhat inconven-

ient measurement capabilities in conjunction with toggling GPIO pins in firm-

ware. This requires that there are available pins for this purpose. The Cypress 

board had many unused pins, so this was not an issue. The code below shows 

an example of measuring the execution time of a function. 

pin_set(); 
function_of_interest(); 
pin_clear(); 

The above pin toggling will cause a high pulse that is as long as the execution 

time of the measured function. The pin-toggling functions were defined as inline 

functions in a header file to avoid the function call overhead. The toggling will 

cause a minor performance difference but it is typically a very cheap operation 

(one register write for setting or clearing) and was measured to take approxi-
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mately 200 ns on Cypress. Such a small time was considered to be insignificant 

in this case. 

It is important to add compiler memory barriers to the pin-toggling functions be-

cause otherwise the compiler may, in some cases, reorder the statements as 

part of its optimization passes. An example of a potential reordering is shown 

below. 

pin_set(); 
pin_clear(); 
function_of_interest(); 

The above example will obviously produce incorrect timings when the pulse is 

measured with an oscilloscope since the measured function is outside the pin 

toggles. Compiler barriers are not provided in a portable way by C99, so a com-

piler specific way of implementing the barrier had to be used. The Cypress tool-

chain uses GNU GCC as the compiler, which uses the below inline assembler 

statement as a barrier (6, p. 460). 

__asm__ volatile ("":::"memory") 

CPUs that do out-of-order execution (e.g. modern Intel, AMD, and high-end 

ARM processors) would also require a CPU-specific memory barrier to prevent 

reordering the GPIO register writes but the Cortex-M3 used in the PSoC 5LP 

MCU does memory accesses in-order and thus the compiler barrier alone is 

sufficient (7). 

Figure 4 shows an example of measuring main loop, SPI-read, and USB write 

execution times. 
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FIGURE 4. Execution time profile for an SPI sensor read and USB write. The 

MAIN signal measures the main loop time and serves as a reference point for 

other measurements.  

The execution times can differ and thus it is important to know the maximum 

time for the measured code. This can be achieved by using a pulse-width trig-

ger on the oscilloscope and incrementing the pulse width until the oscilloscope 

cannot trigger anymore. This trigger feature is not supported by all oscillo-

scopes but the PicoScope 5243A used in this project had support for it, allowing 

the measurements to be done. If measuring only one thing and the execution 

time differs only by small amounts, the persistence display mode (see figure 5) 

can be a more convenient way to measure minimum and maximum times. The 

mode superimposes multiple collected waveforms on the same view, allowing 

the maximum time to be measured from the longest captured pulse. The mode 

is unsuitable for multiple measurements or large differences because in those 

cases, the pulses have a good chance of overlapping with each other, rendering 

pulse edges indistinguishable from each other. 
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FIGURE 5. Oscilloscope capture in the persistence display mode. The colors go 

from blue through yellow to red as more samples are collected of the same 

waveform. 

If measuring more than one action per channel, it is necessary to dedicate one 

channel to some stable reference point, such as the main loop, so that the puls-

es can be ordered properly. Without a reference point, it is impossible to tell 

which pulse matches the first pin toggle in the code. 

The main drawbacks to this method are that it involves a lot of manual work and 

measuring several points at once is difficult due to it requiring multiple pins and 

channels. It is however cheap to set up, it is compatible with every microcontrol-

ler that has available GPIO pins, it incurs very little overhead and provides a 

visual execution time graph as a side effect. 

3.2 Execution time profiling in software 

After noticing that the pin-and-oscilloscope method was somewhat cumbersome 

when dealing with several simultaneous, possibly nested, measurements, an 

attempt was made to write a simple and fast execution time profiler library in C. 

The library API was developed to provide functions for initialization, starting a 

delta-time measurement, stopping a delta-time measurement, and printing sta-

tistics about the collected samples. The library itself does not automatically in-
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strument code sections; the user must manually add calls to the measurement 

functions of the library around the code sections of interest. Overlapping meas-

urements were supported by storing the data of each measurement in separate 

locations. The delta-times were stored as 32-bit unsigned integers with the time 

unit being platform-specific. 

The library was written to be portable and thus it does not rely on platform-

specific behavior. Due to this, users must define a specific function for retrieving 

a timestamp from a monotonic clock. (For Cypress, the system tick module, a 

24-bit timer clocked by the CPU clock, was used as a time source.) For conven-

ience, users can also override the end-of-line marker and formatted print func-

tion. (Embedded platforms do not often support using printf directly by default.) 

An example of a typical usage for this profiler is shown below. 

perf_init(); 
/* The arguments are free-form names for the configs. */ 
struct perf_config *loop_cfg = perf_create("main"); 
struct perf_config *spi_cfg = perf_create("spi"); 
 
for (;;) { 
    /* Measure main loop execution time. */ 
    perf_sample_begin(loop_cfg); 
    /* do other work ... */ 
 
    /* Measure SPI write execution time. */ 
    perf_sample_begin(spi_cfg); 
    spi_write(/* ... */); 
    perf_sample_end(spi_cfg); 
    perf_sample_end(loop_cfg); 
 
    /* Print statistics if anything is sent via serial. */ 
    if (uart_get_char()) { 
        perf_print_stat(loop_cfg); 
        perf_print_stat(spi_cfg); 
    } 
} 

The API of the profiler proved cumbersome in use, as the measurements were 

often done in separate files and having to keep track of the perf_config struc-

tures across files was inconvenient. This usability issue could have been im-

proved by keeping the structures within the profiler module and accessing them 
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by name or identifier in user code. This was not done because it would have 

incurred even more overhead due to the lookups. 

The overall performance impact of the profiler was larger than with the oscillo-

scope-and-GPIO method because of the delta-time calculation and polling the 

serial line for a trigger to print the statistics. The delta-time sample buffers re-

sided on the heap and the amount of samples was thus restricted by heap size 

(8 KiB on Cypress). Overall, the library was less convenient and incurred a 

larger execution speed and memory overhead than when toggling GPIO pins 

and measuring pulse lengths with an oscilloscope. Due to the aforementioned 

factors, the library was not used for measurements in this thesis. 

3.3 Common profilers 

C developers in hosted environments often use tools, such as GNU gprof, Linux 

perf, or profilers built into IDEs. Some of these tools are operating system spe-

cific and by their nature will not work in a free-standing environment. GNU gprof 

on the other hand would have to be ported to bare-metal targets as it relies on a 

special system call and file system support, which are often not present on em-

bedded targets (8). The Cypress IDE for PSoC 5LP development, PSoC Crea-

tor, does not have any support for performance profiling of any kind. Some of 

these profilers (e.g. GNU gprof) do not accurately measure function execution 

times but instead approximate it with function call counting and program counter 

sampling (8). For the aforementioned reasons, many profilers used in hosted 

environments are not directly suitable for use in free-standing environments. 

3.4 Hardware-assisted profiling 

The ARM Cortex-M3 used in the Cypress PSoC 5LP MCU has been configured 

with the optional Embedded Trace Macrocell (ETM), which is a “real-time trace 

module providing instruction and data tracing of a processor” (2, p. 61; 9, p. 16). 

Its use requires a trace-enabled debug probe. Such probes are expensive (e.g. 

SEGGER J-Trace PRO for Cortex-M costs 1,400 EUR) and were not available 

for this thesis (10; 11). ETM was not used in this project as it was considered 

too expensive and excessive for the needs of this project. 
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However, the Cortex-M3 has another module, the Data Watchpoint and Trace 

(DWT) unit, which can be used in conjunction with the Instrumentation Trace 

Macrocell (ITM) to sample the program counter and send it to another device 

via the Serial Wire Viewer (SWV) (9; 12). The DWT can also be used to gener-

ate data about clock cycles, folded instructions, load store unit operations, sleep 

cycles, cycles per instruction, and interrupt overhead (12). These features 

would have allowed some form of hardware-assisted performance analysis. Un-

fortunately, Cypress’s own IDE did not support any form of profiling and thus it 

would have been necessary to find and configure third-party tools. No suitable, 

easy to use tool was found after a quick search. The hardware profiling features 

seemed overly complex and hard to use when compared to the GPIO pin tog-

gling method. Also, there was insufficient time to investigate the hardware-

assisted approaches further. For these reasons, the hardware-assisted meth-

ods were not used in this thesis. 

3.5 In-program statistics 

While investigating the USB performance, it was noticed that the USB write 

FIFO sometimes fills up, which forces the firmware to wait until the FIFO has 

more space. This causes delays that mean that some sensor samples are going 

to be lost at high sampling rates. Ideally, the FIFO would never block, but a 

suboptimal implementation or a busy USB host may cause stalls in the USB 

traffic, which causes the FIFO to fill up. A software counter was added for keep-

ing track of how many times the firmware has to wait for a free FIFO slot. The 

counter is only accessible by reading the variable with a debugger. 

In a typical sensor data streaming case, the sensor is configured to assert a 

data-ready interrupt signal every time the sensor finishes sampling. The firm-

ware is then configured to use the sensor interrupt pin as an interrupt source for 

performing actions. It is important to know whether the firmware is able to han-

dle all interrupts in time in order to avoid losing sensor samples. For this reason, 

two more debugger-readable counters were added for the amount of GPIO in-

terrupts received and the amount of GPIO interrupts handled. 
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4 OPTIMIZATION 

The aim was to be able to read 3 two-byte acceleration values from a sensor 

and to send them to a client application at 25.6 kSPS. The amount of time the 

firmware has to do all of this can be calculated by taking the reciprocal of the 

25.6 kSPS processing rate, which is approximately 39 µs. The firmware is al-

lowed to occasionally exceed the aforementioned time frame as long as no 

sensor samples are lost. 

As the sensor itself was already sufficiently fast, and the RoKiX Windows GUI 

client had already been proven to be fast enough, so they were excluded from 

optimization. That left three major components to investigate: USB, firmware, 

and the sensor-bus (I2C or SPI). 

Execution times were measured with the GPIO pin toggling method described in 

section 3.1 because it was sufficiently accurate and the easiest to set up and 

use with the relatively small codebase of the RoKiX firmware. The performance 

overhead of the method was also low enough not to disturb the operation of the 

firmware. 

4.1 General 

Optimizing the higher-level firmware code, which did not deal with the hardware, 

involved code-reviewing and applying old, but effective, optimizations. 

One of these old and well-known optimizations was to hoist invariant checks out 

of loops, so that they are done only once. In this case, event parameter valida-

tion was moved from an event loop into the event configuration function, so that 

the checks are done only once during the configuration instead of doing them 

on every iteration of the event loop. 

An attempt was made to enable Link-Time Optimization (LTO) and to switch 

from the -Os optimization level to the more aggressive -O3 level in the compiler 

to generate more efficient code (6, p. 111–113; 13, p. 683). The attempt failed 

as the changes caused several errors deep in vendor code. The errors might 
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have been caused by the vendor code being incorrect or the compiler being too 

old (ARM GCC 5.4-2016-q2-update). Upgrading the compiler was not an option 

because only one version was supported by the vendor, and fixing the vendor 

code would have been infeasible due to the potential size of the effort. Hence, 

adjusting compiler optimizations was not a good avenue for increasing perfor-

mance. 

The firmware code used manual byte-by-byte copying loops in certain places 

and some of them were replaced with calls to the C standard library function 

memcpy, which has often been hand-optimized by the library vendor to perform 

copies efficiently. Unfortunately, the performance benefit from these changes 

was not measurable. This may have been due to most copies in the firmware 

being very small (less than 10 bytes). 

In C, pointers that follow the aliasing rules can alias each other (5, p. 68). This 

possibility of aliasing can cause the compiler to reject many good optimization 

opportunities because it cannot always determine whether separate pointers 

actually alias each other or not. One of the most troublesome aliasing cases are 

character pointers (often used for buffers), which are allowed to alias any ob-

ject, causing the compiler to be very pessimistic in determining whether some-

thing is aliased or not (5, p. 68). C99 defines a restrict qualifier for object point-

ers, which can be used to tell the compiler that the object pointed to by the re-

stricted pointer is not modified by any other pointer in the block in which the re-

stricted pointer was declared (5, p. 109). In other words, the qualifier can be 

used to tell the compiler that the programmer guarantees that the restricted 

pointer is not aliased by anything in a block. The sole purpose of the qualifier is 

to allow the compiler to optimize more aggressively (5, p. 109). An example of 

using restrict is shown below. 

void pmemset(char *buf, int * restrict val, size_t size) { 
    for (size_t i = 0; i < size; ++i) { 
        // Without restrict, the compiler would be forced 
        // to reload val on every iteration, because the 
        // store to buf might modify val. 
        buf[i] = *val; 
    } 
} 
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In the example function, the restrict qualification on val allows the compiler to 

see that it cannot be modified via buf. This allows the compiler to load val into 

a register once before the loop instead of loading it on every iteration of the 

loop. 

Restrict-qualifiers were added to pointer parameters in certain key firmware 

functions but the effects were not measurable. 

4.2 USB 

The firmware exposes its services over USB using the CDC-ACM subclass, 

which is an official subclass defined by USB Implementers Forum, Inc. (14, 

p. 7). It is intended for PSTN modems but it can be used in embedded products 

as an easy way to transfer bulk data bi-directionally. Common operating sys-

tems, such as GNU/Linux and Windows, have built-in drivers for the subclass 

and thus there is no need to write a custom driver. With the exception of actual 

modems, devices that use CDC-ACM for simple data transfer do not implement 

the mandatory support for the modem command set defined in ITU V.250 and 

thus they are not strictly conformant. 

The CDC-ACM driver is implemented by the USB stack of the operating system, 

and optimizations on it are outside the scope of this project. All of the optimiza-

tions focus on writing because reading is only done for control messages, which 

are usually not used during an active stream for anything but stopping streams. 

The USB hardware on the Cypress board communicates at full speed (12 Mb/s 

nominal signaling rate) (2, p. 1). 

The firmware uses bulk data transfers for transferring data over USB. According 

to Cypress (15, p. 12), isochronous transfers are “intended for streaming data to 

a host through a constant and real time stream of information,” which indicated 

that they may be well suited for the real-time needs of the firmware. The primary 

performance-related differences between the two transfer types are that isoch-

ronous offers a higher maximum packet size (1023 B vs 64 B), a guaranteed 

bandwidth, and a bounded latency (16, p. 21). However, unlike bulk transfers 

with CDC-ACM, isochronous transfers require a custom driver on the host side 
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and do not guarantee delivery. Due to these factors, switching to isochronous 

transfers was considered non-viable and was not attempted. 

After reviewing the USB transmission code written on top of the vendor USB 

driver, it was discovered that there was one unnecessary 64-byte copy in the 

write path. The copy was in the write coalescing algorithm that was used in the 

USB code module, which combined multiple writes into a packet and then cop-

ied the packet into the transmission FIFO, from which the packet was eventually 

sent. The copying of the combined packet into the FIFO was unnecessary as a 

packet could be reserved from the FIFO and the writes could be coalesced di-

rectly into the FIFO-allocated packet. The USB module was modified to do the 

aforementioned direct combining into a FIFO packet. 

In search of better parallelization, DMA was tried out with USB. The attempt 

begun with the development of a very simple firmware that would only write 

constant data to USB as fast as it could and a simple C++ client program that 

would ingest the data and calculate average throughput. These tools were writ-

ten for benchmarking the USB API function call execution times and approxi-

mate the USB throughput with and without DMA. (The throughput was approxi-

mate as it was calculated by dividing the amount of bytes received with the 

amount of time the transmission took, which does not take buffering or variance 

into account.) 

The preliminary results from benchmarking, shown in table 1, seemed promis-

ing and there were no issues with DMA in the simple test firmware. In particular, 

the execution time reduction with DMA seemed promising. 

TABLE 1. Measured USB performance with and without DMA using full 64-byte 

packets. 

 Write(…) execution time (µs) Average throughput (kB/s) 

No DMA 10.5 740 

DMA 3.5 940 

Enabling DMA for USB was an easy process that involved changing the 

memory management scheme of the USB component and ensuring that USB 



 

 24 

write buffers have lifetimes that match the duration of the DMA transactions. 

While there were no issues with DMA in the test firmware, the actual production 

firmware wrote only zeros to USB when DMA was enabled. After a significant 

amount of time spent debugging and reading through Cypress forums, the 

cause was discovered to be a bug in Cypress’s USB driver. The bug was 

worked around by temporarily removing the bug-triggering non-critical function 

call from the firmware. 

Unfortunately, the switch to DMA caused the approximate maximum sample 

processing rate to drop from 25 kHz to 23 kHz, which directly contradicted the 

results gathered from the simple benchmark. No obvious cause was found for 

the discrepancy. The USB DMA configuration was entirely within vendor code, 

so optimizing it was not an option. Writing a custom firmware driver for using 

USB with DMA was briefly considered but would have taken too much time. As 

a result, the choice was made not to use DMA with USB. 

4.3 Choosing the sensor buses 

The hardware used in this project supports both I2C and SPI for sensor com-

munication. There was a need to choose which of these buses would receive 

optimization and be supported for high-speed sampling. 

The selection started by specifying minimal requirements for the buses. The first 

requirement was that the bus should at least theoretically support the bandwidth 

required for a 25.6 kHz sample processing rate. This requirement assumes that 

the sensor-bus can occupy the entire available time window, which is not the 

case. The requirement is thus not strict enough for a final decision but sufficient 

to prune out candidates that are far too slow for this project. The absolute mini-

mum sensor-bus bandwidth requirement for the use case of this project can be 

calculated as 

𝑏 = 𝑥𝑓s 

where 

𝑓s is the sampling frequency 

𝑥 is the size of a transaction in bytes. 



 

 25 

Kionix and ROHM digital sensors use a very simple protocol for manipulating 

registers via serial buses. In order to read one or more consecutive registers, 

the address of the first register to read must be written to the slave by the mas-

ter. Then, the master can read as many consecutive registers as necessary; the 

sensor will internally increment the register address by one every time a byte is 

read. This internal, automatic address manipulation is known as auto-increment. 

Registers that are not consecutive must be read in separate transactions. In 

I2C, the transfer direction (i.e. write or read) is indicated with a special RW-bit 

that is part of the slave addressing procedure. SPI, on the other hand, is full-

duplex and does not have a built-in mechanism for indicating whether a register 

is being written to or being read from. Kionix sensors have thus reserved the 

most significant bit of the register addresses for indicating the direction. 

The acceleration data is stored in consecutive registers in the KX122 sensor 

and thus the data can be read in one transaction. Each sample is two bytes 

wide and the register address is one byte. Reading the acceleration samples for 

three axes hence requires a 7-byte transaction. From these values, it can be 

calculated that the absolute minimum sensor-bus bandwidth requirement for 

this project is 1434 kb/s. 

The I2C bus on the Cypress is operated at full speed (400 kb/s) but due to clock 

restrictions, the actual clock line frequency is 375 kHz, which translates to a 

bandwidth of approximately 375 kb/s. I2C also has some innate overhead (slave 

addressing, per-byte ACK-bit, start, restart, and stop), which further reduces the 

effective bandwidth. Based on these numbers, even if the overhead is not taken 

into consideration, it is clear that I2C at 375 kb/s cannot meet the minimum re-

quirements. The Cypress board and sensor both support fast-mode plus 

(1 Mbit/s), which would have been faster but the adapter board forces the use of 

I2C pins that do not support such speeds (3, p. 17; 17, p. 1). However, even the 

faster mode would not have met the required minimum. 

SPI, on the other hand, is used at a 9.25 MHz signaling frequency, and has 

nearly no overhead. This translates to a bandwidth of approximately 9.25 Mb/s, 

which greatly exceeds the absolute minimum requirement and even leaves 
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some time for other parts of the system to run. SPI was thus the only feasible 

choice for the sensor bus. 

4.4 SPI 

The simplest optimization would have been to raise the signaling frequency to 

something greater than 9.25 MHz. A 750 kHz increase to 10 MHz would have 

been possible since the sensor supports a maximum SPI frequency of 10 MHz. 

Unfortunately, this would have forced a 14 MHz drop in the Cypress CPU clock 

from 74 MHz to 60 MHz as the SPI component must run at twice its signaling 

frequency and there is no integral divider that could divide 74 MHz into 20 MHz. 

(Increasing the CPU frequency to the nearest, greater frequency, 80 MHz, 

would not have worked, because the frequency violates the tolerances of the 

microcontroller.) 

The time difference from a signaling frequency change can be calculated for a 

transaction as 

∆𝑡 =
𝑥

𝑓2
−
𝑥

𝑓1
, 

where 

∆𝑡 is the change in time 

𝑥 is the amount of bits transferred 

𝑓1 and 𝑓2 are the old and new frequencies, respectively. 

Reading a Kionix sensor via SPI requires that a 7-bit register address combined 

with a read-write bit is written to the sensor at the start of a transaction. Hence, 

reading 6 bytes of sensor data causes a 7-byte transfer. In such a case, the 

gain from a 750 kHz change in SCLK frequency to 10 MHz would only be a 

mere 450 ns. Considering that the CPU frequency would have to be dropped by 

14 MHz to achieve that, the change would likely only hurt overall performance. 

Thus, it was decided that the SPI signaling frequency would not be changed. 

A look at the bus signals with an oscilloscope (shown in figure 6) revealed that 

there were significant transmission gaps between each transmitted byte. Each 
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inter-byte gap consumed approximately 1 µs, which is as much time as is taken 

by sending one byte. In other words, these gaps were reducing the bandwidth 

by half. A thorough read of the datasheet of the SPI component and the source 

code of the SPI driver indicated that these gaps are likely caused by the SPI 

hardware not being given data at a fast enough rate. 

 

FIGURE 6. Oscilloscope capture of the SCLK signal during a 6-byte sensor 

read. (The first byte is the register address and a R/W bit). 

The SPI module has two operating modes for buffering. The first mode is to only 

use the 4-byte hardware to receive and transmit FIFOs. The other is to use the 

software FIFO mode of the driver that keeps the data in RAM. The hardware 

FIFO is fast but requires careful management so that neither FIFO overflows. 

The RX FIFO in particular is easy to overflow since for every byte that is shifted 

out of the TX FIFO, a byte is shifted into the RX FIFO. This means that writes 

must ensure that there is space in the TX FIFO and also check that the RX 

FIFO can accommodate for both the new write and everything currently in the 

TX FIFO. The software FIFO mode has an interrupt service handler (ISR) that 

moves data one byte at a time between the RAM TX and RX buffers and the 

SPI hardware FIFOs. More precisely, the ISR writes a byte into the TX FIFO 

when it is not full and reads a byte from the RX FIFO when it is not empty. 
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The firmware used the software FIFO but after seeing that the hardware FIFOs 

were not being utilized well, a new implementation was written. The implemen-

tation disabled the SPI interrupt mechanism and software FIFO implementation, 

managing both hardware FIFOs manually in user-mode by writing into the TX 

FIFO when there was no risk of overflowing the TX and RX FIFOs. The RX 

FIFO was read whenever it was not empty to allow more space for writing into 

the TX FIFO. The aim of keeping the TX FIFO as near to full as possible was to 

ensure that the hardware would always have something to send so that it would 

not have to stall the bus and wait for new data. Also, since the FIFO manage-

ment is done in user-mode, the negative effect of interrupt latency is avoided. 

The optimized implementation still suffers from occasional gaps but they are far 

fewer. The gaps are also significantly shorter at 250 µs. The reduction in gaps 

and their duration is shown in figure 7. 

The optimized implementation was tested by reading varying (1–18 bytes) 

amounts of known, constant data from the configuration registers of the KX122 

sensor and checking whether it matched expectations. 

 

FIGURE 7. Oscilloscope capture of the SCLK signal during a 6-byte sensor 

read with the FIFO-optimized implementation. 

The SPI read function requires that the SPI FIFOs are empty in order to work 

properly. This was ensured by clearing the FIFOs in the read function before 
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performing the actual read. The FIFO-flushing was measured to take several 

microseconds and it was decided that instead of ensuring that the FIFOs are 

empty in the read function, all the other SPI functions would ensure that they 

leave the FIFOs clean on exit. This moved the flushing cost from read to write, 

which was beneficial since reading is a far more common operation than writing 

in this system. 

During the implementation of the FIFO-usage optimizing implementation, there 

was a FIFO overflow bug the cause of which remained hidden for several 

weeks, and it was suspected that the cause might have been a hardware bug. 

During this time, an alternative approach using DMA was attempted. It was writ-

ten a test firmware that only did some simple SPI operations with DMA. A look 

at the SPI SCLK signal with an oscilloscope showed that there were no gaps 

between consecutive bytes during transmission, which seemed promising. 

However, the execution time of the SPI-read function was worse than that of the 

unoptimized version with identical transfer sizes. An attempt was made to re-

duce the amount of DMA configuration in the special case where the only SPI 

operations are reads and the buffers and read sizes remain constant. The exe-

cution time for the special case was lowered to 12.5 µs, of which 6.1 µs was 

consumed by bus signaling and the rest went into DMA configuration. The 

overall read execution time remained larger when compared to the FIFO-

optimized version. While gapless transfer offers very good performance in gen-

eral, the fixed cost of DMA configuration dominates the time consumed when 

doing small reads (e.g. 6 bytes in this project). The complexity of the implemen-

tation, bad best-case performance and even worse general performance ren-

dered the DMA option non-viable. 

The cause of the FIFO overflow bug was found to be a FIFO upper limit that 

was too large by one. The bug evaded discovery because there was a slightly 

misleading comment above the upper limit comparison, which described why a 

different, unrelated upper limit was too large by one. After the bug had been 

fixed, the hardware FIFO-optimized implementation was taken into use. 
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4.5 Verification 

There was a need to check that all interrupts were being handled on time even 

at the target sampling rate. For this purpose, a simple firmware and client were 

developed. The firmware was written in C for a Nordic nRF52-DK development 

board and it generates a known amount of interrupt signals at a predefined fre-

quency. The client was a small command-line tool written in C++ that configures 

the RoKiX firmware to listen for interrupts and send data, to instruct the Nordic 

firmware to start generating interrupt signals, and then to read the data forward-

ed by the firmware. The RoKiX firmware was configured the same way as it 

would have been if it were used with a real sensor. The SPI MISO pin of the 

Cypress board was grounded as the Nordic board did not support the required 

SPI frequency and the read values were not used for anything. The purpose of 

the system was simply to generate N interrupt signals and then check if N indi-

cator messages with the correct amount of data were received. If the generated 

interrupt and received indicator counts match, the firmware has handled all in-

terrupts. 

Also, the RoKiX Windows GUI client was used to run an actual KX122 at 

25.6 kHz, and the output data rate display of the GUI was confirmed to con-

stantly be above 25.6 kHz as shown in figure 3. The internal GPIO interrupt and 

handled GPIO interrupt counters of the firmware also matched, indicating that 

no interrupts had been missed. 
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5 CONCLUSION 

The aim of being able to achieve 25.6 kHz when streaming 3-axis accelerome-

ter data with Kionix KX122 and Cypress CY8CKIT-059 was achieved. Admitted-

ly, the reliability is not 100% as the host may stall USB traffic for an indetermi-

nate amount of time and the firmware does not have unlimited buffering capabil-

ity. 

Of the investigated software performance analysis tools, the simplest method, 

GPIO pin toggling, proved to be the most usable option for this project due to its 

low impact on performance and ease of use with the small codebase. A sam-

pling profiler may have been worth the setup effort in a larger codebase, where 

the execution paths would not have necessarily been as easy to follow as they 

were in the RoKiX firmware. 

The optimization process involved thinking of alternate ways to do things and 

trying them out. The Cypress SDK sometimes made this harder than it had to 

be with somewhat confusing API design choices and suboptimal documenta-

tion. Many of the attempted optimizations unfortunately did not result in meas-

urable benefits. The DMA-utilizing optimizations in particular were disappoint-

ing. The largest gains were made from the SPI hardware FIFO-usage optimiza-

tions. Small improvements, such as moving invariant operations out of loops 

and removing an unnecessary copy, collectively closed the remaining gap for 

reaching the target sampling rate. Table 2 shows a compiled view of the at-

tempted optimizations and their effects. 

Future optimizations for the hardware-firmware combination used in this thesis 

may include finding a way to use USB efficiently with DMA or restructuring the 

firmware internals. Achieving the next, higher sensor output data rate of 

51.2 kHz would very likely require more performant hardware and firmware op-

timization for that hardware.  
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TABLE 2. Attempted and considered optimizations and their effects. (NA indi-

cates that the optimization did not work at all or was not attempted.) 

Optimization or change Effect on performance 

Better use of SPI HW FIFOs Major benefit 

Removal of one USB copy Minor benefit 

Hoisting invariants out of loops Minor benefit 

Use of DMA with SPI1 Minor benefit 

Copy loops to memcpy calls None 

Selective use of the restrict qualifier None 

Use of DMA with USB Negative 

More aggressive compiler optimizations NA 

Use of isochronous USB transfers NA 

1 The optimization is mutually exclusive with the SPI HW FIFO optimizations. 
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