

Developing a Web Service
Databases, Security and Access Control

Markus Moilanen

Bachelor’s thesis
February 2019
Technology, communication and transport
Degree Programme in Media Engineering

Description

Author(s)

Moilanen, Markus
Type of publication

Bachelor’s thesis
Date

February 2019

Language of publication:
English

Number of pages

75

Permission for web publi-

cation: x

Title of publication

Developing a Web Service
Databases, Security and Access Control

Degree programme

Media Engineering

Supervisor(s)

Rantala, Ari
Manninen, Pasi

Assigned by

Protacon Solutions Oy

Abstract

The goal of the project, assigned by Protacon Solution Oy, was to develop work safety fa-
miliarization software called TyPe. The web application and service were built for compa-
nies to test their employees’ knowledge of occupational topics. The various common, yet
critical aspects of developing the web service included database design and management,
security measures and an access control implementation.

The web service was built using the popular PHP framework Symfony. It uses a MariaDB
database to store application data, such as courses, companies and users. On top of that,
JSON Web Token authentication was implemented for managing logged in users and au-
thentication alongside a set of firewalls and guards. Additionally, a customized heavy-
weight access control implementation was created due to the complex project require-
ments. The thesis covers the most essential aspects of developing said features, focusing
on the critical issues and solutions to them.

The primary result of the thesis is the product itself, which includes the web application
and web service. Along with the concrete results, the developers gained immensely useful
experience as well as new programming techniques and knowledge.

In the end, the project successfully fulfilled the specified requirements. There are certainly
more improvements that can be made to the software, even though certain aspects of it
received positive feedback from the clients. As a result of the successful release, more fea-
tures will be added when necessary.

Keywords/tags (subjects)

Web Service, Database, Security, Access Control, Software, PHP, Symfony, Doctrine,
Backend, Back-end, REST, JWT

Miscellaneous

https://janet.finna.fi/?lng=en-gb

Kuvaus

Tekijä(t)

Moilanen, Markus
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Helmikuu 2019

Julkaisun kieli
Englanti

Sivumäärä

75

Verkkojulkaisulupa

myönnetty: x

Työn nimi

Web-palvelun kehittäminen
Tietokannat, turvallisuus ja kulunvalvonta

Tutkinto-ohjelma

Mediatekniikka

Työn ohjaaja(t)

Ari Rantala
Pasi Manninen

Toimeksiantaja(t)

Protacon Solutions Oy

Tiivistelmä

Protacon Solutions Oy:lle tehdyn opinnäytetyön tavoitteena oli kehittää työturvallisuuspe-
rehdytysohjelmisto nimeltä TyPe. Rakennetun web-sovelluksen ja –palvelun avulla yrityk-
set voivat testata työntekijöidensä tietämystä heidän työnkuvaansa liittyen. Web-palvelun
kehittämiseen kuului useita kriittisiä ominaisuuksia, kuten tietokannan suunnittelua ja hal-
lintaa, turvallisuustoimenpiteitä ja kulunvalvontatoteutuksen kehitystä.

Web-palvelu rakennettiin käyttäen suosittua PHP-sovelluskehystä Symfonyä. Sovellustieto-
jen, kuten koulutusten, yritysten ja käyttäjien, tallentamiseen käytettiin lisäksi MariaDB-
tietokantaa. Kirjautuneiden käyttäjien hallintaan ja todentamiseen käytettiin JSON Web
Token –autentikaatiota ja konfiguroitiin palomuurit tarvittavilla asetuksilla. Projektin moni-
mutkaisen vaatimusmäärityksen takia siihen kehitettiin tavallista raskaampi mukautettu
kulunvalvontatoteutus. Opinnäytetyössä käydään läpi tärkeimmät ongelmat ja ratkaisut
näiden aihealueiden toteutuksesta.

Opinnäytetyön ensisijainen tulos oli itse web-sovelluksen ja –palvelun sisältävä ohjelmisto-
tuote. Konkreettisten tulosten lisäksi projektin kehittäjät saivat suunnattoman tärkeää ko-
kemusta ja oppivat uusia ohjelmointitekniikoita.

Loppujen lopuksi projektin tulos täytti tarpeelliset vaatimukset onnistuneesti. Vaikka ohjel-
mistoon voidaan toki tehdä parannuksia, on se saanut positiivista palautetta asiakkailta
muun muassa käytettävyyden kannalta. Menestyksekkään julkaisun ansiosta uusia toimin-
nallisuuksia kehitetään tarvittaessa.

 Avainsanat (avainsanat)

Web-palvelu, tietokanta, turvallisuus, oikeuksien hallinta, ohjelmisto, PHP, Symfony,
Backend, Back-end, REST

Muut tiedot

https://janet.finna.fi/

1

Contents

Terminology ... 6

1 Introduction ... 9

1.1 Background .. 9

1.2 Project Premise ... 10

1.3 Protacon Solutions Ltd .. 10

1.4 Thesis Objectives ... 11

2 Web Services .. 11

2.1 What Are Web Services? ... 11

2.2 Design Models ... 13

2.2.1 General Info .. 13

2.2.2 SOAP ... 14

2.2.3 REST .. 16

2.2.4 Other Alternatives .. 17

2.3 Development Frameworks .. 19

2.3.1 Symfony .. 19

2.3.2 Laravel ... 19

2.3.3 Node.js Frameworks ... 20

2.3.4 Other Alternatives .. 21

2.4 Database Types ... 21

2.4.1 Relational Databases .. 21

2.4.2 Non-Relational Databases .. 23

3 Development Choices and Project Setup ... 25

3.1 Selected Technologies ... 25

3.1.1 Symfony and MariaDB .. 25

3.1.2 Angular .. 25

2

3.2 Setting up the Project .. 26

3.2.1 Frontend Environment ... 26

3.2.2 Backend Environment... 26

4 Database Management ... 28

4.1 Doctrine Primer ... 28

4.2 Schema Design .. 30

4.2.1 Entities .. 30

4.2.2 Organizations .. 31

4.2.3 Entity Relations ... 33

4.3 Working with the Data .. 35

4.3.1 Serialization Groups .. 35

4.3.2 Symfony Forms ... 36

4.3.3 Lifecycle Events ... 38

5 Security .. 39

5.1 Authentication ... 39

5.1.1 JSON Web Tokens ... 39

5.1.2 Configuration .. 42

5.1.3 Authentication Service and Interceptor ... 44

5.2 Firewalls and Guards ... 46

5.2.1 File Downloads.. 46

5.2.2 Password Reset ... 50

6 User Roles and Access Control .. 52

6.1 User Roles .. 52

6.1.1 Role Descriptions .. 52

6.1.2 Changing the Active Company .. 53

6.2 The Importance of Access Control .. 54

3

6.3 Base Implementation .. 55

6.3.1 Access Control List .. 55

6.3.2 Access Control Filter ... 56

6.4 Access Control Entries ... 58

6.4.1 Entity Design ... 58

6.4.2 Creating Entries .. 59

6.5 Problematic Cases ... 61

6.5.1 Retroactive Access Rights ... 61

6.5.2 Creating Duplicate Entities ... 62

7 Discussion .. 63

7.1 Conclusions .. 63

7.1.1 Accomplishments ... 63

7.1.2 Design Flaws ... 64

7.1.3 Improvement Possibilities .. 64

7.2 Lessons to Learn .. 66

References ... 68

Appendices .. 73

Appendix 1. Screenshots of the TyPe web application. 73

Appendix 2. Stored Procedure for adding access rights to user information. 74

Figures

Figure 1. Communication between a client and a web server. 12

Figure 2. Usage statistics of web API models. .. 13

Figure 3. An example of a SOAP WSDL document. .. 15

Figure 4. GraphQL request and response. ... 18

4

Figure 5. Simple relational database schema. In this case, artists can have multiple

albums that belong to a single genre out of many. ... 22

Figure 6. Graph database visualized. ... 24

Figure 7. Visualization of a programming object and the corresponding database

table schema. ... 28

Figure 8. Class annotation for the course entity. ... 29

Figure 9. Description property annotation. ... 30

Figure 10. Paid feature retrieval from the database. The logic is handled differently

depending on if the user belongs to an organization or a normal company. 32

Figure 11. Organization property check for companies. The entity method returns a

boolean depending on if the relationship exists. ... 33

Figure 12. Annotation for a one-to-one relation. .. 34

Figure 13. Serialization groups annotation for the course description property. 36

Figure 14. User list view. .. 36

Figure 15. Form type mapping. .. 37

Figure 16. Course package entity form. The properties and options are added to the

FormBuilder object and the “mainImage” string value is transformed to an Entity. .. 38

Figure 17. Event listener configuration in subscribers.yaml. 39

Figure 18. Encoded and decoded JWT information. .. 40

Figure 19. Configuration for Lexik JWT and Gesdinet JWT bundles. Environment

variables are defined in a separate file. ... 41

Figure 20. Gesdinet JWT route configuration. ... 41

Figure 21. JWT creation event handler function. ... 42

Figure 22. User provider configuration. ... 43

Figure 23. Firewall configuration. .. 44

Figure 24. Access token retrieval from local storage. If the token has expired, a fresh

one is retrieved by using the refresh token. .. 45

Figure 25. Decoding the user data from a token after storing it in the local storage. 45

Figure 26. Cloning a request with an HTTP interceptor. The Authorization header is

attached to the cloned request and a new token is retrieved once it has expired. 46

Figure 27. Using a temporary link to download a file in Blob format. 48

Figure 28. Firewall configuration for file downloads. .. 49

Figure 29. GetUser function of the authenticator. .. 50

5

Figure 30. Password reset action. .. 51

Figure 31. Fetching available companies with Doctrine's QueryBuilder. 54

Figure 32. Access rights to resources for organization admins. 56

Figure 33. Simplified access control filter logic. ... 57

Figure 34. User filter constraint for work managers (PACKAGE_ADMIN). 58

Figure 35. Propagation of access rights to child entities. .. 60

Figure 36. Creating entries depending on the access role and company type. 60

Figure 37. Course form view. ... 63

6

Terminology

API

Application Programming Interface allows different programs or machines to com-

municate with each other by sending data, for instance an endpoint on a server.

Backend/Frontend

Backend refers to server-side implementations such as databases and web services

whereas frontend indicates client-side implementations, for instance web applica-

tions or websites.

Database

Database is a collection of data that is stored on a computer. Web services use data-

bases to manage information including users’ login information or products in an

online store.

Framework

Frameworks are extensions to programming languages, which are used for develop-

ing most modern web and mobile software. They allow developers to save time by

utilizing prebuilt features and reducing the need for boilerplate code. Occasionally

frameworks offer better maintainability and security depending on the framework.

Git

A common version control system, or VCS. Git saves changes made to the code and

keeps track of all the changes throughout the project. Web-based third-party hosting

services, such as GitHub and GitLab, store the changes on a remote server instead of

only on the local machine.

HTTP

Hypertext Transfer Protocol is a stateless protocol for sending hypertext documents,

including HTML, scripts, JSON and XML among others.

JSON

JavaScript Object Notation is a light-weight format for describing data. Despite its

name, it can be used by any number of programming languages outside of JavaScript.

7

The data in JSON files is formatted as key/value pairs similarly to properties in a pro-

gramming object. JSON that is sent over the Internet can be parsed to objects for use

in the application code. Due to its simplicity, it can also be easily read and written by

any human.

Middleware

Middleware is a broad term for software between two or more other software which

connects them together. When it comes to web software, middleware can be a com-

munication framework that sends requests from an application to the server.

Regular Expression

A pattern for finding a specific character sequence within text.

Singleton

A class that can only be instantiated once in the application runtime. Commonly used

pattern with services that are used widely inside an application.

SQL

Query languages, with the most common being SQL, are used to request information

from or save it to a database. The results of a query can then be used in the web

server code and sent back to the client.

State

In computer science, state means globally stored information in an application. The

information can be of previous application events or backend response data. The

properties of an object are not considered part of the application state.

URL

Uniform Resource Locator is a web address for a resource which can be accessed

through a browser or by sending a request. It consists of the protocol such as HTTP,

host name and domain name such as www.google.com, as well as any route specifi-

cations following them. URLs point to a specific IP address.

8

Web server

Web server can mean either the computer hardware, software or both of them run-

ning in unison. Essentially, web server hardware is used to host software, such as

APIs or static assets like websites, which are accessed through the Internet.

XML

Extensible Markup Language is a format for describing data. XML documents can be

used to specify all sorts of things e.g., information about a person or a machine.

Structurally, XML is a collection of tags which can nest more tags and attributes in-

side of them, similarly to HTML file structure. XML can be sent over the Internet and

converted into another format by using an XML parser, for instance by a web

browser or server.

9

1 Introduction

1.1 Background

The working life of a software developer is one of ever-changing variables. Brand

new technologies and techniques such as programming languages, architectural

styles and design patterns are constantly coming out and being improved further.

Having a good understanding of the technologies that are relevant to one’s work is

imperative to developing modern high-quality products in the software world. Alt-

hough legacy skill and knowledge cannot be underestimated, learning new things is

also necessary.

Every once in a while, when working on a software project, a developer may find the

selected technologies or a particular solution to be insufficient. If the need to switch

technologies is apparent early on, it can be viable to try something else, although it

can be problematic. Frankly, a great deal of it boils down to lack of knowledge and

experience in certain areas and can be solved by proper planning as well as infor-

mation gathering. That is when the understanding of different technologies and tech-

niques comes into play.

When it comes to developing a web service, there are several important matters to

consider. First of all, there are multiple types of databases for different purposes as

well as techniques for using them. Selecting the correct one for each use-case will

most certainly help in the long run for both development costs and learning pur-

poses. On top of that, there are various ways to handle security and user rights in-

cluding authenticators, firewalls, user roles and access control. Although many web

applications only have public data, in reality, a considerable amount requires setting

up a complex web of roles and rights.

These issues became a reality during the development of a software project. It

turned out that the requirements were more complicated than previously thought,

resulting in some unforeseen consequences. What are the best methods to use when

encountering such problems? Are there any counter-measures to actively mitigate

the issues? The thesis goes in-depth into the development of the project, specifically

on the server-side programming.

10

1.2 Project Premise

The goal of the project was to develop a software system for familiarization with

work safety, abbreviated TyPe. It includes a frontend web application and a backend

web service. In a nutshell, the application should allow the users to create courses,

which are essentially pop quizzes that are used to test other users’ knowledge of var-

ious topics. The exam results and other information can be viewed and managed by

administrative users. In practice, the amount of potential use-cases for the applica-

tion is huge due to the customization options and features.

In terms of scalability, the system has to support large organizations. Each organiza-

tion is essentially a client that pays for a license to use the service. Furthermore, the

organizations may have subsidiaries and subcontractors with considerable amounts

of employees in each one. Some companies may even employ freelancers who are

not directly linked to them. Not only that but each user can also work under multiple

companies with different roles and access rights.

1.3 Protacon Solutions Ltd

The project was assigned by Protacon Solutions Ltd, a subsidiary of Protacon Group.

Protacon Solutions is a software development company based in Jyväskylä, Finland

with multiple offices around the country. The company focuses on digitalization and

software development including creating web and mobile applications and services

as well IoT solutions. (Digitalisaatio n.d.) The project in question, TyPe, was one of

Protacon Solutions’ many original products.

The project was developed by a team of software developers employed by Protacon

Solutions at their office in Jyväskylä. The team consisted of developers with various

talents in frontend and backend development as well as user experience enhance-

ment. The development started in early 2018 with new features still in progress at

the end of the year.

11

1.4 Thesis Objectives

Naturally, the main goal of the thesis was to create a functioning system that meets

the requirements set by Protacon Solutions and its clients. It was difficult at times

due to the complex nature of the requirement specifications and lack of resources in

general. Although it took plenty of effort, a team of software developers undertook

the challenge to meet the specified requirements.

In addition, the thesis aims to shed light on some of the design choices made by the

developers and to spread knowledge about the associated techniques and technolo-

gies. Although the thesis focuses on a particular project, other development options

are also discussed to highlight their features and shortcomings. To share information

to other developers, the thesis covers some of the most critical issues and solutions

when it comes to developing a web service. The TyPe project also serves as a case

study of design choices, which includes discussion of its flaws and ways to improve

the software system.

The thesis also served as a method of self-learning. Learning about different develop-

ment options is highly useful since there is not enough time to study them thor-

oughly in normal day-to-day work. Not only that but there are also countless critical

aspects of server-side programming that are often ignored or hastily presented in

school curricula, resulting in low proficiency and experience when using them in a

workplace environment. For those reasons, the thesis was used to improve the au-

thor’s practical skills and knowledge in software development.

2 Web Services

2.1 What Are Web Services?

The blanket term web service can have different meanings for different people often-

times making it confusing. Essentially, a web service is a means of communication for

machines through a network, usually the World Wide Web (What Are Web Services

12

and Where Are They Used? 2013). Due to the vague nature of the definition, it co-

vers most server-side software for online stores, social media, management systems,

online video games and many mobile applications.

From a software developer’s standpoint, web services are associated with server-side

programming, also called backend programming. It means developing software that

ordinarily communicates with a frontend application such as a website. Both parties

communicate back and forth by sending requests and responses to each other (What

Are Web Services and Where Are They Used? 2013). The messages can contain data

about practically anything, whether it is submitted form data, a user’s login infor-

mation or metadata. Web services often utilize databases to save the received data

or load data to send back to the client.

Web services are accessed via transport protocols, such as HTTP and SMTP (Mueller

2013). One of the most common ways of accessing a web service for normal users is

through an application in a web browser. When a user interacts with a web applica-

tion, it sends requests to a dedicated web service in the form of XML messages using

one of the transfer protocols. Web services decode the data and perform any neces-

sary actions before returning a response in the same format. (What Are Web Services

and Where Are They Used? 2013.) Certain modern web services, for instance RESTful

web services, send JSON-based messages instead of XML. A simplified version of the

client-server communication process is illustrated in Figure 1.

Figure 1. Communication between a client and a web server.

13

Web services are occasionally mixed up with web APIs. Certainly, they are both re-

lated to machine-to-machine communication, although in slightly different ways. De-

spite the fact that all web services are APIs, not all APIs are services. They differ fun-

damentally in terms of their approach to communication. In general, web services

are somewhat tightly coupled with their web applications, whereas API requests re-

quire less knowledge of the server architecture to deliver a request. In the case of

RESTful APIs, they use HTTP methods such as GET and POST to redirect the request

to the appropriate destination. (Verma 2018.) In a sense, RESTful web services also

have multiple API endpoints that are used to access certain resources in the service.

2.2 Design Models

2.2.1 General Info

Since web services have to communicate with the frontend application and occasion-

ally other APIs, it is important to choose the right design model. Most web APIs and

services use one of the two most dominant techniques, SOAP and REST, which ac-

count for around 90% of all APIs (REST in peace, SOAP 2010). The distribution of us-

age in 2010 can be seen in Figure 2 (Hoppe 2015, 9).

Figure 2. Usage statistics of web API models.

Technically, SOAP is a protocol whereas REST is an architectural style. (What is REST?

n.d.) Despite them being fundamentally unalike, developers usually have to choose

14

between the two or one of the less common technologies. The model will greatly in-

fluence the design of a web service, as everything revolves around the communica-

tion architecture set up by the selected technique. However, programming languages

and frameworks often use a predetermined model, which means that developers

cannot alter it, even if they wanted to. The differences between the technologies lie

mostly in communication methods, bandwidth, statelessness, caching and ease of

use, which are covered in the following chapters (SOAP Vs. REST: Difference between

Web API Services n.d).

2.2.2 SOAP

SOAP, or Simple Object Access Protocol, was designed to allow machines to com-

municate with each other over the Internet, even if they use software with distinct

programming languages. It also supports multiple communication protocols such as

HTTP, SMTP and FTP (Kumar n.d). Developed by Microsoft in 1998, SOAP quickly be-

came the de facto standard web service technology. (Box 2001.) Despite no longer

being the predominant option, SOAP is still utilized in certain software systems.

The most apparent characteristic of SOAP is its heavy use of XML. The protocol uti-

lizes WSDL, or Web Service Description Language, to define information about the

service in XML format, including how it can be accessed, what sort of data to provide

it with and a set of endpoints. (Shah n.d.) The WSDL document is a sort of contract

between the client and the service. This results in SOAP being tightly coupled with

the server, reducing its flexibility (Wodehouse n.d). An example of a WSDL file can be

seen in Figure 3 (Tutorial – Example of a SOAP message 2012). Although SOAP uses

WSDL, it is not unique to the protocol.

15

Figure 3. An example of a SOAP WSDL document.

SOAP messages include an XML document with the following parts: Envelope,

Header, Body and Fault. First of all, the Envelope wraps the entire message together

with a start and end tag. Body is the main part of the message, which contains any

data returned from the service or what kind of data is being requested, while the op-

tional Header tag can include any additional parameters. Lastly, the Fault element in-

cludes information about handling errors that may occur during the communication

process. (The structure of a SOAP message n.d.) In the case of errors, it allows retry-

ing of certain operations or redirection to another part of the service. REST, on the

other hand, has to receive a manually sent request in a similar case.

SOAP offers high security making it a good choice when dealing with delicate infor-

mation. It utilizes WS-Security, an extension to SOAP, which improves integrity and

confidentiality of the message. The extension allows various encryption types to be

used for safe transportation of security tokens. WSS is not a perfect technology on its

own; however, SOAP also supports Secure Sockets Layer, SSL, for establishing a se-

cure connection between the client and server. On top of that, SOAP has a multitude

of other extensions available for it. (Wodehouse n.d.)

16

Although SOAP offers great security and transactional reliability, it suffers in perfor-

mance. By default, XML tends to be somewhat slower than JSON format, notably

used by REST, due to the envelope’s size. (SOAP Vs. REST: Difference between Web

API Services n.d.) Not only that but SOAP-based calls can also not be cached on the

client-side for later re-use and as a result cost more time (Wodehouse n.d). Since

most features can be implemented using any technology, developers tend to prefer

the quicker ones.

2.2.3 REST

Compared to SOAP, Representational State Transfer is a more recent technology,

having been created in the early 2000s (The History of REST APIs 2016). It is an archi-

tectural style that aims to fix some of the issues with the more traditional SOAP. In-

stead of inventing new standards, REST implements existing HTTP functionalities, for

instance HTTP verbs. (Kumar n.d.) RESTful service is a term generally used to describe

a web service that implements the REST technology.

The goal of REST is to offer a more loosely coupled technology for web service com-

munication. A tightly coupled web service can only be used for a certain application

and even minor changes require drastic changes to the opposite side. The loose cou-

pling of REST allows developers to save time by using the same or slightly modified

API for multiple projects. (Gilmore 2018.) Whether the developers decide to use this

to their advantage is up to them; nevertheless, it is one of the main advantages of

REST.

RESTful service structure design is comprised of three parts: resources, verbs and

representation (Kumar n.d). Resources are available through URIs. For instance,

when requesting videos, the resource might be located in the following address:

http://www.my-web-service.net/video. Furthermore, there could be specific sub-re-

sources under the video resource, for example cat videos, in which case the noun cat

would be added to the end of the URI. REST resources are accessed using the HTTP

verbs, such as GET, POST, PUT, DELETE, which indicate the backend what operations

to perform. Generally, GET is for requesting, POST for creating and other miscellane-

ous operations, PUT for updating and DELETE for removing data, although there can

17

be exceptions. Finally, REST supports the use of most formats including but not lim-

ited to JSON and XML. (Kumar n.d.) REST is stateless, meaning that each request in-

cludes enough information to handle it on the server-side without saving data about

the session (The History of REST APIs 2016).

The primary reasons for using REST lie in its performance speed, maintainability, ease

of use and flexibility. As previously mentioned, JSON is generally quicker than XML

due to the nature of the format. On top of that, it is considered easier to learn and

has great support for web browsers. HTTP methods and the resource architecture

are also simple to use and understand. Due to REST’s independency of representa-

tion format and programming languages, it can be used in most situations. (Kumar

n.d.; Wodehouse n.d.)

The main disadvantages of REST are over- and under-fetching of data from a data-

base and weak data typing. Under-fetching is due to the resource-based architecture,

which results in extra requests that have to be sent back and forth in order to receive

all the necessary data. Over-fetching, on the other hand, can become an issue when

the application only needs a part of the data from a resource. (The ultimate guide to

API architecture: REST, SOAP or GraphQL 2018.) Since REST does not inherently offer

strong data typing, developers have to make sure the data matches the appropriate

type.

2.2.4 Other Alternatives

GraphQL is Facebook’s take on web service protocols. It is a query language that was

first introduced to the masses in 2015 after having been used internally at Facebook

since 2012. GraphQL enables the client application to precisely determine what kind

of data it wants to receive or manipulate. This is achieved by a inserting a query in-

side the request, determining all the different properties or fields, as shown in Figure

4 (Anser 2017). Using this logic can reduce the amount of requests that the client has

to perform to receive the required the data, while also optimizing the performance

by avoiding over-fetching. That said, having so many useful features also comes with

drawbacks. Due to the freedom of constructing requests on the client-side, the

server-side code has to carefully handle security issues and set query limitations for

performance reasons. (Wieruch 2018.)

18

Figure 4. GraphQL request and response.

Similarly to GraphQL, Falcor is a technology that describes data querying parameters.

It is a server-side JavaScript library developed by Netflix to simplify data transporta-

tion. As its format, it uses JSON just like REST and GraphQL. However, instead of re-

placing a web service’s backend, it acts as middleware between the client and the

server. In most cases, Falcor is a more light-weight and easy to use alternative, alt-

hough it does not offer as much utility as the other available technologies. (Helfer

2016.) It is also limited to applications using JavaScript language, such as Node.js ser-

vices.

RPC, which stands for Remote Procedure Call, is another alternative to the aforemen-

tioned technologies. There are various implementations of RPC for different formats,

such as XML-RPC and JSON-RPC. When the service consists of varying actions, RPC

can be a good choice. This is because RPC is essentially a collection of methods that

are called directly on the server by the client application via an HTTP request. (Stur-

geon 2016.) Certain languages have their own language-specific technologies, such as

the Java RMI, short for Java Remote Method Invocation (Pohjolainen 2016). It is an

object-oriented implementation of RPC (Difference Between RPC and RMI 2017). RMI

revolves around a stub class and skeleton class. Stub is basically the client’s represen-

tation or interface of a remote object. It transmits or “marshalls” data to the server-

side skeleton, which converts it into Java code and invokes the proper method on the

19

server. Despite their quite fast performance, Java RMI applications are tightly cou-

pled as they require that both the client and server use Java. (Pohjolainen 2016.)

2.3 Development Frameworks

2.3.1 Symfony

Symfony2 is one of the most versatile backend development frameworks. The PHP-

based framework is essentially a collection of smaller reusable libraries, known as

bundles. Developers can select which bundles to use for each project making the

framework extremely flexible. Although the libraries can also be used separately

from the framework, Symfony allows for quicker installation and guaranteed compat-

ibility. (Hansen 2017.) One of the most important bundles is Doctrine, which is used

to access information in a database via an ORM. Doctrine makes using databases

simple without having to learn SQL.

Symfony’s long-standing position as one of the best frameworks is proof of its relia-

bility. It is still regularly updated and has a large user base meaning that someone has

likely encountered most issues when it comes to using the framework. Overall, Sym-

fony is a mature framework with great documentation. (ibid.) Symfony is also

equipped with useful debugging tools, including a profiler tool that shows detailed

information about requests and responses.

Compared to its rivals, Symfony loses in performance and ease of use. (ibid.)

Granted, some of the more recent PHP versions introduced performance improve-

ments, but using an ORM can still result in many extra database queries, especially

with certain versions of Symfony. Symfony’s difficulty comes from having to learn

Doctrine and other technologies that are often used in conjunction with it (ibid). Con-

figurations can also take time to get used to.

2.3.2 Laravel

Similarly to Symfony, Laravel is a PHP framework of separate bundles. In fact, it was

originally built from Symfony components (Sakhibgareev n.d). It has, however, be-

come its own entity with many benefits over its competition, including simplicity, ro-

bust tools and its own templating engine. According to a survey on SitePoint (Skvorc

20

2015) Laravel is by far the most popular framework among developers in 2018, espe-

cially for personal projects. (Rytov n.d.)

Laravel uses the Eloquent ORM to access data, similarly to Symfony’s Doctrine. Elo-

quent can programmatically structure SQL queries using a query builder. It is compat-

ible with different SQL databases including PostgreSQL and MySQL. More often than

not, the backend and frontend environments are separated. However, Laravel’s tem-

plating engine, Blade, can be used to integrate data from the backend straight into

the application template. Blade is a straightforward, yet efficient feature for develop-

ers who prefer programming in that fashion. In addition, Laravel’s Queue function al-

lows performing actions asynchronously from the standard code. (ibid.) It is espe-

cially useful for sending emails or executing other time-consuming operations.

When it comes to performance, Laravel is about on par with Symfony, depending on

the version. In the end, a framework’s speed is the sum of its parts’ speed. Overall,

when weighing the pros and cons of each technology as well as reading developers’

opinions, it is hard to argue against Laravel. In fact, it seems to be the go-to frame-

work in in 2018.

2.3.3 Node.js Frameworks

Node.js is a runtime environment that can execute JavaScript code independently

from a browser. It uses Chrome’s V8 JavaScript engine to convert the code into low-

level machine code, which performs far faster. (Patel 2018.) It can therefore be used

to create web services by developers who prefer using JavaScript for building web or

mobile applications. Similarly to frontend web applications, Node.js uses npm, Node

Package Manager, and node modules to easily manage project dependencies (ibid).

Since most web applications use JavaScript or one of its frameworks, it can be benefi-

cial to use the same language on the backend as well. JavaScript uses JSON as its na-

tive object notation format, meaning that the client, server and database can all use

the same format. In addition, Node.js has an event-driven and non-blocking I/O.

Whereas most servers run on multiple threads by spawning another for each re-

quest, Node.js runs on a single thread while creating additional threads for running

callback functions determined in the server code. This feature makes Node.js a good

21

choice for applications that must support a high number of requests while having

light data processing on the backend. On the other hand, Node.js suffers when there

is a great amount of data to process in a single request. Therefore, it shines when it

comes to real-time online applications. (Why the Hell Would You Use Node.js 2017.)

A typical Node.js application can be a chat room or even a real-time browser-based

game. The technology is not something one would select for every scenario but more

of a situational option.

There are many Node.js frameworks available for use, with Express.js being the most

common. It is a minimalist routing framework that creates an HTTP server on top of

Node.js. Express is considered easy to use, scalable, and flexible for various purposes.

Additionally, there is a myriad of ready-made solutions available due to the large

user base. There are also full MVC frameworks, such as Koa2 and Sails.js, which are

slightly less popular. Although they are based on Node.js, each framework is com-

pletely distinct from each other. (10 best Node.js frameworks in 2018 2018.)

2.3.4 Other Alternatives

Selecting a framework often comes down to the developers’ preference in to pro-

gramming languages. Developers who are familiar with Ruby might find Ruby on Rails

to be a great choice. Similarly, Django being the most versatile Python framework is

an obvious choice for Python developers. Even PHP has more frameworks to offer in-

cluding Yii and CodeIgniter, which are both considerable options.

2.4 Database Types

2.4.1 Relational Databases

Relational Database Management Systems, or RDBMSs, are the most commonly used

databases. Some of the most popular relational databases are Oracle, MySQL, Mi-

crosoft SQL Server, PostgreSQL and DB2. Usually, relational databases make use of

the Structured Query Language, SQL. (Hammink 2018.) According to DB-Engines, (DB-

Engines Ranking – Trend Popularity n.d) approximately 75% of all databases are rela-

tional databases. RDBMSs have been around for a long time, and, therefore, most

developers more or less understand how they function.

22

Relational databases consist of tables. Each table has named columns, which indicate

the data types for each cell in the table. Rows can be inserted to, updated or re-

moved from the table. Related data in another table can be connected by using a

Foreign Key or an index. Rows in each table typically have an ID property, also known

as a Primary Key, which can be inserted into another table as a Foreign Key. This al-

lows logically linking relevant data together by using SQL Join statements. On top of

that, optional cascade rules can be set to make it so that the unused data in a rela-

tional table is automatically removed when a Primary Key is deleted.

Relational database structure and data types are defined in a schema, which updates

whenever new tables are added or existing ones are altered (see Figure 5) (What is a

Database Schema? 2016). The data types are enforced by constraints (Homan 2014).

Some of the most common constraints alongside primary and Foreign Keys are NOT

NULL, meaning that the value has to be defined, and UNIQUE, meaning that another

row cannot have the same value in the column.

Figure 5. Simple relational database schema. In this case, artists can have multiple
albums that belong to a single genre out of many.

One of the problems with complicated relational databases is that the data in a single

table will often not match an object in an application (Hammink 2018). Oftentimes

developers use an ORM to map database table data into objects, which is more of a

workaround and results in slower performance. It can force developers to learn both

23

the object mapping and the database structure since it is not always viable to use the

ORM. These workarounds are essentially why NoSQL databases were invented (Har-

ris 2016). Generally, relational databases are best used with a clear database design

in mind when first implementing it. Creating new relations later on into the develop-

ment, for example, causes performance issues due to the amount of Joins required.

2.4.2 Non-Relational Databases

Non-relational databases, also known as NoSQL databases, greatly differ from rela-

tional ones. Generally, NoSQL databases specialize in a handful of use-cases, as they

were designed to overcome specific technical difficulties with traditional RDBMSs.

Although situational, NoSQL databases come in various sorts, including Key-Value

Stores, Wide Column Stores, Document Stores and Graph Stores. (Hammink 2018.)

Even though RDBMSs are more commonly used, many tech giants including Face-

book, Google and Amazon have widely adopted the use of NoSQL databases. (Reeve

2012).

Key-Value Stores are self-explanatory. They store elementary data, such as strings,

numbers and dates, as values, which are mapped by a generated key. Key-Value

Stores offer lightning fast query speeds with extreme simplicity as a tradeoff. Docu-

ment Stores are a sort of key-value store as well. The difference is that the value is

stored as an object in JSON format, giving it much more complexity and flexibility.

(Hammink 2018.) JSON makes querying more intuitive from an object-oriented

standpoint by allowing direct access to an object’s properties.

Wide Column Stores are similar to relational databases in that they consist of tables

with rows and columns. The main difference, however, is that Wide Column Store

data is not constrained by data types, and, therefore, different rows may include dif-

ferent types of data. It may even store empty values instead of a NULL value, saving

some space on the machine. Additionally, Wide Column Stores allow partially updat-

ing a single column value instead of the whole row. Each cell value also has a

timestamp attached to it that indicates the time of insertion. (What is a Column

Store Database? 2016.)

24

Graph Databases are collections of interconnected nodes, where each node is an ob-

ject with properties. The nodes are connected unidirectionally to other nodes in a re-

lational way. Other than the start and end nodes, all of the relations must define a

type, e.g., a company node might have a “HAS_EMPLOYEE” relation to user nodes.

(Carpenter 2018.) Graph databases are easy to visualize and understand, as illus-

trated in Figure 6 (Sasaki 2018). That said, in practice, there would be too much data

to visualize, especially in huge social media applications.

Figure 6. Graph database visualized.

The information in NoSQL databases is less strictly constrained than in relational da-

tabases. They do not natively support constraints on data types, although data integ-

rity must still be manually enforced in most cases. Rather than using SQL, NoSQL da-

tabases each have their own query language, whether it is derived from SQL or com-

pletely original. (Yegulalp 2017.) Hence, it can be a hurdle to jump from using an

RDBMS to a NoSQL database.

25

3 Development Choices and Project Setup

3.1 Selected Technologies

3.1.1 Symfony and MariaDB

The framework of choice for the project was Symfony. Since it is commonly used at

Protacon Solutions, there is a good understanding of it among the developers. Some-

one at the company has likely encountered most issues already and help is never far.

Not only that but there is plenty of reusable code made by the employees, which can

greatly reduce development time. At any rate, Symfony is a well-rounded framework

for any project in general.

Symfony makes use of relational SQL databases. MariaDB, a fork of MySQL was cho-

sen for this project. It works mostly the same way with some tiny differences. Mari-

aDB supports some cutting-edge features including thread pool, NoSQL queries with

Cassandra and dynamic columns. It also claims to have quicker performance, espe-

cially with large datasets. (Nayyar 2018.) Although most of these features are insig-

nificant for small-scale software, it is still a great modern database option.

3.1.2 Angular

The frontend web application was developed using the Angular framework, not to be

confused with AngularJS. Similarly to Symfony, it is widely used at Protacon Solu-

tions. Angular is a JavaScript framework that is based on TypeScript, a strict syntacti-

cal superset of JavaScript. The object-oriented TypeScript enables type annotations

for functions and class properties as well as the use of object interfaces. It compiles

into standard JavaScript code. (Lease 2018.) The Material Angular library was used

for creating a clean and intuitive layout.

Angular notably utilizes Observables, which enhance event handling in the applica-

tion. Observables allow a component to subscribe to an event, including to changes

to a variable or application state property. Along with Observables, the ngrx library

was used in the project in order to manage the application state. It is a Redux-in-

spired state management framework that acts as middleware for sending requests

26

from the client-side to the backend web service. Afterwards, the response data is

stored in the state for later use. In addition, components from the Angular Material

library were used to improve the user experience while saving some development

time.

3.2 Setting up the Project

3.2.1 Frontend Environment

Setting up the frontend application locally was quite simple. After cloning the code-

base repository, the first step was to install the required packages using Yarn which is

a dependency manager. It fetches the dependencies defined in the project’s pack-

age.json file. Other required software include Node.js for hosting the application and

Git for version control. Additionally, Webpack, or a similar module bundler, is re-

quired to deploy the application locally. The application uses information defined in

an .env file. When starting the development, one has to make sure the .env file’s con-

figuration, such as the web service address is correct, to forward the requests appro-

priately.

3.2.2 Backend Environment

The backend code has to be hosted on a server that supports PHP. One way to easily

deploy the application is to use Symfony’s WebServerBundle. It uses PHP’s built-in

server and requires minimal configuration. Another way is to use a virtual machine,

such as Vagrant, to separate the backend environment from the local machine, or to

actually host it on another machine. In any case, the server must have PHP and

MySQL available. Similarly to the frontend, environment files have to be properly

setup to allow access from the local machine.

Symfony loads configuration files from the config folder. First of all, the routes.yaml

file defines the location of the controllers, e.g., “src/Controller”, and routes for other

bundles. Services.yaml contains the configuration for service classes such as reposito-

ries for entity classes. In addition, the config/packages folder includes other configu-

ration files for security, event subscribers, Doctrine ORM, migrations and any in-

27

stalled bundles. Lastly, there are dev, prod and test folders, which can include config-

urations specific to any of the three supported environments. (How to Organize Con-

figuration Files.) For instance, having the Symfony profiler enabled for debugging is

important in development environment.

Symfony bundles are managed by Composer. The first step to deploying the server is

to run Composer’s install command. Further bundles can be added to the project by

using the require command and most of them have satisfactory documentation for

setting them up. After installing the dependencies, the console script in the bin folder

can be run with PHP. It includes useful tools for managing the database and other

various features. For instance, the database can be set up with Doctrine’s console

commands, doctrine:database:create and doctrine:migrations:migrate. Doctrine it-

self is installed by requiring symfony/orm-pack. Migrate command builds the data-

base schema from the project’s migration files, which are generated using doc-

trine:migrations:diff. (Databases and the Doctrine ORM.) Moreover, MySQL can be

used to directly access the database with the right credentials after configuring it in

the .env file. If a graphical user interface is more desirable, HeidiSQL is a great alter-

native.

PhpStorm is a good text-editor option for the project. It can be utilized to automati-

cally upload file changes to the remote server after configuring it properly. PhpStorm

is naturally often used with PHP and Symfony, but other available options include

Atom and Visual Studio Code. Postman is another optional program for testing pur-

poses. It is used to more efficiently send requests to the server, instead of sending

them via the application in the browser. Cmder is a useful console emulator tool for

managing all the different environments, especially when using Git via the command

line.

28

4 Database Management

4.1 Doctrine Primer

Entities are classes that are used by Symfony framework’s Doctrine tool, specifically

Doctrine 2. Similarly to classes in object-oriented programming, entities have proper-

ties and methods. The properties can include not only primitive data, such as strings

and numbers, but also other entities and collections of entities. Using private or pro-

tected properties with getters and setters to handle them in the code is highly rec-

ommended. Doctrine automatically maps the entity classes into database tables and

objects into rows via an ORM (see Figure 7). (Databases and the Doctrine ORM.)

Figure 7. Visualization of a programming object and the corresponding database
table schema.

The configuration file for Doctrine is located in config/packages/doctrine.yaml and

doctrine_migrations.yaml. They must describe the URL and name of the database as

well as the folder where entity classes reside in. Optionally, the naming strategy set-

ting for entities and database types for objects such as DateTime can be included.

The auto_mapping property should be set to true in order to automatically generate

the Doctrine migration files. (How to Organize Configuration Files n.d.)

Doctrine’s EntityManager class is responsible for handling the lifecycle events regard-

ing the transformation of entities between the database and non-persistence and

29

finding entities from the database. After modifying the entity properties in the code,

calling EntityManager’s persist method saves the changes to the object, although it

does not trigger a database query yet. Calling the flush method afterwards runs all

the necessary queries changing the database to match the created, modified and de-

leted entities that were persisted. EntityManager allows for native SQL queries as

well, if necessary. (Databases and the Doctrine ORM.) It is important to note that ac-

cessing a property results in a database query. Therefore, looping a property getter

exponentially increases the amount of queries executed.

Everything regarding database can be configured with the ORM. Annotations can be

used to set the table name, unique constraints, indexes, column names and types,

nullable values and cascade rules (see Figure 8 and Figure 9). Some of the most com-

mon property types are string, integer and boolean as well as Collection for relational

properties. Doctrine transforms these types into the database schema with the ap-

propriate mapping, e.g., string becomes VARCHAR and Boolean becomes TINYINT.

Furthermore, minimum and maximum lengths as well as nullable values determine

validations for the property data. Finally, orphan removal can be disabled to keep the

orphaned child entities in the database after removing the parent.

Figure 8. Class annotation for the course entity.

 /**
 * Class Course
 *
 * @ORM\Table(
 * name="course",
 *)
 * @ORM\Entity()
 *
 * @Gedmo\SoftDeleteable(
 * fieldName="deletedAt",
 * timeAware=false,
 * hardDelete=false
 *)

30

Figure 9. Description property annotation.

4.2 Schema Design

4.2.1 Entities

In the web application, the five main entities are separated into different views,

where they can be accessed, created and modified (see Appendix 1 for various

screenshots of the application). The entities are course, exam, course package, com-

pany and user. These entities were roughly designed at the beginning of the project

as a baseline for what is to come. The main reason why the database schema was not

fully realized at first was because the application required feedback and develop-

ment ideas from the users. New features were added in whenever necessary. This,

however, resulted in some problems later on.

Course

Course is the most essential entity in the application. It is a sort of quiz with a pleth-

ora of configuration options as well as questions. Both courses and their questions

can include materials such as external links, files and images. Published courses can

be assigned to users through course packages, after which they can practice it or

take the exam. Each course can only be successfully finished once; however, failed

ones do not count.

 /**
 * @var string|null
 *
 * @Groups({
 * "ROLE_USER__Course",
 * "ROLE_USER__Course.description",
 * "ROLE_USER__CoursePackage.courses",
 * })
 *
 * @ORM\Column(
 * name="description",
 * type="text",
 * nullable=true,
 *)
 */
 private $description;

31

Exam

Exam entity is the result of a finished course, whether it is successfully passed or not.

It includes the answers that the user selected. On top of that, the exam includes all

relevant data about the course at the time of completion in what is called an exam

snapshot.

Course Package

As the name suggests, a course package is a collection of courses. They exist as a way

to more efficiently share courses to relevant users, while categorizing them cleanly.

The package itself only contains a name, description and image, although it features

many relations such as included courses and owner companies.

Company

Companies are essentially counterparts to real-life companies in the application.

Their properties include a name, address, image and Business ID. The Business ID is

used in certain places to identify existing companies instead of using their Primary

Keys. Hence, it is also used as a unique constraint in the database. Companies are the

primary means of sharing and propagating access rights in the application. There are

two types of companies, the ones with paying customers and their subsidiaries.

User

Users are associated with accounts that can access the application. They are tied to a

single person by their full name and date of birth. Although there can be rare cases

of multiple people having the exact same name and date of birth, this is robust

enough for most cases. Users belong to at least one company when they are created,

although they can be attached to others afterwards.

4.2.2 Organizations

One of the complications from a business perspective while designing the software

was differentiating between the paying customers’ companies and their subsidiaries.

Although both are considered companies, the customers must have access to addi-

tional features and more rights in general. Some of those features include creating

32

new subsidiary companies, courses, users and course packages as well as tracking us-

ers’ exam results. In order to discern the two types of companies, the organization

entity was designed.

When it comes to entity design, organization is fairly straightforward. It simply in-

cludes information about the real-life company so that Protacon Solutions can easily

tell them apart and properly charge them for the service. Organizations can also have

access to different paid features, which are distributed to users via the company en-

tity related to that organization. These extra features, which include sharing course

packages, more configuration options for courses and an SMS service, are retrieved

when a user logs in to the application (see Figure 10). If the user belongs to an organ-

ization, the paid features are found directly through the organization entity relation.

If they are a work manager, on the other hand, the PackageAdminRights entity itself,

containing metadata about the work manager attachment, is retrieved. The paid fea-

tures are then recovered by using the entity’s ownedBy property, which indicates the

organization that originally attached the work manager to the course package. In the

application, users do not have access rights to organization entities, and, therefore

the access control filter (see chapter 6.3.2) is temporarily disabled inside this func-

tion.

Figure 10. Paid feature retrieval from the database. The logic is handled differently
depending on if the user belongs to an organization or a normal company.

 $filters->disable('accesscontrol');

 $organization = $activeCompany->getOrganization();

 if ($organization instanceof Organization) {

 $features = $organization->getPaidFeatures();

 } else {

 $rights = $adminRightsResource->findOneBy([

 'admin' => $user->getId(),

 'company' => $activeCompany->getId()

]);

 if ($rights !== null) {

 $features = $rights->getOwnedBy()->getPaidFeatures();

 }

 }

 $filters->enable('accesscontrol');

33

Most importantly, the entity acts as a Boolean value for distinguishing organizations

from other companies. By accessing the property in the server code, different use-

cases can be handled neatly, as illustrated in Figure 11. This adds an extra layer of se-

curity and stability to the application, since it disallows users with high-level privi-

leges from manipulating unintended properties on normal companies. It is also use-

ful for accurately sharing access rights.

Figure 11. Organization property check for companies. The entity method returns a
boolean depending on if the relationship exists.

4.2.3 Entity Relations

Relational database mappings are either one-to-one, one-to-many or many-to-many.

One-to-one is simple in principle, as it means that only a single entity complements

another one. In the application, one-to-one was only used for profile pictures and

other images. Oftentimes, one-to-one relations can simply be added to the entity

class itself as properties or implemented via a trait, although separation of concerns

would suffer from that. On top of that, one-to-one relations are useful, when a single

class, such as a file or a link is used by multiple entities. An important thing to note is

that Doctrine will always serialize one-to-one relational entities, when retrieving an

entity from the database, greatly slowing down the query in some cases. To counter-

act that, the relation can be defined on only one side, so that it does not get serial-

ized from the other side of the relation. When it comes to the database schema, the

 $activeCompany = $user->getActiveCompany();

 if ($activeCompany === null || !$activeCompany->isOrganization()) {

 throw new HttpException(Response::HTTP_NOT_ACCEPTABLE);
 }

 ...

 /**
 * @return bool
 */
 public function isOrganization(): bool

 {

 return $this->organization !== null;

 }

34

entity data is separated into two tables with a Foreign Key in one of them. The target

entity and Foreign Key Join column must be defined in the annotations of the prop-

erty as shown in Figure 12. The definition is only required on one side of the relation.

(Working with Relations n.d.)

Figure 12. Annotation for a one-to-one relation.

One-to-many and many-to-one relations are counter-parts of each other. They were

heavily utilized in the application; almost every entity was connected to each other in

some way. The distinction from one-to-one is that both sides of the relation must de-

fine the property, although only one of them should have the Join column definition.

(Working with Relations n.d.) Generally, the one-to-many side is considered the own-

ing side of the relation whereas many-to-one is the child or inverse side. Therefore,

the inverse side generally contains the Foreign Key column in the database table. The

Doctrine ORM requires that both sides define the opposite property with inversedBy

and mappedBy annotation definitions (ibid). Some one-to-many relations in the ap-

plication include courses with exams and users with multiple sets of contact infor-

mation.

Many-to-many is useful when ownership of an entity is shared between entities. For

instance, companies have multiple users and users can be part of multiple compa-

nies, and the same principle applies to courses and course packages. In database

terms, this results in what is called an associative table or Join table, which consists

of Foreign Keys of both sides of the relation. The owning and inverse sides can be

chosen arbitrarily, although it makes sense to have some sort of hierarchy in mind.

 * ...
 * @ORM\OneToOne(
 * targetEntity="App\Entity\File",
 *)
 *
 * @ORM\JoinColumn(
 * name="profile_picture_id",
 * referencedColumnName="id",
 * nullable=true
 *)
 * ...

35

Case in point, the company entity should be the owner and user the inverse side. Alt-

hough there are also many common naming conventions for Join tables, this project

used the following style: “company_has_user”. Additionally, both many-to-many and

many-to-one relation setters in the entity code must be called from the owner side,

in order to properly persist the changes into the database (Working with Relations

n.d).

4.3 Working with the Data

4.3.1 Serialization Groups

Serialization groups are used to determine which entity properties to include in the

backend responses. This is done by Symfony’s Serializer component. (The Serializer

Component n.d.) Configuring serialization groups is important for a few reasons. First

of all, serializing only necessary properties improves the tidiness and maintainability

of the code. Keeping things simple is almost always better. In addition, when sending

objects in JSON format, they have to transformed, which takes time. There are also

security issues with serialization. For instance, when requesting data for an exam, the

correct answers should naturally not be included in the response. Even if they are not

visible in the application itself, they can be viewed through the network tab of a

modern web browser. In order to determine the serialization context for a request,

one can use the Serializer component’s normalize method and pass it an array of se-

rialization group names as a parameter (The Serializer Component n.d).

As a rule of thumb, only non-relational properties should be serialized in the default

group, i.e., “EntityName”. Relations, on the other hand, should have specific groups

such as “Company.users” or “CoursePackage.courses” (see Figure 13). This way each

request can contain different relational data. Another way to optimize the groups is

by using custom names, such as “set.UserList”, which serializes necessary data for a

specific view only. The only problem with that is that the group annotation must be

added to each property that is included in it. Figure 14 illustrates how the serialized

properties are utilized in the frontend application’s user list. The serialized group for

the request includes the users’ generic properties, such as their full name, as well as

their contact information located in the UserDetail entities.

36

Figure 13. Serialization groups annotation for the course description property.

Figure 14. User list view.

4.3.2 Symfony Forms

Symfony forms are useful for validating the data received by REST endpoints. As

demonstrated in Symfony’s documentation (Forms n.d.), the form can be instanti-

ated inside the controller for each entity. However, the forms should be separated

into different files for better maintainability, which is exactly what was done in this

project. Inside the controllers, each form type, such as create type, update type and

patch type, was mapped to their specific REST endpoint (see Figure 15). The primary

reason for this is to allow modifying certain properties on create or update only. As a

rule of thumb, PATCH is for partially modifying an entity, PUT is for updating it en-

tirely and POST is for creating and other miscellaneous processes. For instance, a

course can only be added to a course package after its creation by using the PATCH

 * ...

 * @Groups({
 * "ROLE_USER__Course",
 * "ROLE_USER__Course.description",
 * "ROLE_USER__CoursePackage.courses",
 * })
 * ...

37

form type. There are many ways to implement Symfony forms, but this method is

great when utilizing generic RESTful traits.

Figure 15. Form type mapping.

The form types must specify which entity properties can be modified along with vali-

dation options. As shown in Figure 16, the form takes in a list of property names,

types as well as optional validation options and default values. Symfony comes

equipped with most of the commonly used types, but custom ones can be added as

well. (Forms n.d.) Checking the documentation is essential, as many of the available

options have default values that correspond with certain property types and some

properties are completely ignored by Symfony in specific cases. Additionally, Sym-

fony forms can be rendered on the frontend via HTML or Twig template files (ibid).

This reduces development time, since the validation options do not have to be de-

fined on both ends.

Forms can make use of transformers to modify the form data or match it with other

data. Some useful cases for transformers include transforming a date string to a Date

or DateTime object or finding an entity based on its ID, as illustrated in Figure 16 with

the File class. The IdPropertyTransformer instance requires access to Doctrine’s Enti-

tyManager as a parameter in order to perform the query. More specifically, trans-

formers have a function, called transform, for converting the normalized data into ei-

ther view data or model data depending on the use-case. Occasionally, the reverseT-

ransform function can be used to do the opposite conversion. (ibid.)

 class CourseController extends Controller

 {

 protected static $formTypes = [
 self::METHOD_PATCH => CoursePatchType::class,
 self::METHOD_CREATE => CourseCreateType::class,
 self::METHOD_UPDATE => CourseUpdateType::class,
];

38

Figure 16. Course package entity form. The properties and options are added to the
FormBuilder object and the “mainImage” string value is transformed to an Entity.

4.3.3 Lifecycle Events

Doctrine’s entities have lifecycle events that occur in certain situations. Some of

these events take place after and before creating, updating, deleting or persisting an

entity instance. Event listeners for each of the lifecycle events are defined in the sub-

scribers.yaml file, as shown in Figure 17, to hook them into the EventManager in-

stance. An important thing to note is that events taking place before a database

 public function buildForm(FormBuilderInterface $builder)

 {

 $builder

 ->add(

 'name',

 Type\TextType::class,

 [

 'label' => 'Name',

 'min' => '2',

 'max' => '255',

 'required' => true,

]

)

 ->add(

 'description',

 Type\TextType::class,

 [

 'label' => 'Description',

 'required' => false,

 'empty_data' => '',

]

)

 ->add(

 'mainImage',

 Type\TextType::class,

 [

 'label' => 'Image',

 'required' => false,

]

);

 $builder->get('mainImage')->addModelTransformer(

 new IdPropertyTransformer(

 $this->objectManager, File::class

)

);

 }

39

query, such as an insert or update, can still result in the query failing. (Events n.d.)

Therefore, calculations and other procedures should be handled in the lifecycle

hooks that are executed after the database is changed whenever possible. It is essen-

tial to select the proper event for every use-case.

Figure 17. Event listener configuration in subscribers.yaml.

In this project, the lifecycle callbacks were utilized substantially to propagate access

control rights, generally via PostPersist and PostUpdate callbacks. In general, they are

also useful for sending messages via email and SMS as well as calculating numbers in

the database. For instance, when a product is bought from an online store, the prod-

uct’s stock value could be subtracted by one in the order’s PostPersist callback. One

thing to note is that PostPersist is only launched after SQL Insert operations whereas

PostUpdate is executed after Update operations (ibid). Doctrine’s DQL queries, which

are database operations written either in raw SQL or by using a QueryBuilder object,

do not trigger the lifecycle callbacks.

5 Security

5.1 Authentication

5.1.1 JSON Web Tokens

JSON Web Tokens, or JWTs, are an alternative to session cookies, SWTs and SAML to-

kens. They are often utilized for logging in and authentication in web applications, as

they are fast to transmit between two bodies and secure when accompanied by a

checksum. In practice, the user starts by submitting their credentials, generally a

username and password, to the web service. The server-side software checks that

the information is correct before creating a signed token, which is sent back to the

 App\EventSubscriber\UserEntitySubscriber:

 tags:

 - { name: doctrine.event_listener, event: prePersist }

 - { name: doctrine.event_listener, event: preUpdate }

40

client. Afterwards, the token is used for authentication by attaching it to the Authori-

zation header, instead of checking the credentials on every request. (Yellavula 2018.)

A JWT token houses the following information: header, payload and signature. Gen-

erally, all of the data is encoded in Base64 and separated by dots. The header de-

scribes which algorithm is used to encode the token as well as the type, which is JWT

in this case. The payload can include any customizable data such as the username in

JSON format. The final part, signature, is a combination of the Base64-encoded data

and the web server’s secret key signed with the HMAC algorithm. (Introduction to

JSON Web tokens n.d; Yellavula 2018.) See Figure 18 for an example of the encoded

and decoded contents of a JSON Web Token (Nasseri 2016).

Figure 18. Encoded and decoded JWT information.

As an extra security measure, the authentication was split into access tokens and re-

fresh tokens. The access tokens contain the aforementioned signed token and infor-

mation about the user, including their active company and access role in said com-

pany. The token is attached to each backend request’s header by the HTTP intercep-

tor service on the frontend, in order to access protected resources. However, the ac-

cess token has a short lifespan, which is where the refresh token comes into play. Re-

fresh tokens are used to retrieve a new access token after it has expired and after

first logging in. Although they have a much longer lifespan compared to access to-

kens, after it expires, the user must login to the software once more. The user’s login

41

data is only authenticated when the refresh token is renewed, which makes the rest

of the requests faster and less straining for the backend. That being said, the refresh

token must be kept secure, since it can be used to renew access tokens until it ex-

pires or gets blacklisted.

Lexik JWT authentication bundle makes JWT authentication simple to implement. By

modifying the configuration options in lexik_jwt_authentication.yaml file with the

values shown in Figure 19, the token creation becomes automatized. Additionally,

Gesdinet JWT refresh token bundle enables refresh tokens on top of Lexik’s base im-

plementation. For configuration, Gesdinet’s bundle also requires the path definition

in routes.yaml (see Figure 20). The time-to-live values can be adjusted, but it should

be kept short for access tokens and somewhat longer for refresh tokens. Ten minutes

and one day respectively is a good place to start. The secret and public keys are gen-

erally defined in a separate file and the pass phrase must always be kept secure

along with the secret key.

Figure 19. Configuration for Lexik JWT and Gesdinet JWT bundles. Environment
variables are defined in a separate file.

Figure 20. Gesdinet JWT route configuration.

 lexik_jwt_authentication:

 private_key_path: '%kernel.project_dir%/config/jwt/private.pem

 public_key_path: '%kernel.project_dir%/config/jwt/public.pem'

 pass_phrase: '%env(JWT_PASSPHRASE)%'

 token_ttl: '%env(JWT_TTL)%'

 gesdinet_jwt_refresh_token:

 user_provider: App\Security\UserProvider
 ttl_update: true
 ttl: 604800 # 1 week

 gesdinet_jwt_refresh_token:

 path: /auth/token/refresh

 defaults: { _controller: gesdinet.jwtrefreshtoken:refresh }

42

The JWT creation event can be subscribed to, similarly to Doctrine entity lifecycle

events. This makes it so that custom data can be added to the token between the to-

ken’s creation and sending it back to the client. As shown in Figure 21, user data,

such as their name, active company and access role as well as extra security

measures are added to the payload. Naturally, if the user or someone else can

change the information within the application, the token data must also be re-

freshed, despite the old token still being valid.

Figure 21. JWT creation event handler function.

5.1.2 Configuration

Symfony’s security configuration is located in the security.yaml file (How to Organize

Configuration Files n.d). The requirements for setting up authentication are to, first

of all, install the symfony/security-bundle and then create a user class. Alongside

that, a user provider is required to load user data from the request’s session. The

provider is used to load a user by its username, email or token information. If there

are multiple varying user types, a certain user provider can be configured to only

support specific ones. Each user provider must be defined under the providers sec-

tion in the security.yaml file (see Figure 22). (Security n.d.) When using token authen-

tication without actual users, some sort of entity implementing Symfony’s UserInter-

face must still be created in order to use the security functionalities.

 public function onJWTCreated(JWTCreatedEvent $event): void

 {

 $payload = $event->getData();

 $this->setSecurityData($payload);

 $this->setUserData($payload, $event->getUser());

 $this->setCompanyData($payload, $event->getUser());

 $this->setApiKey($payload, $event->getUser());

 $event->setData($payload);

 }

43

Figure 22. User provider configuration.

Other than the providers, the security configuration should contain encoders and,

most importantly, firewalls. Encoders define the algorithm that is used to crypto-

graphically hash the users’ passwords, e.g., argon21 or bcrypt (How to Manually En-

code a Password n.d). It is possible to use different algorithms for different user ob-

jects. Firewalls, on the other hand, describe security measures for all the routes that

are used in the service. Each firewall, with a customizable name, must define a regu-

lar expression pattern that is used to match routes to the firewall, for instance

“^/api/course$”. Excluding the pattern definition matches the firewall to all routes

instead. Most of the routes used in the service used the same authenticator, except

the password recovery controller, file download controller (see chapter 5.2.1) and,

naturally, the JWT-related endpoints. Additionally, firewalls can be limited to certain

HTTP verbs such as GET, POST and PUT. When including an authentication token with

each request, as is the case with this application, the stateless property should also

be set to “true”. (Security n.d.)

An optional Guard authenticator, which is a type of authentication provider, was cre-

ated to handle the JWT authentication. The guard handles the actual authentication

procedures such as checking that the token exists and is valid. In the configuration,

the Guard requires a user provider and an authenticator class, one of which is de-

scribed in more detail in chapter 5.2.1. To completely bypass security checks, it is

possible to set the security property to “false” for a firewall, making it completely

public. A fully configured firewall can be seen in Figure 23.

 providers:

 chain_provider:

 chain:

 providers: [user_provider, api_key_user_provider]

 api_key_user_provider:

 id: App\Security\ApiKeyUserProvider

 user_entity_provider:

 id: App\Security\UserProvider

44

Figure 23. Firewall configuration.

5.1.3 Authentication Service and Interceptor

The authentication service is a singleton class on the frontend. It handles operations

related to logging in and authentication by utilizing the Angular-jwt’s JWTHelperServ-

ice and ngx-webstorage’s LocalStorageService. The user is authenticated and after-

wards logged in to the application by sending a request to the access token URL on

the backend and then decoding the access token into a UserProfile object with the

JWTHelperService (see Figure 25). The UserProfile contains the user’s name, active

company, access role and API key. Subsequently, the tokens are stored in the local

storage of the browser by utilizing the LocalStorageService.

 firewalls:

 dev:

 pattern: ^/(_(profiler|wdt)|css|images|js)/

 security: false

 login:

 pattern: ^/auth/get_token$

 stateless: true

 anonymous: true

 json_login:

 provider: user_provider

 check_path: /auth/get_token

 success_handler: lexik_jwt_authentication.handler

 .authentication_success

 failure_handler: lexik_jwt_authentication

 .handler.authentication_failure

 refresh:

 pattern: ^/auth/token/refresh

 stateless: true

 anonymous: true

 api:

 pattern: ^/

 stateless: true

 anonymous: true

 guard:

 provider: user_provider

 authenticators:

 - lexik_jwt_authentication.jwt_token_authenticator

45

Figure 24. Access token retrieval from local storage. If the token has expired, a fresh
one is retrieved by using the refresh token.

Figure 25. Decoding the user data from a token after storing it in the local storage.

On the frontend, an HTTP interceptor is used to add the JWT into the header of each

backend request. It makes an identical copy of all outgoing requests, modifies the

header and sends the request to the original address. This is standard practice, be-

cause attaching the JWT from each component or service would be unnecessarily

complex for little gain. Not only that, but it also allows for less tightly coupled design,

 public function authenticated(): Observable<boolean> {

 const isTokenExpired = this.jwtHelper.isTokenExpired(

 this.localStorage.retrieve('token')

);

 if (isTokenExpired) {

 return new Observable<boolean>((observer) => {

 this.getAccessTokenWithRefreshToken().subscribe(

 (authenticated: boolean) => {

 observer.next(authenticated);

 observer.complete();

 }

);

 });

 } else {

 return Observable.of(true);
 }

 }

 this.http.post(url, payload, httpOptions).subscribe(

 (token: TokenDataInterface) => {

 this.localStorage.store('token', token.token);

 this.localStorage.store('refreshToken', token.refresh_token);

 const decodeUser =

 this.jwtHelper.decodeToken(token.token)

 as UserProfileInterface;

 observer.next(decodeUser);

 observer.complete();

 this.loggedInUser$.next(decodeUser);

 },

 ...

46

making it easier to refactor the logic later on. In addition, the interceptor service al-

lows one to handle the different error cases accordingly. In the case of 401 error,

which indicates unauthorized access, the access token is refreshed and the request

sent again subsequently. The entire process is demonstrated in Figure 26.

Figure 26. Cloning a request with an HTTP interceptor. The Authorization header is
attached to the cloned request and a new token is retrieved once it has expired.

5.2 Firewalls and Guards

5.2.1 File Downloads

The issue with the application’s HTTP interceptor was that it only works with re-

quests sent from within the Angular instance itself. This means that it does not apply

to HTML attributes that send requests, such as src and href, which are generally used

for requesting image elements and links respectively. Optimally, file downloads

would be handled through the href attribute, but unfortunately it bypasses the HTTP

 private function intercept(req: HttpRequest, next: HttpHandler) {

 return next.handle(

 req.clone({

 headers: req.headers.set(

 'Authorization',

 this.injector.get(AuthService).getAuthorizationHeader())

 })

);

 .catch(error => {

 if (error.status === 401) {

 return this.handle401Error(req, next);

 }

 }

 private handle401Error(req: HttpRequest<any>, next: HttpHandler) {

 return this.injector.get(AuthService)

 .getAccessTokenWithRefreshToken()

 .switchMap((isTokenRefreshed: boolean) => {

 if (isTokenRefreshed) {

 this.tokenSubject.next(isTokenRefreshed);

 return next.handle(this.addToken(req));

 }

 };

 }

47

interceptor. As a workaround, the token data could also be appended directly to the

URL as GET parameters, although that is less secure since the token is in plain text

and the URL becomes extremely long. Therefore, it would be less than ideal.

The most obvious solution to this problem was to manually recreate the request in

the application code to make the interceptor handle it. An Angular directive, a reusa-

ble component which modifies HTML elements with behaviors and styles, was made

to handle the request and either add the file into the HTML element or download it

(see Figure 27). The returned file is in Blob format, meaning that it has some limita-

tions in file size and speed. Although those limitations are insignificant in the grand

scheme of things, the most glaring issue is the lack of platform support. Older brows-

ers, such as Internet Explorer version 10 and older, do not trigger the file download

with this method. On top of that, mobile devices with the iOS operating system are

lacking a file system meaning that they handle file downloads differently from An-

droid and Windows platforms. Normal href downloads still work, because the de-

vices are designed to handle those events in a specific way, which does not apply

here. Additionally, programmatically created files in Blob format do not support file

downloads or opening in a new window or tab. Unfortunately, the application had to

support various platforms and devices, and, therefore, this solution was insufficient.

48

Figure 27. Using a temporary link to download a file in Blob format.

Instead, a custom firewall with a Guard authenticator was created to handle the au-

thentication. It was configured with the settings shown in Figure 28. Since modifying

the request’s headers on the frontend was impossible using the aforementioned at-

tributes, the parameters were appended to the URL itself. By using a singleton ser-

vice to attach the required data as GET parameters, it was possible to submit the

data to the server with each file download request. The problem with GET parame-

ters, is that they are visible in plaintext, e.g.,

“http://www.webapp.com?username=user&password=secret”. However, that was

partially solved by using a separate API key for only downloading files as the parame-

ter.

 @HostListener('click')

 public getFile() {

 this.httpClient.get(url{ responseType: 'blob' })

 .subscribe((blob) => {

 const blobURL = URL.createObjectURL(blob);

 // Create temporary link

 const link = document.createElement('a');

 link.setAttribute('href', blobURL);

 link.setAttribute('target', '_blank');

 link.setAttribute(

 'download', this.appFileDownload.originalName

);

 document.body.appendChild(link);

 // Activate download and remove link

 link.click();

 window.URL.revokeObjectURL(blobURL);

 link.remove();

 });

 }

49

Figure 28. Firewall configuration for file downloads.

The Guard assigned to handling the file download endpoints was the ApiKeyPara-

mAuthenticator. It implements standard Guard authenticator methods: supports,

getCredentials, getUser, checkCredentials, start and onAuthenticationSuccess. The

Guard supports requests that are attached with the GET parameter “ak” meaning API

key. The parameter, which is basically considered the user’s credentials, is verified by

using the Request object’s get method. Subsequently, the token is authenticated by

running a database query using the APIKeyRepository’s findOne method and simply

retrieving the createdBy property data from the APIKey entity (see Figure 29). If the

parameter does not exist or the token is invalid or expired, the Guard naturally

throws an error response.

 firewalls:

 ...

 file_downloads:

 methods: [GET, POST]

 pattern: ^/file/[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}...

 stateless: true

 anonymous: true

 guard:

 provider: user_provider

 authenticators:

 - App\Security\ApiKeyParamAuthenticator

50

Figure 29. GetUser function of the authenticator.

Since the API key token was included in the URL string, it was possible for it to be

leaked. For example, if a user opens an image in a new tab and sends the link to an-

other user, they could get access to that picture without signing in. Afterwards, they

could use the key to access other files if they happen to know their resource URLs.

This is why the API keys have a very short lifespan and have to be renewed often.

This allows users to link the images to someone else, while reducing the risk of mis-

use. When working with tokens, there is always a risk that they can be leaked or in-

tercepted; however, keeping user information secure is much more critical for this

system than hiding images and files.

5.2.2 Password Reset

Most of the backend resources were behind some sort of authentication. However, if

a user forgets their password, they must be able to reset it without logging in first.

Hence, one of the controller endpoints was configured as anonymous and without a

Guard, so that it can be accessed by anyone. The endpoint takes in a username, date

of birth and email address, which are used to send a password reset email to the

user. In this system, multiple users can potentially share the same email, although it

is not endorsed. The date of birth value is utilized to more effectively distinguish the

users from each other.

 public function getUser($token): ?UserInterface

 {

 $apiKey = $this->apiKeyResource->findOneBy(

 ['token' => $token]

);

 if ($apiKey === null) {

 throw new HttpException(

 Response::HTTP_UNAUTHORIZED, 'Invalid or expired token'
);

 }

 return $apiKey->getCreatedBy();

 }

51

As for the link, a temporary API key is generated and concatenated into the web ap-

plication URL, after which it is sent to the user’s email address. Accessing the link be-

gins the authentication process by connecting to another unsecured anonymous

endpoint. That endpoint has, however, a light authentication mechanism in the form

of an API key check. If an API key with the token specified in the URL is found and has

not expired, the password encoding begins. It is triggered by changing the user’s

plainPassword value, after which the PreUpdate callback is executed. In the lifecycle

hook, the password is hashed with a secure algorithm and the plainPassword value is

erased, as it should never be stored in the database. Subsequently, the client re-

ceives a signed token and is able to login as normal. Naturally, the temporary API key

is removed after it has been exhausted or if a certain amount of time has passed. The

logic is illustrated in Figure 30.

Figure 30. Password reset action.

 $token = $request->headers->get('Authorization');

 $apiKey = $this->apiKeyResource->getRepository()->findOneBy([

 'token' => $token,

 'description' => 'Password Recovery'

]);

 if ($apiKey === null) {

 throw new HttpException(

 Response::HTTP_NOT_FOUND, 'Api key not found'
);

 }

 $user = $apiKey->getCreatedBy();

 $user->setPlainPassword($request->get('password'));

 $this->userResource->save($user);

 $this->entityManager->remove($apiKey);

52

6 User Roles and Access Control

6.1 User Roles

6.1.1 Role Descriptions

The TyPe application was designed with multiple user roles in mind. Starting from the

lowest to the highest role they are examinee, work manager, gate keeper and organi-

zation admin. Examinees are considered “normal” users, whereas the rest are admin-

istrative users. The distinction between them is that the admin users are normally

part of an organization or in a management position in one of their subsidiaries and

examinees are other employees and freelancers. Technically, each role has access to

features that are meant for users below them in the hierarchy, e.g., work managers

can also take exams.

The majority of users are Examinees, who only take exams in the application. They

have no rights to create or modify anything except for exam entities and their own

user information. Rather than being part of organizations, these users generally be-

long to subsidiary companies. Examinees cannot see any other users or even course

packages, only courses that are assigned to them and any related materials.

Work managers are administrators designated to specific course packages. Their pri-

mary purpose is to assign examinees to course packages and occasionally create new

users. They can additionally track the exam results of users who belong to their com-

pany or companies. Similarly to examinees, work managers belong to subsidiaries

more often than not, although it is possible have them in an organization. Even

though they are administrators of course packages, they cannot modify the entity it-

self in any way.

Organization admin is the highest role available. As the name suggests, it is only

available for users in an organization. Organization admins cannot only create

courses, course packages, companies and users but they can modify every property

available. Furthermore, it is up to organization admins to create all content in the ap-

plication, including other users. They also have access to exam results and their us-

ers’ information similarly to the other admin roles.

53

Gate keepers are similar to organization admins in that they can only belong to an or-

ganization. The main difference is that they cannot create new courses, course pack-

ages or companies. They can, however, create users and manage them, which in-

cludes attaching them to companies and course packages. The gate keeper role is de-

signed for people whose job is to check which users have successfully taken an exam.

6.1.2 Changing the Active Company

The access control list is not only based on access roles, but also on companies. This

means that access control entries include the ID value of the company, through

which the access right is shared. This is necessary due to some edge cases, such as

when a single work manager is designated to the same course package through more

than one company or when an examinee is attached to a course package in similar

fashion. Naturally, users can only have access rights that are connected to companies

that they belong to.

TyPe was designed to be simplistic in that each user has a single active company,

while they are logged in, to reduce the amount of information they take in at once.

Since users can be part of multiple companies, there had to be an option to change

the active company of the user. At first, when creating a user, they are also attached

to a company making that their active company at that time. Afterwards, the user

can switch their active company, after which a new token containing the necessary

information is generated on the backend. Every request sent from the application in-

cludes the ID of the active company, which is used in the access control filter as de-

scribed in more detail in chapter 6.3.2.

The difference between administrative users and examinees is that examinees can-

not change their active company. Instead, they see all the courses that they have ac-

cess to concurrently. When it comes to admins, one can only switch to a company in

which their access role is of a similar level; organization admins and gate keepers can

only change to a role in another organization, as changing to another company under

the same organization is redundant. Work managers, on the other hand, can freely

switch between different companies where they exist as work managers. Whenever

a user accesses the application, a request is sent to the web service retrieving a list of

54

companies that the user can switch to. The code for retrieving the company data is

showcased in Figure 31.

Figure 31. Fetching available companies with Doctrine's QueryBuilder.

To allow admin-level users to also take exams without making the user interface too

confusing, another feature, known as Examination mode, was developed. It allows

users to temporarily set their own role to “examinee” for backend requests. Exami-

nation mode makes it so that one can only receive data relevant to examinees and

additionally disables company switching, until they change back to Administrative

mode.

6.2 The Importance of Access Control

Requests can be sent to API endpoints via programs such as Postman. The requests

can include headers, payloads and anything that web applications includes in them,

including the access token. Therefore, unauthorized people can try to fish for pro-

tected data if they are aware of the resource URLs. Access control is essential to soft-

ware solutions for making sure that users can only access resources available to

them.

 public function getAdminCompanies(string $userId): array

 {

 return $this->createQueryBuilder('accEntry')

 ->select('

 DISTINCT c.id, c.name, accEntry.accessRole,

 org.id AS organization, owner.id as ownedBy'

)

 ->innerJoin('accEntry.company', 'c')

 ->leftJoin('c.organization', 'org')

 ->leftJoin('c.ownedBy', 'owner')

 ->where('accEntry.subjectId = :userId')

 ->andWhere('accEntry.accessRole IN (:admins)')

 ->setParameter('userId', $userId)

 ->setParameter('admins', array(

 'PACKAGE_ADMIN', 'GATE_KEEPER', 'ORGANIZATION_ADMIN')

)

 ->groupBy('c.id')

 ->getQuery()->getArrayResult();

 }

55

Many web services and APIs consist of both secure and unsecure endpoints that re-

quire no authentication. When designing unsecure endpoints, it is imperative to dis-

allow access to any protected resources. For instance, when using serialization

groups, they should be manually set on the backend to essentially avoid a kind of SQL

injection. Otherwise, one could populate an entity and all of its relational properties

to gain access to them. With large-scale modern web software consisting of huge

amounts of features, it can be difficult to keep everything secured. Nonetheless, a ro-

bust access control system can thwart many unwanted breaches of security.

Naturally, keeping user information secure from unauthorized people is imperative,

especially because of the European Union’s General Data Protection Regulation. One

of the primary adjustments that developers have to make is that user information

has to be deleted from systems that have no necessity to handle it. According to

GDPR’s terms, personal information includes names, addresses, phone numbers,

tracking information and even IP addresses among other things. (Henkilötietojen

käsittelyä koskevat periaatteet n.d.) Software companies must make sure to keep

this data from the hands of unauthorized people.

6.3 Base Implementation

6.3.1 Access Control List

Access control list is a sort of map that describes which users have access privileges

to which resources. General permission to entity resources for all of the roles was de-

fined in the AccessRoles.php. The rights are mapped by role, e.g.,

ORGANIZATION_ADMIN, and permission, which includes read, create, update, de-

lete, share and revoke (see Figure 32). Sharing and revoking is related to adding users

to companies or course packages.

56

Figure 32. Access rights to resources for organization admins.

To enable the access control list on a controller, an annotation can be added into the

controller and any resources in it, for instance "@AccessControlRequirement(permis-

sions={‘CONTENT_READ’})”. Afterwards, voters make sure that the user, which is re-

trieved by utilizing the user provider, meets the authentication requirements to ac-

cess the resource. Voters are officially recommended by Symfony for these types of

security implementations (Security n.d). At the beginning of every resource endpoint,

the AuthorizationChecker service inspects the voter results and either continues exe-

cuting the code or returns a 403 forbidden error.

6.3.2 Access Control Filter

Symfony has a built in event that is dispatched after the controller for an endpoint

has been resolved, immediately before executing the code. The event can be sub-

scribed to with the onKernelController function. (Built-in Symfony Events n.d.) In this

function, the access control service is instantiated and the access control filter is ena-

bled. The filter requires an annotation reader, entity manager and the user entity to

perform necessary authentication steps. Additionally, the active company id and ac-

cess role are fetched from the query parameters and forwarded to the access control

filter. If the values are missing, the request will throw an error.

 const ORGANIZATION_ADMIN = [
 User::class =>

 Permissions::CONTENT_READ
 | Permissions::CONTENT_CREATE
 | Permissions::CONTENT_UPDATE
 | Permissions::CONTENT_DELETE
 ,
 Company::class =>

 Permissions::CONTENT_READ
 | Permissions::CONTENT_CREATE
 | Permissions::CONTENT_SHARE
 | Permissions::CONTENT_REVOKE
 ,
 ‘Default’ =>

 ...

];

57

The access control filter is essentially an extra SQL Inner Join for each Select query. It

combines the selected table with the access control table by using the domain id. If

the access control table includes a row with the specified domain ID, subject ID

equals the user’s ID, access role matches the user’s role and company ID matches the

user’s active company, the query is able to find one or more rows. Inner Joins make it

so that both tables must have data with the matching requirement. In addition, a Un-

ion Select on the company table makes sure that the user has the required access

rights to the company. A simplified version of the access control filter logic is shown

in Figure 33. In certain scenarios, the filter can be disabled temporarily to perform

database queries while ignoring the access control checks.

Figure 33. Simplified access control filter logic.

As for user entities, there are no access control entries with them as the domain. In-

stead, any administrative user can see all users in their respective companies. The

user filter simply creates a Join into the access control table and fetches users that

belong to the company with a raw SQL query (see Figure 34). However, the query is

slightly different for work managers and other users. For organization admins and

 public function addFilterConstraint()

 {

 if ($restrict->byCommonAccess) {

 return $this->addUserFilterConstraint();

 }

 $select = "SELECT e_.id FROM

 {$targetEntity->getTableName()} e_";

 $aclJoin = "INNER JOIN access_control a_ ON (a_.subject_id =

 $userId".

 "AND a_.domain_id = $joinAlias.$joinColumnName)";

 $whereRole = "WHERE a_.access_role = '$this->accessRole'";

 $whereNotDeleted = 'AND a_.deleted_at IS NULL';

 $whereCompany = "AND a_.company_id = '$this->activeCompanyId'";

 return "$targetTableAlias.id IN (

 "$select{$joins}

 $aclJoin $whereRole $whereCompany $whereNotDeleted";

)";

 }

58

gatekeepers, the query also includes other companies attached to the user’s com-

pany, whereas work managers only have access to their own company and they can

only view examinee-level users.

Figure 34. User filter constraint for work managers (PACKAGE_ADMIN).

6.4 Access Control Entries

6.4.1 Entity Design

The access control entries work the same way as other Symfony entities. They are

mapped to a single table in the database with the most important properties being

the subject, domain, company and access role. The properties are connected to the

original entities by Foreign Keys making it easier to create complex SQL queries with

multiple Joins (see chapter 6.5.1 for an example). All of the properties, except com-

pany, are required to map the entries onto the appropriate entities.

 private function addUserFilterConstraint(): string

 {
 ...
 switch ($accessRole) {

 case 'ORGANIZATION_ADMIN':

 case 'GATE_KEEPER':

 ...

 break;

 case 'PACKAGE_ADMIN':

 $q = "SELECT a0_.subject_id ".

 "FROM access_control a0_ ".

 "INNER JOIN access_control a1_ ON (".

 "a1_.subject_id = $userId AND ".

 "a1_.domain_id = a0_.domain_id AND ".

 "a1_.company_id = a0_.company_id AND ".

 "a1_.access_role = 'PACKAGE_ADMIN') ".

 "WHERE a0_.subject_id = $userId ".

 "OR a0_.access_role = 'EXAMINEE' ".

 "AND a0_.company_id = '$this->activeCompanyId' ".

 "AND a0_.deleted_at IS NULL ".

 "GROUP BY a0_.subject_id";

 break;

 }
 ...

59

Subject refers to the user who has an access control right to an entity. The target en-

tity, on the other hand, is known as the domain. It consists of two properties, domain

id and domain name, which are the Primary Key of the domain entity and its name,

e.g., “App\Entity\Course”. Most access control entries also have a company property,

which indicates the company through which the right is given. When accessing

backend resources, the user’s active company is used to filter access control entries

based on the company ID. Lastly, access role is self-explanatory in that it simply spec-

ifies the role as a string value, for instance “EXAMINEE” or

“ORGANIZATION_ADMIN”.

Access rights are reliant on many modifiers. In this application, users can gain access

by way of a certain role, company or a course package. For example, a single user can

be an administrator of a course, even though they cannot take the exam for that

course without having examinee-level access rights. All of the variable data is in-

cluded in the access control entry increasing its complexity. Otherwise, the access

control rights would be impossible to manage afterwards.

6.4.2 Creating Entries

The access control rights are generally created in entity lifecycle callbacks (see chap-

ter 4.3.3), mostly in PostPersist and PostUpdate. In the case of a new course, its crea-

tor gets access control entries for that course with both an “OWNER” role as well as

an “ORGANIZATION_ADMIN” role. Every other organization admin in the same com-

pany also obtains the latter. The same principle applies to materials such as files and

images, as shown in Figure 35. Rights to the materials are inherited from the parent

entity, for instance a course or course package. In the case of course packages, the

rights are propagated to courses included in it, so that the work managers and exam-

inees are allowed to access it.

60

Figure 35. Propagation of access rights to child entities.

Access rights are mainly shared via a user’s company or organization. Depending on if

the company is an organization or not, the logic is slightly different, as demonstrated

in Figure 36. Occasionally, access control entries are also added or removed from us-

ers in another company, for instance when a single course package is shared be-

tween two or more companies. Whenever a new user is added to a company, they

also get access to the necessary data depending on their access role. Work managers

and examinees, however, do not get access to anything by default.

Figure 36. Creating entries depending on the access role and company type.

 foreach ($entity->getFiles()->getIterator() as $file) {

 $accessControlService->extendRights(

 $entity, $file, null, AccessRoles::all(true)
);

 }

 if (

 !$currentUserCompany->isOrganization() &&

 $currentUser->getHighestRole() === 'PACKAGE_ADMIN'

)

) {

 $accessControlService->extendRights(

 $currentUserCompany,

 $entity,

 $currentUserCompany->getOwnedBy()->getCompany()->getId(),

 ['ORGANIZATION_ADMIN', 'GATE_KEEPER', 'PACKAGE_ADMIN']

);

 }

 else if ($currentUserCompany->getId() !== $company->getId()) {

 $accessControlService->extendRights(

 $currentUserCompany,

 $entity,

 $currentUserCompany->getId(),

 ['ORGANIZATION_ADMIN', 'GATE_KEEPER', 'PACKAGE_ADMIN']

);

 }

61

6.5 Problematic Cases

6.5.1 Retroactive Access Rights

In the application, users’ contact information is tied to their company. Therefore,

since any user can belong to multiple companies, they could also have more than

one email and phone number. The contact information is stored in UserDetail enti-

ties, which are associated with the user and the company. Originally, the data was

simply stored on the user entity instead; however, it was deemed necessary to allow

multiple sets of contact information. Another benefit of a separate entity is that the

Blameable trait can be utilized. It saves the ID of the user who created the entity, so

that their information can be tracked later on. Using this method, it is possible to re-

trieve the contact information of the work manager who attached an examinee to a

course package, and show it to the user. Furthermore, the same principle applies to

updating and deleting.

Due to changes in the application code after the TyPe application product was re-

leased, certain administrative-level users lost their access rights to some users’ con-

tact information. In order to adjust the entries to the revamped access control logic,

it was necessary to create a migration that would executed in the production data-

base. Normally, migrations are used to alter tables or modify the data using Where

conditions and Joins. However, this problem could not be solved with a simple Up-

date query using Joins.

The issue was fixed by using an SQL Stored Procedure, which is similar to a Function.

However, it is more flexible, as it allows multiple Select, Case and If statements inside

of it (Wenzel n.d). The procedure makes use of SQL Cursors, which retrieve a single

row at a time from the database using complex Select queries. The rows can then be

iterated through and used in declaring variables. This allows creating new access con-

trol entries inside the iterative loops using those variables. The logic for creating the

necessary entries works as follows:

1. Cursor finds all UserDetail entities and iterates through them in a loop. Each of the

entities has a companyId value for later use.

2. Inside the loop, another Cursor Selects all users with an administrative access role

in the company attached to the UserDetail and iterates through them as well. This is

62

done by adding Inner Joins from the user table through the company_has_user table

into the company table and checking that the user has administrative rights to said

company. Additionally, a Left Join is used to check if the company has a relationship

to an organization entity. The Cursor utilizes values retrieved from the previous Cur-

sor Select query.

3. Inside the inner loop, a new access control entry entity is created for that user to

that UserDetail with the same access role and the same company. In the case of or-

ganization admins, the companyId property must be the organization’s ID instead of

the company’s. The IDs for new entries are created by combining SQL’s functions,

such as HEX, FLOOR, RAND, LPAD and CONCAT, to achieve the semi-random UUIDv4

format. This is done, because SQL’s generic UUID function creates a predictable, less

random UUIDv1.

Although, this algorithm results in some duplicate entries, they can be easily re-

moved afterwards. Additionally, it is worth noting that executing the procedure with

approximately 100 users can take up to 15 seconds, due to amount of queries and

Joins. For the full procedure code, see Appendix 2.

6.5.2 Creating Duplicate Entities

Each real-life company can only have a single company entity matching it in the ap-

plication. However, multiple organizations can still “own” the same company. When

creating a company, one of the required properties is the business ID, which is used

as a unique constraint in the database. After typing in the business ID in the correct

format, a request is sent in the background. The request checks whether a company

with the business ID already exists, ignoring the standard access control procedures.

Instead, the endpoint only checks that the user is an organization admin. Although it

is not ideal to be able to find entities without proper access, it was essentially the

only way handle this case without confusing the users.

If the database query finds an existing company entity, it is added under the user’s

organization. The difference from normally creating a company is that the organiza-

tion user do not receive owner rights. Therefore, only the first organization to create

a company can modify its properties, although others can still add users to it. In that

case, both organizations have access to those users.

63

7 Discussion

7.1 Conclusions

7.1.1 Accomplishments

From the clients’ perspective, the application had many praiseworthy features. Spe-

cifically, it received positive feedback for its ease-of-use and intuitiveness, especially

on the course form shown in Figure 37. The credit for that certainly goes to the de-

velopment team’s user experience expert. Moreover, it was a good idea to wait for

clients’ feedback and then refactor certain components and features with the feed-

back in mind. The course form used for creating and editing courses was especially

well-received.

Figure 37. Course form view.

Although the access control implementation was not without flaws, it certainly

worked as intended. The base implementation, including the entity, access control

filter, propagation functions and the inheritance of access rights, was intelligently de-

signed. It can surely be utilized again in future projects due to its flexibility. There is

also a lot to learn from developing it.

64

The application was designed with best practices in multiple areas. Thanks to the

knowledge from the team’s most experienced developers, many pitfalls were

avoided. Issues were spotted in code review and quality assurance testing and

promptly fixed afterwards. The team followed naming conventions for files, re-

sources such as endpoints, tables and components. Although the developers did not

have much experience with Angular or state management, they handed Observables,

the application state and the ngrx middleware appropriately and efficiently.

7.1.2 Design Flaws

The controllers in the web service contained many actions, which are endpoints that

handle various operations. It would have been better to implement generic REST

endpoints by using a bundle like the FOSRestBundle. They allow easily modifying en-

tities if implemented properly. Additionally, array type properties should be config-

ured to use adder methods instead of setter methods, so that every related child row

does not have to be altered on each update. That was how the controller endpoints

worked at first, but Symfony forms and the access control implementation created

some issues it. There might be better input validation bundles available or perhaps

Symfony forms could be customized somehow.

As mentioned in chapter 4.2.24.2.2, organizations can have other organizations as

their subsidiaries. Taking it one step further, a subsidiary organization could techni-

cally have another organization under it. This results in an incredible amount of data-

base queries and long iterative loops when creating access control entries for those

companies. Looking back at this functionality, it would have been better to disallow

subsidiary organizations in favor of a two-level design with organizations on top and

normal companies below them. Even if the clients actually made use of this feature,

as it stands, it would be extremely confusing to them.

7.1.3 Improvement Possibilities

The access role names are generic. One way to cater to different clients’ needs would

be to allow customizable role names and even names for entities. For instance, some

client might prefer to call companies subsidiaries instead. That way, it would be less

65

confusing for the end-users, since they can use terminology and jargon from their re-

spective occupations. The main issue, however, is that Finnish language has many

conjugations and they would have to be configurable as well.

The complexity of the access control service’s logic makes some of the queries take a

long time. During this time, the users have to wait for the response before continuing

to use the application. It would definitely be better to run those tasks asynchro-

nously by adding them to a process queue, which would be executed with a first-in-

first-out logic. Granted, if there are many tasks in the queue, it might take a while for

users to see the changes in the application, but it would be far better than forcing

them to wait. Similarly, the process queue could also be utilized by the email and text

message services, which can take a while to execute the message delivery.

Serializing entities to response payloads takes not only time, but also processing

power. Optimizing the population options would be the first step to achieving faster

performance in the system. For instance, when populating course entities in a Course

package, the population options could be changed from “CoursePackage.courses,

Course” to “set.CoursePackageList”. Then, the set group can be added to each prop-

erty that should be included in the set. Not only does this make it faster in certain sit-

uations, but it also makes it easier to maintain the software in the long term. Another

improvement to property population would be to include certain count values. In the

previously mentioned course package list example, instead of populating each course

entity, it might be better to include only the number of courses and possibly the

number of unpublished courses as well. Knowing other information about the

courses is unnecessary. Other than the optimizations for serialization, this also re-

duces the time it takes for the access control filter to run, since it is executed for

each processed entity.

There is a generic search feature in each list view. The search is limited to string-

based properties, such as names and descriptions. Instead, it would be far better to

be able to filter based on other criteria, including relations and Boolean properties.

Some examples of this include finding courses based on course packages, users

based on companies, published or unpublished courses, exam results that are valid

66

or expired, et cetera. The search criteria should optimally be implemented in a ge-

neric way, with a trait or service, to reduce development time and not hinder the

maintainability.

7.2 Lessons to Learn

The main problem that slowed down the development was the less than adequately

designed database schema. At first, users could have a single set of emails and phone

numbers, which was changed later on. Another big change was when course pack-

ages could be shared between organizations, which meant that the relation had to

be changed from one-to-many to many-to-many among other issues. Similar code re-

factoring had to be made often, resulting in extra development time.

Deadlines are something that developers have to constantly deal with at work. Since

the development of the system took longer than expected, the project’s release date

came quickly. The team knew that they had a hard time creating a stable product on

release, which meant that certain shortcuts had to be taken to reach that state. This

ended up hurting the development in the long run, due to the technical debt of hav-

ing to refactor code. Instead of developing features with potential programming

flaws, it would have been better to spend the extra time and even delay the release

if necessary. This also comes back to the planning issues.

When developing a feature, it is common to split it into smaller tasks. Generally, it is

a good thing, although it can also create issues later on. Other code changes might

affect that feature or make it more difficult to implement in some way. In the worst

case scenario, it might even get forgotten or pushed lower into the backlog of tasks.

In addition, the developer or developers who originally worked on a feature might

not be working on the project anymore, meaning that programming the feature

takes more time. The split tasks should be prioritized well and preferably developed

right after the main task in many cases.

Most problems that developers run into have already been solved in the past. There-

fore, it is better to reuse existing solutions, rather than try to reinvent them. It is im-

portant to use libraries and bundles that are publically available, as long as they are

67

secure and do not pose other problems. Although it is difficult to say what kind of

packages could have been used in the project, there are surely a few of them.

68

References

10 best Node.js frameworks in 2018. 2018. Blog post on DA-14’s website. Accessed
on 02.11.2018. Retrieved from https://da-14.com/blog/10-best-nodejs-frameworks.

Anser, M. 2017. GraphQL :: A data query language. Article on Medium’s website.
Accessed on 27.10.2018. Retrieved from
https://medium.com/@ansertechgeek/graphql-a-data-query-language-
e22e2d2f8eeb.

Box, D. 2001. A Brief History of SOAP. Article on XML.com website. Accessed on
12.10.2018. Retrieved from https://www.xml.com/pub/a/ws/2001/04/04/soap.html.

Built-in Symfony Events. N.d. Symfony’s official documentation. Accessed on
30.12.2018. Retrieved from
https://symfony.com/doc/current/reference/events.html.

Carpenter, J. 2018. Why you should use a graph database. Article on InfoWorld’s
website. Accessed on 03.11.2018. Retrieved from
https://www.infoworld.com/article/3251829/nosql/why-you-should-use-a-graph-
database.html.

Databases and Doctrine ORM. N.d. Symfony’s official documentation. Accessed on
13.01.2019. Retrieved from https://symfony.com/doc/current/doctrine.html.

DB-Engines Ranking - Trend Popularity. N.d. Statistical distribution on DB-Engines’
website. Updated in autumn of 2018. Accessed on 28.10.2018. Retrieved from
https://db-engines.com/en/ranking_trend.

Difference Between RPC and RMI. 2017. Article on TechDifferences’ website.
Accessed on 28.10.2018. Retrieved from https://techdifferences.com/difference-
between-rpc-and-rmi.html.

Digitalisaatio. N.d. Accessed on 13.01.2019. Retrieved from
https://www.protacon.com/digitalisaatio/.

Events. N.d. Doctrine’s official documentation. Accessed on 13.01.2019. Retrieved
from https://www.doctrine-project.org/projects/doctrine-
orm/en/latest/reference/events.html.

Forms. N.d. Symfony official documentation. Accessed on 25.12.2018. Retrieved from
https://symfony.com/doc/current/forms.html.

Gilmore, J. 2018. The importance of loose coupling in REST API design. Article on
dreamfactory’s website. Accessed on 27.10.2018. Retrieved from
http://blog.dreamfactory.com/the-importance-of-loose-coupling-in-rest-api-design/.

Hammink, J. 2018. The Types of Modern Databases. Blog post on alooma’s website.
Accessed on 28.10.2018. Retrieved from https://www.alooma.com/blog/types-of-
modern-databases.

Hansen, S. 2017. 7 Good Reasons to Use Symfony Framework for Your Project. Article
on Hackernoon’s website. Accessed on 28.10.2018. Retrieved from

https://da-14.com/blog/10-best-nodejs-frameworks
https://medium.com/@ansertechgeek/graphql-a-data-query-language-e22e2d2f8eeb
https://medium.com/@ansertechgeek/graphql-a-data-query-language-e22e2d2f8eeb
https://www.xml.com/pub/a/ws/2001/04/04/soap.html
https://symfony.com/doc/current/reference/events.html
https://www.infoworld.com/article/3251829/nosql/why-you-should-use-a-graph-database.html
https://www.infoworld.com/article/3251829/nosql/why-you-should-use-a-graph-database.html
https://symfony.com/doc/current/doctrine.html
https://db-engines.com/en/ranking_trend
https://techdifferences.com/difference-between-rpc-and-rmi.html
https://techdifferences.com/difference-between-rpc-and-rmi.html
https://www.protacon.com/digitalisaatio/
https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html
https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html
https://symfony.com/doc/current/forms.html
http://blog.dreamfactory.com/the-importance-of-loose-coupling-in-rest-api-design/
https://www.alooma.com/blog/types-of-modern-databases
https://www.alooma.com/blog/types-of-modern-databases

69

https://hackernoon.com/7-good-reasons-to-use-symfony-framework-for-your-
project-265f96dcf759.

Harris, D. 2016. MongoDB co-creator explains why ‘NoSQL’ came to be, and why open
source mastery is an elusive goal. Article on Medium’s website. Accessed on
02.11.2018. Retrieved from https://medium.com/s-c-a-l-e/mongodb-co-creator-
explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-
3a138480b9cd.

Helfer, J. 2016. GraphQL vs. Falcor. Blog post on Medium’s website. Accessed on
27.10.2018. Retrieved from https://blog.apollographql.com/graphql-vs-falcor-
4f1e9cbf7504.

Henkilötietojen käsittelyä koskevat periaatteet. N.d. Article on tietosuojamalli’s
website. Updated on 21.05.2017. Accessed on 13.01.2019. Retrieved from
https://fakta.tietosuojamalli.fi/gdpr-asetus/5-henkilotietojen-kasittelya-koskevat-
periaatteet.

Homan, J. 2014. Relational vs. non-relational databases: Which one is right for you?
Blog post on Pluralsight’s website. Accessed on 02.11.2018. Retrieved from
https://www.pluralsight.com/blog/software-development/relational-non-relational-
databases.

Hoppe, T. 2015. REST APIs Today and Tomorrow. Presentation on a GitHub pages
website. Accessed on 05.01.2019. Retrieved from http://vanthome.github.io/rest-
api-essay-presentation/rest_apis.html.

How to Manually Encode a Password. N.d. Symfony’s official documentation.
Accessed on 26.01.2019. Retrieved from
https://symfony.com/doc/4.0/security/password_encoding.html.

How to Organize Configuration Files. N.d. Symfony’s official documentation.
Accessed on 13.01.2019. Retrieved from
https://symfony.com/doc/current/configuration/configuration_organization.html.

Introduction to JSON Web Tokens. N.d. Manual on JWT.io website. Accessed on
17.01.2019. Retrieved from https://jwt.io/introduction/.

Kumar, D. N.d. Best practices for building RESTful web services. Pdf document on
Infosys’ website. Accessed on 21.10.2018. Retrieved from
https://www.infosys.com/digital/insights/Documents/restful-web-services.pdf.

Lease, D. 2018. TypeScript: What is it & when is it useful? Article on Medium’s
website. Accessed on 10.11.2018. Retrieved from https://medium.com/front-end-
hacking/typescript-what-is-it-when-is-it-useful-c4c41b5c4ae7.

Mueller, J. 2013. Understanding SOAP and REST Basics And Differences. Blog post on
Smartbear’s website. Accessed on 11.10.2018. Retrieved from
https://smartbear.com/blog/test-and-monitor/understanding-soap-and-rest-basics/.

Nasseri, A. 2016. JSON Web Tokens: Artsy’s Journey. Blog post on Artsy’s GitHub
pages. Accessed on 26.01.2019. Retrieved from
http://artsy.github.io/blog/2016/10/26/jwt-artsy-journey/.

https://hackernoon.com/7-good-reasons-to-use-symfony-framework-for-your-project-265f96dcf759
https://hackernoon.com/7-good-reasons-to-use-symfony-framework-for-your-project-265f96dcf759
https://medium.com/s-c-a-l-e/mongodb-co-creator-explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-3a138480b9cd
https://medium.com/s-c-a-l-e/mongodb-co-creator-explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-3a138480b9cd
https://medium.com/s-c-a-l-e/mongodb-co-creator-explains-why-nosql-came-to-be-and-why-open-source-mastery-is-an-elusive-goal-3a138480b9cd
https://blog.apollographql.com/graphql-vs-falcor-4f1e9cbf7504
https://blog.apollographql.com/graphql-vs-falcor-4f1e9cbf7504
https://fakta.tietosuojamalli.fi/gdpr-asetus/5-henkilotietojen-kasittelya-koskevat-periaatteet
https://fakta.tietosuojamalli.fi/gdpr-asetus/5-henkilotietojen-kasittelya-koskevat-periaatteet
https://www.pluralsight.com/blog/software-development/relational-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-non-relational-databases
http://vanthome.github.io/rest-api-essay-presentation/rest_apis.html
http://vanthome.github.io/rest-api-essay-presentation/rest_apis.html
https://symfony.com/doc/4.0/security/password_encoding.html
https://symfony.com/doc/current/configuration/configuration_organization.html
https://jwt.io/introduction/
https://www.infosys.com/digital/insights/Documents/restful-web-services.pdf
https://medium.com/front-end-hacking/typescript-what-is-it-when-is-it-useful-c4c41b5c4ae7
https://medium.com/front-end-hacking/typescript-what-is-it-when-is-it-useful-c4c41b5c4ae7
https://smartbear.com/blog/test-and-monitor/understanding-soap-and-rest-basics/
http://artsy.github.io/blog/2016/10/26/jwt-artsy-journey/

70

Nayyar, A. 2018. Why MariaDB Scores Over MySQL. Article on OpenSourceForU’s
website. Accessed on 02.12.2018. Retrieved from
https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/.

Patel, P. 2018. What exactly is Node.js? Article on Medium freeCodeCamp’s website.
Accessed on 02.11.2018. Retrieved from https://medium.freecodecamp.org/what-
exactly-is-node-js-ae36e97449f5.

Pohjolainen, J. 2016. Java RMI. Lecture material on Tampere University of Applied
Sciences’ website. Accessed on 28.10.2018. Retrieved from
http://koti.tamk.fi/~pohjus/java/lectures/rmi.html.

Reeve, A. 2012. Big Data and NoSQL: The Problem with Relational Databases. Article
on InFocus DellEMC’s website. Accessed on 02.11.2018. Retrieved from
https://infocus.dellemc.com/april_reeve/big-data-and-nosql-the-problem-with-
relational-databases/.

REST in peace, SOAP. 2010. Article on royal.pingdom.com website. Accessed on
06.10.2018. Retrieved from https://royal.pingdom.com/2010/10/15/rest-in-peace-
soap/.

Rytov, O. N.d. Why I Decided To Embrace Laravel. Article on Toptal’s website.
Accessed on 28.10.2018. Retrieved from https://www.toptal.com/laravel/why-i-
decided-to-embrace-laravel.

Sakhibgareev, K. N.d. PHP Frameworks: Choosing Between Symfony and Laravel.
Article on Toptal’s website. Accessed on 28.10.2018. Retrieved from
https://www.toptal.com/php/choosing-between-symfony-and-laravel-frameworks.

Sasaki, B. 2018. Graph Databases for Beginners: Why Graph Technology Is the Future.
Blog post on neo4j.com website. Accessed on 06.01.2019. Retrieved from
https://neo4j.com/blog/why-graph-databases-are-the-future/.

Sanjna, V. 2018. APIs versus web services. Blog post on MuleSoft’s website. Accessed
on 11.10.2018. Retrieved from https://blogs.mulesoft.com/dev/api-dev/apis-versus-
web-services/.

Security. N.d. Symfony’s official documentation. Accessed on 13.01.2019. Retrieved
from https://symfony.com/doc/current/security.html.

Shah, App. N.d. Basic WSDL Structure Understanding – (Web Service Description
Language) Explained. Blog post on Crunchify’s website. Updated on 14.07.2018.
Accessed on 20.10.2018. Retrieved from https://crunchify.com/basic-wsdl-structure-
understanding-wsdl-explained/.

Skvorc, B. 2015. The Best PHP Framework for 2015: SitePoint Survey Results. Article
on SitePoint’s website. Accessed on 28.10.2018. Retrieved from
https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/.

SOAP Vs. REST: Difference between Web API Services. N.d. Tutorial on Guru99’s
website. Accessed on 12.10.2018. Retrieved from
https://www.guru99.com/comparison-between-web-services.html.

Sturgeon, P. 2016. Understanding RPC Vs REST For HTTP APIs. Article on Smashing
magazine’s website. Accessed on 27.10.2018. Retrieved from

https://opensourceforu.com/2018/04/why-mariadb-scores-over-mysql/
https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5
https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5
http://koti.tamk.fi/~pohjus/java/lectures/rmi.html
https://infocus.dellemc.com/april_reeve/big-data-and-nosql-the-problem-with-relational-databases/
https://infocus.dellemc.com/april_reeve/big-data-and-nosql-the-problem-with-relational-databases/
https://royal.pingdom.com/2010/10/15/rest-in-peace-soap/
https://royal.pingdom.com/2010/10/15/rest-in-peace-soap/
https://www.toptal.com/laravel/why-i-decided-to-embrace-laravel
https://www.toptal.com/laravel/why-i-decided-to-embrace-laravel
https://www.toptal.com/php/choosing-between-symfony-and-laravel-frameworks
https://neo4j.com/blog/why-graph-databases-are-the-future/
https://blogs.mulesoft.com/dev/api-dev/apis-versus-web-services/
https://blogs.mulesoft.com/dev/api-dev/apis-versus-web-services/
https://symfony.com/doc/current/security.html
https://crunchify.com/basic-wsdl-structure-understanding-wsdl-explained/
https://crunchify.com/basic-wsdl-structure-understanding-wsdl-explained/
https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
https://www.guru99.com/comparison-between-web-services.html

71

https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-
apis/.

The History of REST APIs. 2016. Blog post on readme.io website. Accessed on
27.10.2018. Retrieved from https://blog.readme.io/the-history-of-rest-apis/.

The Serializer Component. N.d. Symfony’s official documentation. Accessed on
19.01.2019. Retrieved from
https://symfony.com/doc/current/components/serializer.html.

The structure of a SOAP message. N.d. Documentation on IBM’s website. Updated on
19.09.2018. Accessed on 21.10.2018. Retrieved from
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etoo
ls.mft.doc/ac55780_.htm.

The ultimate guide to API architecture: REST, SOAP or GraphQL. 2018. Blog post on
DA-14’s website. Accessed on 27.10.2018. Retrieved from https://da-
14.com/blog/ultimate-guide-api-architecture-rest-soap-or-graphql.

Tutorial – Example of a SOAP message. 2012. Shared file on GitHubGist.com website.
Accessed on 21.10.2018. Retrieved from https://gist.github.com/lamprosg/2151619.

Wenzel, K. N.d. Learn about Stored Procedures. Blog post on essentialSQL.com
website. Accessed on 19.01.2019. Retrieved from
https://www.essentialsql.com/what-is-a-stored-procedure/.

What Are Web Services and Where Are They Used? 2013. Article on Segue
Technologies’ website. Accessed on 29.09.2018. Retrieved from
https://www.seguetech.com/web-services/.

What is a Column Store Database? 2016. Article on Database.guide’s website
website. Accessed on 03.11.2018. Retrieved from https://database.guide/what-is-a-
column-store-database/.

What is a Database Schema? 2016. Article on Database.guide’s website. Accessed on
02.11.2018. Retrieved from https://database.guide/what-is-a-database-schema/.

What is REST? N.d. Article on Code academy’s website. Accessed on 12.10.2018.
https://www.codecademy.com/articles/what-is-rest.

Why the Hell Would You Use Node.js. 2017. Article on Medium’s website. Accessed
on 02.11.2018. Retrieved from https://medium.com/the-node-js-collection/why-the-
hell-would-you-use-node-js-4b053b94ab8e.

Wieruch, R. 2018. Why GraphQL: Advantages, Disadvantages & Alternatives. Article
on Robin Wieruch’s website. Accessed on 21.10.2018. Retrieved from
https://www.robinwieruch.de/why-graphql-advantages-disadvantages-alternatives/.

Wodehouse, C. N.d. SOAP vs. REST: A Look at Two Different API Styles. Article on
Upwork’s website. Accessed on 20.10.2018. Retrieved from
https://www.upwork.com/hiring/development/soap-vs-rest-comparing-two-apis/.

Working with Associations. N.d. Doctrine’s official documentation. Accessed on
13.01.2019. Retrieved from https://www.doctrine-project.org/projects/doctrine-
orm/en/2.6/reference/working-with-associations.html.

https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://blog.readme.io/the-history-of-rest-apis/
https://symfony.com/doc/current/components/serializer.html
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac55780_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac55780_.htm
https://da-14.com/blog/ultimate-guide-api-architecture-rest-soap-or-graphql
https://da-14.com/blog/ultimate-guide-api-architecture-rest-soap-or-graphql
https://gist.github.com/lamprosg/2151619
https://www.essentialsql.com/what-is-a-stored-procedure/
https://www.seguetech.com/web-services/
https://database.guide/what-is-a-column-store-database/
https://database.guide/what-is-a-column-store-database/
https://database.guide/what-is-a-database-schema/
https://www.codecademy.com/articles/what-is-rest
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://www.robinwieruch.de/why-graphql-advantages-disadvantages-alternatives/
https://www.upwork.com/hiring/development/soap-vs-rest-comparing-two-apis/
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/working-with-associations.html
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/working-with-associations.html

72

Yegulalp, S. 2017. What is NoSQL? NoSQL databases explained. Article on InfoWorld’s
website. Accessed on 03.11.2018. Retrieved from
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-
explained.html.

Yellavula, N. 2018. A guide for adding JWT token based authentication to your single
page NodeJS applications. Article on Medium’s website. Retrieved from
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-
to-your-single-page-nodejs-applications-c403f7cf04f4.

https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-to-your-single-page-nodejs-applications-c403f7cf04f4
https://medium.com/dev-bits/a-guide-for-adding-jwt-token-based-authentication-to-your-single-page-nodejs-applications-c403f7cf04f4

73

Appendices

Appendix 1. Screenshots of the TyPe web application.

74

Appendix 2. Stored Procedure for adding access rights to user information.

delimiter //

 CREATE PROCEDURE add_user_detail_rights()
 BEGIN
 -- Declare variables
 DECLARE ud_id CHAR(36);
 DECLARE company_id CHAR(36);
 DECLARE user_id CHAR(36);
 DECLARE user_company_id CHAR(36);
 DECLARE org_company_id CHAR(36);
 DECLARE user_access_role VARCHAR(255);
 DECLARE ud_done INT DEFAULT FALSE;
 DECLARE user_done INT DEFAULT FALSE;

 -- Declare cursor loops
 DECLARE ud_cur
 CURSOR FOR
 SELECT user_details.id, user_details.company_id
 FROM user_details;

 DECLARE user_cur
 CURSOR FOR
 SELECT DISTINCT c.id, u.id, ac.access_role, c2.id
 FROM user u
 INNER JOIN company_has_user chs
 ON chs.user_id = u.id
 AND chs.company_id = company_id
 INNER JOIN company c
 ON c.id = chs.company_id
 INNER JOIN access_control ac

 ON (
 ac.domain_id = c.id AND
 ac.subject_id = u.id AND
 ac.access_role IN (
 'ORGANIZATION_ADMIN',
 'GATE_KEEPER',
 'PACKAGE_ADMIN'
)
)
 LEFT JOIN organization o
 ON o.id = c.owned_by_id
 LEFT JOIN company c2
 ON c2.id = o.company_id

 DECLARE CONTINUE HANDLER
 FOR NOT FOUND
 SET ud_done = TRUE;

 -- Outer loop block. Goes over each user detail.
 OPEN ud_cur;
 ud_loop: LOOP
 FETCH ud_cur
 INTO ud_id, company_id;

 -- Block with a separate 'not found handler'
 NESTED_LOOP: BEGIN
 FOR NOT FOUND
 SET user_done = TRUE;

 OPEN user_cur;
 user_loop: LOOP
 FETCH user_cur
 INTO user_company_id, user_id, user_access_role, org_company_id;

 -- Insert a new entry for each role that a user has to a com-

75

 NESTED_LOOP: BEGIN
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET user_done = TRUE;

 OPEN user_cur;
 user_loop: LOOP
 FETCH user_cur
 INTO user_company_id, user_id, user_access_role, org_company_id;

 -- Create a new entry for each role associated with a company
 IF user_id IS NOT NULL THEN
 INSERT INTO access_control (
 id,
 subject_id,
 domain_id,
 domain_name,
 access_role,
 company_id,
 created_at
)
 VALUES (
 -- Create a semi-random UUID (v4)
 LOWER(CONCAT(LPAD(HEX(FLOOR(RAND() * 0xffff)), 4, "0") ...)),
 user_id,
 ud_id,
 'App\\Entity\\UserDetail',
 user_access_role,
 user_company_id,
 NOW()
);

 -- Same values, except the company is an organization
 IF (org_company_id IS NOT NULL
 AND user_access_role = 'ORGANIZATION_ADMIN') THEN
 INSERT INTO access_control (
 ...
)
 VALUES (
 ...,
 org_company_id,
);
 END IF;
 END IF;

 IF user_done THEN LEAVE user_loop;
 END IF;
 END LOOP user_loop;
 CLOSE user_cur;
 END NESTED_LOOP;

 -- Reset nested 'not found handler' after each outer loop cycle
 SET user_done = 0;

 IF ud_done THEN LEAVE ud_loop;
 END IF;
 END LOOP ud_loop;
 CLOSE ud_cur;

 END
 //

 delimiter ;

