

Veeti Kraft

PERFORMANCE OPTIMIZATION OF AN EMBEDDED SYSTEM

PERFORMANCE OPTIMIZATION OF AN EMBEDDED SYSTEM

 Veeti Kraft
 Bachelor’s Thesis
 Spring 2019
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Device and Product Design

Author: Veeti Kraft
Title of the bachelor’s thesis: Performance Optimization of an Embedded Sys-
tem
Supervisors: Juha Niemi (ROHM Semiconductor) and Kari Jyrkkä (OUAS)
Term and year of completion: Spring 2019 Number of pages: 34

ROHM Co., Ltd and Kionix, Inc. had a need for a sensor evaluation kit that
could process sensor samples at a rate of 25.6 kHz. Sufficiently fast sensors
and PC evaluation software already existed but there was no suitable hardware-
firmware combination to bridge the gap between computer and sensor. The aim
of this thesis was to optimize the firmware of one supported hardware platform
to achieve the required sample-processing rate. The work was commissioned
by ROHM Semiconductor GmbH.

The work started with research into available tools for measuring the execution
time of embedded code. Next, significant bottlenecks were discovered by care-
fully reviewing the firmware and measuring the execution times of various code
sections. Once the bottlenecks were found, possible optimizations were re-
searched and attempts were made at applying them.

The applied optimizations allowed the chosen evaluation kit firmware to process
6-byte wide sensor samples at a rate of 25.6 kHz. The largest performance
benefits were gained from general optimizations, such as hoisting invariant
checks out of loops, and by optimizing the usage of SPI hardware FIFOs when
reading from the bus.

Keywords: Software Performance, Embedded Systems, Sensors, SPI, USB

 4

TABLE OF CONTENTS

ABSTRACT 3

TABLE OF CONTENTS 4

VOCABULARY 5

1 INTRODUCTION 6

2 ROKIX IOT DEVELOPMENT PLATFORM 7

2.1 Hardware 8

2.2 Firmware 11

2.3 Client software 11

3 SOFTWARE PERFORMANCE ANALYSIS TOOLS 13

3.1 GPIO pin toggling 13

3.2 Execution time profiling in software 16

3.3 Common profilers 18

3.4 Hardware-assisted profiling 18

3.5 In-program statistics 19

4 OPTIMIZATION 20

4.1 General 20

4.2 USB 22

4.3 Choosing the sensor buses 24

4.4 SPI 26

4.5 Verification 30

5 CONCLUSION 31

REFERENCES 33

 5

VOCABULARY

BLE Bluetooth Low Energy, a wireless personal area network technolo-

gy

CDC-ACM Communication Device Class (Abstract Control Model), a USB

subclass definition

CPLD Complex Programmable Logic Device

FIFO First-in, First-out

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit, an inter-IC serial communication protocol

ISR Interrupt Service Handler, a function that is executed when an inter-

rupt occurs

ODR Output Data Rate, the frequency at which a sensor refreshes its

outputs

PLL Phase-Locked Loop

RX Receive

SAR Successive Approximation Register, a type of analog-to-digital con-

verter

SDK Software Development Kit

SPI Serial Peripheral Interface, an inter-IC serial communication proto-

col

SPS Samples per Second

TX Transmit

This document uses decimal and binary prefixes; e.g. 1 kB is equal to 103 B

and 1 KiB to 210 B.

 6

1 INTRODUCTION

ROHM Co., Ltd. and Kionix, Inc. (a subsidiary of ROHM Group) develop sen-

sors as part of their product portfolio, and they offer various sensor evaluation

kits. The most recently published evaluation solution is the RoKiX IoT Develop-

ment Platform, which is a “complete offering of HW and SW for sensor evalua-

tion purposes” (1, p. 2). The development platform software can be used with a

sensor node with embedded sensors or a combination of a development board

(e.g. Arduino Uno), adapter board, and sensor boards that are compatible with

the adapter board. The development platform software provides a proprietary

firmware for the development board and various client programs that run on

computers or smartphones. The firmware abstracts the various supported

hardware platforms into one interface that the client programs use.

One of the supported hardware platforms, Cypress CY8CKIT-059 with a RoKiX

Adapter Board and a Kionix accelerometer, was intended to be suitable for

high-speed sensor evaluation but could not achieve the desired sample pro-

cessing rate of 25.6 kHz. The aim of this thesis was to discover performance

issues and find methods to optimize them so that the performance target could

be reached.

https://www.rohm.com/sensor

 7

2 ROKIX IOT DEVELOPMENT PLATFORM

The RoKiX IoT Development Platform is a sensor-evaluation platform that was

released in November 2018 and is used in this thesis. The platform can be split

into three major components: host adapters, sensor hardware, and client soft-

ware as illustrated below, in figure 1.

FIGURE 1. RoKiX IoT Development Platform top-level components.

 8

Usually, a computer or smartphone cannot be connected to a sensor directly;

hence host adapters and adapter boards are used to bridge sensors to client

devices. The adapter boards and sensor evaluation boards work in union to

connect the hardware together, and the host adapter provides a uniform way for

the clients to control and read the sensors. The host adapter not only serves as

a bridge but it also provides some convenience and performance-related fea-

tures, such as reading a sensor register on GPIO interrupt or writing to a regis-

ter periodically, both of which are faster and more accurate time-wise than poll-

ing interrupt registers or timing intervals on the client side. (1.)

2.1 Hardware

Some RoKiX evaluation kits come with an off-the-shelf embedded development

kit (e.g. Arduino Uno or Cypress CY8CKIT-059) combined with an adapter

board and some sensor evaluation boards that can be plugged easily into the

adapter board. The primary RoKiX evaluation hardware platforms include

onboard sensors but as they are not used in this thesis, they will not be men-

tioned further. (1.)

The hardware used in this project consists of a Cypress CY8CKIT-059 devel-

opment kit, a RoKiX Adapter Board, and a Kionix KX122 accelerometer. The

combination is displayed in figure 2. The remainder of this document will refer to

the RoKiX Adapter Board as the adapter board and to Cypress CY8CKIT-059

as the Cypress board for brevity.

The Cypress board features an ARM Cortex-M3-based PSoC 5LP microcontrol-

ler, which features a native full-speed USB, SAR and Delta-Sigma ADCs, DMA,

and CPLD-based programmable logic. SPI supports frequencies up to 18 MHz,

and I2C can achieve up to 1 Mb/s. The CPU has a maximum operating frequen-

cy of 80 MHz, and its clock is generated with a configurable PLL, which allows

for considerable freedom in choosing clock frequencies. (2, p. 1.)

The low price, compatibility with an adapter board, and adequate specified per-

formance of the Cypress board were major reasons for choosing the board for

the high-performance evaluation kit.

 9

FIGURE 2. RoKiX Adapter Board (1), Kionix KX122 evaluation board (2), and

Cypress CY8CKIT-059 (3).

The only requirements for the sensor were that it must support a 25.6 kHz tri-

axis accelerometer output data rate (ODR) and at least SPI. The chosen sen-

sor, Kionix KX122, is a tri-axis accelerometer with an integrated buffer, some

algorithms (e.g. tap detection), and support for both I2C and SPI. The highest

supported ODR is 25.6 kHz, and the highest acceleration range is ±8 g. It

comes in a small 2x2x0.9 mm LGA package. Certain other Kionix accelerome-

ters, such as KX112, also met the requirements and could have been used. As

long as the sensor meets the aforementioned requirements, the choice is not an

important one because once the system has been improved so that it is capable

of processing samples at 25.6 kHz, any similar sensor can be used at that rate.

(3; 4.)

Surface-mount sensors, such as the chosen KX122, cannot easily be connect-

ed to a microcontroller’s GPIO pins, so a sensor evaluation board is used in-

stead of a bare sensor. The Kionix sensor-evaluation board provides a 14-pin

 10

connector and supporting components for the sensor and is directly compatible

with the adapter board. ROHM sensors have separate evaluation boards with

different connectors. As they are not used in this project, they will not be dis-

cussed further.

The adapter board support for development kits includes Arduino Uno, several

Cypress PSoC kits, and Raspberry Pi. Adjustable level shifters are included on

the board for I2C and SPI communication between hardware that uses different

I/O voltages. On the sensor-connector side, there is support for Kionix 14-pin

evaluation boards, ROHM 5 or 4-pin sensor shield modules, and RoKiX 24-pin

add-on boards. (1.)

 11

2.2 Firmware

The purpose of the firmware is to offer a uniform interface for manipulating sen-

sors and streaming sensor data from a microcontroller to a computer or

smartphone. The interface has been implemented as a binary-message based

system. The interface uses the request-response pattern and it can be used to

control various features offered by the firmware. The interface is mostly plat-

form-independent; the same messages can be used regardless of the underly-

ing hardware platform. However, not all platforms support all features, and

GPIO pin numbers are not portable.

The firmware code has been written in ISO C99 (5) and is split into a portable

common core and platform-specific implementations of the platform API that the

core uses to control hardware. The core handles message serialization and

deserialization and delegation of hardware operations to the hardware via the

platform API. The core itself does not directly use any platform-specific features

(e.g. vendor APIs or hardware registers). It restricts itself to only use parts of the

C standard library and the platform API, which is a platform-independent ab-

straction over the necessary hardware. The abstraction was created to permit

the re-use of the portable parts of code by separating the platform-specific parts

behind an interface that can be implemented separately for each platform.

2.3 Client software

The three major clients available are RoKiX Windows GUI (figure 3), RoKiX Py-

thon CLI, and RoKiX Android App. They offer interfaces for editing sensor regis-

ters, streaming sensor data, and collecting or displaying data. The Windows

GUI and the Android App have graphical user interfaces, whereas the Python

CLI has a command-line oriented interface. The Android App only works with

Bluetooth-capable RoKiX hardware, and thus cannot be used with the Cypress

board. The GUI and CLI work with both USB and Bluetooth. The CLI cannot

achieve the high data rates used in this project and thus the only client that

works with the Cypress board at high data rates is the Windows GUI.

 12

FIGURE 3. 3-axis acceleration data at 25.6 kHz output data rate (ODR) in

RoKiX Windows GUI's plotter-view.

 13

3 SOFTWARE PERFORMANCE ANALYSIS TOOLS

The firmware has to be able to process samples at the frequency of the output

data rate of the sensor and it is thus a real-time system. The time window for

execution is fixed per sensor ODR and thus it is very useful to be able to meas-

ure the execution times of various parts of the system. The measured execution

times can tell which parts of the system are taking the largest portions of the

available time-window; the parts that consume the most are often good candi-

dates for optimization. The ability to measure execution times is also vital for

measuring the effects of attempted optimizations.

All performance profilers, which are not assisted by hardware, add some addi-

tional strain to the system under test, which can impact the measurements

themselves. The tools also have other qualities that affect measurement resolu-

tion, convenience, and accuracy. With a 25.6 kHz sensor ODR, the entire exe-

cution time-window in this project is only a mere 39 µs, and thus both resolution

and accuracy are important.

3.1 GPIO pin toggling

An oscilloscope or a digital analyzer can provide good but somewhat inconven-

ient measurement capabilities in conjunction with toggling GPIO pins in firm-

ware. This requires that there are available pins for this purpose. The Cypress

board had many unused pins, so this was not an issue. The code below shows

an example of measuring the execution time of a function.

pin_set();
function_of_interest();
pin_clear();

The above pin toggling will cause a high pulse that is as long as the execution

time of the measured function. The pin-toggling functions were defined as inline

functions in a header file to avoid the function call overhead. The toggling will

cause a minor performance difference but it is typically a very cheap operation

(one register write for setting or clearing) and was measured to take approxi-

 14

mately 200 ns on Cypress. Such a small time was considered to be insignificant

in this case.

It is important to add compiler memory barriers to the pin-toggling functions be-

cause otherwise the compiler may, in some cases, reorder the statements as

part of its optimization passes. An example of a potential reordering is shown

below.

pin_set();
pin_clear();
function_of_interest();

The above example will obviously produce incorrect timings when the pulse is

measured with an oscilloscope since the measured function is outside the pin

toggles. Compiler barriers are not provided in a portable way by C99, so a com-

piler specific way of implementing the barrier had to be used. The Cypress tool-

chain uses GNU GCC as the compiler, which uses the below inline assembler

statement as a barrier (6, p. 460).

__asm__ volatile ("":::"memory")

CPUs that do out-of-order execution (e.g. modern Intel, AMD, and high-end

ARM processors) would also require a CPU-specific memory barrier to prevent

reordering the GPIO register writes but the Cortex-M3 used in the PSoC 5LP

MCU does memory accesses in-order and thus the compiler barrier alone is

sufficient (7).

Figure 4 shows an example of measuring main loop, SPI-read, and USB write

execution times.

 15

FIGURE 4. Execution time profile for an SPI sensor read and USB write. The

MAIN signal measures the main loop time and serves as a reference point for

other measurements.

The execution times can differ and thus it is important to know the maximum

time for the measured code. This can be achieved by using a pulse-width trig-

ger on the oscilloscope and incrementing the pulse width until the oscilloscope

cannot trigger anymore. This trigger feature is not supported by all oscillo-

scopes but the PicoScope 5243A used in this project had support for it, allowing

the measurements to be done. If measuring only one thing and the execution

time differs only by small amounts, the persistence display mode (see figure 5)

can be a more convenient way to measure minimum and maximum times. The

mode superimposes multiple collected waveforms on the same view, allowing

the maximum time to be measured from the longest captured pulse. The mode

is unsuitable for multiple measurements or large differences because in those

cases, the pulses have a good chance of overlapping with each other, rendering

pulse edges indistinguishable from each other.

 16

FIGURE 5. Oscilloscope capture in the persistence display mode. The colors go

from blue through yellow to red as more samples are collected of the same

waveform.

If measuring more than one action per channel, it is necessary to dedicate one

channel to some stable reference point, such as the main loop, so that the puls-

es can be ordered properly. Without a reference point, it is impossible to tell

which pulse matches the first pin toggle in the code.

The main drawbacks to this method are that it involves a lot of manual work and

measuring several points at once is difficult due to it requiring multiple pins and

channels. It is however cheap to set up, it is compatible with every microcontrol-

ler that has available GPIO pins, it incurs very little overhead and provides a

visual execution time graph as a side effect.

3.2 Execution time profiling in software

After noticing that the pin-and-oscilloscope method was somewhat cumbersome

when dealing with several simultaneous, possibly nested, measurements, an

attempt was made to write a simple and fast execution time profiler library in C.

The library API was developed to provide functions for initialization, starting a

delta-time measurement, stopping a delta-time measurement, and printing sta-

tistics about the collected samples. The library itself does not automatically in-

 17

strument code sections; the user must manually add calls to the measurement

functions of the library around the code sections of interest. Overlapping meas-

urements were supported by storing the data of each measurement in separate

locations. The delta-times were stored as 32-bit unsigned integers with the time

unit being platform-specific.

The library was written to be portable and thus it does not rely on platform-

specific behavior. Due to this, users must define a specific function for retrieving

a timestamp from a monotonic clock. (For Cypress, the system tick module, a

24-bit timer clocked by the CPU clock, was used as a time source.) For conven-

ience, users can also override the end-of-line marker and formatted print func-

tion. (Embedded platforms do not often support using printf directly by default.)

An example of a typical usage for this profiler is shown below.

perf_init();
/* The arguments are free-form names for the configs. */
struct perf_config *loop_cfg = perf_create("main");
struct perf_config *spi_cfg = perf_create("spi");

for (;;) {
 /* Measure main loop execution time. */
 perf_sample_begin(loop_cfg);
 /* do other work ... */

 /* Measure SPI write execution time. */
 perf_sample_begin(spi_cfg);
 spi_write(/* ... */);
 perf_sample_end(spi_cfg);
 perf_sample_end(loop_cfg);

 /* Print statistics if anything is sent via serial. */
 if (uart_get_char()) {
 perf_print_stat(loop_cfg);
 perf_print_stat(spi_cfg);
 }
}

The API of the profiler proved cumbersome in use, as the measurements were

often done in separate files and having to keep track of the perf_config struc-

tures across files was inconvenient. This usability issue could have been im-

proved by keeping the structures within the profiler module and accessing them

 18

by name or identifier in user code. This was not done because it would have

incurred even more overhead due to the lookups.

The overall performance impact of the profiler was larger than with the oscillo-

scope-and-GPIO method because of the delta-time calculation and polling the

serial line for a trigger to print the statistics. The delta-time sample buffers re-

sided on the heap and the amount of samples was thus restricted by heap size

(8 KiB on Cypress). Overall, the library was less convenient and incurred a

larger execution speed and memory overhead than when toggling GPIO pins

and measuring pulse lengths with an oscilloscope. Due to the aforementioned

factors, the library was not used for measurements in this thesis.

3.3 Common profilers

C developers in hosted environments often use tools, such as GNU gprof, Linux

perf, or profilers built into IDEs. Some of these tools are operating system spe-

cific and by their nature will not work in a free-standing environment. GNU gprof

on the other hand would have to be ported to bare-metal targets as it relies on a

special system call and file system support, which are often not present on em-

bedded targets (8). The Cypress IDE for PSoC 5LP development, PSoC Crea-

tor, does not have any support for performance profiling of any kind. Some of

these profilers (e.g. GNU gprof) do not accurately measure function execution

times but instead approximate it with function call counting and program counter

sampling (8). For the aforementioned reasons, many profilers used in hosted

environments are not directly suitable for use in free-standing environments.

3.4 Hardware-assisted profiling

The ARM Cortex-M3 used in the Cypress PSoC 5LP MCU has been configured

with the optional Embedded Trace Macrocell (ETM), which is a “real-time trace

module providing instruction and data tracing of a processor” (2, p. 61; 9, p. 16).

Its use requires a trace-enabled debug probe. Such probes are expensive (e.g.

SEGGER J-Trace PRO for Cortex-M costs 1,400 EUR) and were not available

for this thesis (10; 11). ETM was not used in this project as it was considered

too expensive and excessive for the needs of this project.

 19

However, the Cortex-M3 has another module, the Data Watchpoint and Trace

(DWT) unit, which can be used in conjunction with the Instrumentation Trace

Macrocell (ITM) to sample the program counter and send it to another device

via the Serial Wire Viewer (SWV) (9; 12). The DWT can also be used to gener-

ate data about clock cycles, folded instructions, load store unit operations, sleep

cycles, cycles per instruction, and interrupt overhead (12). These features

would have allowed some form of hardware-assisted performance analysis. Un-

fortunately, Cypress’s own IDE did not support any form of profiling and thus it

would have been necessary to find and configure third-party tools. No suitable,

easy to use tool was found after a quick search. The hardware profiling features

seemed overly complex and hard to use when compared to the GPIO pin tog-

gling method. Also, there was insufficient time to investigate the hardware-

assisted approaches further. For these reasons, the hardware-assisted meth-

ods were not used in this thesis.

3.5 In-program statistics

While investigating the USB performance, it was noticed that the USB write

FIFO sometimes fills up, which forces the firmware to wait until the FIFO has

more space. This causes delays that mean that some sensor samples are going

to be lost at high sampling rates. Ideally, the FIFO would never block, but a

suboptimal implementation or a busy USB host may cause stalls in the USB

traffic, which causes the FIFO to fill up. A software counter was added for keep-

ing track of how many times the firmware has to wait for a free FIFO slot. The

counter is only accessible by reading the variable with a debugger.

In a typical sensor data streaming case, the sensor is configured to assert a

data-ready interrupt signal every time the sensor finishes sampling. The firm-

ware is then configured to use the sensor interrupt pin as an interrupt source for

performing actions. It is important to know whether the firmware is able to han-

dle all interrupts in time in order to avoid losing sensor samples. For this reason,

two more debugger-readable counters were added for the amount of GPIO in-

terrupts received and the amount of GPIO interrupts handled.

 20

4 OPTIMIZATION

The aim was to be able to read 3 two-byte acceleration values from a sensor

and to send them to a client application at 25.6 kSPS. The amount of time the

firmware has to do all of this can be calculated by taking the reciprocal of the

25.6 kSPS processing rate, which is approximately 39 µs. The firmware is al-

lowed to occasionally exceed the aforementioned time frame as long as no

sensor samples are lost.

As the sensor itself was already sufficiently fast, and the RoKiX Windows GUI

client had already been proven to be fast enough, so they were excluded from

optimization. That left three major components to investigate: USB, firmware,

and the sensor-bus (I2C or SPI).

Execution times were measured with the GPIO pin toggling method described in

section 3.1 because it was sufficiently accurate and the easiest to set up and

use with the relatively small codebase of the RoKiX firmware. The performance

overhead of the method was also low enough not to disturb the operation of the

firmware.

4.1 General

Optimizing the higher-level firmware code, which did not deal with the hardware,

involved code-reviewing and applying old, but effective, optimizations.

One of these old and well-known optimizations was to hoist invariant checks out

of loops, so that they are done only once. In this case, event parameter valida-

tion was moved from an event loop into the event configuration function, so that

the checks are done only once during the configuration instead of doing them

on every iteration of the event loop.

An attempt was made to enable Link-Time Optimization (LTO) and to switch

from the -Os optimization level to the more aggressive -O3 level in the compiler

to generate more efficient code (6, p. 111–113; 13, p. 683). The attempt failed

as the changes caused several errors deep in vendor code. The errors might

 21

have been caused by the vendor code being incorrect or the compiler being too

old (ARM GCC 5.4-2016-q2-update). Upgrading the compiler was not an option

because only one version was supported by the vendor, and fixing the vendor

code would have been infeasible due to the potential size of the effort. Hence,

adjusting compiler optimizations was not a good avenue for increasing perfor-

mance.

The firmware code used manual byte-by-byte copying loops in certain places

and some of them were replaced with calls to the C standard library function

memcpy, which has often been hand-optimized by the library vendor to perform

copies efficiently. Unfortunately, the performance benefit from these changes

was not measurable. This may have been due to most copies in the firmware

being very small (less than 10 bytes).

In C, pointers that follow the aliasing rules can alias each other (5, p. 68). This

possibility of aliasing can cause the compiler to reject many good optimization

opportunities because it cannot always determine whether separate pointers

actually alias each other or not. One of the most troublesome aliasing cases are

character pointers (often used for buffers), which are allowed to alias any ob-

ject, causing the compiler to be very pessimistic in determining whether some-

thing is aliased or not (5, p. 68). C99 defines a restrict qualifier for object point-

ers, which can be used to tell the compiler that the object pointed to by the re-

stricted pointer is not modified by any other pointer in the block in which the re-

stricted pointer was declared (5, p. 109). In other words, the qualifier can be

used to tell the compiler that the programmer guarantees that the restricted

pointer is not aliased by anything in a block. The sole purpose of the qualifier is

to allow the compiler to optimize more aggressively (5, p. 109). An example of

using restrict is shown below.

void pmemset(char *buf, int * restrict val, size_t size) {
 for (size_t i = 0; i < size; ++i) {
 // Without restrict, the compiler would be forced
 // to reload val on every iteration, because the
 // store to buf might modify val.
 buf[i] = *val;
 }
}

 22

In the example function, the restrict qualification on val allows the compiler to

see that it cannot be modified via buf. This allows the compiler to load val into

a register once before the loop instead of loading it on every iteration of the

loop.

Restrict-qualifiers were added to pointer parameters in certain key firmware

functions but the effects were not measurable.

4.2 USB

The firmware exposes its services over USB using the CDC-ACM subclass,

which is an official subclass defined by USB Implementers Forum, Inc. (14,

p. 7). It is intended for PSTN modems but it can be used in embedded products

as an easy way to transfer bulk data bi-directionally. Common operating sys-

tems, such as GNU/Linux and Windows, have built-in drivers for the subclass

and thus there is no need to write a custom driver. With the exception of actual

modems, devices that use CDC-ACM for simple data transfer do not implement

the mandatory support for the modem command set defined in ITU V.250 and

thus they are not strictly conformant.

The CDC-ACM driver is implemented by the USB stack of the operating system,

and optimizations on it are outside the scope of this project. All of the optimiza-

tions focus on writing because reading is only done for control messages, which

are usually not used during an active stream for anything but stopping streams.

The USB hardware on the Cypress board communicates at full speed (12 Mb/s

nominal signaling rate) (2, p. 1).

The firmware uses bulk data transfers for transferring data over USB. According

to Cypress (15, p. 12), isochronous transfers are “intended for streaming data to

a host through a constant and real time stream of information,” which indicated

that they may be well suited for the real-time needs of the firmware. The primary

performance-related differences between the two transfer types are that isoch-

ronous offers a higher maximum packet size (1023 B vs 64 B), a guaranteed

bandwidth, and a bounded latency (16, p. 21). However, unlike bulk transfers

with CDC-ACM, isochronous transfers require a custom driver on the host side

 23

and do not guarantee delivery. Due to these factors, switching to isochronous

transfers was considered non-viable and was not attempted.

After reviewing the USB transmission code written on top of the vendor USB

driver, it was discovered that there was one unnecessary 64-byte copy in the

write path. The copy was in the write coalescing algorithm that was used in the

USB code module, which combined multiple writes into a packet and then cop-

ied the packet into the transmission FIFO, from which the packet was eventually

sent. The copying of the combined packet into the FIFO was unnecessary as a

packet could be reserved from the FIFO and the writes could be coalesced di-

rectly into the FIFO-allocated packet. The USB module was modified to do the

aforementioned direct combining into a FIFO packet.

In search of better parallelization, DMA was tried out with USB. The attempt

begun with the development of a very simple firmware that would only write

constant data to USB as fast as it could and a simple C++ client program that

would ingest the data and calculate average throughput. These tools were writ-

ten for benchmarking the USB API function call execution times and approxi-

mate the USB throughput with and without DMA. (The throughput was approxi-

mate as it was calculated by dividing the amount of bytes received with the

amount of time the transmission took, which does not take buffering or variance

into account.)

The preliminary results from benchmarking, shown in table 1, seemed promis-

ing and there were no issues with DMA in the simple test firmware. In particular,

the execution time reduction with DMA seemed promising.

TABLE 1. Measured USB performance with and without DMA using full 64-byte

packets.

 Write(…) execution time (µs) Average throughput (kB/s)

No DMA 10.5 740

DMA 3.5 940

Enabling DMA for USB was an easy process that involved changing the

memory management scheme of the USB component and ensuring that USB

 24

write buffers have lifetimes that match the duration of the DMA transactions.

While there were no issues with DMA in the test firmware, the actual production

firmware wrote only zeros to USB when DMA was enabled. After a significant

amount of time spent debugging and reading through Cypress forums, the

cause was discovered to be a bug in Cypress’s USB driver. The bug was

worked around by temporarily removing the bug-triggering non-critical function

call from the firmware.

Unfortunately, the switch to DMA caused the approximate maximum sample

processing rate to drop from 25 kHz to 23 kHz, which directly contradicted the

results gathered from the simple benchmark. No obvious cause was found for

the discrepancy. The USB DMA configuration was entirely within vendor code,

so optimizing it was not an option. Writing a custom firmware driver for using

USB with DMA was briefly considered but would have taken too much time. As

a result, the choice was made not to use DMA with USB.

4.3 Choosing the sensor buses

The hardware used in this project supports both I2C and SPI for sensor com-

munication. There was a need to choose which of these buses would receive

optimization and be supported for high-speed sampling.

The selection started by specifying minimal requirements for the buses. The first

requirement was that the bus should at least theoretically support the bandwidth

required for a 25.6 kHz sample processing rate. This requirement assumes that

the sensor-bus can occupy the entire available time window, which is not the

case. The requirement is thus not strict enough for a final decision but sufficient

to prune out candidates that are far too slow for this project. The absolute mini-

mum sensor-bus bandwidth requirement for the use case of this project can be

calculated as

𝑏 = 𝑥𝑓s

where

𝑓s is the sampling frequency

𝑥 is the size of a transaction in bytes.

 25

Kionix and ROHM digital sensors use a very simple protocol for manipulating

registers via serial buses. In order to read one or more consecutive registers,

the address of the first register to read must be written to the slave by the mas-

ter. Then, the master can read as many consecutive registers as necessary; the

sensor will internally increment the register address by one every time a byte is

read. This internal, automatic address manipulation is known as auto-increment.

Registers that are not consecutive must be read in separate transactions. In

I2C, the transfer direction (i.e. write or read) is indicated with a special RW-bit

that is part of the slave addressing procedure. SPI, on the other hand, is full-

duplex and does not have a built-in mechanism for indicating whether a register

is being written to or being read from. Kionix sensors have thus reserved the

most significant bit of the register addresses for indicating the direction.

The acceleration data is stored in consecutive registers in the KX122 sensor

and thus the data can be read in one transaction. Each sample is two bytes

wide and the register address is one byte. Reading the acceleration samples for

three axes hence requires a 7-byte transaction. From these values, it can be

calculated that the absolute minimum sensor-bus bandwidth requirement for

this project is 1434 kb/s.

The I2C bus on the Cypress is operated at full speed (400 kb/s) but due to clock

restrictions, the actual clock line frequency is 375 kHz, which translates to a

bandwidth of approximately 375 kb/s. I2C also has some innate overhead (slave

addressing, per-byte ACK-bit, start, restart, and stop), which further reduces the

effective bandwidth. Based on these numbers, even if the overhead is not taken

into consideration, it is clear that I2C at 375 kb/s cannot meet the minimum re-

quirements. The Cypress board and sensor both support fast-mode plus

(1 Mbit/s), which would have been faster but the adapter board forces the use of

I2C pins that do not support such speeds (3, p. 17; 17, p. 1). However, even the

faster mode would not have met the required minimum.

SPI, on the other hand, is used at a 9.25 MHz signaling frequency, and has

nearly no overhead. This translates to a bandwidth of approximately 9.25 Mb/s,

which greatly exceeds the absolute minimum requirement and even leaves

 26

some time for other parts of the system to run. SPI was thus the only feasible

choice for the sensor bus.

4.4 SPI

The simplest optimization would have been to raise the signaling frequency to

something greater than 9.25 MHz. A 750 kHz increase to 10 MHz would have

been possible since the sensor supports a maximum SPI frequency of 10 MHz.

Unfortunately, this would have forced a 14 MHz drop in the Cypress CPU clock

from 74 MHz to 60 MHz as the SPI component must run at twice its signaling

frequency and there is no integral divider that could divide 74 MHz into 20 MHz.

(Increasing the CPU frequency to the nearest, greater frequency, 80 MHz,

would not have worked, because the frequency violates the tolerances of the

microcontroller.)

The time difference from a signaling frequency change can be calculated for a

transaction as

∆𝑡 =
𝑥

𝑓2
−
𝑥

𝑓1
,

where

∆𝑡 is the change in time

𝑥 is the amount of bits transferred

𝑓1 and 𝑓2 are the old and new frequencies, respectively.

Reading a Kionix sensor via SPI requires that a 7-bit register address combined

with a read-write bit is written to the sensor at the start of a transaction. Hence,

reading 6 bytes of sensor data causes a 7-byte transfer. In such a case, the

gain from a 750 kHz change in SCLK frequency to 10 MHz would only be a

mere 450 ns. Considering that the CPU frequency would have to be dropped by

14 MHz to achieve that, the change would likely only hurt overall performance.

Thus, it was decided that the SPI signaling frequency would not be changed.

A look at the bus signals with an oscilloscope (shown in figure 6) revealed that

there were significant transmission gaps between each transmitted byte. Each

 27

inter-byte gap consumed approximately 1 µs, which is as much time as is taken

by sending one byte. In other words, these gaps were reducing the bandwidth

by half. A thorough read of the datasheet of the SPI component and the source

code of the SPI driver indicated that these gaps are likely caused by the SPI

hardware not being given data at a fast enough rate.

FIGURE 6. Oscilloscope capture of the SCLK signal during a 6-byte sensor

read. (The first byte is the register address and a R/W bit).

The SPI module has two operating modes for buffering. The first mode is to only

use the 4-byte hardware to receive and transmit FIFOs. The other is to use the

software FIFO mode of the driver that keeps the data in RAM. The hardware

FIFO is fast but requires careful management so that neither FIFO overflows.

The RX FIFO in particular is easy to overflow since for every byte that is shifted

out of the TX FIFO, a byte is shifted into the RX FIFO. This means that writes

must ensure that there is space in the TX FIFO and also check that the RX

FIFO can accommodate for both the new write and everything currently in the

TX FIFO. The software FIFO mode has an interrupt service handler (ISR) that

moves data one byte at a time between the RAM TX and RX buffers and the

SPI hardware FIFOs. More precisely, the ISR writes a byte into the TX FIFO

when it is not full and reads a byte from the RX FIFO when it is not empty.

 28

The firmware used the software FIFO but after seeing that the hardware FIFOs

were not being utilized well, a new implementation was written. The implemen-

tation disabled the SPI interrupt mechanism and software FIFO implementation,

managing both hardware FIFOs manually in user-mode by writing into the TX

FIFO when there was no risk of overflowing the TX and RX FIFOs. The RX

FIFO was read whenever it was not empty to allow more space for writing into

the TX FIFO. The aim of keeping the TX FIFO as near to full as possible was to

ensure that the hardware would always have something to send so that it would

not have to stall the bus and wait for new data. Also, since the FIFO manage-

ment is done in user-mode, the negative effect of interrupt latency is avoided.

The optimized implementation still suffers from occasional gaps but they are far

fewer. The gaps are also significantly shorter at 250 µs. The reduction in gaps

and their duration is shown in figure 7.

The optimized implementation was tested by reading varying (1–18 bytes)

amounts of known, constant data from the configuration registers of the KX122

sensor and checking whether it matched expectations.

FIGURE 7. Oscilloscope capture of the SCLK signal during a 6-byte sensor

read with the FIFO-optimized implementation.

The SPI read function requires that the SPI FIFOs are empty in order to work

properly. This was ensured by clearing the FIFOs in the read function before

 29

performing the actual read. The FIFO-flushing was measured to take several

microseconds and it was decided that instead of ensuring that the FIFOs are

empty in the read function, all the other SPI functions would ensure that they

leave the FIFOs clean on exit. This moved the flushing cost from read to write,

which was beneficial since reading is a far more common operation than writing

in this system.

During the implementation of the FIFO-usage optimizing implementation, there

was a FIFO overflow bug the cause of which remained hidden for several

weeks, and it was suspected that the cause might have been a hardware bug.

During this time, an alternative approach using DMA was attempted. It was writ-

ten a test firmware that only did some simple SPI operations with DMA. A look

at the SPI SCLK signal with an oscilloscope showed that there were no gaps

between consecutive bytes during transmission, which seemed promising.

However, the execution time of the SPI-read function was worse than that of the

unoptimized version with identical transfer sizes. An attempt was made to re-

duce the amount of DMA configuration in the special case where the only SPI

operations are reads and the buffers and read sizes remain constant. The exe-

cution time for the special case was lowered to 12.5 µs, of which 6.1 µs was

consumed by bus signaling and the rest went into DMA configuration. The

overall read execution time remained larger when compared to the FIFO-

optimized version. While gapless transfer offers very good performance in gen-

eral, the fixed cost of DMA configuration dominates the time consumed when

doing small reads (e.g. 6 bytes in this project). The complexity of the implemen-

tation, bad best-case performance and even worse general performance ren-

dered the DMA option non-viable.

The cause of the FIFO overflow bug was found to be a FIFO upper limit that

was too large by one. The bug evaded discovery because there was a slightly

misleading comment above the upper limit comparison, which described why a

different, unrelated upper limit was too large by one. After the bug had been

fixed, the hardware FIFO-optimized implementation was taken into use.

 30

4.5 Verification

There was a need to check that all interrupts were being handled on time even

at the target sampling rate. For this purpose, a simple firmware and client were

developed. The firmware was written in C for a Nordic nRF52-DK development

board and it generates a known amount of interrupt signals at a predefined fre-

quency. The client was a small command-line tool written in C++ that configures

the RoKiX firmware to listen for interrupts and send data, to instruct the Nordic

firmware to start generating interrupt signals, and then to read the data forward-

ed by the firmware. The RoKiX firmware was configured the same way as it

would have been if it were used with a real sensor. The SPI MISO pin of the

Cypress board was grounded as the Nordic board did not support the required

SPI frequency and the read values were not used for anything. The purpose of

the system was simply to generate N interrupt signals and then check if N indi-

cator messages with the correct amount of data were received. If the generated

interrupt and received indicator counts match, the firmware has handled all in-

terrupts.

Also, the RoKiX Windows GUI client was used to run an actual KX122 at

25.6 kHz, and the output data rate display of the GUI was confirmed to con-

stantly be above 25.6 kHz as shown in figure 3. The internal GPIO interrupt and

handled GPIO interrupt counters of the firmware also matched, indicating that

no interrupts had been missed.

 31

5 CONCLUSION

The aim of being able to achieve 25.6 kHz when streaming 3-axis accelerome-

ter data with Kionix KX122 and Cypress CY8CKIT-059 was achieved. Admitted-

ly, the reliability is not 100% as the host may stall USB traffic for an indetermi-

nate amount of time and the firmware does not have unlimited buffering capabil-

ity.

Of the investigated software performance analysis tools, the simplest method,

GPIO pin toggling, proved to be the most usable option for this project due to its

low impact on performance and ease of use with the small codebase. A sam-

pling profiler may have been worth the setup effort in a larger codebase, where

the execution paths would not have necessarily been as easy to follow as they

were in the RoKiX firmware.

The optimization process involved thinking of alternate ways to do things and

trying them out. The Cypress SDK sometimes made this harder than it had to

be with somewhat confusing API design choices and suboptimal documenta-

tion. Many of the attempted optimizations unfortunately did not result in meas-

urable benefits. The DMA-utilizing optimizations in particular were disappoint-

ing. The largest gains were made from the SPI hardware FIFO-usage optimiza-

tions. Small improvements, such as moving invariant operations out of loops

and removing an unnecessary copy, collectively closed the remaining gap for

reaching the target sampling rate. Table 2 shows a compiled view of the at-

tempted optimizations and their effects.

Future optimizations for the hardware-firmware combination used in this thesis

may include finding a way to use USB efficiently with DMA or restructuring the

firmware internals. Achieving the next, higher sensor output data rate of

51.2 kHz would very likely require more performant hardware and firmware op-

timization for that hardware.

 32

TABLE 2. Attempted and considered optimizations and their effects. (NA indi-

cates that the optimization did not work at all or was not attempted.)

Optimization or change Effect on performance

Better use of SPI HW FIFOs Major benefit

Removal of one USB copy Minor benefit

Hoisting invariants out of loops Minor benefit

Use of DMA with SPI1 Minor benefit

Copy loops to memcpy calls None

Selective use of the restrict qualifier None

Use of DMA with USB Negative

More aggressive compiler optimizations NA

Use of isochronous USB transfers NA

1 The optimization is mutually exclusive with the SPI HW FIFO optimizations.

 33

REFERENCES

1. ROHM Co., Ltd. 2018. RoKiX Platform User’s Guide. Revision 001. Availa-

ble: https://github.com/RohmSemiconductor/RoKiX-IoT-Platform

2. Cypress Semiconductor Corporation. 2018. PSoC 5LP: CY8C58LP Family

Datasheet. Revision *M. Available:

http://www.cypress.com/file/45906/download

3. Kionix, Inc. 2018. ± 2g / 4g / 8g Tri-axis Digital Accelerometer Specifications.

Part number: KX122-1037. Revision 6.0. Available:

https://www.kionix.com/product/KX122-1037

4. Kionix, Inc. 2018. ± 2g / 4g / 8g Tri-axis Digital Accelerometer Specifications.

Part number: KX112-1042. Revision 6.0. Available:

https://www.kionix.com/product/KX112-1042

5. ISO/IEC 9899:1999. 1999. Programming languages — C.

6. Stallman, Richard – GCC Developer Community. 2015. Using the GNU

Compiler Collection. For GCC version 5.5.0. Date of retrieval: 10.12.2018.

Available: https://gcc.gnu.org/onlinedocs/gcc-5.5.0/gcc.pdf

7. ARM Limited. 2011. Does Cortex-M3 need Memory Barrier instructions?

ARM Technical Support Knowledge Articles. Date of retrieval: 21.12.2018.

Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13593.h

tml

8. GNU prof. Date of retrieval: 21.12.2018. Available:

https://sourceware.org/binutils/docs/gprof/index.html

9. ARM Limited. 2011. Embedded Trace Macrocell. ETMv1.0 to ETMv3.5. Ar-

chitecture Specification. Version Q. Available:

https://static.docs.arm.com/ihi0014/q/IHI0014.pdf

https://github.com/RohmSemiconductor/RoKiX-IoT-Platform
http://www.cypress.com/file/45906/download
https://www.kionix.com/product/KX122-1037
https://www.kionix.com/product/KX112-1042
https://gcc.gnu.org/onlinedocs/gcc-5.5.0/gcc.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13593.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13593.html
https://sourceware.org/binutils/docs/gprof/index.html
https://static.docs.arm.com/ihi0014/q/IHI0014.pdf

 34

10. Magnus Unemyr. 2016. The Ultimate Guide to ETM Instruction Tracing [Cor-

tex-M debugging]. Atollic TruePERSPECTIVES Blog. Date of retrieval:

14.1.2019. Available: http://blog.atollic.com/the-ultimate-guide-to-etm-

instruction-tracing-cortex-m-debugging

11. SEGGER Microcontroller GmbH. J-Trace PRO. Date of retrieval:

21.12.2018. Available: https://www.segger.com/products/debug-probes/j-

trace/

12. ARM Limited. 2010. Cortex-M3. Revision r2p0. Technical Reference Manu-

al. Available:

https://static.docs.arm.com/ddi0337/h/DDI0337H_cortex_m3_r2p0_trm.pdf

13. Stallman, Richard – GCC Developer Community. 2019. GNU Compiler Col-

lection Internals. For GCC version 9.0.0 (pre-release). Date of retrieval:

23.1.2019. Available: https://gcc.gnu.org/onlinedocs/gccint.pdf

14. USB Implementers Forum, Inc. 2007. Universal Serial Bus Communications

Class Subclass Specification for PSTN Devices. Available:

https://www.usb.org/document-library/class-definitions-communication-

devices-12 (file CDC1.2_WMC1.1/usbcdc12/PSTN120.pdf in the archive).

15. Cypress Semiconductor Corporation. 2017. PSoC 3 and PSoC 5LP – Intro-

duction to Implementing USB Data Transfers. Revision *M. Available:

http://www.cypress.com/documentation/application-notes/an56377-psoc-3-

and-psoc-5lp-introduction-implementing-usb-data

16. Compaq – Hewlett-Packard – Intel – Lucent – Microsoft – NEC – Philips.

2000. Universal Serial Bus Specification. Revision 2.0. Available:

https://www.usb.org/document-library/usb-20-specification (file usb_20.pdf

in the archive).

17. Cypress Semiconductor Corporation. 2015. PSoC Creator Component

Datasheet. I2C Master/Multi-Master/Slave. 3.50. Available:

http://www.cypress.com/documentation/component-datasheets/i2c-

mastermulti-masterslave

http://blog.atollic.com/the-ultimate-guide-to-etm-instruction-tracing-cortex-m-debugging
http://blog.atollic.com/the-ultimate-guide-to-etm-instruction-tracing-cortex-m-debugging
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/debug-probes/j-trace/
https://static.docs.arm.com/ddi0337/h/DDI0337H_cortex_m3_r2p0_trm.pdf
https://gcc.gnu.org/onlinedocs/gccint.pdf
https://www.usb.org/document-library/class-definitions-communication-devices-12
https://www.usb.org/document-library/class-definitions-communication-devices-12
http://www.cypress.com/documentation/application-notes/an56377-psoc-3-and-psoc-5lp-introduction-implementing-usb-data
http://www.cypress.com/documentation/application-notes/an56377-psoc-3-and-psoc-5lp-introduction-implementing-usb-data
https://www.usb.org/document-library/usb-20-specification
http://www.cypress.com/documentation/component-datasheets/i2c-mastermulti-masterslave
http://www.cypress.com/documentation/component-datasheets/i2c-mastermulti-masterslave

	1 introduction
	2 RoKiX IoT Development Platform
	2.1 Hardware
	2.2 Firmware
	2.3 Client software

	3 Software Performance Analysis Tools
	3.1 GPIO pin toggling
	3.2 Execution time profiling in software
	3.3 Common profilers
	3.4 Hardware-assisted profiling
	3.5 In-program statistics

	4 Optimization
	4.1 General
	4.2 USB
	4.3 Choosing the sensor buses
	4.4 SPI
	4.5 Verification

	5 Conclusion

